JP2571596B2 - Manufacturing method of composite material composed of ceramic and metal - Google Patents

Manufacturing method of composite material composed of ceramic and metal

Info

Publication number
JP2571596B2
JP2571596B2 JP63041298A JP4129888A JP2571596B2 JP 2571596 B2 JP2571596 B2 JP 2571596B2 JP 63041298 A JP63041298 A JP 63041298A JP 4129888 A JP4129888 A JP 4129888A JP 2571596 B2 JP2571596 B2 JP 2571596B2
Authority
JP
Japan
Prior art keywords
ceramic
metal
powder
composite
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63041298A
Other languages
Japanese (ja)
Other versions
JPH01215751A (en
Inventor
光雄 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP63041298A priority Critical patent/JP2571596B2/en
Publication of JPH01215751A publication Critical patent/JPH01215751A/en
Application granted granted Critical
Publication of JP2571596B2 publication Critical patent/JP2571596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はセラミックと金属との複合材を製造する方法
に関する。
Description: FIELD OF THE INVENTION The present invention relates to a method for producing a composite of ceramic and metal.

(従来の技術) セラミックと金属との複合材を製造する方法として従
来から2つの方法が知られている。
(Prior Art) Two methods are conventionally known as methods for producing a composite material of ceramic and metal.

第1の方法は、セラミック粉末と金属粉末を混合して
成形し、この成形体を焼結する方法であり、第2の方法
は発泡樹脂を燃焼飛散させてポーラスなセラミック焼成
体を作成し、このセラミック焼成体に溶融金属を含浸せ
しめるようにした方法であり、これらの方法によって得
られるセラミック−金属複合材はサーメットや超硬と異
なり、金属マトリックス中にセラミック粒子が分散して
いるものではない。
The first method is a method of mixing and molding ceramic powder and metal powder, and sintering the molded body. The second method is to create a porous ceramic fired body by burning and scattering foamed resin, This is a method in which a molten metal is impregnated in the ceramic fired body, and the ceramic-metal composite obtained by these methods is different from a cermet or a cemented carbide in that ceramic particles are not dispersed in a metal matrix. .

(発明が解決しようとする課題) 上述した第1の方法の場合には、セラミックを焼成す
るために金属の融点近く或いはそれ以上まで温度を上昇
させるため、金属が溶融して偏析を起こし、これによっ
てセラミック粒子間に空孔が発生し、内部欠陥となり強
度を向上することができない。一方第2の方法にあって
は、もともとセラミックと金属とは濡れ性が悪いため両
者を強固に固着できず、また気孔の大きさを金属溶湯が
含浸できる大きさとする必要があり、このようにする
と、セラミックの割合を多くすることができず、且つ微
細で均一な組織を形成できず、セラミック又は金属のみ
の部分が多くなって耐熱性の点でも課題がある。
(Problems to be Solved by the Invention) In the case of the first method described above, the temperature is raised to near or above the melting point of the metal in order to fire the ceramic, so that the metal melts and segregates. As a result, voids are generated between the ceramic particles, resulting in internal defects, and the strength cannot be improved. On the other hand, in the second method, the ceramic and the metal are originally poor in wettability, so that they cannot be firmly fixed to each other, and the size of the pores must be large enough to be impregnated with the molten metal. Then, the proportion of the ceramic cannot be increased, and a fine and uniform structure cannot be formed, and the portion of only the ceramic or the metal increases, and thus there is a problem in terms of heat resistance.

(課題を解決するための手段) 上記課題を解決すべく本発明は、急冷凝固法によって
先ずセラミックと金属の複合粉末を作成し、この複合粉
末にセラミック粉末を混合して成形体とし、この成形体
を焼成するようにした。
(Means for Solving the Problems) In order to solve the above problems, the present invention first prepares a composite powder of ceramic and metal by a rapid solidification method, mixes the composite powder with the ceramic powder to form a compact, and forms the compact. The body was fired.

(作用) 複合粉末を構成するセラミック粉末及び金属粉末とし
て活性なものを選定することで、金属粉末とセラミック
粉末とが金属の融点近くで拡散を伴う反応を生じ、この
反応により金属粉末とセラミック粉末とは化学的にも冶
金学的にも結合する。
(Action) By selecting an active ceramic powder and a metal powder constituting the composite powder, a reaction occurs in which the metal powder and the ceramic powder are diffused near the melting point of the metal. Combines chemically and metallurgically.

(実施例) 以下に本発明の実施例を添付図面に基づいて説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the accompanying drawings.

第1図は本発明方法を工程順に示したブロック図であ
り、本発明にあっては先ずセラミック粉末と金属粉末と
を水又は有機溶剤に混合してセラミックスラリーとす
る。
FIG. 1 is a block diagram showing the method of the present invention in the order of steps. In the present invention, first, ceramic powder and metal powder are mixed with water or an organic solvent to form a ceramic slurry.

ここで混合するセラミック粉末としてはCr3C2,TiN,Ta
C,Al4C3等のように活性なものとし、金属粉末としてはC
r,Mn,Ta,Fe,Ni,Co又はBi等のように活性化状態に遷移し
やすい金属或いはこれらの合金とする。ただし、金属
(合金)の一部をセラミック化したり析出させること
で、SiN4やSiC等のセラミック粉末を用いることができ
る。また、活性化を促すためガスを吹き込んだり、直接
通電したり磁気撹拌することが有効である。
The ceramic powder to be mixed here is Cr 3 C 2 , TiN, Ta
It should be active like C, Al 4 C 3 etc.
A metal such as r, Mn, Ta, Fe, Ni, Co, Bi, or the like, which easily transitions to an activated state, or an alloy thereof. However, ceramic powder such as SiN 4 or SiC can be used by converting a part of the metal (alloy) into a ceramic or precipitating it. In order to promote activation, it is effective to blow a gas, directly supply a current, or perform magnetic stirring.

次いで上記のセラミックスラリーを成形型内に注入し
て固化した成形体を得る。そして、この成形体を不活性
又は還元性雰囲気で溶融し、更に溶融物中にも不活性ガ
ス又は還元性ガスを吹き込んで撹拌及び還元を行う。
Next, the ceramic slurry is poured into a mold to obtain a solidified compact. Then, the molded body is melted in an inert or reducing atmosphere, and further, an inert gas or a reducing gas is blown into the melt to perform stirring and reduction.

そして上記の工程に続いて、セラミックと金属との溶
融物を冷却ドラム表面に滴下する等の手段によって溶融
物を急冷(冷却速度:103〜105℃/sec)し、セラミック
と金属との複合粉末を得る。ここで複合粉末を構成する
セラミック粒子と金属は前記したように表面が活性のも
のを選択しているので界面において互いに拡散し密着し
ている。
Then Following the above process, the melt quenching (cooling rate: 10 3 ~10 5 ℃ / sec ) by means such as dropping the melt of the ceramic and metal to the cooling drum surface, the ceramic and metal Obtain a composite powder. Here, the ceramic particles and the metal constituting the composite powder are selected to have active surfaces as described above, so that they are diffused and adhere to each other at the interface.

次いで上記の複合粉末を微粉状に粉砕した後、この複
合粉末に別途用意したセラミック粉末を混合し、前記同
様セラミックスラリーとして成形型に注入し固化して目
的形状の成形体を得る。
Next, after the above-mentioned composite powder is pulverized into a fine powder, a ceramic powder separately prepared is mixed with the composite powder, and the mixture is poured into a molding die as a ceramic slurry as described above and solidified to obtain a molded product having a desired shape.

この後、成形体を焼成する。焼成は仮焼成(650℃×
1時間、1200℃×2時間)と本焼成(1700℃×2時間)
に分けて行うようにしてもよい。
Thereafter, the molded body is fired. Pre-baking (650 ° C x
1 hour, 1200 ° C x 2 hours) and main firing (1700 ° C x 2 hours)
May be performed separately.

上記の焼成によって目的とするセラミックと金属とか
らなる複合材が得られる。この複合材は第2図の拡大断
面図に示すように、急冷凝固によって製造した複合粉末
1中ではセラミック2と金属3とが隙間なく化学的且つ
冶金学的に結合しており、この複合粉末1を囲むセラミ
ック粉末4と複合粉末1との間には隙間5が形成されて
いる。
By the above-mentioned firing, a composite material comprising the desired ceramic and metal is obtained. As shown in the enlarged sectional view of FIG. 2, this composite material has a ceramic 2 and a metal 3 chemically and metallurgically bonded without gaps in a composite powder 1 produced by rapid solidification. A gap 5 is formed between the ceramic powder 4 surrounding the composite powder 1 and the composite powder 1.

次に具体的な実験例を示す。 Next, specific experimental examples will be described.

(実験例1) 市販の窒化硅素粉末(最大粒径10μm、平均粒径1μ
m)90重量部、Y2O3(1μm以下、平均0.4μm)5重
量部、Al2O3(1μm以下、平均0.4μm以下)3重量部
にあらかじめセラミック粒子をCo系合金の中に添加した
複合粉末2重量部を加え、水を媒質として湿式混合し
た。<粒径40μm以下> Co合金に加えたセラミックはCr3C2であり、20重量%
である。金属とセラミック界面の接着は通常だと、良好
に接しているように見えても、例えば電子顕微鏡等によ
るSEM像などから、明瞭に、実際は界面の離れているこ
とが観測されるが、本実験で用いた粉末にはそのような
状況は観測されず、Co系合金を用いたセラミック粉末Cr
3C2が密接に接していた。これは金属とセラミック粒子
間における拡散を伴う反応により、化学的にもあるいは
冶金学的に結合しているものと考えられる。
(Experimental Example 1) Commercially available silicon nitride powder (maximum particle size 10 μm, average particle size 1 μm)
m) 90 parts by weight, Y 2 O 3 (1 μm or less, average 0.4 μm) 5 parts by weight, Al 2 O 3 (1 μm or less, average 0.4 μm or less) 3 parts by weight ceramic particles are added in advance to the Co-based alloy 2 parts by weight of the obtained composite powder were added, and wet-mixed using water as a medium. <Particle size 40μm or less> The ceramic added to the Co alloy is Cr 3 C 2 and is 20% by weight.
It is. Normally, the interface between the metal and ceramic interface seems to be in good contact, but it is clear from the SEM image of an electron microscope, for example, that the interface is clearly separated from the interface. Such a situation was not observed in the powder used in the above, and the ceramic powder Cr using a Co-based alloy was used.
3 C 2 was in close contact. This is thought to be due to a chemical or metallurgical bond due to a reaction involving diffusion between the metal and the ceramic particles.

混合中に複合粉末と溶媒の反応と考えられるが、水素
イオン濃度が24hr後に3.5×10-7だったため、1.6×10
-12に調製した。さらに24hr混合し、消泡剤を加えて脱
泡した後成型した。
It is considered that the reaction between the composite powder and the solvent during the mixing, but since the hydrogen ion concentration was 3.5 × 10 -7 after 24 hours, 1.6 × 10
-12 . The mixture was further mixed for 24 hours, defoamed by adding an antifoaming agent, and then molded.

成型は、加圧鋳込方法により行い、8×20×80に成形
した。成形後、乾燥し、脱脂操作後、N2雰囲気下1700℃
で2時間焼成した。焼成後、これよりテストピースを切
り出しクロスヘッドスピード0.5mm/minで三点曲げ試験
及び歪測定、硬度の測定、及び引張り強度の測定をし
た。
The molding was carried out by a pressure casting method, and molded into 8 × 20 × 80. After molding, drying and degreasing, 1700 ° C under N 2 atmosphere
For 2 hours. After firing, a test piece was cut out from this, and a three-point bending test, strain measurement, hardness measurement, and tensile strength measurement were performed at a crosshead speed of 0.5 mm / min.

その結果を第3図及び第4図のグラフに示す。 The results are shown in the graphs of FIG. 3 and FIG.

(発明の効果) 以上に説明したように本発明によれば、急冷凝固法に
よって得たセラミックと金属との複合粉末は、セラミッ
クと金属とが強固に固着し且つセラミック粒子が金属に
覆われているので焼結性が向上し、後に他のセラミック
粉末と混合して焼成した場合に内部欠陥のない製品が得
られる。
(Effect of the Invention) As described above, according to the present invention, in the composite powder of ceramic and metal obtained by the rapid solidification method, the ceramic and the metal are firmly fixed and the ceramic particles are covered with the metal. As a result, the sinterability is improved, and a product having no internal defects can be obtained when mixed with another ceramic powder and fired later.

また、本発明によればセラミックの割合を増加させる
ことができるので、従来の製法よりも焼結温度を高める
ことができ、焼結を促進して強度を向上することができ
る。
Further, according to the present invention, since the proportion of ceramic can be increased, the sintering temperature can be increased as compared with the conventional production method, and sintering can be promoted to improve the strength.

また急冷凝固法によって得た複合粉末はセラミックと
金属とが密に結合しているため、仮りに製品にクラック
が入っても当該クラックは金属とセラミックとの弾性率
の相違からその伸展が緩和され、更に複合粉末とセラミ
ック粉末との間には僅かな隙間が存在するので製品(複
合材)に作用する応力の一部は吸収されクラックの伸長
は阻止される。したがって強度的に優れた複合材が得ら
れる。
In addition, since the composite powder obtained by the rapid solidification method has a tight bond between the ceramic and the metal, even if a crack is formed in the product, the expansion of the crack is reduced due to the difference in elastic modulus between the metal and the ceramic. Further, since there is a small gap between the composite powder and the ceramic powder, a part of the stress acting on the product (composite material) is absorbed, and the extension of the crack is prevented. Therefore, a composite material excellent in strength can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明方法を工程順に示したブロック図、第2
図は複合材の拡大断面図、第3図及び第4図は複合材の
試験結果を示すグラフである。 尚、図面中、1は複合粉末、2,4はセラミック、3は金
属、5は隙間である。
FIG. 1 is a block diagram showing the method of the present invention in the order of steps.
The figure is an enlarged sectional view of the composite material, and FIGS. 3 and 4 are graphs showing test results of the composite material. In the drawings, 1 is a composite powder, 2 and 4 are ceramics, 3 is metal, and 5 is a gap.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】セラミック粉末と金属粉末とを混合し、こ
れらを不活性又は還元性雰囲気下で溶融撹拌し、次いで
溶融物を急冷凝固せしめてセラミックと金属との複合粉
末を作成し、この複合粉末にセラミック粉末を混合して
成形した後、成形体を焼成するようにしたことを特徴と
するセラミックと金属からなる複合材の製造方法。
1. A ceramic powder and a metal powder are mixed, melt-stirred in an inert or reducing atmosphere, and then the melt is quenched and solidified to form a composite powder of ceramic and metal. A method for producing a composite material comprising a ceramic and a metal, comprising mixing a powder with a ceramic powder, forming the mixture, and firing the formed body.
【請求項2】前記複合粉末は粉砕して微粉状にしてから
セラミック粉末と混合するようにしたことを特徴とする
前記特許請求の範囲第1項記載のセラミックと金属から
なる複合材の製造方法。
2. The method according to claim 1, wherein said composite powder is pulverized to a fine powder and then mixed with ceramic powder. .
JP63041298A 1988-02-24 1988-02-24 Manufacturing method of composite material composed of ceramic and metal Expired - Fee Related JP2571596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63041298A JP2571596B2 (en) 1988-02-24 1988-02-24 Manufacturing method of composite material composed of ceramic and metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63041298A JP2571596B2 (en) 1988-02-24 1988-02-24 Manufacturing method of composite material composed of ceramic and metal

Publications (2)

Publication Number Publication Date
JPH01215751A JPH01215751A (en) 1989-08-29
JP2571596B2 true JP2571596B2 (en) 1997-01-16

Family

ID=12604558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63041298A Expired - Fee Related JP2571596B2 (en) 1988-02-24 1988-02-24 Manufacturing method of composite material composed of ceramic and metal

Country Status (1)

Country Link
JP (1) JP2571596B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102337423B (en) * 2011-11-02 2012-11-21 中南大学 Preparation method of ceramic-powder-enhanced zinc-aluminum alloy based composite material

Also Published As

Publication number Publication date
JPH01215751A (en) 1989-08-29

Similar Documents

Publication Publication Date Title
JP2571596B2 (en) Manufacturing method of composite material composed of ceramic and metal
US5336291A (en) Method of production of a metallic composite material incorporating metal carbide particles dispersed therein
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
JP2995661B2 (en) Manufacturing method of porous cemented carbide
JP4167317B2 (en) Method for producing metal / ceramic composite material for casting
JP4524591B2 (en) Composite material and manufacturing method thereof
JP2788448B2 (en) Method for producing fiber composite member
JPH08183661A (en) Production of silicon carbide sintered compact
JPS63255329A (en) Manufacture of oxidation-resistant tungsten-base sintered alloy
JPH01283330A (en) Manufacture of aluminum-based composite member
JPS63242969A (en) Silicon carbide base ceramics
JP4313442B2 (en) Metal-ceramic composite material and manufacturing method thereof
JPS6173846A (en) Porous fiber reinforced metallic composite material and its manufacture
JP2005068469A (en) Magnesium-based composite material and manufacturing method therefor
JPH08267217A (en) Porous reinforced sintered body and its manufacture, and composite material using it and its manufacture
JPH05263177A (en) Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure
JPH10195560A (en) Production of high heat resistant aluminum alloy and production of green compact
JPS63186837A (en) Manufacture of oxidation-resistant tungsten-base sintered alloy
JPH05214477A (en) Composite material and its manufacture
JPH0892671A (en) Production of metal matrix composite material
JPH0674443B2 (en) Method and apparatus for producing composite powder of ceramics and metal
JP2003160825A (en) Intermetallic-compound composite, and manufacturing method therefor
JP3461904B2 (en) Method for producing silicon carbide sintered body and sliding material
JP2003220462A (en) Abrasion-resistant composite and its manufacturing method
JPH0382723A (en) Manufacture of aluminum-magnesium series metal matrix composite

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees