JP2000199001A - Powder and method for manufacturing high density sintered body - Google Patents

Powder and method for manufacturing high density sintered body

Info

Publication number
JP2000199001A
JP2000199001A JP10376941A JP37694198A JP2000199001A JP 2000199001 A JP2000199001 A JP 2000199001A JP 10376941 A JP10376941 A JP 10376941A JP 37694198 A JP37694198 A JP 37694198A JP 2000199001 A JP2000199001 A JP 2000199001A
Authority
JP
Japan
Prior art keywords
powder
sintered
granulated
mixed
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10376941A
Other languages
Japanese (ja)
Inventor
Okie Nakabayashi
興栄 中林
Atsushi Watanabe
篤 渡辺
Kaneyuki Kato
欽之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Kinzoku KK
Pacific Metals Co Ltd
Original Assignee
Taiheiyo Kinzoku KK
Pacific Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Kinzoku KK, Pacific Metals Co Ltd filed Critical Taiheiyo Kinzoku KK
Priority to JP10376941A priority Critical patent/JP2000199001A/en
Publication of JP2000199001A publication Critical patent/JP2000199001A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To stably manufacture a sintered parts of high sintering density by a pressing method by granulating powder small in mean grain size (fine powder) into granulated powder, setting the mean grain size to be approximately on the same level as that of the powder large in mean grain size (general powder), and mixing the granulated powder with the general powder to be formed and sintered. SOLUTION: Raw fine powder and raw general powder are metallic powders formed of iron, iron alloy, nickel, etc. The fine powder is preferably 1-100 μm in mean grain size. The fine powder is fed to a granulating device, a binder such as polyvinyl alcohol and polyvinyl pyrolidone is added thereto, and mixed therein to be granulated. A mixing granulating method is preferably of a rolling type in which a rotary pan, a rotary cylinder or a rotary cone is used. The binder is removed simultaneously with a lubricant in a degreasing process after the mixed powder is formed. A parts of the sintering density of >=93% can be easily and inexpensively manufactured by the pressing method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粉末冶金法による
焼結体用粉末及び焼結体の製造方法に関するものであ
る。
The present invention relates to a powder for a sintered body by a powder metallurgy method and a method for producing the sintered body.

【0002】[0002]

【従来の技術】粉末冶金法による焼結部品は部品形状の
制約がなく、また機械加工を行うことなく小型で複雑な
形状の部品を精度良く製造できるという特長がある。こ
のため、粉末冶金法による焼結部品は、最近、機械、自
動車、家庭電気製品などに使用される部品として注目さ
れている。このような焼結部品は、例えばステンレス鋼
粉末を射出成形、あるいはプレス成形して所定形状の成
形体を成形し、これを焼結する方法で製造されている。
2. Description of the Related Art Sintered parts manufactured by the powder metallurgy method are characterized in that there is no restriction on the shape of the parts and that small and complicated parts can be manufactured with high precision without machining. For this reason, sintered parts manufactured by the powder metallurgy method have recently attracted attention as parts used for machines, automobiles, home electric appliances and the like. Such a sintered component is manufactured by, for example, injection molding or press molding a stainless steel powder to form a molded body having a predetermined shape, and sintering the molded body.

【0003】このような焼結部品の製造にあたっては、
最近、特に焼結密度を高く保ち、さらに機械的強度を高
いレベルに維持することが求められてきている。例え
ば,自動車の排気ガス系統における部品に、ステンレス
鋼粉末を原料とする焼結部品が多用されるようになって
きたが、このような部品には、燃焼ガスの漏出防止のた
めに高い焼結密度を持ち、開放気孔をもたないこと、自
動車の振動による応力に耐える強度を持つこと、ガス等
による酸化や腐食に耐えること等が要求されている。
[0003] In the production of such sintered parts,
Recently, it has been required to maintain a high sintering density and a high mechanical strength. For example, sintered parts made of stainless steel powder have been widely used as parts in the exhaust gas system of automobiles. It is required to have a high density, no open pores, a strength to withstand the stress caused by the vibration of an automobile, a resistance to oxidation and corrosion by gas and the like.

【0004】このうち、焼結密度については、真密度に
対する実測密度の比である相対密度が目安として用いら
れ、少なくとも93%、好ましくは95%以上とするこ
とが求められている。93%ないしは95%以上の相対
密度をもつ焼結部品であれば、開放気孔、すなわち焼結
部品の厚さ全体を貫く気孔、が存在しないと言われてい
る。
Among these, the relative density, which is the ratio of the measured density to the true density, is used as a standard for the sintered density, and is required to be at least 93%, preferably 95% or more. It is said that if the sintered part has a relative density of 93% or more than 95%, there are no open pores, that is, pores that penetrate the entire thickness of the sintered part.

【0005】このような高い焼結密度を有する焼結部品
を製造する方法がいくつか提案されている。例えば、特
開平7―316603号においては、「平均粒径が11
μm以下の粉末で、該粉末中に含まれる21μm以上の
粒径を有する粉末の存在率が17.5wt%未満である
ことを特徴とする高密度及び高強度焼結体用粉末」を用
いることにより、「相対密度95%以上の焼結体が得ら
れ、高い機械的特性を安定して得ることができる」こと
を開示している。
Several methods have been proposed for producing sintered parts having such a high sintered density. For example, in JP-A-7-316603, "the average particle size is 11
a high-density and high-strength sintered powder characterized in that the abundance of powder having a particle size of 21 μm or more contained in the powder having a particle size of 21 μm or less is less than 17.5 wt%. Discloses that "a sintered body having a relative density of 95% or more can be obtained and high mechanical properties can be stably obtained."

【0006】[0006]

【発明が解決しようとする課題】しかしながら、高い焼
結密度の焼結部品を製造する方法として特開平7―31
6603号に開示された方法を用いようとすると、下記
の問題点を有している。すなわち、 (1) 粉末の平均粒径が小さすぎるために、このよう
な粉末を使用してプレス成形法によって焼結部品を製造
しようとすると、粉末の流動性が極端に低下し、成形装
置に粉末が流れ込まないため、正常な形状の焼結部品が
得られない。特開平7―316603号の実施例におい
ても、射出成形法によってのみ部品を製造している。 (2) 平均粒径の小さい粉末は一般的にコストが高い
ため、このような粉末のみで焼結部品を製造しても経済
性をもたない。
However, as a method of manufacturing a sintered part having a high sintered density, Japanese Patent Laid-Open No.
Attempts to use the method disclosed in US Pat. No. 6,603,009 have the following problems. That is, (1) Since the average particle diameter of the powder is too small, when a sintered part is manufactured by a press molding method using such a powder, the fluidity of the powder is extremely reduced, and the Since the powder does not flow, a sintered part having a normal shape cannot be obtained. Also in the embodiment of JP-A-7-316603, parts are manufactured only by the injection molding method. (2) Since powders having a small average particle size are generally expensive, it is not economical to produce a sintered component using only such powders.

【0007】本発明は上記のような実情に鑑みてなされ
たもので、高い焼結密度を有する焼結部品をプレス成形
法により安定的に製造するための粉末及びその方法を堤
供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a powder for stably producing a sintered part having a high sintering density by a press molding method, and to provide a method for the same. And

【0008】従来、プレス成形法による焼結部品の製造
には、−100メッシュ品に代表されるような粉末が原
料として使用され、その相対密度は85%程度の低いも
のしか得られなかったが、本発明は、プレス成形法によ
り客易に、かつ安価に93%以上の焼結密度を有する焼
結部品を製造できる粉末及びその方法を提供することを
目的としている。
Conventionally, powders typified by -100 mesh products have been used as raw materials in the production of sintered parts by press molding, and their relative densities have been only as low as about 85%. An object of the present invention is to provide a powder capable of easily and inexpensively producing a sintered part having a sintered density of 93% or more by a press molding method and a method thereof.

【0009】[0009]

【課題を解決するための手段】本件発明者らは、上記問
題を解決するために、種々検討を行った結果、「平均粒
径の小さい粉末」(以下、「微細粉末」と呼ぶ)を造粒
して造粒粉末とし、その造粒粉末の平均粒径を、平均粒
径の大きな粉末(以下、「一般粉末」と呼ぶ)とほぼ同
レベルにした後、この造粒粉末と一般粉末とを混合して
混合粉末とし、この混合粉末を成形し、焼結すれば、上
記の問題を解決して、高い焼結密度を有する焼結部品を
製造できることを見いだした。
Means for Solving the Problems The present inventors have conducted various studies in order to solve the above-mentioned problems, and as a result, have produced “powder having a small average particle size” (hereinafter referred to as “fine powder”). After the granulated powder is made into a granulated powder, and the average particle size of the granulated powder is set to substantially the same level as the powder having a large average particle size (hereinafter, referred to as “general powder”), Have been found to be able to solve the above problems and produce a sintered part having a high sintering density by mixing and forming a mixed powder.

【0010】ここで、本発明で原料となる粉末は微細粉
末、一般粉末ともに金属粉末であり、本発明は、鉄、鉄
合金(例えば、ステンレス鋼、珪素鋼、構造用鋼、工具
鋼、高速度鋼、アルニコ合金、センダスト合金、パーメ
ンジュール合金、パーマロイ合金等)、ニッケル、ニッ
ケル合金(パーマロイ等)、クロム、クロム合金、コバ
ルト、コバルト合金、チタン、チタン合金等の金属粉末
に利用できるものである。
The powder used as a raw material in the present invention is a fine powder and a general powder, both of which are metal powders. The present invention relates to iron and iron alloys (for example, stainless steel, silicon steel, structural steel, tool steel, Speed steel, Alnico alloy, Sendust alloy, Permendur alloy, Permalloy alloy, etc.), nickel, nickel alloy (Permalloy, etc.), chromium, chromium alloy, cobalt, cobalt alloy, titanium, titanium alloy, etc. It is.

【0011】本発明において用いる微細粉末としては、
その平均粒径が1〜100μmの金属粉末が好ましい。
平均粒径が1μm以下の金属粉末を造粒しようとする
と、バインダーの必要量が増加したり、またバインダー
の除去に時間を要したりしてコスト負担が大きい。ま
た、原料の金属粉末の平均粒径が100μmを越える
と、この粉末で製造した造粒粉末を成形した焼結部品の
充填密度が低く、その後これを焼結しても密度は上昇せ
ず、さらに寸法精度も悪くなる。従って、原料の微細粉
末の平均粒径の上限は100μmである。原料の微細粉
末の製造条件、経済性を考慮すると、好ましい原料の金
属粉末の平均粒径は2μm〜60μmである。
The fine powder used in the present invention includes:
A metal powder having an average particle size of 1 to 100 μm is preferred.
If a metal powder having an average particle size of 1 μm or less is to be granulated, the required amount of the binder increases, and it takes a long time to remove the binder, resulting in a large cost burden. Also, when the average particle size of the raw metal powder exceeds 100 μm, the packing density of the sintered part formed by molding the granulated powder produced from this powder is low, and the density does not increase even after sintering, Further, the dimensional accuracy is also deteriorated. Therefore, the upper limit of the average particle size of the fine powder of the raw material is 100 μm. In consideration of the production conditions and economics of the fine powder of the raw material, the average particle size of the metal powder as the preferable raw material is 2 μm to 60 μm.

【0012】次に、原料の微細粉末を造粒するには、微
細粉末を造粒装置に供給し、バインダーを添加、混合し
て造粒する。造粒法としては混合造粒法、強制造粒法、
熱利用造粒法のいずれを使用してもよいが、好ましく
は、回転皿や回転円筒、回転円錐を使用する転動方式の
混合造粒法を使用する。また、バインダーとしてはポリ
ビニルアルコール、ポリビニルピロリドン、ワックス、
寒天等の有機物や水と有機物の混合物等を使用する。
Next, in order to granulate the raw material fine powder, the fine powder is supplied to a granulator, a binder is added, and the mixture is granulated. Granulation methods include mixed granulation, forced granulation,
Any of the heat-based granulation methods may be used, but preferably, a rolling-type mixed granulation method using a rotating plate, a rotating cylinder, or a rotating cone is used. As the binder, polyvinyl alcohol, polyvinyl pyrrolidone, wax,
Use an organic substance such as agar, or a mixture of water and an organic substance.

【0013】この造粒粉末を製造する時に添加するポリ
ビニルアルコールのようなバインダーは特に除去工程を
設ける必要はなく、混合粉末を成形した後に行う脱脂工
程において、潤滑剤と同時に除去される。造粒工程にお
いて添加するバインダーと、成形工程において添加する
潤滑剤の性質が異なり、潤滑剤に比較してバインダーが
除去しにくい時には、脱脂時間を延長したり、あるいは
脱脂温度を高める等、脱脂条件を調整することが必要で
ある。
The binder such as polyvinyl alcohol added at the time of producing the granulated powder does not need to be particularly provided with a removing step, and is removed simultaneously with the lubricant in the degreasing step performed after molding the mixed powder. When the properties of the binder to be added in the granulation process and the lubricant to be added in the molding process are different and the binder is difficult to remove compared to the lubricant, degreasing conditions such as extending the degreasing time or increasing the degreasing temperature are used. It is necessary to adjust.

【0014】また、造粒粉末と一般粉末とを混合して混
合粉末とし、この混合粉末を成形し、焼結する時の焼結
条件としては、通常使用されている水素雰囲気下での焼
結、窒素、アルゴン等の不活性雰囲気下での焼結、減
圧、真空又は酸化性雰囲気下での焼結等、公知の焼結条
件でよい。
Further, the granulated powder and the general powder are mixed to form a mixed powder, and the mixed powder is molded and sintered under the sintering conditions generally used in a hydrogen atmosphere. Known sintering conditions such as sintering under an inert atmosphere such as nitrogen, argon, etc., sintering under reduced pressure, vacuum or oxidizing atmosphere may be used.

【0015】[0015]

【実施例】以下、本発明の要旨を実施例によりさらに詳
細に説明する。
The gist of the present invention will be described below in more detail with reference to examples.

【0016】[0016]

【実施例1】微細粉末として、表1に示す粒径分布を有
する、水アトマイズ法により得られたステンレス鋼(S
US316L)粉末50kgを転動流動造粒装置(株式
会杜パウレック製)に供給し、回転ディスク部を回転さ
せながらバインダーとしてメチルアルコールを溶媒とす
るPVP(ポリビニルピロリドン)5%溶液を連続的に
供給して造粒した。この際の空気供給量は約8.5m3
/hr、給気温度は70℃、回転ディスク部の回転数は
約205rpmで、造粒粉末の温度は約35℃、バイン
ダーの供給量は約110g/分、造粒時間は180分、
乾燥時間は約10分とした。
Example 1 As a fine powder, stainless steel (S) having a particle size distribution shown in Table 1 and obtained by a water atomization method was used.
US316L) 50 kg of powder is supplied to a tumbling fluidized-granulation device (manufactured by Powrex Co., Ltd.), and a 5% solution of PVP (polyvinylpyrrolidone) using methyl alcohol as a binder is continuously supplied while rotating a rotating disk. And granulated. The air supply at this time is about 8.5 m 3
/ Hr, the supply air temperature is 70 ° C., the number of revolutions of the rotating disk part is about 205 rpm, the temperature of the granulated powder is about 35 ° C., the supply amount of the binder is about 110 g / min, the granulation time is 180 minutes,
The drying time was about 10 minutes.

【0017】[0017]

【表1】 この造粒によって、表2に示す粒径分布の造粒粉末を得
た。
[Table 1] By this granulation, a granulated powder having a particle size distribution shown in Table 2 was obtained.

【0018】[0018]

【表2】 次に表2の造粒粉末と、一般粉末として表3に示す粒径
分布を有する水アトマイズ法により得られたステンレス
鋼(SUS316L)粉末を混合し、混合粉末を作成し
た(この一般粉末は、通常、いわゆる−100メッシュ
品と呼ばれている粉末である。)。この混合粉末の作成
に際して、造粒粉末と一般粉末の混合比率を種々に変化
させた。
[Table 2] Next, the granulated powder shown in Table 2 was mixed with a stainless steel (SUS316L) powder obtained by a water atomizing method having a particle size distribution shown in Table 3 as a general powder to prepare a mixed powder. Usually, it is a so-called -100 mesh powder.) In preparing this mixed powder, the mixing ratio between the granulated powder and the general powder was variously changed.

【0019】[0019]

【表3】 この混合粉末に潤滑剤として市販のACRAWAX(ロ
ンザ・ジャパン株式会社製)を質量比で0.5%添加し
た後、プレス機を使用して成型圧力6〜8t/cm2
試験片を作り、水素雰囲気の焼結炉で1200℃×1時
間焼結した後、焼結密度を測定した。
[Table 3] After adding 0.5% by mass of commercially available ACRAWAX (manufactured by Lonza Japan Co., Ltd.) as a lubricant to this mixed powder, a test piece was formed using a press machine at a molding pressure of 6 to 8 t / cm 2 . After sintering at 1200 ° C. for 1 hour in a sintering furnace in a hydrogen atmosphere, the sintered density was measured.

【0020】その結果は表4に示すように、一般粉末と
造粒粉末の混合比、成形圧力をかえることにより、相対
密度93%以上の焼結部品を製造できる可能性のあるこ
とが分かる。
The results show that, as shown in Table 4, there is a possibility that a sintered part having a relative density of 93% or more can be manufactured by changing the mixing ratio of the general powder and the granulated powder and the molding pressure.

【0021】[0021]

【表4】 [Table 4]

【0022】[0022]

【実施例2】次に、実施例1と同一条件で成形した試験
片を、焼結温度の影響を調査するため、水素雰囲気の焼
結炉で1300℃×1時間の条件で焼結した後、焼結密
度を測定した。
EXAMPLE 2 Next, a test piece molded under the same conditions as in Example 1 was sintered at 1300 ° C. × 1 hour in a sintering furnace in a hydrogen atmosphere in order to investigate the influence of the sintering temperature. The sintering density was measured.

【0023】その結果を表5に示すように、焼結温度を
高めることにより、相対密度93%以上の焼結部品を製
造できる範囲が広がってくることがわかる。
As shown in Table 5, the results show that increasing the sintering temperature broadens the range in which sintered parts having a relative density of 93% or more can be manufactured.

【0024】[0024]

【表5】 [Table 5]

【0025】[0025]

【実施例3】次に実施例1と同じ微細粉末を用いて、実
施例1と同様の方法により、実施例1の場合よりも粒径
の小さい表6の造粒粉末を得た。
Example 3 Next, using the same fine powder as in Example 1, a granulated powder having a smaller particle size than that in Example 1 was obtained in the same manner as in Example 1.

【0026】[0026]

【表6】 次に表6の造粒粉末と、一般粉末として表7に示す粒径
分市を有する水アトマイズ法により得られたステンレス
鋼(SUS316L)粉末を混合し、混合粉末を作成し
た。
[Table 6] Next, the granulated powder shown in Table 6 was mixed with a stainless steel (SUS316L) powder obtained by a water atomizing method having a particle size distribution shown in Table 7 as a general powder to prepare a mixed powder.

【0027】[0027]

【表7】 この混合粉末に潤滑剤として市販のACRAWAX(ロ
ンザ・ジャパン株式会社製)を質量比で0.5%添加し
た後、プレス機を使用して成型圧力6〜8t/cm2
試験片を作り、水素雰囲気の焼結炉で1300℃×1時
間焼結した後、焼結密度を測定した。
[Table 7] After adding 0.5% by mass of commercially available ACRAWAX (manufactured by Lonza Japan Co., Ltd.) as a lubricant to this mixed powder, a test piece was formed using a press machine at a molding pressure of 6 to 8 t / cm 2 . After sintering at 1300 ° C. × 1 hour in a sintering furnace in a hydrogen atmosphere, the sintered density was measured.

【0028】その結果は表8に示すように、微細粉末、
一般粉末及び造粒粉末の粒径をさらに細かいものに揃え
ることにより、安定して93%以上の相対密度を持つ焼
結部品を製造できることが確認できた。
As shown in Table 8, the results are as follows.
It was confirmed that by making the particle diameters of the general powder and the granulated powder smaller, a sintered part having a relative density of 93% or more can be stably manufactured.

【0029】[0029]

【表8】 [Table 8]

【0030】[0030]

【実施例4】同様の実験を水アトマイズ法により得られ
たステンレス鋼(SUS410L)について行った。微
細粉末、造粒粉末、一般粉末の粒径分布は実施例1の場
合とほぼ同様のものを用いた。また、造粒条件、焼結条
件も実施例1と同様とした。
Example 4 A similar experiment was performed on stainless steel (SUS410L) obtained by a water atomizing method. The particle size distribution of the fine powder, granulated powder and general powder used was almost the same as in Example 1. The granulation conditions and sintering conditions were the same as in Example 1.

【0031】その結果は表9に示すように、同じステン
レス鋼でもSUS410Lの場合は、焼結温度1200
℃でも、安定して93%以上の相対密度を有する焼結体
を得ることができることがわかる。
As shown in Table 9, the sintering temperature was 1200 for SUS410L even for the same stainless steel.
It is understood that a sintered body having a relative density of 93% or more can be stably obtained even at ℃.

【0032】[0032]

【表9】 以上のように、微細粉末・造粒粉末・一般粉末の粒径、
造粒粉末と一般粉末の混合比率、成形圧力、焼結温度等
の条件を適宜選択することにより、93%以上の焼結密
度を有する焼結部品を安定して製造することができる。
造粒粉末と一般粉末の混合比率の選択は特に重要である
が、93%以上の相対密度を確保した上で、さらに必要
な相対密度、コスト等の条件を勘案して、最適な混合比
率を選択する必要がある。
[Table 9] As described above, the particle size of fine powder, granulated powder, general powder,
By appropriately selecting the conditions such as the mixing ratio of the granulated powder and the general powder, the molding pressure, the sintering temperature, etc., a sintered component having a sintered density of 93% or more can be stably manufactured.
The selection of the mixing ratio between the granulated powder and the general powder is particularly important, but after securing a relative density of 93% or more, further considering the necessary relative density, cost and other conditions, the optimum mixing ratio is determined. You have to choose.

【0033】[0033]

【発明の効果】本発明により平均粒径の小さい粉末を造
粒して造粒粉末とし、この造粒粉末と平均粒怪の大きい
粉末の混合粉末を製造して、この混合粉末を成形・焼結
すれば、高い焼結密度を有する焼結部品を製造すること
ができ、その効果は極めて大きい。
According to the present invention, a powder having a small average particle size is granulated into a granulated powder, a mixed powder of the granulated powder and a powder having a large average particle size is produced, and the mixed powder is formed and sintered. By tying, a sintered part having a high sintered density can be manufactured, and the effect is extremely large.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 欽之 東京都千代田区大手町1―6―1 大平洋 金属株式会社内 Fターム(参考) 4K018 BB04 BC11 BC12  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Kinyuki Kato 1-6-1 Otemachi, Chiyoda-ku, Tokyo F-term (reference) 4K018 BB04 BC11 BC12

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が小さい粉末を造粒して製造し
た造粒粉末と、平均粒径が大きな粉末とを混合して、混
合粉末を構成することを特徴とする高密度焼結体製造用
粉末。
1. A high-density sintered body characterized in that a granulated powder produced by granulating a powder having a small average particle diameter and a powder having a large average particle diameter are mixed to form a mixed powder. Manufacturing powder.
【請求項2】 平均粒径が小さい粉末を造粒して製造し
た造粒粉末と、平均粒径が大きな粉末とを混合して混合
粉末とし、この混合粉末を成形し、焼結することを特徴
とする高密度焼結体の製造方法。
2. A method of mixing a granulated powder produced by granulating a powder having a small average particle diameter with a powder having a large average particle diameter to form a mixed powder, and molding and sintering the mixed powder. A method for producing a high-density sintered body characterized by the following.
JP10376941A 1998-12-28 1998-12-28 Powder and method for manufacturing high density sintered body Withdrawn JP2000199001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10376941A JP2000199001A (en) 1998-12-28 1998-12-28 Powder and method for manufacturing high density sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10376941A JP2000199001A (en) 1998-12-28 1998-12-28 Powder and method for manufacturing high density sintered body

Publications (1)

Publication Number Publication Date
JP2000199001A true JP2000199001A (en) 2000-07-18

Family

ID=18507989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10376941A Withdrawn JP2000199001A (en) 1998-12-28 1998-12-28 Powder and method for manufacturing high density sintered body

Country Status (1)

Country Link
JP (1) JP2000199001A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005533177A (en) * 2002-07-12 2005-11-04 エクス ワン コーポレーション Solid-ultra-solid liquid phase sintering of mixed powder
KR101892394B1 (en) * 2017-07-12 2018-08-28 공주대학교 산학협력단 Manufacturing method of Bi-Te system sintered alloy and Bi-Te system sintered alloy using the same
KR101894446B1 (en) * 2017-07-07 2018-09-04 서울대학교 산학협력단 Method for producing sintered body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005533177A (en) * 2002-07-12 2005-11-04 エクス ワン コーポレーション Solid-ultra-solid liquid phase sintering of mixed powder
US7070734B2 (en) 2002-07-12 2006-07-04 The Ex One Company Blended powder solid-supersolidus liquid phase sintering
KR101894446B1 (en) * 2017-07-07 2018-09-04 서울대학교 산학협력단 Method for producing sintered body
KR101892394B1 (en) * 2017-07-12 2018-08-28 공주대학교 산학협력단 Manufacturing method of Bi-Te system sintered alloy and Bi-Te system sintered alloy using the same

Similar Documents

Publication Publication Date Title
JP5585237B2 (en) Metal powder for powder metallurgy and sintered body
US20080075619A1 (en) Method for making molybdenum parts using metal injection molding
JP2006503188A (en) Near net shape metal and / or ceramic member manufacturing method
JP2003166003A (en) Stainless steel powder for sintering, granulated powder for manufacturing sintered stainless steel, and sintered stainless steel
US6555051B1 (en) Method for producing sintered body
JPH02294405A (en) Method for removing wax from injection molded metallic part
JP2000199001A (en) Powder and method for manufacturing high density sintered body
US20040146424A1 (en) Production of component parts by metal injection moulding (mim)
JP2004332016A (en) Granulated metal powder, manufacturing method therefor, and metal powder
JP4161301B2 (en) Granulated powder and method for producing the same
JPH11106804A (en) Granulated powder of water atomizing metal powder and its production
JPH11315304A (en) Manufacture of sintered body
WO2006114849A1 (en) Miniature bearing and method for manufacturing the same
JP2002206124A (en) METHOD FOR PRODUCING Ti ALLOY SINTERED BODY
JPH0860288A (en) Production of sendust sintered alloy
JPH11181501A (en) Production of metal powder and sintered body
JPH11315305A (en) Manufacture of sintered body
JP2643002B2 (en) Degreasing method for powder compacts
CN114086015B (en) Copper-tungsten alloy part and manufacturing method thereof
JP2786303B2 (en) Method for producing sintered alloy with excellent corrosion resistance and machinability
JPH0225501A (en) Stainless steel powder for injection forming and production of compound for injection forming and stainless steel sintered body
JP4158015B2 (en) Method for producing sintered body and sintered body
JP2000038605A (en) Production of parts of fishing reel
JP3073217B2 (en) Manufacturing method of precision metal parts by powder molding
JPH0257613A (en) Production of sintered metallic material and its raw powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050802

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050913

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051021

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070607