JP4524591B2 - Composite material and manufacturing method thereof - Google Patents

Composite material and manufacturing method thereof Download PDF

Info

Publication number
JP4524591B2
JP4524591B2 JP2004246339A JP2004246339A JP4524591B2 JP 4524591 B2 JP4524591 B2 JP 4524591B2 JP 2004246339 A JP2004246339 A JP 2004246339A JP 2004246339 A JP2004246339 A JP 2004246339A JP 4524591 B2 JP4524591 B2 JP 4524591B2
Authority
JP
Japan
Prior art keywords
composite
light metal
fiber
sintered
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004246339A
Other languages
Japanese (ja)
Other versions
JP2006061936A (en
Inventor
夕紀 岡本
恭一 木下
元治 谷澤
学 杉浦
史修 榎島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2004246339A priority Critical patent/JP4524591B2/en
Publication of JP2006061936A publication Critical patent/JP2006061936A/en
Application granted granted Critical
Publication of JP4524591B2 publication Critical patent/JP4524591B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

本発明は、金属系の複合材料に関するものであり、さらに詳しくは、軽金属と鉄系金属の焼結体との複合材料に関するものである。   The present invention relates to a metal-based composite material, and more particularly to a composite material of a light metal and an iron-based metal sintered body.

異種の構成素材を組み合わせてできた複合材料は、構成素材の種類や体積比率を変化させることにより、従来の材料では達成できないような様々な特性を有する材料となるため、工業材料の多くの分野で極めて有用である。   Composite materials made by combining dissimilar constituent materials become materials with various characteristics that cannot be achieved with conventional materials by changing the types and volume ratios of constituent materials. It is extremely useful.

母材が金属である金属系の複合材料のひとつに、金属粉末を焼結した焼結体とその気孔部分に含浸固化された金属とからなる複合部と、複合部の少なくとも一面に一体的に形成された上記金属からなる金属部と、からなる複合材がある。上記構成をもつ複合材料では、温度変化の激しい環境、たとえば、複合材料を熱処理した後の急冷時に、複合部と金属部との熱膨張差に起因して、両者の界面において亀裂が発生することがある。特に、鉄系の焼結体とアルミニウム合金等の軽金属とからなる複合材料は、様々な分野で用いられているが、鉄系金属と軽金属との熱膨張差が大きい(たとえば、鋼では11〜12×10-6/K程度、アルミニウム合金では20〜25×10-6/K程度)ため、複合部と金属部との界面から亀裂が発生しやすい。 One of the metal-based composite materials whose base material is a metal, a composite part composed of a sintered body obtained by sintering metal powder and a metal impregnated and solidified in the pores, and at least one surface of the composite part There is a composite material composed of a metal part made of the above-described metal. In a composite material having the above structure, cracks may occur at the interface between the composite part and the metal part due to the difference in thermal expansion between the composite part and the metal part during rapid cooling after heat treatment of the composite material. There is. In particular, a composite material composed of an iron-based sintered body and a light metal such as an aluminum alloy is used in various fields, but has a large difference in thermal expansion between the iron-based metal and the light metal (for example, 11 to 11 for steel). about 12 × 10 -6 / K, about 20~25 × 10 -6 / K in the aluminum alloy), the cracks are likely to occur from the interface between the composite portion and the metal portion.

そこで、特許文献1では、鉄系の焼結体とその気孔部分に含浸固化されたアルミニウム合金とからなる複合部と、アルミニウム合金からなる母材部と、からなる複合材料において、複合部と母材部との界面における熱膨張差を5×10-6/K以下とした複合材料を開示している。具体的には、鉄系の焼結体のうち、母材部と複合部との界面側に位置する焼結体をステンレス鋼の粒子で形成し、界面における熱膨張差を5×10-6/K以下とすることにより耐亀裂性を確保している。しかしながら、特許文献1に開示されている複合材料では、複合部の界面側の焼結体に用いられる粒子は、鉄系金属の中でも比較的熱膨張率が高いステンレス鋼のような材料からなる粒子に限られるため、用いることができる材料の組み合わせが限定される。 Therefore, in Patent Document 1, in a composite material composed of a composite part composed of an iron-based sintered body and an aluminum alloy impregnated and solidified in the pores thereof, and a base material part composed of the aluminum alloy, A composite material in which the difference in thermal expansion at the interface with the material part is 5 × 10 −6 / K or less is disclosed. Specifically, among the iron-based sintered bodies, a sintered body located on the interface side between the base material portion and the composite portion is formed of stainless steel particles, and the thermal expansion difference at the interface is 5 × 10 −6. / K or less ensures crack resistance. However, in the composite material disclosed in Patent Document 1, the particles used for the sintered body on the interface side of the composite part are particles made of a material such as stainless steel having a relatively high coefficient of thermal expansion among ferrous metals. Therefore, combinations of materials that can be used are limited.

また、特許文献2では、一方の表層が緻密層で、表層から他方の表層へ向かって気孔率が漸次増加した多孔層を有するセラミックス粒子からなる焼結体と、その焼結体の気孔に含浸固化させた金属と、からなるセラミックス−金属複合体を開示している。特許文献2の複合体では、金属の熱膨張率がセラミックスの熱膨張率よりも高いため、焼結体の体積率を表層から他の表層へ向かって漸次に減少させることにより、層厚方向の熱膨張率を緩徐に増加させている。しかしながら、粒子を用いた通常の焼結体では、焼結体の体積率を低下させるのに限界がある。そのため、さらに複合体の熱膨張率を金属の熱膨張率に近づけることは困難であり、たとえば、複合体の他方の表層側に上記金属からなる放熱層を形成した場合(実施例2、4、8、10参照)、複合体と放熱層との熱膨張差によって両者の界面に発生する亀裂を防止するまでには至らない。
特開平8−229663号公報 特開2001−105124号公報
Further, in Patent Document 2, one surface layer is a dense layer, and a sintered body made of ceramic particles having a porous layer whose porosity gradually increases from the surface layer toward the other surface layer, and the pores of the sintered body are impregnated. A ceramic-metal composite comprising a solidified metal is disclosed. In the composite of Patent Document 2, the coefficient of thermal expansion of the metal is higher than the coefficient of thermal expansion of the ceramic. Therefore, by gradually decreasing the volume ratio of the sintered body from the surface layer toward the other surface layer, The coefficient of thermal expansion is gradually increased. However, a normal sintered body using particles has a limit in reducing the volume ratio of the sintered body. Therefore, it is difficult to make the thermal expansion coefficient of the composite closer to the thermal expansion coefficient of the metal. For example, when the heat dissipation layer made of the metal is formed on the other surface layer side of the composite (Examples 2, 4, and 8, 10), it does not reach the point of preventing cracks generated at the interface between the composite and the heat dissipation layer due to the difference in thermal expansion.
JP-A-8-229663 JP 2001-105124 A

そこで、本発明者等は、界面における熱膨張差が大きな複合材料において、粒子を用いた焼結体の替わりに体積率を低く制御しやすい繊維状の材料を用いることにより、界面における熱膨張差を最適な値にできることに想到した。   Therefore, the present inventors, in a composite material having a large difference in thermal expansion at the interface, use a fibrous material that is easy to control the volume ratio in place of a sintered body using particles, thereby enabling a difference in thermal expansion at the interface. I came up with the idea that can be made the optimal value.

すなわち、本発明は、上記問題点に鑑み、新規な構成からなり、界面における熱膨張差に起因する亀裂の発生を防止することができる複合材料を提供することを目的とする。   That is, in view of the above problems, an object of the present invention is to provide a composite material that has a novel configuration and can prevent the occurrence of cracks due to the difference in thermal expansion at the interface.

本発明の複合材料は、鉄系金属粒子からなる焼結体と、該焼結体の気孔部分に含浸固化された軽金属と、からなる第一複合部と、
該第一複合部の少なくとも一面に一体的に形成され、ウィスカ、短繊維および長繊維のうちの1種以上を成形し焼結した焼結繊維材であって前記焼結体の表面に位置する繊維材と、該繊維材に含浸固化され前記第一複合部を構成する軽金属と同種の軽金属と、からなり、該繊維材の体積率が該第一複合部を占める前記焼結体の体積率よりも低い第二複合部と、
該第二複合部を介して前記第一複合部と一体的に形成され、前記第一複合部および前記第二複合部を構成する軽金属と同種の軽金属からなる軽金属部と、
からなり、前記第二複合部の熱膨張率は、前記第一複合部の熱膨張率と前記軽金属部の熱膨張率との中間の値であることを特徴とする。
この際、第一複合部、第二複合部および軽金属部の軽金属は、焼結体および繊維材に一体的に含浸され固化されているのが望ましい。
The composite material of the present invention is a first composite part comprising a sintered body made of iron-based metal particles, and a light metal impregnated and solidified in the pores of the sintered body,
Is integrally formed on at least one surface of the first composite section, whiskers, located on the surface of the sintered body What sintered fiber material der molded by sintering one or more of the short fibers and long fibers And a light metal of the same kind as the light metal impregnated and solidified in the fiber material to form the first composite part , and the volume ratio of the sintered body in which the volume ratio of the fiber material occupies the first composite part A second composite part lower than the rate,
A light metal part formed integrally with the first composite part via the second composite part, and made of the same kind of light metal as the light metal constituting the first composite part and the second composite part ;
The thermal expansion coefficient of the second composite part is an intermediate value between the thermal expansion coefficient of the first composite part and the thermal expansion coefficient of the light metal part.
At this time, it is desirable that the light metal of the first composite part, the second composite part, and the light metal part is integrally impregnated and solidified in the sintered body and the fiber material.

ここで、ウィスカおよび短繊維は、たとえば、アスペクト比(径に対する長さの比)が10以上のものを想定しており、焼結体を形成する鉄系金属粒子とは形状を異にしている。
また、前記ウィスカ、前記短繊維および前記長繊維は、その熱膨張率が前記軽金属の熱膨張率よりも低い材料からなるのがよく、さらに好ましくは、前記鉄系金属粒子の熱膨張率以下の材料からなるものである。
Here, the whisker and the short fiber are assumed to have, for example, an aspect ratio (the ratio of the length to the diameter) of 10 or more, and are different in shape from the iron-based metal particles forming the sintered body. .
In addition, the whisker, the short fiber, and the long fiber may be made of a material whose thermal expansion coefficient is lower than that of the light metal, and more preferably less than the thermal expansion coefficient of the iron-based metal particles. It consists of materials.

本発明の複合材料の製造方法は、鉄系金属粒子からなる焼結体の少なくとも一面に、ウィスカ、短繊維および長繊維のうちの1種以上を成形し焼結した焼結繊維材である繊維材を配置してから、該焼結体および該繊維材に軽金属を含浸固化させることで、上記本発明の複合材料を製造することを特徴とする。
また、本発明の複合材料の製造方法は、鉄系金属粒子と、ウィスカ、短繊維および長繊維のうちの1種以上と、を焼結して焼結体および焼結繊維材を一体的に作製してから該焼結体および該焼結繊維材に軽金属を含浸固化させることで、上記本発明の複合材料を製造することを特徴とする。
The method for producing a composite material of the present invention is a fiber that is a sintered fiber material obtained by forming and sintering one or more of whiskers, short fibers, and long fibers on at least one surface of a sintered body made of iron-based metal particles. The composite material of the present invention is produced by placing the material and then impregnating and solidifying the sintered body and the fiber material with light metal.
The method of producing a composite material of the present invention, together with the iron-based metal particles, whiskers, and one or more of the short fibers and long fibers, a sintered to the sintered body and the sintered fiber material light metals by impregnating solidified to prepared sintered body after and the sintered fiber material, characterized by producing a composite material of the present invention.

本発明の複合材料では、上記第一複合部と上記軽金属部とで熱膨張率の差が大きい。そこで、上記構成を有する第二複合部を介して軽金属部と第一複合部とを一体的に形成することにより、第一複合部と軽金属部との熱膨張差を緩和し、耐亀裂性を向上させている。この際、第二複合部に繊維材を用いると、繊維材の体積率の制御が容易であるため、第二複合部の熱膨張率を最適な値とすることができる。   In the composite material of the present invention, the difference in coefficient of thermal expansion between the first composite part and the light metal part is large. Therefore, by integrally forming the light metal part and the first composite part through the second composite part having the above configuration, the difference in thermal expansion between the first composite part and the light metal part is alleviated, and crack resistance is improved. It is improving. At this time, when a fiber material is used for the second composite part, it is easy to control the volume ratio of the fiber material, so that the thermal expansion coefficient of the second composite part can be set to an optimum value.

そして、第二複合部の熱膨張率が第一複合部の熱膨張率と軽金属部の熱膨張率との中間の値であるためには、繊維材を構成するウィスカ、短繊維および長繊維の熱膨張率が、軽金属の熱膨張率よりも低い材料からなるものであればよいため、幅広い種類の材料を用いることができる。特に、鉄系金属粒子の熱膨張率以下の材料からなるものであれば、良好に複合材料の耐亀裂性を向上させることができる。   And, in order for the thermal expansion coefficient of the second composite part to be an intermediate value between the thermal expansion coefficient of the first composite part and the thermal expansion coefficient of the light metal part, the whisker, short fiber and long fiber constituting the fiber material Since it only needs to be made of a material whose thermal expansion coefficient is lower than that of light metal, a wide variety of materials can be used. In particular, if it is made of a material having a thermal expansion coefficient equal to or lower than that of the iron-based metal particles, the crack resistance of the composite material can be improved satisfactorily.

以下に、本発明の複合材料およびその製造方法を実施するための最良の形態を図1〜図3を用いて説明する。 Hereinafter, the best mode for carrying out the composite material and the method for producing the same according to the present invention will be described with reference to FIGS.

本発明の複合材料は、第一複合部と、第一複合部の少なくとも一面に一体的に形成された第二複合部と、第二複合部を介して第一複合部と一体的に形成された軽金属部と、からなる。   The composite material of the present invention is formed integrally with the first composite part, the second composite part integrally formed on at least one surface of the first composite part, and the first composite part via the second composite part. And a light metal part.

第一複合部、第二複合部および軽金属部は、少なくとも第一複合部と軽金属部とが第二複合部を介して一体的に形成されていれば、複合材料を用いる部材に合わせて適宜配置を選択すればよい。たとえば、図1(右図)および図2(右図)に示すように、第一複合部1、第二複合部2、軽金属部3が互いに積層された積層体である他、図3に示すように、第一複合部1が軽金属部3に取り囲まれるように位置してもよい。   The first composite part, the second composite part, and the light metal part are appropriately arranged in accordance with the member using the composite material as long as at least the first composite part and the light metal part are integrally formed via the second composite part. Should be selected. For example, as shown in FIG. 1 (right figure) and FIG. 2 (right figure), the first composite part 1, the second composite part 2, and the light metal part 3 are laminated one another, as shown in FIG. Thus, the first composite part 1 may be positioned so as to be surrounded by the light metal part 3.

第一複合部は、鉄系金属粒子からなる焼結体と、焼結体の気孔部分に含浸固化された軽金属と、からなる。   The first composite part is composed of a sintered body made of iron-based metal particles, and a light metal impregnated and solidified in the pores of the sintered body.

焼結体は、一般的な方法で作製された焼結体であれば特に限定はない。また、鉄系金属粒子は、従来より焼結体に用いられている粒子であればよく、通常、粒径が10〜300μmであって球形または球形に近い形状が用いられる。これらの粒子は、たとえば、各種アトマイズ法や粉砕法などにより得られる。そして、鉄系金属粒子としては、純鉄粒子の他、各種合金鋼粒子(たとえばSKD系、SKH系等)、鋳鉄粒子、炭素鋼粒子などを用いることができる。   The sintered body is not particularly limited as long as it is a sintered body produced by a general method. The iron-based metal particles may be particles that have been conventionally used in sintered bodies, and usually have a particle size of 10 to 300 μm and a spherical shape or a shape close to a spherical shape. These particles are obtained, for example, by various atomizing methods or pulverizing methods. And as an iron-type metal particle, various alloy steel particles (for example, SKD type, SKH type etc.), cast iron particles, carbon steel particles, etc. other than pure iron particles can be used.

また、焼結体は、その気孔部分に軽金属が含浸固化される程度の気孔率(焼結体の体積当たりに占める気孔の体積割合[%]。以下Vpとする。)および気孔径を有するものであればよい。気孔率が高いものや粗大な気孔を有する焼結体を用いると、焼結体の強度が低下し、焼結体に軽金属を含浸する方法によっては焼結体が損傷することがあるため好ましくない。したがって、焼結体は、その体積率(Vf=100−Vp[%])が50%以上であるのが好ましく、さらに好ましくは、60〜90%である。   In addition, the sintered body has a porosity (a volume ratio [%] of pores per volume of the sintered body, hereinafter referred to as Vp) and a pore diameter such that light metal is impregnated and solidified in the pore portion. If it is. If a sintered body having a high porosity or coarse pores is used, the strength of the sintered body decreases, and depending on the method of impregnating the sintered body with light metal, the sintered body may be damaged, which is not preferable. . Therefore, the sintered body preferably has a volume ratio (Vf = 100−Vp [%]) of 50% or more, and more preferably 60 to 90%.

軽金属は、焼結体の気孔部分に含浸固化されるが、焼結体に軽金属を含浸させる際に焼結体が溶融したり劣化したりすることがなければ、軽金属の種類に特に限定はない。たとえば、鉄系部材を構成する鉄系金属よりも融点が低い軽金属であれば製造しやすい。具体的には、純アルミニウムやMg、Cu、Zn、Si、Mn等を含むアルミニウム合金などのアルミニウム系金属や、純マグネシウムやZn、Al、Zr、Mn、Th、希土類元素等を含むマグネシウム合金などのマグネシウム系金属であるのが好ましい。そして、第一複合部において焼結体に含浸固化される軽金属、第二複合部において繊維材(後述)を保持する軽金属、および軽金属部を構成する軽金属は、それぞれ同種の軽金属である。   The light metal is impregnated and solidified in the pores of the sintered body, but the kind of light metal is not particularly limited as long as the sintered body does not melt or deteriorate when the sintered body is impregnated with the light metal. . For example, a light metal having a melting point lower than that of an iron-based metal constituting the iron-based member is easy to manufacture. Specifically, pure aluminum and aluminum alloys such as aluminum alloys containing Mg, Cu, Zn, Si, Mn, etc., magnesium alloys containing pure magnesium, Zn, Al, Zr, Mn, Th, rare earth elements, etc. Of these, magnesium-based metals are preferred. The light metal impregnated and solidified in the sintered body in the first composite part, the light metal holding the fiber material (described later) in the second composite part, and the light metal constituting the light metal part are the same kind of light metal.

第二複合部は、ウィスカ、短繊維および長繊維のうちの1種以上(「ウィスカ等」と記載)からなる繊維材と、繊維材を保持する軽金属と、からなる。   The second composite part is composed of a fiber material made of one or more of whiskers, short fibers, and long fibers (described as “whiskers etc.”) and a light metal that holds the fiber material.

本発明の複合材料では、上記構成をもつ第一複合部と、軽金属からなる軽金属部と、の熱膨張差が大きい。そこで、第二複合部により第一複合部と軽金属部との熱膨張差を緩和し、耐亀裂性を向上させている。この際、第二複合部に繊維材を用いることにより、繊維材の体積率を容易に制御することができるため、第二複合部の熱膨張率を最適な値とすることができる。以下にその理由を説明する。   In the composite material of the present invention, the difference in thermal expansion between the first composite part having the above-described configuration and the light metal part made of light metal is large. Therefore, the second composite part relaxes the difference in thermal expansion between the first composite part and the light metal part, thereby improving crack resistance. At this time, since the volume ratio of the fiber material can be easily controlled by using the fiber material for the second composite part, the coefficient of thermal expansion of the second composite part can be set to an optimum value. The reason will be described below.

なお、第二複合部の熱膨張率が「最適な値」とは、第二複合部の熱膨張率が、第一複合部の熱膨張率と軽金属部の熱膨張率との中間の値であって、第一複合部、第二複合部、軽金属部の順に熱膨張率が傾斜していることをいう。第二複合部の熱膨張率が最適な値であれば、熱膨張差に起因して複合材料に発生する亀裂を良好に防止することができる。特に、第二複合部と軽金属部との熱膨張差を6×10-6/K以下とすれば、さらに亀裂の発生を防止することができる。 In addition, the coefficient of thermal expansion of the second composite part is an “optimum value”, and the coefficient of thermal expansion of the second composite part is an intermediate value between the coefficient of thermal expansion of the first composite part and the coefficient of thermal expansion of the light metal part. The coefficient of thermal expansion is inclined in the order of the first composite part, the second composite part, and the light metal part. If the coefficient of thermal expansion of the second composite part is an optimum value, cracks occurring in the composite material due to the difference in thermal expansion can be prevented satisfactorily. In particular, if the difference in thermal expansion between the second composite portion and the light metal portion is 6 × 10 −6 / K or less, the occurrence of cracks can be further prevented.

たとえば、特許文献1に開示されている複合材料では、水アトマイズ法や粉砕法により造粒され粒径が20〜180μm程度の粒子を成形し焼結して形成された焼結体を用いている。しかしながら、上記のような方法で造粒された粒子は、体積率を低く成形するのが難しく、仮に体積率の低い焼結体を作製したとしても、軽金属を含浸させる方法によっては焼結体が破損する虞がある。一方、ウィスカ等の繊維状の材料は、同じ素材で比較した場合、粒子状のものよりもかさ密度が小さい。したがって、ウィスカ等からなる繊維材であれば、粒子の場合と比較して、体積率が大きくなり難い(たとえば一般的なウィスカであれば最大でもVf=33%程度)。   For example, the composite material disclosed in Patent Document 1 uses a sintered body that is granulated by a water atomization method or a pulverization method and formed by sintering particles having a particle size of about 20 to 180 μm. . However, the particles granulated by the above method are difficult to be molded with a low volume ratio, and even if a sintered body with a low volume ratio is produced, depending on the method of impregnating the light metal, the sintered body may be There is a risk of damage. On the other hand, fibrous materials such as whiskers have a lower bulk density than particulate materials when compared with the same material. Therefore, in the case of a fiber material made of whisker or the like, the volume ratio is less likely to be larger than in the case of particles (for example, if it is a general whisker, Vf = 33% at the maximum).

そのため、繊維材に用いられるウィスカ等は、必ずしも鉄系金属と軽金属との中間の熱膨張率の値を有する材料である必要はなく、少なくとも軽金属の熱膨張率よりも低い熱膨張率をもつ材料であれば、複合材料とした場合に第二複合部の熱膨張率が低下しすぎることが無く、最適な値を確保することができる。特に、鉄系金属粒子の熱膨張率以下の材料からなるものであれば、第二複合部の熱膨張率を最適な値とすることが容易である。   Therefore, the whisker or the like used for the fiber material does not necessarily need to be a material having an intermediate thermal expansion coefficient value between the ferrous metal and the light metal, and at least a material having a thermal expansion coefficient lower than that of the light metal. Then, when it is set as a composite material, the thermal expansion coefficient of a 2nd composite part does not fall too much, and an optimal value can be ensured. In particular, if it is made of a material having a thermal expansion coefficient equal to or lower than that of the iron-based metal particles, it is easy to set the thermal expansion coefficient of the second composite part to an optimum value.

具体例として、仮に、第一複合部に鉄系金属の粒子からなる焼結体を、第二複合部に同じ組成の鉄系金属の短繊維からなる繊維材を、用いたとする。この場合、粒子であっても短繊維であっても、それ自体の熱膨張係数に差はないが、鉄系金属の短繊維は、粒子状態である場合よりもかさ密度が小さい。そのため、特別な方法で焼結体の体積率を小さく成形しない限り、繊維材の体積率は焼結体の体積率よりも低くなる。その結果、熱膨張率が同じ鉄系金属を用いた場合でも、第二複合部の熱膨張率を最適な値とすることができる。   As a specific example, suppose that a sintered body made of iron-based metal particles is used for the first composite part, and a fiber material made of iron-based metal short fibers having the same composition is used for the second composite part. In this case, there is no difference in the thermal expansion coefficient between the particles and the short fibers, but the iron-based short fibers have a lower bulk density than that in the particle state. Therefore, unless the volume ratio of the sintered body is reduced by a special method, the volume ratio of the fiber material is lower than the volume ratio of the sintered body. As a result, even when an iron-based metal having the same thermal expansion coefficient is used, the thermal expansion coefficient of the second composite portion can be set to an optimum value.

繊維材の体積率は、その値に限定があるものではなく、軽金属を含浸固化させた後、結果的に第二複合部の熱膨張率が軽金属部の熱膨張率よりも低い値となればよい。最適な範囲を挙げるならば、焼結材に純鉄粉を、繊維材としてホウ酸アルミニウムウィスカを、軽金属としてアルミニウム合金を、用いた場合には、焼結体の体積率が50〜80%、繊維材の体積率が15〜30%であると、複合材料に発生する亀裂を効果的に防止することができる。   The volume ratio of the fiber material is not limited, and after impregnating and solidifying the light metal, if the thermal expansion coefficient of the second composite part is lower than the thermal expansion coefficient of the light metal part as a result Good. If an optimal range is given, when using pure iron powder as the sintered material, aluminum borate whisker as the fiber material, and aluminum alloy as the light metal, the volume ratio of the sintered body is 50 to 80%, The crack which generate | occur | produces in a composite material as the volume ratio of a fiber material is 15 to 30% can be prevented effectively.

そして、繊維材は、繊維材に軽金属を含浸させる際や、本発明の複合材料を熱処理したり高温下で使用する際に、特性変化がなく溶出しない程度の耐熱性を有する耐熱繊維材であるのがよい。   The fiber material is a heat-resistant fiber material having a heat resistance to the extent that there is no change in characteristics when the fiber material is impregnated with a light metal, or when the composite material of the present invention is heat-treated or used at a high temperature. It is good.

繊維材を構成するウィスカ等の種類としては、セラミックス系や金属系のウィスカ、短繊維、長繊維を用いるのが好ましい。セラミックスウィスカであれば、ホウ酸アルミニウムウィスカを用いるのが好ましく、その他、炭化ケイ素(SiC)ウィスカ、アルミナ(Al2 3 )ウィスカ、窒化ケイ素(Si3 4 )ウィスカ、ホウ素炭化物(B4 C)ウィスカ等が使用可能である。また、金属ウィスカであってもよい。セラミックス繊維としては、アルミナ繊維、アルミナシリカ繊維などの長繊維や短繊維が使用可能である。金属繊維としては、純鉄繊維、ステンレス鋼繊維、鋳鉄繊維などの鉄系繊維からなる長繊維や短繊維が使用可能である。また、BNコーティングなどの耐熱処理が施された炭素繊維の長繊維や短繊維であってもよい。この際、繊維材と軽金属との化学的適合性が優れた組み合わせを適宜選択して使用すればよい。 As the types of whiskers and the like constituting the fiber material, it is preferable to use ceramic or metal-based whiskers, short fibers, or long fibers. In the case of ceramic whiskers, it is preferable to use aluminum borate whiskers. Besides, silicon carbide (SiC) whiskers, alumina (Al 2 O 3 ) whiskers, silicon nitride (Si 3 N 4 ) whiskers, boron carbide (B 4 C) ) Whisker etc. can be used. Moreover, a metal whisker may be sufficient. As the ceramic fibers, long fibers and short fibers such as alumina fibers and alumina silica fibers can be used. As the metal fiber, a long fiber or a short fiber made of an iron-based fiber such as pure iron fiber, stainless steel fiber, or cast iron fiber can be used. Further, it may be a carbon fiber long fiber or short fiber subjected to heat treatment such as BN coating. At this time, a combination having excellent chemical compatibility between the fiber material and the light metal may be appropriately selected and used.

なお、繊維材を構成するウィスカおよび短繊維は、そのアスペクト比が10以上であるのが好ましい。また、ウィスカであれば直径が1μm程度、短繊維や長繊維であれば数μm程度である一般的なウィスカ等を用いるのがよい。   In addition, it is preferable that the aspect ratio of the whisker and the short fiber constituting the fiber material is 10 or more. In addition, it is preferable to use a general whisker having a diameter of about 1 μm for a whisker and about several μm for a short fiber or a long fiber.

本発明の複合材料は、鋳造により製造されるのが望ましい。特に、高圧鋳造法や溶融金属浸透法などの鋳造法が適する。これらの鋳造法によれば、焼結体および繊維材に軽金属の溶湯を無気孔質に近い状態に含浸させることができる。また、加圧しつつ鋳造する方法が望ましく、鋳造時の加圧により焼結体と繊維材との間(つまり、第一複合部と第二複合部との界面)の密着性が向上し、第一複合部と第二複合部との界面からの亀裂が生じ難くなる。そして、鋳造により製造すれば、鋳造金型内で焼結体および繊維材に軽金属の溶湯を含浸させつつ軽金属からなる軽金属部を成形し、その後、軽金属の溶湯が固化することにより、第一複合部、第二複合部および軽金属部を一体的に形成できる。   The composite material of the present invention is preferably manufactured by casting. In particular, casting methods such as a high pressure casting method and a molten metal infiltration method are suitable. According to these casting methods, the sintered body and the fiber material can be impregnated with a melt of light metal in a state close to non-porous. Further, a method of casting while applying pressure is desirable, and adhesion between the sintered body and the fiber material (that is, the interface between the first composite part and the second composite part) is improved by pressurization at the time of casting. Cracks from the interface between the first composite part and the second composite part are less likely to occur. And if it manufactures by casting, a light metal part made of light metal is formed while impregnating a molten metal of light metal into a sintered body and a fiber material in a casting mold, and then the molten metal of light metal is solidified. The part, the second composite part, and the light metal part can be integrally formed.

この際、繊維材は、ウィスカ等を繊維状のままで使用する他、ウィスカ、短繊維および長繊維のうちの1種以上を所望の形状に予め成形し焼結した焼結体(「焼結繊維材」とよぶ)としてもよい。たとえば、図1に示すように、鉄系金属粒子からなる焼結体1’の所望の面に繊維状のウィスカ等2’を所望の形状に堆積させてから軽金属3’を含浸固化する、または、焼結体1’と焼結繊維材2’とを別工程で作製し両者を密着させてから軽金属3’を含浸固化する、といった方法により第二複合部2を介して第一複合部1と軽金属3’からなる軽金属部3とが一体的に形成された複合材料が得られる。なお、繊維材を用いているため、ウィスカ等を堆積させるだけであっても体積率を所望の値とすることができる。   In this case, the fiber material is a sintered body ("sintered") in which whisker or the like is used in the form of a fiber, and at least one of whisker, short fiber, and long fiber is previously formed into a desired shape and sintered. It may be referred to as “fiber material”. For example, as shown in FIG. 1, fibrous whiskers or the like 2 ′ are deposited in a desired shape on a desired surface of a sintered body 1 ′ made of iron-based metal particles, and then impregnated and solidified with a light metal 3 ′, or The first composite part 1 is passed through the second composite part 2 by a method in which the sintered body 1 ′ and the sintered fiber material 2 ′ are produced in separate steps, and both are brought into close contact with each other and then impregnated and solidified with the light metal 3 ′. And a composite material in which the light metal portion 3 made of the light metal 3 ′ is integrally formed. In addition, since the fiber material is used, the volume ratio can be set to a desired value even if only whiskers or the like are deposited.

また、上記の方法の他にも、焼結体の所望の面にウィスカ等を堆積させて一体的に焼結する、焼結体と焼結繊維材とを密着させて焼結する、または、鉄系金属粒子とウィスカ等を所望の位置に配置して焼結体と焼結繊維材とを同時に形成する、といった方法により焼結体と繊維材とを接合したもの(接合型焼結材)に軽金属を含浸固化させることも可能である。焼結体と繊維材とを一体的に焼結するため、焼結体と繊維材とを強固に接合でき、その結果、第一複合部と第二複合部との界面の密着性が向上し、第一複合部と第二複合部との界面からの亀裂が生じ難くなる。特に、繊維材として鉄系繊維を用いた場合には、鉄系金属粒子やその焼結体と鉄系繊維とを一体的に焼結することにより、焼結体と繊維材とをより強固に接合できる。 In addition to the above method, whisker or the like is deposited on a desired surface of the sintered body and integrally sintered, the sintered body and the sintered fiber material are closely adhered, or sintered, or A sintered body and a fiber material joined together by a method in which iron-based metal particles and whiskers are arranged at desired positions to simultaneously form a sintered body and a sintered fiber material (joint-type sintered material) It is also possible to impregnate and solidify a light metal. Since the sintered body and the fiber material are integrally sintered, the sintered body and the fiber material can be strongly bonded, and as a result, the adhesion at the interface between the first composite part and the second composite part is improved. , Cracks from the interface between the first composite part and the second composite part are less likely to occur. In particular, when iron-based fibers are used as the fiber material, the sintered body and the fiber material are made stronger by integrally sintering the iron-based metal particles or the sintered body thereof and the iron-based fiber. Can be joined.

なお、粒子からなる焼結体では、焼結後の離型の際の摩擦などにより焼結体の表面に開口した気孔が詰まりやすいが、ある程度の長さを有するウィスカ等からなる焼結繊維材では、成形時の体積率が低いため型との摩擦が小さくなり上記のような現象が起こりにくい。そのため、焼結繊維材は、その表面が粗いため、第一複合部、第二複合部および軽金属部を一体的に形成した際に、それぞれの界面との結合性がよく密着性に優れ、界面からの亀裂が生じ難くなる。その結果、熱膨張差に起因する界面の亀裂を防止する効果が良好となる。   In the sintered body made of particles, pores opened on the surface of the sintered body are likely to be clogged due to friction at the time of mold release after sintering, but the sintered fiber material made of whisker or the like having a certain length Then, since the volume ratio at the time of molding is low, the friction with the mold becomes small, and the above-described phenomenon hardly occurs. Therefore, since the sintered fiber material has a rough surface, when the first composite part, the second composite part, and the light metal part are integrally formed, the bonding with each interface is good and the adhesiveness is excellent. It is difficult for cracks to form. As a result, the effect of preventing cracks at the interface due to the difference in thermal expansion is improved.

また、繊維材として不織布を用いれば、繊維材を所望の位置に配置し難い形状の部材や、複雑な形状の部材にも第二複合部を容易に形成することができる。たとえば、図2のように、中空円筒形状の部材であって、その厚さ方向の中央部に第二複合部が位置するように形成する場合を説明する。あらかじめ、円柱形状の治具4と同軸的に成形され焼結された円筒形状の焼結体1’は、不織布2’が外周面に密着するように被覆された状態で、金型40内に設置される。その後、軽金属の溶湯を金型40に注入し、焼結体1’および不織布2’に軽金属を一体的に含浸固化させることにより、第一複合部と、第二複合部と、軽金属部と、が中空円筒形状の部材の厚さ方向に互いに積層された積層体である複合材料が得られる(図2の右図)。また、本発明の複合材料の一例として、図3に示すように、第一複合部1の一部が第二複合部2および軽金属部3に取り囲まれて位置する複合材料も考えられるが、このような断面を有する複合材料を形成する際にも不織布を用いることができる。   Moreover, if a nonwoven fabric is used as the fiber material, the second composite portion can be easily formed on a member having a shape in which the fiber material is difficult to be disposed at a desired position or a member having a complicated shape. For example, as shown in FIG. 2, a case of a hollow cylindrical member that is formed so that the second composite portion is located at the center in the thickness direction will be described. A cylindrical sintered body 1 ′ formed in advance and coaxially with the cylindrical jig 4 is sintered in the mold 40 in a state where the nonwoven fabric 2 ′ is coated so as to be in close contact with the outer peripheral surface. Installed. Thereafter, a molten metal of light metal is poured into the mold 40, and the sintered body 1 ′ and the nonwoven fabric 2 ′ are integrally impregnated and solidified with the light metal, whereby the first composite part, the second composite part, the light metal part, A composite material is obtained which is a laminate in which the members are laminated in the thickness direction of the hollow cylindrical member (right diagram in FIG. 2). As an example of the composite material of the present invention, as shown in FIG. 3, a composite material in which a part of the first composite part 1 is surrounded by the second composite part 2 and the light metal part 3 can be considered. A nonwoven fabric can also be used when forming a composite material having such a cross section.

上記のように繊維材として不織布を用いることにより、繊維材を焼結して焼結繊維材を作製する手間が無くなる。また、形状が複雑であったり、焼結体と焼結繊維材とを一度に成形できない(型の分割が必要な場合)、または、焼結体と繊維材とを密着させることが困難な形状の部材であっても、第二複合部を形成したい焼結体の部分に単に不織布を密着させればよいため、簡便な方法である。   By using a non-woven fabric as the fiber material as described above, there is no need to sinter the fiber material to produce a sintered fiber material. In addition, the shape is complicated, the sintered body and the sintered fiber material cannot be molded at once (when the mold needs to be divided), or the sintered body and the fiber material are difficult to adhere to each other Even if it is this member, since a nonwoven fabric should just be stuck to the part of the sintered compact which wants to form a 2nd composite part, it is a simple method.

なお、焼結体と繊維材(不織布)とを「密着させる」とは、焼結体と繊維材とに軽金属を含浸する際に、両者の界面に軽金属のみからなる部分が形成されない程度に密着されている状態であればよい。   Note that “adhering” the sintered body and the fiber material (nonwoven fabric) means that when the sintered body and the fiber material are impregnated with light metal, the interface between the two is not formed with a portion consisting only of the light metal. What is necessary is just to be in the state.

上記のような構成を有する本発明の複合材料は、高強度を有し、軽量であるため、エンジンブロック、油圧ポンプ、圧縮機などの各種部品に好適に用いることができる。中でも、圧縮機構および該圧縮機構でガスを圧縮する作動空間を内蔵するハウジングを有する圧縮機において、ハウジングやシリンダの少なくとも一部が本発明の複合材料からなる圧縮機であるのが望ましい。ハウジングやシリンダが本発明の複合材料により形成されている圧縮機は、軽量かつ耐圧性、耐熱性に優れた圧縮機となる。さらに、軽金属部や焼結体の調質のために熱処理を施しても、焼入れ等の際に発生する亀裂が防止される。   Since the composite material of the present invention having the above-described configuration has high strength and is lightweight, it can be suitably used for various parts such as an engine block, a hydraulic pump, and a compressor. Among these, in a compressor having a compression mechanism and a housing having a working space for compressing gas by the compression mechanism, it is desirable that at least a part of the housing and the cylinder is a compressor made of the composite material of the present invention. A compressor in which a housing and a cylinder are formed of the composite material of the present invention is a compressor that is lightweight, excellent in pressure resistance and heat resistance. Furthermore, even if heat treatment is performed for tempering the light metal part or the sintered body, cracks that occur during quenching and the like are prevented.

本発明の複合材料を圧縮機のハウジングとして用いる際には、軽金属としてアルミニウム系金属やマグネシウム系金属を用いるのが望ましい。また、第一複合部の焼結体は、強度維持の観点から、体積率Vf=60〜90%であるのが望ましい。   When the composite material of the present invention is used as a housing of a compressor, it is desirable to use an aluminum metal or a magnesium metal as a light metal. Moreover, it is desirable that the sintered body of the first composite portion has a volume ratio Vf = 60 to 90% from the viewpoint of maintaining strength.

また、本発明の複合材料は、略中空円筒形状のハウジングにおいて、その厚さ方向に第一複合部、第二複合部および軽金属部が互いに積層され積層体を形成しているのが望ましい。すなわち、内側面部に第一複合部、外側面部に軽金属部、が位置する(図2参照)ように形成されたハウジングや、また、内側面部と外側面部に軽金属部、中央部に第一複合部、が位置するように形成されたハウジングであるのがよい。また、ハウジングのうち、特に耐圧性が要求される部分にのみ第一複合部が位置する(たとえば、図3を軸方向または軸芯方向の断面の一部としたもの)ような配置としてもよい。   In the composite material of the present invention, in a substantially hollow cylindrical housing, it is desirable that the first composite part, the second composite part, and the light metal part are laminated in the thickness direction to form a laminate. That is, a housing formed so that the first composite portion is located on the inner side surface portion and the light metal portion is located on the outer side surface portion (see FIG. 2), the light metal portion is disposed on the inner side surface portion and the outer surface portion, and the first composite portion is disposed on the central portion. It is preferable that the housing is formed so as to be positioned. In addition, the housing may be arranged such that the first composite portion is located only in a portion where the pressure resistance is particularly required (for example, FIG. 3 is a part of the cross section in the axial direction or the axial direction). .

なお、本発明の複合材料は、上記の実施の形態に限定されるものではなく、他の構成を追加してもよい。たとえば、第一複合部と第二複合部との熱膨張差が大きい場合には、第一複合部と第二複合部との界面に第3の複合部を設け、熱膨張率を傾斜させてもよい。   In addition, the composite material of this invention is not limited to said embodiment, You may add another structure. For example, when the difference in thermal expansion between the first composite part and the second composite part is large, a third composite part is provided at the interface between the first composite part and the second composite part, and the thermal expansion coefficient is inclined. Also good.

以下に、本発明の複合材料およびその製造方法の実施例を説明する。 Below, the Example of the composite material of this invention and its manufacturing method is described.

[熱膨張測定試験片の作製]
鉄系金属粒子(JFEスチール株式会社製アトマイズ鉄粉(純鉄粉)KIP300A:粒径45〜180μm)、および、ホウ酸アルミニウム(9Al23・2B23)ウィスカ(四国化成工業株式会社製アルボレックス:繊維径0.5〜1.0μm、繊維長10〜30μm)を準備した。
[Preparation of thermal expansion measurement specimen]
Iron-based metal particles (Atomized iron powder (pure iron powder) KIP300A manufactured by JFE Steel Co., Ltd .: particle size 45 to 180 μm) and aluminum borate (9Al 2 O 3 .2B 2 O 3 ) whisker (Shikoku Chemical Industries, Ltd.) Arbolex: fiber diameter 0.5 to 1.0 μm, fiber length 10 to 30 μm) was prepared.

鉄系金属粒子およびホウ酸アルミニウムウィスカは、所定の形状にそれぞれ成形したものを所定の温度で焼結し、プリフォームを作製した。作製したプリフォームの体積率を表1に示す。そして、プリフォームを高圧鋳造金型のキャビティの所定の位置に配置し、キャビティにアルミニウム合金(A2024)の溶湯を注入し、100MPaの鋳造圧力で加圧した。こうして、それぞれのプリフォームにアルミニウム合金を含浸固化し、複合材料の第一複合部(2種類)および第二複合部に相当する熱膨張測定試験片を得た。   Iron-based metal particles and aluminum borate whiskers were each molded into a predetermined shape and sintered at a predetermined temperature to prepare a preform. Table 1 shows the volume ratio of the produced preform. Then, the preform was placed at a predetermined position of the cavity of the high-pressure casting mold, and a molten aluminum alloy (A2024) was injected into the cavity and pressurized with a casting pressure of 100 MPa. Thus, each preform was impregnated and solidified with an aluminum alloy to obtain thermal expansion measurement test pieces corresponding to the first composite part (two types) and the second composite part of the composite material.

また、プリフォームを用いない他は上記手順と同様にして、複合材料の軽金属部に相当する熱膨張測定試験片を得た。   Further, a thermal expansion measurement test piece corresponding to the light metal part of the composite material was obtained in the same manner as the above procedure except that no preform was used.

そして、作製した熱膨張測定試験片について、50℃から200℃まで温度を変化させた場合の、それぞれの熱膨張係数を石英の押し棒式で変位を検出することにより測定した。測定結果を表1に示す。   And about the produced thermal expansion measurement test piece, when changing temperature from 50 degreeC to 200 degreeC, each thermal expansion coefficient was measured by detecting a displacement with a quartz push rod type | formula. The measurement results are shown in Table 1.

Figure 0004524591
Figure 0004524591

上記試験によれば、第一複合部と軽金属部とでは熱膨張差が10×10-6/K以上であるが、第二複合部と軽金属部との熱膨張差は5.2×10-6/Kとなる。そのため、第一複合部と軽金属部とが第二複合部を介して一体的に形成された複合材料とした場合に、第二複合部により第一複合部と軽金属部との熱膨張差が緩和され、熱膨張差に起因して生じる亀裂の発生を防止できる。 According to the above test, the difference in thermal expansion between the first composite part and the light metal part is 10 × 10 −6 / K or more, but the difference in thermal expansion between the second composite part and the light metal part is 5.2 × 10 − 6 / K. Therefore, when the first composite part and the light metal part are formed as a composite material integrally formed via the second composite part, the second composite part reduces the thermal expansion difference between the first composite part and the light metal part. Thus, it is possible to prevent the occurrence of cracks due to the difference in thermal expansion.

なお、上記の鉄系金属粒子からなるプリフォームとホウ酸アルミニウムウィスカからなるプリフォームとを積層し密着させた状態で、高圧鋳造法によりプリフォームにアルミニウム合金の溶湯を含浸させるとともに、ホウ酸アルミニウムウィスカ側(第二複合部側)にアルミニウム合金からなる軽金属部を形成することにより、本発明の複合材料が得られる。この際、第二複合部の厚さは約5mmとした。なお、第二複合部の厚さは、1〜10mmであれば適用できる。   In addition, the preform made of the iron-based metal particles and the preform made of aluminum borate whisker are laminated and adhered, and the preform is impregnated with a molten aluminum alloy by a high-pressure casting method, and aluminum borate By forming a light metal part made of an aluminum alloy on the whisker side (second composite part side), the composite material of the present invention can be obtained. At this time, the thickness of the second composite part was about 5 mm. In addition, if the thickness of a 2nd composite part is 1-10 mm, it is applicable.

本発明の複合材料を示す模式図であって、軽金属の含浸前(左図)と含浸固化後(右図)の断面図である。It is a schematic diagram which shows the composite material of this invention, Comprising: It is sectional drawing before impregnation of a light metal (left figure) and after impregnation solidification (right figure). 本発明の複合材料で形成された中空円筒形状の部材を示す模式図であって、軽金属の含浸前の軸方向断面図(左図)と含浸固化後の軸芯方向断面図(右図)である。It is a schematic diagram which shows the member of hollow cylindrical shape formed with the composite material of this invention, Comprising: In axial sectional view before impregnation of light metal (left figure), and axial center direction sectional view after impregnation solidification (right figure) is there. 本発明の複合材料の一例を模式的に示す断面図である。It is sectional drawing which shows an example of the composite material of this invention typically.

符号の説明Explanation of symbols

1 :第一複合部
2 :第二複合部
3 :軽金属部
1’:(鉄系金属粒子からなる)焼結体
2’:繊維材
3’:軽金属
1: 1st composite part 2: 2nd composite part 3: Light metal part 1 ': Sintered body 2' (consisting of iron-based metal particles): Fiber material 3 ': Light metal

Claims (14)

鉄系金属粒子からなる焼結体と、該焼結体の気孔部分に含浸固化された軽金属と、からなる第一複合部と、
該第一複合部の少なくとも一面に一体的に形成され、ウィスカ、短繊維および長繊維のうちの1種以上を成形し焼結した焼結繊維材であって前記焼結体の表面に位置する繊維材と、該繊維材に含浸固化され前記第一複合部を構成する軽金属と同種の軽金属と、からなり、該繊維材の体積率が該第一複合部を占める前記焼結体の体積率よりも低い第二複合部と、
該第二複合部を介して前記第一複合部と一体的に形成され、前記第一複合部および前記第二複合部を構成する軽金属と同種の軽金属からなる軽金属部と、
からなり、前記第二複合部の熱膨張率は、前記第一複合部の熱膨張率と前記軽金属部の熱膨張率との中間の値であることを特徴とする複合材料。
A first composite part composed of a sintered body made of iron-based metal particles, and a light metal impregnated and solidified in the pores of the sintered body,
Is integrally formed on at least one surface of the first composite section, whiskers, located on the surface of the sintered body What sintered fiber material der molded by sintering one or more of the short fibers and long fibers And a light metal of the same kind as the light metal impregnated and solidified in the fiber material to form the first composite part , and the volume ratio of the sintered body in which the volume ratio of the fiber material occupies the first composite part A second composite part lower than the rate,
A light metal part formed integrally with the first composite part via the second composite part, and made of the same kind of light metal as the light metal constituting the first composite part and the second composite part ;
The thermal expansion coefficient of the second composite part is an intermediate value between the thermal expansion coefficient of the first composite part and the thermal expansion coefficient of the light metal part.
前記第一複合部、前記第二複合部および前記軽金属部は、前記軽金属を前記鉄系金属粒子または前記焼結体と、前記ウィスカ、前記短繊維および前記長繊維のうちの1種以上または前記焼結繊維材と、を一体的に焼結してなる接合型焼結材に含浸固化して互いに積層された積層体を形成する請求項1記載の複合材料。 Wherein the first composite section, the second composite section and the light metal part, the light metal and the iron-based metal particles or the sintered body, the whiskers, wherein the one or more or the of the short fibers and the long fibers The composite material according to claim 1 , wherein the sintered fiber material is impregnated and solidified in a joining-type sintered material obtained by integrally sintering the sintered fiber material to form a laminated body laminated together. 前記軽金属は、アルミニウム系金属またはマグネシウム系金属である請求項1記載の複合材料。   The composite material according to claim 1, wherein the light metal is an aluminum-based metal or a magnesium-based metal. 前記繊維材は、耐熱性を有する耐熱繊維材である請求項1記載の複合材料。   The composite material according to claim 1, wherein the fiber material is a heat-resistant fiber material having heat resistance. 前記ウィスカおよび前記短繊維は、そのアスペクト比が10以上である請求項1記載の複合材料。   The composite material according to claim 1, wherein the whisker and the short fiber have an aspect ratio of 10 or more. 前記ウィスカ、前記短繊維および前記長繊維は、その熱膨張率が前記軽金属の熱膨張率よりも低い材料からなる請求項1記載の複合材料。   The composite material according to claim 1, wherein the whisker, the short fiber, and the long fiber are made of a material having a thermal expansion coefficient lower than that of the light metal. 前記ウィスカ、前記短繊維および前記長繊維は、その熱膨張率が前記鉄系金属粒子の熱膨張率以下の材料からなる請求項1記載の複合材料。   The composite material according to claim 1, wherein the whisker, the short fiber, and the long fiber are made of a material having a thermal expansion coefficient equal to or lower than a thermal expansion coefficient of the iron-based metal particles. 前記ウィスカは、セラミックスウィスカである請求項1記載の複合材料。   The composite material according to claim 1, wherein the whisker is a ceramic whisker. 前記セラミックスウィスカは、ホウ酸アルミニウムウィスカである請求項8記載の複合材料。   The composite material according to claim 8, wherein the ceramic whisker is an aluminum borate whisker. 前記短繊維または前記長繊維は、金属繊維またはセラミックス繊維である請求項1記載の複合材料。   The composite material according to claim 1, wherein the short fibers or the long fibers are metal fibers or ceramic fibers. 前記繊維材は、前記鉄系金属粒子と同じ組成の鉄系金属からなる鉄系繊維からなる請求項記載の複合材料。 The fibrous material is a composite material of an iron-based fibers Tona Ru claim 1 made of an iron-based metal having the same composition as the iron-based metal particles. 前記短繊維または前記長繊維は、炭素繊維である請求項1記載の複合材料。   The composite material according to claim 1, wherein the short fibers or the long fibers are carbon fibers. 鉄系金属粒子からなる焼結体の少なくとも一面に、ウィスカ、短繊維および長繊維のうちの1種以上を成形し焼結した焼結繊維材である繊維材を配置してから、該焼結体および該繊維材に軽金属を含浸固化させることで、請求項に記載の複合材料を製造することを特徴とする複合材料の製造方法。 A fiber material, which is a sintered fiber material obtained by molding and sintering one or more of whiskers, short fibers, and long fibers, is disposed on at least one surface of a sintered body made of iron-based metal particles, and then sintered. A composite material according to claim 1 , wherein the composite material according to claim 1 is produced by impregnating and solidifying a light metal in the body and the fiber material. 系金属粒子と、ウィスカ、短繊維および長繊維のうちの1種以上と、を焼結して焼結体および焼結繊維材を一体的に作製してから該焼結体および該焼結繊維材に軽金属を含浸固化させることで、請求項1に記載の複合材料を製造することを特徴とする複合材料の製造方法。 And iron-based metal particles, whiskers, and one or more of the short fibers and long fibers, sintered body and the sintering to sintered bodies and sintered fiber material from the produced integrally the The method for producing a composite material according to claim 1, wherein the composite material according to claim 1 is produced by impregnating and solidifying a sintered metal with a light metal.
JP2004246339A 2004-08-26 2004-08-26 Composite material and manufacturing method thereof Expired - Fee Related JP4524591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004246339A JP4524591B2 (en) 2004-08-26 2004-08-26 Composite material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004246339A JP4524591B2 (en) 2004-08-26 2004-08-26 Composite material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006061936A JP2006061936A (en) 2006-03-09
JP4524591B2 true JP4524591B2 (en) 2010-08-18

Family

ID=36108847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246339A Expired - Fee Related JP4524591B2 (en) 2004-08-26 2004-08-26 Composite material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4524591B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4977893B2 (en) * 2007-10-02 2012-07-18 公益財団法人鉄道総合技術研究所 Mounting structure and mounting method for foam-like pore-dispersed porous metal sheet
DE102007057588A1 (en) * 2007-11-28 2009-06-04 Daimler Ag Engine block with cast-in cylinder liners of several material layers and method for producing the cylinder liners
WO2021039596A1 (en) 2019-08-29 2021-03-04 Agc株式会社 Composition, method for producing antenna, and molded article
EP4321276A1 (en) * 2021-04-08 2024-02-14 Advanced Composite Corporation Joint structure of dissimilar metal materials and method for joining dissimilar metal materials

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319639A (en) * 1988-06-17 1989-12-25 Mitsubishi Electric Corp Composite material having low thermal expansion
JPH07178534A (en) * 1993-12-24 1995-07-18 Mitsubishi Chem Corp Fiber reinforced metallic piston
JPH08229663A (en) * 1995-02-24 1996-09-10 Toyota Motor Corp Metal sintered composite material
JPH08319504A (en) * 1995-03-17 1996-12-03 Toyota Motor Corp Composite material of metallic sintered compact and its production
JPH10140263A (en) * 1996-11-11 1998-05-26 Nippon Cement Co Ltd Production of metal-ceramics composite
JP2003191066A (en) * 2001-12-25 2003-07-08 Yazaki Corp Composite material and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319639A (en) * 1988-06-17 1989-12-25 Mitsubishi Electric Corp Composite material having low thermal expansion
JPH07178534A (en) * 1993-12-24 1995-07-18 Mitsubishi Chem Corp Fiber reinforced metallic piston
JPH08229663A (en) * 1995-02-24 1996-09-10 Toyota Motor Corp Metal sintered composite material
JPH08319504A (en) * 1995-03-17 1996-12-03 Toyota Motor Corp Composite material of metallic sintered compact and its production
JPH10140263A (en) * 1996-11-11 1998-05-26 Nippon Cement Co Ltd Production of metal-ceramics composite
JP2003191066A (en) * 2001-12-25 2003-07-08 Yazaki Corp Composite material and method of manufacturing the same

Also Published As

Publication number Publication date
JP2006061936A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
JP2921893B2 (en) Method for producing composite article having complicated internal morphology
US5299620A (en) Metal casting surface modification by powder impregnation
JPH09227969A (en) Production of metal ceramic composite material molding, constituting members consisting of this molding in machine production, device production, motor use under corrosion condition and/or oxidation condition
CA2238520A1 (en) Machinable mmc and liquid metal infiltration process
US5503122A (en) Engine components including ceramic-metal composites
Dickerson et al. Dense, near net‐shaped, carbide/refractory metal composites at modest temperatures by the displacive compensation of porosity (DCP) method
JP2021087995A (en) Composite body and producing method for the same
RU2009120387A (en) METHOD FOR PRODUCING PRODUCTS FROM METAL-CERAMIC COMPOSITE MATERIALS
JP6461954B2 (en) Method for manufacturing aluminum piston
JP4524591B2 (en) Composite material and manufacturing method thereof
CN1244149A (en) Ambient temperature method for increasing the green strength of parts and articles made by consolidating powder, particulate, sheet or foil materials
JP2015140456A (en) Composite material, semiconductor device, and method for manufacturing composite material
JP4338362B2 (en) Method for producing aluminum composite material
US20040202883A1 (en) Metal-ceramic composite material and method for production thereof
JPH048398B2 (en)
JP3107723B2 (en) Plunger sleeve for die casting machine
EP0753101B1 (en) Engine components including ceramic-metal composites
JP2995661B2 (en) Manufacturing method of porous cemented carbide
JP3183804B2 (en) Porous reinforced sintered body and method for producing the same, composite material using this porous reinforced sintered body and method for producing the same
JP2001508832A (en) Metal-ceramic structural element-its structure and its manufacture
JPH11269578A (en) Manufacture of composite body
JP2571596B2 (en) Manufacturing method of composite material composed of ceramic and metal
JP4638138B2 (en) PRESSURE CONTAINER, MANUFACTURING METHOD THEREOF, COMPRESSOR AND ITS COMPONENT
JP3547077B2 (en) Method of manufacturing preform for metal matrix composite
JPH04200969A (en) Production of metal composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100506

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees