JP2001294971A - Method for producing stainless steel sintered body - Google Patents

Method for producing stainless steel sintered body

Info

Publication number
JP2001294971A
JP2001294971A JP2000109154A JP2000109154A JP2001294971A JP 2001294971 A JP2001294971 A JP 2001294971A JP 2000109154 A JP2000109154 A JP 2000109154A JP 2000109154 A JP2000109154 A JP 2000109154A JP 2001294971 A JP2001294971 A JP 2001294971A
Authority
JP
Japan
Prior art keywords
molded body
weight
powder
carbon monoxide
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000109154A
Other languages
Japanese (ja)
Inventor
Hideo Miura
秀士 三浦
Masakazu Enboku
正和 遠北
Akihito Otsuka
昭仁 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2000109154A priority Critical patent/JP2001294971A/en
Publication of JP2001294971A publication Critical patent/JP2001294971A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a powder metallurgy method for producing a stainless steel sintered body by which a product excellent in corrosion resistance and mechanical properties and also capble to form a complicated shape can easily be obtained. SOLUTION: In a process in which a composition obtained by adding a binder to metal powder containing, by weight, 16 to 20% Cr and 1.0 to 1.5% C, and the balance substantially Fe is subjected to injection molding, and the obtained molded body is subjected to debinder treatment and is sintered, the molded body is sintered at a temperature in which the molded body starts to be shrinked in a gaseous mixture atmosphere of hydrogen and carbon monoxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐食性に優れ、溶
製材のSUS 440Cと同程度の機械的特性を有する
ステンレス鋼焼結体の製造方法に関する。
[0001] The present invention relates to a method for producing a stainless steel sintered body having excellent corrosion resistance and having mechanical properties comparable to those of SUS440C as an ingot.

【0002】[0002]

【従来の技術】JISに規定されているSUS 440
C製品を製造するには、一般に溶製材を機械加工する切
削加工方法や、精密鋳造法が知られているが、複雑な形
状の製品を製造する場合、切削加工法では鋳造品を加工
した板や塊状品から切り出して、所定形状まで機械加工
を行うため、加工コストが上昇する上に歩留まりが悪か
った。
2. Description of the Related Art SUS440 specified by JIS
In order to manufacture a C product, a cutting method of machining a molten material and a precision casting method are generally known. However, when manufacturing a product having a complicated shape, a plate obtained by processing a cast product is used in the cutting method. Since it is cut out from a lump or lump and machined to a predetermined shape, the processing cost is increased and the yield is poor.

【0003】また精密鋳造法では、鋭利な部分の寸法精
度が得られず、鋳造時発生する大小の気孔が内部に残留
するなどの鋳造欠陥が生じるなどの問題があった。した
がってこのような欠点を補うために、SUS 440C
に相当する合金組成を有するステンレス鋼粉末を粉末冶
金法によって製造する試みがなされている。しかし用い
る粉末は製造ロットによって原料粉末中に含まれる炭素
量が変動し、JIS規格に定められた炭素量を安定的に
満足することが困難であった。さらに粉末には不可避の
酸素が含まれていて、粉末中に含まれる炭素と反応し、
規格に定められた炭素量を満足できないという問題があ
った。
Further, the precision casting method has a problem that the dimensional accuracy of a sharp portion cannot be obtained and casting defects such as large and small pores generated during casting remain inside. Therefore, in order to compensate for such a disadvantage, SUS 440C
Attempts have been made to produce a stainless steel powder having an alloy composition corresponding to the above by powder metallurgy. However, the amount of carbon contained in the raw material powder varies depending on the production lot of the powder used, and it has been difficult to stably satisfy the amount of carbon specified in JIS standards. Furthermore, the powder contains unavoidable oxygen and reacts with the carbon contained in the powder,
There was a problem that the carbon amount specified in the standard could not be satisfied.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の現状
に鑑みなされたものであって、粉末冶金法を用いて、焼
結時の雰囲気、条件を工夫することにより、溶製材のS
US 440Cに相当する耐食性、機械的特性を有し、
かつ複雑形状を有する製品を容易に得ることができるス
テンレス鋼焼結体の製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and the present invention has been made to improve the sintering quality of smelted materials by devising the atmosphere and conditions during sintering using powder metallurgy.
Corrosion resistance and mechanical properties equivalent to US 440C,
It is another object of the present invention to provide a method for manufacturing a stainless steel sintered body that can easily obtain a product having a complicated shape.

【0005】[0005]

【課題を解決するための手段】本発明に係るステンレス
鋼焼結体の製造方法は、Cr16〜20重量%、C1.
0〜1.5重量%含有し、残部が実質的にFeからなる
金属粉末に、バインダーを添加してなる組成物を射出成
形し、得られた成形体を脱バインダー処理し、焼結する
工程において、前記成形体を当該成形体が収縮を開始す
る温度にて、水素および一酸化炭素の混合ガス雰囲気下
で焼結することを特徴とするものである。また、前記水
素および一酸化炭素の混合ガス雰囲気下での処理条件と
して、一酸化炭素含有率を5%から20%、処理時間を
5分〜60分とすることを特徴とするものである。さら
に、前記金属粉末として、アトマイズ粉末を用いること
を特徴とするものである。
The method for producing a stainless steel sintered body according to the present invention comprises the steps of:
A step of injection molding a composition obtained by adding a binder to a metal powder containing 0 to 1.5% by weight and the balance substantially consisting of Fe, and subjecting the obtained molded body to a binder removal treatment and sintering Wherein the compact is sintered in a mixed gas atmosphere of hydrogen and carbon monoxide at a temperature at which the compact starts shrinking. Further, as the processing conditions in the mixed gas atmosphere of hydrogen and carbon monoxide, the carbon monoxide content is 5% to 20%, and the processing time is 5 minutes to 60 minutes. Further, an atomized powder is used as the metal powder.

【0006】本発明において、出発原料である金属粉末
は予め目的の組成に調整、配合された合金粉末でもよ
く、また異なる組成の粉末を目標の組成に調整、配合し
て得られた混合粉末でもよい。例えばFe−Crの合金
粉末にC粉末を添加する方法も採用できる。
In the present invention, the starting metal powder may be an alloy powder adjusted and blended in advance to a desired composition, or a mixed powder obtained by adjusting and blending a powder having a different composition to a target composition. Good. For example, a method of adding C powder to Fe-Cr alloy powder can also be adopted.

【0007】金属粉末におけるCr含有量を16〜20
重量%に限定したのは、金属粉末におけるCr含有量が
16重量%未満では得られた焼結体の耐食性、強度が劣
り、他方、Cr含有量が20重量%を超えると原料が高
価となるためである。
[0007] When the Cr content in the metal powder is 16 to 20
The reason why the content is limited to wt% is that when the Cr content in the metal powder is less than 16 wt%, the corrosion resistance and strength of the obtained sintered body are inferior, and when the Cr content exceeds 20 wt%, the raw material becomes expensive. That's why.

【0008】同じくC含有量を1.0〜1.5重量%
(好ましくは1.1〜1.3重量%)に限定したのは、
金属粉末におけるC含有量が1.0重量%未満では焼結
後に熱処理を実施しても要求される硬度が得られないた
め、機械的強度か不十分となり、他方、C量含有量が
1.5重量%を超えると焼結体の耐食性および靱性に悪
影響をおよぼすためである。
[0008] Similarly, the C content is 1.0 to 1.5% by weight.
(Preferably 1.1 to 1.3% by weight)
If the C content in the metal powder is less than 1.0% by weight, the required hardness cannot be obtained even if heat treatment is performed after sintering, resulting in insufficient mechanical strength. If the content exceeds 5% by weight, the corrosion resistance and toughness of the sintered body are adversely affected.

【0009】さらに使用する金属粉末には、0.05〜
0.5重量%程度の酸素が含まれており、後工程の焼結
時に原料粉末中の酸素が原料粉末中のCと反応してCO
ガスを生成して放出(脱炭)されるために、焼結後のC
量は減少する。したがって焼結後の焼結体における炭素
量が、ほぼSUS 440Cに相当する範囲である0.
95〜1.2重量%になるように過剰に添加されてい
る。
[0009] Further, the metal powder to be used, 0.05 ~
Oxygen in the raw material powder reacts with C in the raw material powder at the time of sintering in the subsequent step, and
Since the gas is generated and released (decarburized), the C
The amount decreases. Therefore, the amount of carbon in the sintered body after sintering is in a range substantially equivalent to SUS440C.
It is added in excess to 95 to 1.2% by weight.

【0010】次に、当該成形体を収縮開始温度にて、水
素および一酸化炭素混合ガスで焼結するのは、以下に記
載する理由による。すなわち、この処理は脱炭によって
減少した炭素を補うために実施されるが、収縮開始温度
で行うのは収縮開始以前に水素および混合ガスで焼結す
ると、焼結体中に亀裂が多数発生するためである。これ
はバインダーが除去され、焼結が始まるまでの段階では
成形体の強度が低下し浸炭による膨張のため、亀裂が発
生するからである。また収縮を開始し、焼結が進行した
段階で水素および一酸化炭素混合ガスで処理を施して
も、成形体内部まで浸炭が行われず、不均一な組織とな
るからである。
Next, the compact is sintered at a shrinkage start temperature with a mixed gas of hydrogen and carbon monoxide for the following reasons. In other words, this treatment is performed to compensate for the carbon reduced by decarburization, but when performed at the shrinkage start temperature, if sintering with hydrogen and a mixed gas before the start of shrinkage, many cracks are generated in the sintered body That's why. This is because in the stage before the binder is removed and sintering starts, the strength of the molded body is reduced, and cracks occur due to expansion due to carburization. Further, even if the shrinkage is started and the treatment is performed with a mixed gas of hydrogen and carbon monoxide at the stage where sintering has progressed, carburization is not performed to the inside of the molded body, resulting in an uneven structure.

【0011】この処理における一酸化炭素含有率として
5%〜20%に限定したのは、5%未満では、脱炭して
減少する炭素を補うには不十分な濃度であり、他方、2
0%を超えた濃度ではそれ以上の効果が見られないため
である。
The reason why the content of carbon monoxide is limited to 5% to 20% in this treatment is that if it is less than 5%, the concentration is insufficient to make up for the decarbonized and reduced carbon.
This is because no further effect can be seen at a concentration exceeding 0%.

【0012】また処理時間を5分〜20分としたのは、
5分未満では脱炭して減少する炭素を補うには時間が不
十分であり、他方、20分を超えてもそれ以上の効果が
見られないためである。
The reason why the processing time is set to 5 to 20 minutes is as follows.
If the time is less than 5 minutes, the time is insufficient to compensate for the decarbonized carbon, and if the time exceeds 20 minutes, no further effect is obtained.

【0013】一方、出発原料の各種の金属粉末には、射
出成形をする場合は平均粒径で45ミクロン以下が好ま
しく、またバインダーとしては公知のポリエチレン、ポ
リプロピレン、ワックスなどを使用することができる。
また配合原料粉末に対するバインダーの配合量は、配合
後の組成物において25〜60容量%の範囲が望まし
い。
On the other hand, various metal powders as a starting material preferably have an average particle size of 45 μm or less in the case of injection molding, and known polyethylene, polypropylene, wax and the like can be used as a binder.
The amount of the binder relative to the compounding raw material powder is preferably in the range of 25 to 60% by volume in the composition after compounding.

【0014】さらに前記原料粉末とバインダーからなる
組成物を射出成形した後、得られた成形体からバインダ
ーを除去する方法としては、加熱脱脂、溶媒脱脂、その
他の公知の方法を使用できる。
Further, as a method for removing the binder from the obtained molded body after injection-molding the composition comprising the raw material powder and the binder, a known method such as heat degreasing, solvent degreasing or the like can be used.

【0015】以上は射出成形粉末冶金法について説明し
たが、従来のプレス焼結法でも公知の方法を利用して製
造することができる。
Although the injection molding powder metallurgy method has been described above, a conventional press sintering method can also be used to manufacture the powder metallurgy using a known method.

【0016】[0016]

【実施例】実施例1 原料粉末として、平均粒径9μmのFe−17.0重量
%、Cr−1.1重量%Cの水アトマイズ合金粉末を用
い、これにワックス系バインダーを40容量%となるよ
うに加え150℃で混練後、ペレット状に造粒した。こ
のペレットを射出成形機を用いて射出圧800kg/c
m2の条件で金型に射出成形した。得られた成形体(幅
10mm、長さ50mm、厚さ5mmの直方体)を30
0℃まで加熱し、60分間保持してワックス系バインダ
ーの除去を行った。その後この脱バインダー処理した成
形体を1000℃まで真空中で加熱し、成形体が収縮し
始める1000℃にて、一酸化炭素を10%含む水素中
にて20分処理を行い、引き続き水素中にて昇温し12
50℃で5時間保持した後、冷却を行った。このように
して得られた処理品について、焼結密度、硬度、耐食
性、残留炭素量を調べた。その際、焼結密度は比重計で
測定し、硬度はロックウェル硬度計にて荷重150kg
(HRC)で測定した。また耐食性の評価としては、3
%NaCl水溶液中に50℃で24時間浸漬し、錆の発
生を目視により観察して評価した。
EXAMPLES Example 1 As a raw material powder, a water atomized alloy powder of Fe-17.0% by weight and Cr-1.1% by weight C having an average particle diameter of 9 μm was used, and a wax-based binder was added to 40% by volume. The mixture was kneaded at 150 ° C. and granulated into pellets. This pellet was injected at an injection pressure of 800 kg / c using an injection molding machine.
Injection molding was performed in a mold under the conditions of m2. The obtained molded body (a rectangular parallelepiped having a width of 10 mm, a length of 50 mm, and a thickness of 5 mm) is reduced to 30
The mixture was heated to 0 ° C. and held for 60 minutes to remove the wax binder. Thereafter, the molded body subjected to the binder removal treatment is heated to 1000 ° C. in a vacuum, and subjected to a treatment in hydrogen containing 10% of carbon monoxide for 20 minutes at 1000 ° C. at which the molded body starts shrinking. 12
After holding at 50 ° C. for 5 hours, cooling was performed. The sintering density, hardness, corrosion resistance, and residual carbon content of the processed product thus obtained were examined. At that time, the sintered density was measured with a hydrometer, and the hardness was 150 kg with a Rockwell hardness meter.
(HRC). The corrosion resistance was evaluated as 3
The sample was immersed in a 50% aqueous solution of NaCl at 50 ° C. for 24 hours, and the occurrence of rust was visually observed and evaluated.

【0017】実施例2 原料粉末として、平均粒径9μmのFe−18.0重量
%、Cr−1.2重量%Cの水アトマイズ合金粉末を用
い、これにワックス系バインダーを40容量%となるよ
うに加え150℃で混練後、ペレット状に造粒した。こ
のペレットを射出成形機を用いて射出圧800kg/c
m2の条件で金型に射出成形した。得られた成形体(幅
10mm、長さ50mm、厚さ5mmの直方体)を30
0℃まで加熱し、60分間保持してワックス系バインダ
ーの除去を行った。その後この脱バインダー処理した成
形体を1000℃まで水素中で加熱し、成形体が収縮し
始める1000℃にて、一酸化炭素を10%含む水素中
にて30分処理を行い、引き続き水素中にて昇温し12
50℃で5時間保持した後、冷却を行った。このように
して得られた処理品について、実施例1と同様に評価を
行った。
Example 2 As a raw material powder, a water atomized alloy powder of Fe-18.0% by weight and Cr-1.2% by weight C having an average particle size of 9 μm was used, and a wax-based binder was used at 40% by volume. After kneading at 150 ° C., the mixture was granulated into pellets. This pellet was injected at an injection pressure of 800 kg / c using an injection molding machine.
Injection molding was performed in a mold under the conditions of m2. The obtained molded body (a rectangular parallelepiped having a width of 10 mm, a length of 50 mm, and a thickness of 5 mm) is reduced to 30
The mixture was heated to 0 ° C. and held for 60 minutes to remove the wax binder. Thereafter, the molded body subjected to the binder removal treatment is heated in hydrogen to 1000 ° C., and is subjected to a treatment in hydrogen containing 10% of carbon monoxide at 1000 ° C. for 30 minutes at 1000 ° C., at which the molded body begins to shrink, and subsequently in hydrogen 12
After holding at 50 ° C. for 5 hours, cooling was performed. The treated product thus obtained was evaluated in the same manner as in Example 1.

【0018】実施例3 原料粉末として、平均粒径9μmのFe−18.O重量
%、Cr−1.2重量%Cの水アトマイズ合金粉末を用
い、これにワックス系バインダーを40容量%となるよ
うに加え150℃で混練後、ペレット状に造粒した。こ
のペレットを射出成形機を用いて射出圧800kg/c
m2の条件で金型に射出成形した。得られた成形体(幅
10mm、長さ50mm、厚さ5mmの直方体)を30
0℃まで加熱し、60分間保持してワックス系バインダ
ーの除去を行った。その後この脱バインダー処理した成
形体を1000℃まで水素中で加熱し、成形体が収縮し
始める1000℃にて、一酸化炭素を20%含む水素中
にて10分処理を行い、引き続き水素中にて昇温し12
50℃で5時間保持した後、冷却を行った。このように
して得られた熱処理品について、実施例1と同様に評価
を行った。
Example 3 As a raw material powder, Fe-18. A water atomized alloy powder of O weight% and Cr-1.2 weight% C was used, a wax-based binder was added thereto to a volume of 40% by volume, kneaded at 150 ° C., and granulated into pellets. This pellet was injected at an injection pressure of 800 kg / c using an injection molding machine.
Injection molding was performed in a mold under the conditions of m2. The obtained molded body (a rectangular parallelepiped having a width of 10 mm, a length of 50 mm, and a thickness of 5 mm) is reduced to 30
The mixture was heated to 0 ° C. and held for 60 minutes to remove the wax binder. Thereafter, the molded body subjected to the binder removal treatment is heated in hydrogen to 1000 ° C., and subjected to a treatment in hydrogen containing 20% of carbon monoxide at 1000 ° C. for 10 minutes at 1000 ° C., at which the molded body begins to shrink. 12
After holding at 50 ° C. for 5 hours, cooling was performed. The heat-treated product thus obtained was evaluated in the same manner as in Example 1.

【0019】実施例4 原料粉末として、平均粒径9μmのFe−20.0重量
%、Cr−1.4重量%Cの水アトマイズ合金粉末を用
い、これにワックス系バインダーを40容量%となるよ
うに加え150℃で混練後、ペレット状に造粒した。こ
のペレットを射出成形機を用いて射出圧800kg/c
m2の条件で金型に射出成形した。得られた成形体(幅
10mm、長さ50mm、厚さ5mmの直方体)を30
0℃まで加熱し、60分間保持してワックス系バインダ
ーの除去を行った。その後この脱バインダー処理した成
形体を1000℃まで水素中で加熱し、成形体が収縮し
始める1000℃にて50分、一酸化炭素を15%含む
水素中にて処理を行い、引き続き水素中にて昇温し12
50℃で5時間保持した後、冷却を行った。このように
して得られた処理品について、実施例1と同様に評価を
行った。
Example 4 As a raw material powder, a water atomized alloy powder of Fe-20.0% by weight and Cr-1.4% by weight C having an average particle size of 9 μm was used, and a wax-based binder was used at 40% by volume. After kneading at 150 ° C., the mixture was granulated into pellets. This pellet was injected at an injection pressure of 800 kg / c using an injection molding machine.
Injection molding was performed in a mold under the conditions of m2. The obtained molded body (a rectangular parallelepiped having a width of 10 mm, a length of 50 mm, and a thickness of 5 mm) is reduced to 30
The mixture was heated to 0 ° C. and held for 60 minutes to remove the wax binder. Thereafter, the molded body subjected to the binder removal treatment is heated in hydrogen to 1000 ° C., and treated at 1000 ° C. for 50 minutes in hydrogen containing 15% of carbon monoxide, at which the molded body begins to shrink, and subsequently in hydrogen. 12
After holding at 50 ° C. for 5 hours, cooling was performed. The treated product thus obtained was evaluated in the same manner as in Example 1.

【0020】比較例1 原料粉末として、平均粒径9μmのFe−18.0重量
%、Cr−0.8重量%Cの水アトマイズ合金粉末を用
いた以外は、実施例1と同様の手順で処理を行い、実施
例1と同様に評価を行った。
Comparative Example 1 The procedure of Example 1 was repeated except that a water atomized alloy powder of Fe-18.0% by weight and Cr-0.8% by weight C having an average particle diameter of 9 μm was used as a raw material powder. Processing was performed, and evaluation was performed in the same manner as in Example 1.

【0021】比較例2 原料粉末として、平均粒径9μmのFe−18.0重量
%、Cr−1.7重量%Cの水アトマイズ合金粉末を用
いた以外は、実施例1と同様の手順で処理を行い、その
耐食性を実施例1と同様に評価を行った。
Comparative Example 2 The procedure of Example 1 was repeated except that a water atomized alloy powder of Fe-18.0% by weight and Cr-1.7% by weight C having an average particle size of 9 μm was used as a raw material powder. After the treatment, the corrosion resistance was evaluated in the same manner as in Example 1.

【0022】比較例3 一酸化炭素および水素の混合ガスの処理を室温から昇温
速度4℃/分の速度で、1000℃の収縮開始温度まで
処理を行った以外は実施例1と同様の手順で処理を行
い、実施例1と同様に評価を行った。
Comparative Example 3 The same procedure as in Example 1 except that the treatment of the mixed gas of carbon monoxide and hydrogen was performed from room temperature to a shrinkage starting temperature of 1000 ° C. at a rate of temperature increase of 4 ° C./min. And evaluated in the same manner as in Example 1.

【0023】比較例4 一酸化炭素および水素の混合ガスの処理を室温から、昇
温速度0.4℃/分の速度で1000℃の収縮開始温度
まで処理を行った以外は実施例1と同様の手順で処理を
行い、実施例1と同様に評価を行った。
Comparative Example 4 Same as Example 1 except that the mixed gas of carbon monoxide and hydrogen was treated from room temperature to a shrinkage starting temperature of 1000 ° C. at a heating rate of 0.4 ° C./min. The evaluation was performed in the same manner as in Example 1.

【0024】上記実施例1〜4、比較例1〜4の結果を
まとめて表1に示す。表1の結果より、本発明の実施例
1〜4はいずれも焼結密度、硬度、耐食性、残留炭素量
共に良好な値を示した。一方、比較例1はC含有量が少
ないため、十分な硬さは得られなかった。比較例2はC
含有量が過剰なため、耐食性が不十分となった。比較例
3は処理温度が不適切で、焼結体中に無数の亀裂が発生
した。比較例4も同じく、処理温度が不適切で、焼結体
中に無数の亀裂が発生した。
The results of Examples 1 to 4 and Comparative Examples 1 to 4 are summarized in Table 1. From the results in Table 1, all of Examples 1 to 4 of the present invention showed favorable values in all of the sintered density, hardness, corrosion resistance, and residual carbon amount. On the other hand, in Comparative Example 1, a sufficient hardness was not obtained because the C content was small. Comparative Example 2 is C
Due to the excessive content, the corrosion resistance was insufficient. In Comparative Example 3, the treatment temperature was inappropriate, and countless cracks occurred in the sintered body. Similarly, in Comparative Example 4, the treatment temperature was inappropriate, and countless cracks occurred in the sintered body.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】以上説明したごとく、本発明によれば、
焼結体に亀裂を発生させることなく適正な雰囲気、条件
で焼結することができるので、溶製材のSUS 440
Cに相当する耐食性、機械的特性を有し、かつ複雑形状
を有する製品を容易に得ることができるという優れた効
果を奏する。
As described above, according to the present invention,
Since it is possible to perform sintering under appropriate atmosphere and conditions without generating cracks in the sintered body, SUS 440 of the ingot material can be used.
It has an excellent effect that a product having corrosion resistance and mechanical properties equivalent to C and having a complicated shape can be easily obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大塚 昭仁 神奈川県大和市下鶴間3860 住友金属鉱山 株式会社特殊合金工場内 Fターム(参考) 4K018 AA33 BA17 CA29 DA03 DA11 DA31 DA33  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Akihito Otsuka 3860 Shimotsuruma, Yamato City, Kanagawa Prefecture Sumitomo Metal Mining Co., Ltd. Special alloy factory F-term (reference) 4K018 AA33 BA17 CA29 DA03 DA11 DA31 DA33

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Cr16〜20重量%、C1.0〜1.
5重量%を含有し、残部が実質的にFeからなる金属粉
末にバインダーを添加してなる組成物を射出成形し、得
られた成形体を脱バインダー処理し、焼結する工程にお
いて、前記成形体を当該成形体が収縮を開始する温度に
て、水素および一酸化炭素の混合ガス雰囲気下で焼結す
ることを特徴とするステンレス鋼焼結体の製造方法。
1. Cr 16 to 20% by weight, C 1.0 to 1.
In a step of injection molding a composition containing 5% by weight and a binder added to a metal powder substantially consisting of Fe, the resulting molded body is subjected to a binder removal treatment and is sintered, and A method for producing a stainless steel sintered body, comprising sintering a green body in a mixed gas atmosphere of hydrogen and carbon monoxide at a temperature at which the green body starts shrinking.
【請求項2】 前記水素および一酸化炭素の混合ガス雰
囲気下での処理として一酸化炭素含有率が5%から20
%であり、かつ処理時間が5分から60分であることを
特徴とする請求項1に記載のステンレス鋼焼結体の製造
方法。
2. The treatment in a mixed gas atmosphere of hydrogen and carbon monoxide, wherein the content of carbon monoxide is 5% to 20%.
%, And the treatment time is from 5 minutes to 60 minutes.
【請求項3】 前記金属粉末がアトマイズ粉末であるこ
とを特徴とする請求項1または2記載のステンレス鋼焼
結体の製造方法
3. The method according to claim 1, wherein the metal powder is an atomized powder.
JP2000109154A 2000-04-11 2000-04-11 Method for producing stainless steel sintered body Pending JP2001294971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000109154A JP2001294971A (en) 2000-04-11 2000-04-11 Method for producing stainless steel sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000109154A JP2001294971A (en) 2000-04-11 2000-04-11 Method for producing stainless steel sintered body

Publications (1)

Publication Number Publication Date
JP2001294971A true JP2001294971A (en) 2001-10-26

Family

ID=18621885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000109154A Pending JP2001294971A (en) 2000-04-11 2000-04-11 Method for producing stainless steel sintered body

Country Status (1)

Country Link
JP (1) JP2001294971A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261402A (en) * 2007-04-11 2008-10-30 Nsk Ltd Linear guide device
JP2011220536A (en) * 2011-08-12 2011-11-04 Nsk Ltd Linear guide device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261402A (en) * 2007-04-11 2008-10-30 Nsk Ltd Linear guide device
JP2011220536A (en) * 2011-08-12 2011-11-04 Nsk Ltd Linear guide device

Similar Documents

Publication Publication Date Title
EP0378702B1 (en) Sintered alloy steel with excellent corrosion resistance and process for its production
EP0379583B1 (en) SINTERED MAGNETIC Fe-Co MATERIAL AND PROCESS FOR ITS PRODUCTION
JP2002531693A (en) Hard sintered compact having nickel- and cobalt-free, nitrogen-containing steel as binder for hard phase
CN108367356B (en) Iron-based powder for powder injection molding
JPH0244883B2 (en)
JP2003166003A (en) Stainless steel powder for sintering, granulated powder for manufacturing sintered stainless steel, and sintered stainless steel
SE434353B (en) POROS SINTER BODY WITH GOOD CORROSION RESISTANCE AND WAY TO MAKE IT
JP2001294971A (en) Method for producing stainless steel sintered body
JPH04157109A (en) Material for metallic mold
JPH10317009A (en) Production of stainless sintered body
JPH11181541A (en) Production of stainless steel sintered body
JP2922248B2 (en) Manufacturing method of sintered alloy with excellent corrosion resistance
JPH10287901A (en) Production of stainless sintered body
JPH0225501A (en) Stainless steel powder for injection forming and production of compound for injection forming and stainless steel sintered body
JP2001089824A (en) Manufacture of sintered compact of chromium- molybdenum steel
JP2000129309A (en) Production of austenitic stainless sintered body
JPH0313329A (en) Sintered metal composite material excellent in corrosion resistance, dimensional accuracy and economical efficiency and preparation thereof
JP2001152207A (en) Method for producing chromium-nickel-molybdenum steel sintered body
JPH03173702A (en) Production of sintered body
JP2793938B2 (en) Manufacturing method of sintered metal parts by metal powder injection molding method
JP2786303B2 (en) Method for producing sintered alloy with excellent corrosion resistance and machinability
JPH0717983B2 (en) Method for producing high nitrogen stainless steel sintered body
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
JP2000199001A (en) Powder and method for manufacturing high density sintered body
JPH03277735A (en) Manufacture of cermet