JP2016216818A - Soft magnetic metal powder, and, soft magnetic metal dust core - Google Patents

Soft magnetic metal powder, and, soft magnetic metal dust core Download PDF

Info

Publication number
JP2016216818A
JP2016216818A JP2016055579A JP2016055579A JP2016216818A JP 2016216818 A JP2016216818 A JP 2016216818A JP 2016055579 A JP2016055579 A JP 2016055579A JP 2016055579 A JP2016055579 A JP 2016055579A JP 2016216818 A JP2016216818 A JP 2016216818A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic metal
metal powder
powder
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016055579A
Other languages
Japanese (ja)
Inventor
大輝 林
Daiki Hayashi
大輝 林
秀幸 伊藤
Hideyuki Ito
秀幸 伊藤
智久 水戸瀬
Tomohisa Mitose
智久 水戸瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to CN201610313272.6A priority Critical patent/CN106158218B/en
Priority to KR1020160058274A priority patent/KR102068972B1/en
Publication of JP2016216818A publication Critical patent/JP2016216818A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a soft magnetic metal powder with low coercive force for remedying loss of a soft magnetic metal dust core.SOLUTION: In a first embodiment, a soft magnetic metal powder with low coercive force is provided which contains carbon and mainly contains Fe or Fe and Ni and in which carbon content of the soft magnetic metal powder particle is 100 to 1000 ppm, preferably the soft magnetic metal powder has Si content of 2 to 15 mass%. In a second embodiment, a soft magnetic metal powder is provided which is identical to the soft magnetic metal powder in the first embodiment except that Ni content is 30 to 80 mass% and total content of Fe and Ni is 90 mass%. In a third embodiment, a soft magnetic metal powder is provided which is identical to the soft magnetic metal powder in the first or the second embodiment except that oxygen amount contained in particles is 500 ppm or less and preferably Cr is 10 mass% or less.SELECTED DRAWING: Figure 1

Description

本発明は、圧粉コア等に用いられる軟磁性金属粉末、軟磁性金属圧粉コアに関するものである。 The present invention relates to a soft magnetic metal powder used for a dust core and the like, and a soft magnetic metal dust core.

モーターやリアクトル、インダクタ用の磁心材料として、低損失かつ高飽和磁束密度な軟磁性金属圧粉コアが求められている。 As magnetic core materials for motors, reactors, and inductors, soft magnetic metal dust cores with low loss and high saturation magnetic flux density are required.

軟磁性金属圧粉コアの損失を小さくするため、コアを構成する軟磁性金属粉末の保磁力を低減することが知られている。コアの損失はヒステリシス損失と渦電流損失に分けられ、ヒステリシス損失は保磁力に依存するため、保磁力を低減すればコアの損失を低減できる。 In order to reduce the loss of the soft magnetic metal dust core, it is known to reduce the coercive force of the soft magnetic metal powder constituting the core. The core loss is divided into hysteresis loss and eddy current loss. Since the hysteresis loss depends on the coercive force, the core loss can be reduced by reducing the coercive force.

軟磁性金属圧粉コアを結晶粒径が大きくなるような高い温度で熱処理することで保磁力の低減が可能である。
例えば、特許文献1では、酸化鉄と炭化物を混ぜて1150℃以上の高温熱処理を行い、固相還元の過程で表面に耐熱被膜を析出させる技術が開示されている。
The coercive force can be reduced by heat-treating the soft magnetic metal dust core at a high temperature that increases the crystal grain size.
For example, Patent Document 1 discloses a technique in which iron oxide and carbide are mixed and high-temperature heat treatment at 1150 ° C. or higher is performed, and a heat-resistant coating is deposited on the surface in the process of solid-phase reduction.

特開2013−79412号公報JP 2013-79412 A

特許文献1の技術では、酸化鉄粉末と炭素粉末の混合粉末を熱処理し、軟磁性金属粉末の粒子に炭素絶縁膜を形成すると同時に酸化鉄の還元と粒成長を行っている。しかし、粒子表面に炭素皮膜を形成させた場合には、大量に浸透した炭素は固溶されずに異相を形成して保磁力が増大してしまう。 In the technique of Patent Document 1, a mixed powder of iron oxide powder and carbon powder is heat-treated to form a carbon insulating film on the particles of soft magnetic metal powder, and at the same time, reduction of iron oxide and grain growth are performed. However, when a carbon film is formed on the particle surface, carbon that has permeated in a large amount is not dissolved but forms a heterogeneous phase, which increases coercivity.

本発明は上記の問題を解決するために案出されたものであって、軟磁性金属粉末の保磁力を改善すること、ならびにそれを用いた軟磁性金属圧粉コアの損失を改善することを課題とする。 The present invention has been devised to solve the above problems, and it is intended to improve the coercive force of a soft magnetic metal powder and to improve the loss of a soft magnetic metal dust core using the same. Let it be an issue.

前記課題を解決するために、請求項1に係る軟磁性金属粉末は、鉄または鉄とNiを主成分とする軟磁性金属粉末であって、
前記軟磁性金属粉末の金属粒子内の炭素の含有量が100〜1000ppmであることを特徴とする。
In order to solve the above problem, the soft magnetic metal powder according to claim 1 is a soft magnetic metal powder mainly composed of iron or iron and Ni,
Content of carbon in the metal particles of the soft magnetic metal powder is 100 to 1000 ppm.

上記の構成の軟磁性金属粉末とすることにより、保磁力を低減することができる。 By using the soft magnetic metal powder having the above configuration, the coercive force can be reduced.

請求項2に係る軟磁性金属粉末は、請求項1に記載の軟磁性金属粉末であって、前記軟磁性金属粉末において、Siの含有量が0〜15質量%であることを特徴とする。 The soft magnetic metal powder according to claim 2 is the soft magnetic metal powder according to claim 1, wherein the soft magnetic metal powder has a Si content of 0 to 15% by mass.

上記の構成の軟磁性金属粉末とすることにより、より保磁力を低減することができる。 By using the soft magnetic metal powder having the above configuration, the coercive force can be further reduced.

請求項3に係る軟磁性金属粉末は、請求項1に記載の軟磁性金属粉末であって、Niの含有量が30〜80質量%、FeとNiの含有量の合計が90質量%以上であることを特徴とする。 The soft magnetic metal powder according to claim 3 is the soft magnetic metal powder according to claim 1, wherein the Ni content is 30 to 80% by mass, and the total content of Fe and Ni is 90% by mass or more. It is characterized by being.

上記の構成の軟磁性金属粉末とすることにより、より保磁力を低減することができる。 By using the soft magnetic metal powder having the above configuration, the coercive force can be further reduced.

請求項4に係る軟磁性金属粉末は、請求項1〜3に記載された軟磁性金属粉末であって、前記軟磁性金属粉末を構成する粒子の90%以上が一個の結晶粒からなることを特徴とする。 The soft magnetic metal powder according to claim 4 is the soft magnetic metal powder according to claims 1 to 3, wherein 90% or more of the particles constituting the soft magnetic metal powder are composed of one crystal grain. Features.

上記の構成の軟磁性金属粉末とすることにより、より保磁力を低減することができる。 By using the soft magnetic metal powder having the above configuration, the coercive force can be further reduced.

請求項5に係る軟磁性金属粉末は、請求項1〜4のいずれかに記載された軟磁性金属粉末であって、粒子内に含まれる酸素量が500ppm以下であることを特徴とする。 A soft magnetic metal powder according to a fifth aspect is the soft magnetic metal powder according to any one of the first to fourth aspects, wherein the amount of oxygen contained in the particles is 500 ppm or less.

上記の構成の軟磁性金属粉末とすることにより、より保磁力を低減することができる。 By using the soft magnetic metal powder having the above configuration, the coercive force can be further reduced.

請求項6に係る軟磁性金属粉末は、請求項1〜5のいずれかに記載された軟磁性金属粉末であって、
軟磁性金属粉末のCrの含有量が10質量%以下であることを特徴とする。
The soft magnetic metal powder according to claim 6 is the soft magnetic metal powder according to any one of claims 1 to 5,
The content of Cr in the soft magnetic metal powder is 10% by mass or less.

上記の構成の軟磁性金属粉末とすることにより、きわめて小さい損失を有すると共に、防錆性や、電気抵抗の向上を付与することができる。 By using the soft magnetic metal powder having the above-described configuration, it is possible to impart an extremely small loss and to improve rust prevention and electrical resistance.

請求項7に係る軟磁性金属粉末は、請求項1〜6のいずれかに記載された軟磁性金属粉末であって、前記軟磁性金属粉末を構成する粒子のうち、90%以上の粒子の断面の円形度が0.80以上であることを特徴とする。 The soft magnetic metal powder according to claim 7 is the soft magnetic metal powder according to any one of claims 1 to 6, wherein a cross section of 90% or more of the particles constituting the soft magnetic metal powder. The degree of circularity is 0.80 or more.

上記の構成の軟磁性金属粉末とすることにより、より保磁力を低減することができる。 By using the soft magnetic metal powder having the above configuration, the coercive force can be further reduced.

請求項8に係る軟磁性金属圧粉コアは、請求項1〜7のいずれかに記載された軟磁性金属粉末を用いて作製された軟磁性金属圧粉コアである。 The soft magnetic metal dust core which concerns on Claim 8 is a soft magnetic metal dust core produced using the soft magnetic metal powder described in any one of Claims 1-7.

上記の構成の軟磁性金属圧粉コアとすることにより、コアの損失がきわめて小さいものとなる。 By using the soft magnetic metal dust core having the above configuration, the core loss is extremely small.

請求項9に係る軟磁性金属圧粉コアは、請求項8に記載されたインダクタ用コアまたはリアクトル用コアである。 A soft magnetic metal dust core according to a ninth aspect is the inductor core or the reactor core according to the eighth aspect.

本発明の軟磁性金属圧粉コアを用いることで、良好な耐電圧を有するリアクトルまたはインダクタとなる。 By using the soft magnetic metal dust core of the present invention, a reactor or inductor having a good withstand voltage is obtained.

本発明によれば、保磁力の低い軟磁性金属粉末を得ることができ、この軟磁性金属粉末を用いることで軟磁性金属圧粉コアの損失を改善することができる。 According to the present invention, a soft magnetic metal powder having a low coercive force can be obtained, and the loss of the soft magnetic metal dust core can be improved by using this soft magnetic metal powder.

軟磁性金属粒子の保磁力を低減する手法として、最も有効な手法は、粒子内の結晶粒径を粗大化させることで、好ましくは単結晶化することである。結晶粒成長には軟磁性金属粒子を熱処理する必要があり、処理温度が高いほど結晶粒径の粗大化が得られやすく単結晶粒子に近づく。本発明では、鉄または鉄とNiを主成分とする軟磁性金属材料に対し、熱処理後の炭素含有量を100〜1000ppmと制御することで熱処理時に結晶粒が大きく成長し、低保磁力が得られた。以下に、本発明における、炭素添加効果と、粗大な結晶粒子を有する金属粒子の作製方法と、軟磁性金属粉末が低保磁力になるメカニズムについて詳細を説明する。 As a method for reducing the coercive force of the soft magnetic metal particles, the most effective method is to increase the crystal grain size in the particles, preferably to make a single crystal. For crystal grain growth, it is necessary to heat-treat the soft magnetic metal particles. The higher the processing temperature, the easier the crystal grain size to be obtained and the closer to the single crystal particles. In the present invention, a soft magnetic metal material mainly composed of iron or iron and Ni is controlled to have a carbon content of 100 to 1000 ppm after heat treatment, so that crystal grains grow greatly during heat treatment and low coercive force is obtained. It was. Hereinafter, the carbon addition effect, the method for producing metal particles having coarse crystal particles, and the mechanism by which the soft magnetic metal powder has a low coercive force will be described in detail.

鉄または鉄とNiを主成分とする軟磁性金属材料の中では、炭素は磁壁の移動を妨げ保磁力を増大させる不純物として知られている。炭素量が多くなると、セメンタイト相やパーライト相の析出によって保磁力を増大する効果が大きくなる。
しかしながら、軟磁性金属粉末粒子に微量な炭素を加えることで、熱処理時に、軟磁性金属粉末中の炭素の拡散が結晶粒同士の結合を促進し、大結晶粒径の軟磁性金属粉末となることを見出した。熱処理後の軟磁性金属粉末粒子中の炭素含有量が100ppm以上1000ppm以下であると軟磁性金属粉末中に炭素が十分に固溶することができ、結晶粒成長を促進し保磁力を低減する効果が顕著になることが分かった。
Among soft magnetic metal materials mainly composed of iron or iron and Ni, carbon is known as an impurity that prevents the domain wall from moving and increases the coercive force. As the amount of carbon increases, the effect of increasing the coercive force due to precipitation of cementite phase or pearlite phase increases.
However, by adding a small amount of carbon to the soft magnetic metal powder particles, the diffusion of carbon in the soft magnetic metal powder promotes the bonding between the crystal grains during heat treatment, resulting in a soft magnetic metal powder having a large crystal grain size. I found. When the carbon content in the soft magnetic metal powder particles after the heat treatment is 100 ppm or more and 1000 ppm or less, the carbon can be sufficiently dissolved in the soft magnetic metal powder, and the effect of promoting crystal grain growth and reducing coercive force. Was found to be prominent.

以下、本発明の実施の形態について説明する。 Embodiments of the present invention will be described below.

(本発明の軟磁性金属粉末の特徴について)
本発明の実施の形態における軟磁性金属粉末は、鉄または鉄とNiを主成分とする軟磁性金属粉末であって、炭素の含有量が100〜1000ppmである。
(About the characteristics of the soft magnetic metal powder of the present invention)
The soft magnetic metal powder in the embodiment of the present invention is a soft magnetic metal powder mainly composed of iron or iron and Ni, and has a carbon content of 100 to 1000 ppm.

炭素の含有量が1000ppm超では保磁力が大きくなる。軟磁性金属粉末の粒子内の炭素の含有量が100〜1000ppmであれば、高温熱処理時に炭素の拡散によって結晶粒成長が促進される。100ppm未満では結晶粒成長の効果が十分に得られない。軟磁性金属粉末粒子中の炭素含有量は、好ましくは200〜800ppmである。より好ましくは200〜550ppm、更により好ましくは200〜400ppmである。 When the carbon content exceeds 1000 ppm, the coercive force increases. If the carbon content in the particles of the soft magnetic metal powder is 100 to 1000 ppm, crystal grain growth is promoted by the diffusion of carbon during high-temperature heat treatment. If it is less than 100 ppm, the effect of crystal grain growth cannot be obtained sufficiently. The carbon content in the soft magnetic metal powder particles is preferably 200 to 800 ppm. More preferably, it is 200-550 ppm, Still more preferably, it is 200-400 ppm.

本発明の実施の形態における軟磁性金属粉末粒子内の炭素含有量は、非分散型赤外吸収法による炭素硫黄同時分析装置(LECO社製、CS600型)を用いて定量することができる。 The carbon content in the soft magnetic metal powder particles in the embodiment of the present invention can be quantified using a carbon-sulfur simultaneous analyzer (LE600, CS600) by a non-dispersive infrared absorption method.

本実施形態の軟磁性金属粉末は、必要に応じて、その組成にSiを15質量%まで添加することができる。Siを添加することでより低保磁力な軟磁性金属粉末とすることができる。Siの含有量が15質量%より多いと、保磁力が増大することや、軟磁性金属粉末の硬度が高くなりすぎて軟磁性金属圧粉コアとしたときに圧粉体の密度が低くなり、良好な軟磁性金属圧粉コアを得ることができない。Siの含有量はより好ましくは2〜15質量%である。本発明の軟磁性金属粉末粒子内のSi含有量はICP発光分析装置(Inductively Coupled Plasma Atomic Emission Spectroscopy)を用いて定量することができる。 If necessary, the soft magnetic metal powder of the present embodiment can contain up to 15% by mass of Si. By adding Si, a soft magnetic metal powder having a lower coercive force can be obtained. When the content of Si is more than 15% by mass, the coercive force increases, the hardness of the soft magnetic metal powder becomes too high, and the density of the green compact becomes low when the soft magnetic metal powder core is used, A good soft magnetic metal dust core cannot be obtained. The Si content is more preferably 2 to 15% by mass. The Si content in the soft magnetic metal powder particles of the present invention can be quantified using an ICP emission spectrometer (Inductively Coupled Plasma Atomic Emission Spectroscopy).

本実施形態の軟磁性金属粉末は、必要に応じて、その組成にNiを80質量%まで添加することができる。Niを添加することで結晶磁気異方性や磁歪定数が小さく、より低保磁力な軟磁性金属粉末とすることができる。Niの含有量が80質量%より多いと、結晶磁気異方性や磁歪定数が大きく、保磁力が増大するため、良好な軟磁気特性を得ることができない。Niの含有量はより好ましくは30質量%以上80質量%である。本発明の軟磁性金属粉末粒子内のNi含有量はICP発光分析装置を用いて定量することができる。 The soft magnetic metal powder of this embodiment can add Ni to its composition up to 80% by mass as necessary. By adding Ni, a soft magnetic metal powder having a small magnetocrystalline anisotropy and magnetostriction constant and a lower coercive force can be obtained. When the Ni content is more than 80% by mass, the magnetocrystalline anisotropy and magnetostriction constant are large and the coercive force is increased, so that good soft magnetic properties cannot be obtained. The Ni content is more preferably 30% by mass or more and 80% by mass. The Ni content in the soft magnetic metal powder particles of the present invention can be quantified using an ICP emission analyzer.

本発明の実施の形態における軟磁性金属粉末は、前記軟磁性金属粉末を構成する粒子の90%以上が一個の結晶粒からなる軟磁性金属粉末とすることで、さらに保磁力が小さい軟磁性金属粉末を得ることができる。後述の熱処理工程を高温、長時間で行うほど一個の結晶粒からなる粒子が増える傾向があり、軟磁性金属粉末の粒径にもよるが、おおむね1300℃で30minの熱処理を行うことで、90%以上の粒子が一個の結晶粒とすることができる。得られた軟磁性金属粉末を冷間埋め込み樹脂で固定し、断面を切り出し、鏡面研磨した後、ナイタール(エタノール+1%硝酸)でエッチングすることで結晶粒界を観察することができる。このように準備された粒子の断面を少なくともランダムに20個、好ましくは100個以上観察し、結晶粒界が観察されない粒子の数を一個の結晶粒からなる粒子として算出すると、観察した粒子の90%以上が一個の結晶粒からなる。一部に熱処理での粒成長が不完全な粒子も存在することから、全ての粒子が一個の結晶粒からなることはない。観察には光学顕微鏡やSEMを用いることができる。 The soft magnetic metal powder in an embodiment of the present invention is a soft magnetic metal powder having a coercive force smaller by making 90% or more of the particles constituting the soft magnetic metal powder a single crystal grain. A powder can be obtained. As the heat treatment step described later is performed at a high temperature and for a long time, the number of particles composed of a single crystal grain tends to increase. Depending on the particle size of the soft magnetic metal powder, the heat treatment is generally performed at 1300 ° C. for 30 minutes to obtain 90%. % Or more of grains can be made into one crystal grain. The obtained soft magnetic metal powder is fixed with a cold embedding resin, a cross section is cut out, mirror-polished, and then etched with nital (ethanol + 1% nitric acid) to observe a crystal grain boundary. When the cross section of the particles prepared in this manner is observed at least 20 randomly, preferably 100 or more, and the number of particles in which no crystal grain boundary is observed is calculated as particles consisting of one crystal grain, 90 of the observed particles are observed. % Or more consists of one crystal grain. Since some grains have incomplete grain growth by heat treatment, all grains do not consist of one crystal grain. An optical microscope or SEM can be used for observation.

本発明の実施の形態における軟磁性金属粉末は、粒子内に含まれる酸素量が500ppm以下とすることでさらに保磁力が小さい軟磁性金属粉末を得ることができる。還元雰囲気中で熱処理を行うことで粒子内に含まれる酸素量を500ppm以下とすることができる。 The soft magnetic metal powder in the embodiment of the present invention can obtain a soft magnetic metal powder having a smaller coercive force when the amount of oxygen contained in the particles is 500 ppm or less. By performing heat treatment in a reducing atmosphere, the amount of oxygen contained in the particles can be reduced to 500 ppm or less.

本実施形態の軟磁性金属粉末は、必要に応じて、その組成にCrを10質量%まで添加することができる。Crを添加することによって保磁力を損なうことなく良好な防錆性を軟磁性金属粉末粒子に付与することができ、さらに、軟磁性金属粉末粒子の電気抵抗を高くする効果があり、それらによって、軟磁性金属圧粉コアとしたときに渦電流損失を低減できることが知られている。Crを10質量%より大きくしても防錆性に与える効果は変わらず、Crを添加する分だけ飽和磁化が小さくなってしまうため、Crの上限は10質量%とする。Cr添加量は、好ましくは1〜10質量%である。 The soft magnetic metal powder of this embodiment can add up to 10% by mass of Cr to its composition as necessary. By adding Cr, it is possible to impart good rust prevention properties to the soft magnetic metal powder particles without impairing the coercive force, and further, there is an effect of increasing the electric resistance of the soft magnetic metal powder particles. It is known that eddy current loss can be reduced when a soft magnetic metal dust core is used. Even if Cr is made larger than 10% by mass, the effect on rust prevention is not changed, and the saturation magnetization is reduced by the amount of Cr added, so the upper limit of Cr is made 10% by mass. The amount of Cr added is preferably 1 to 10% by mass.

本発明の実施の形態における軟磁性金属粉末は、前記軟磁性金属粉末を構成する粒子のうち、90%以上の粒子の断面の円形度が0.80以上とすることで、さらに保磁力が小さい軟磁性金属粉末を得ることができる。得られた軟磁性金属粉末を冷間埋め込み樹脂で固定し、断面を切り出し鏡面研磨することで、粒子の断面形状を観察することができる。このように準備された粒子の断面を少なくともランダムに20個、好ましくは100個以上観察し、各粒子の円形度を求める。円形度の一例としてはWadellの円形度を用いることができ、粒子断面に外接する円の直径に対する粒子断面の投影面積に等しい円の直径の比で定義される。真円の場合にはWadellの円形度は1となり、1に近いほど真円度が高く、0.80以上であれば外観上ほぼ真球とみなすことができる。観察には光学顕微鏡やSEM(走査型電子顕微鏡:Scanning Electron Microscope)を用い、円形度の算出には画像解析を用いることができる。 In the soft magnetic metal powder according to the embodiment of the present invention, the coercive force is further reduced by setting the circularity of the cross section of 90% or more of the particles constituting the soft magnetic metal powder to 0.80 or more. Soft magnetic metal powder can be obtained. The obtained soft magnetic metal powder is fixed with a cold embedding resin, and the cross-sectional shape of the particles can be observed by cutting out the cross-section and mirror polishing. At least 20 (preferably 100 or more) cross sections of the particles thus prepared are observed at random, and the circularity of each particle is obtained. As an example of circularity, Wadell's circularity can be used, which is defined by the ratio of the diameter of a circle equal to the projected area of the particle cross section to the diameter of the circle circumscribing the particle cross section. In the case of a perfect circle, Wadell's circularity is 1, and the closer to 1, the higher the roundness, and if it is 0.80 or more, it can be regarded as a substantially true sphere in appearance. An optical microscope or SEM (Scanning Electron Microscope) can be used for observation, and image analysis can be used for calculation of circularity.

本発明の実施の形態における軟磁性金属粉末の平均粒径は0.5〜200μmとするのが好ましい。0.5μm以上とすることで、保磁力が小さく、コアとした際にヒステリシス損失を抑制することができ、また、高い充填率を得ることができる。一方、平均粒径が200μmを超えると、軟磁性金属圧粉コアの粒内渦電流損失が増大してしまう。平均粒径を0.5〜200μmとすることで低保磁力な軟磁性金属粉末を得ることができ、作製される軟磁性金属圧粉コアを低損失とすることができる。好ましくは、平均粒径は1〜150μmであり、より好ましくは、平均粒径は1〜100μmである。 The average particle size of the soft magnetic metal powder in the embodiment of the present invention is preferably 0.5 to 200 μm. When the thickness is 0.5 μm or more, the coercive force is small, hysteresis loss can be suppressed when a core is formed, and a high filling rate can be obtained. On the other hand, if the average particle size exceeds 200 μm, the intra-grain eddy current loss of the soft magnetic metal dust core increases. By setting the average particle size to 0.5 to 200 μm, a soft magnetic metal powder having a low coercive force can be obtained, and the produced soft magnetic metal dust core can have a low loss. Preferably, the average particle size is 1-150 μm, more preferably the average particle size is 1-100 μm.

(原料粉末について)
本発明の実施の形態における軟磁性金属粉末の作製方法はとくに制限されないが、例えば水アトマイズ法、ガスアトマイズ法、鋳造粉砕法などの方法を用いることができる。原料粉末を顆粒化する際には、原料粉末の粒径は微細であるほど好ましいが0.5μm以下の原料粉末は工業材料としての入手や製造が難しく実用的ではない。
(About raw material powder)
The method for producing the soft magnetic metal powder in the embodiment of the present invention is not particularly limited, and for example, a method such as a water atomizing method, a gas atomizing method, or a casting pulverization method can be used. When granulating the raw material powder, the finer the particle size of the raw material powder, the better. However, the raw material powder of 0.5 μm or less is not practical because it is difficult to obtain and manufacture as an industrial material.

原料粉末は、鉄または鉄とNiを主成分とする金属粉末である。所望の軟磁性金属粉末の組成に応じて、原料粉末の組成を調整すればよい。 The raw material powder is a metal powder mainly composed of iron or iron and Ni. The composition of the raw material powder may be adjusted according to the composition of the desired soft magnetic metal powder.

原料粉末中の炭素含有量は100ppm以上1000ppm以下であることが好ましい。原料粉末中の炭素含有量が100ppm未満では熱処理時に結晶粒成長させる効果が十分に得られない。また、原料粉末中の炭素含有量が1000ppmより多いと、熱処理後に得られる軟磁性金属粉末中の炭素含有量も1000ppmより多くなる。 The carbon content in the raw material powder is preferably 100 ppm or more and 1000 ppm or less. If the carbon content in the raw material powder is less than 100 ppm, the effect of growing crystal grains during heat treatment cannot be obtained sufficiently. Moreover, when the carbon content in the raw material powder is higher than 1000 ppm, the carbon content in the soft magnetic metal powder obtained after the heat treatment is also higher than 1000 ppm.

原料粉末を作成するための原料合金には純鉄やFe−Si合金あるいはFe−Ni合金等を使用することができる。この際、得られる原料粉末の炭素含有量が100ppm以上1000ppm以下となるように原料金属を選定する必要がある。炭素は、原料金属、たとえば純鉄中に不純物として含有される元素であるため、原料金属の不純物レベルを選定することにより本発明の軟磁性金属粉末を得ることができる。原料金属の不純物レベルを選定することなく、適宜、原料金属に炭素を加えることにより本発明の炭素含有量を得ることもできる。 Pure iron, Fe—Si alloy, Fe—Ni alloy, or the like can be used as a raw material alloy for preparing the raw material powder. At this time, it is necessary to select the raw material metal so that the carbon content of the obtained raw material powder is 100 ppm or more and 1000 ppm or less. Since carbon is an element contained as an impurity in a raw metal such as pure iron, the soft magnetic metal powder of the present invention can be obtained by selecting the impurity level of the raw metal. The carbon content of the present invention can be obtained by appropriately adding carbon to the raw metal without selecting the impurity level of the raw metal.

(樹脂コーティングについて)
また、原料粉末は樹脂によってコーティング、または顆粒化して造粒粉を作製することが好ましい。樹脂によってコーティング、または造粒した原料粉末を熱処理した際には、高温下で樹脂が燃焼する。樹脂が燃焼する際には、軟磁性金属粉末中の一部の炭素も燃焼に使われるため、軟磁性金属粉末中の炭素の拡散が促進され、結果、軟磁性金属粉末の結晶粒成長を促進し、大結晶粒径の軟磁性金属粉末となる。
(About resin coating)
The raw material powder is preferably coated or granulated with a resin to produce a granulated powder. When the raw material powder coated or granulated with resin is heat-treated, the resin burns at high temperature. When the resin burns, part of the carbon in the soft magnetic metal powder is also used for combustion, which promotes the diffusion of carbon in the soft magnetic metal powder and consequently promotes the crystal grain growth of the soft magnetic metal powder. And a soft magnetic metal powder having a large crystal grain size.

樹脂コーティングにはポリビニルアルコールやエポキシ等の樹脂を用いることができるが、樹脂の種類はとくに制限されない。用いる樹脂の量は、多すぎると原料粉末をコーティングまたは顆粒化した後の取り扱いが困難となる。必要に応じて、分級、整粒などにより樹脂コーティングされた造粒粉の粒度調整を行う。 A resin such as polyvinyl alcohol or epoxy can be used for the resin coating, but the type of the resin is not particularly limited. If the amount of the resin used is too large, handling after coating or granulating the raw material powder becomes difficult. If necessary, the particle size of the granulated powder coated with resin by classification, sizing, etc. is adjusted.

熱処理後に得られる軟磁性金属粉末の形状は造粒粉と相似な形状となる。球状な軟磁性金属粉末を得るため、スプレードライヤー等によって球状な造粒粉を作製することが好ましい。 The shape of the soft magnetic metal powder obtained after the heat treatment is similar to that of the granulated powder. In order to obtain a spherical soft magnetic metal powder, it is preferable to produce a spherical granulated powder with a spray dryer or the like.

造粒粉には、耐熱性粉末を混合してもよい。造粒粉を1000℃以上の高温で熱処理した際には、金属同士の固着によって粗大粉が生じるが、耐熱性粉末を混合することで固着を防ぐことが可能となる。混合する粉末としてはAl粉末、SiO粉末のような酸化物粉末や、AlN粉末、Si粉末、BN粉末のような窒化物粉末が挙げられる。造粒粉に対する耐熱性粉末の混合割合は、多すぎると混合した耐熱性粉末を熱処理後に除去する工程でコストが増大するため、造粒粉に対して2〜10質量%であることが好ましい。 A heat-resistant powder may be mixed with the granulated powder. When the granulated powder is heat-treated at a high temperature of 1000 ° C. or higher, coarse powder is generated due to the adhesion between the metals, but the adhesion can be prevented by mixing the heat-resistant powder. Examples of the powder to be mixed include oxide powders such as Al 2 O 3 powder and SiO 2 powder, and nitride powders such as AlN powder, Si 3 N 4 powder, and BN powder. When the mixing ratio of the heat-resistant powder to the granulated powder is too large, the cost increases in the step of removing the mixed heat-resistant powder after the heat treatment, and therefore it is preferably 2 to 10% by mass with respect to the granulated powder.

(熱処理について)
図1に本発明の実施の形態における軟磁性金属粉末の熱処理過程の模式図を示す。
図(a)は造粒した原料粉末の模式図であり、図(a)中1は原料となるFe−Si系の粉末であり、多くの結晶粒から構成される。また、図(a)中2は造粒に用いた樹脂であり、図(a)中3は耐熱性粉末である。耐熱性粉末を混合した造粒粉を非酸化雰囲気中、最高温度は1000〜1500℃で、保持時間は30〜600min、好ましくは60〜600minで熱処理する。図(b)、図(c)はこの熱処理過程における造粒粉内部の変化の模式図である。図(b)中4は造粒に用いた樹脂が燃焼し残ったカスである。樹脂が燃焼することで、原料粉末内にある微量炭素の一部が原料粒子の外側に引き寄せられるように移動するので、これが原料粒子内部の結晶粒成長や空孔の排出を促進する。この熱処理で得られた軟磁性金属粉末は、軟磁性金属粉末を構成する粒子の結晶粒が大きく、低保磁力になる。熱処理温度が高く、保持時間を長くすることで図(b)のように原料粉末中にある複数の結晶粒が、図(c)のように一個の結晶粒からなる状態へと結晶粒成長が促進される。熱処理温度が1000℃に満たない場合には結晶粒成長が不十分となり、保磁力が十分に低くならない。熱処理温度が1500℃を超えると結晶粒成長は速やかに進行するので、温度をそれ以上に挙げても効果がない。高温熱処理は非酸化性雰囲気で行う。非酸化性雰囲気で熱処理を行うのは、軟磁性金属粉末の酸化を防ぐためである。
(About heat treatment)
FIG. 1 shows a schematic diagram of the heat treatment process of the soft magnetic metal powder in the embodiment of the present invention.
FIG. 1A is a schematic diagram of granulated raw material powder. In FIG. 1A, reference numeral 1 denotes an Fe—Si-based powder as a raw material, which is composed of many crystal grains. Moreover, 2 in the figure (a) is resin used for granulation, 3 in a figure (a) is heat resistant powder. The granulated powder mixed with the heat-resistant powder is heat-treated in a non-oxidizing atmosphere at a maximum temperature of 1000 to 1500 ° C. and a holding time of 30 to 600 min, preferably 60 to 600 min. Figures (b) and (c) are schematic views of changes in the granulated powder during the heat treatment process. In FIG. (B), reference numeral 4 denotes debris left after combustion of the resin used for granulation. When the resin burns, a part of the trace amount carbon in the raw material powder moves so as to be attracted to the outside of the raw material particle, which promotes crystal grain growth and void discharge inside the raw material particle. The soft magnetic metal powder obtained by this heat treatment has large crystal grains constituting the soft magnetic metal powder and has a low coercive force. When the heat treatment temperature is high and the holding time is lengthened, the plurality of crystal grains in the raw material powder as shown in FIG. (B) is grown into a state consisting of one crystal grain as shown in FIG. (C). Promoted. When the heat treatment temperature is less than 1000 ° C., crystal grain growth is insufficient and the coercive force is not sufficiently lowered. If the heat treatment temperature exceeds 1500 ° C., the crystal grain growth proceeds rapidly, so that raising the temperature beyond that has no effect. The high temperature heat treatment is performed in a non-oxidizing atmosphere. The heat treatment is performed in a non-oxidizing atmosphere to prevent the soft magnetic metal powder from being oxidized.

原料粉末はるつぼや匣鉢といった容器に装填される。容器の材質は1500℃の高温で変形しないこと、また、金属と反応しないことが必要であり、一例としてアルミナを使用することができる。熱処理炉はプッシャー炉やローラーハース炉などの連続炉、箱型炉、あるいは、管状炉、真空炉などのバッチ炉を用いることができる。 The raw material powder is loaded into a container such as a crucible or a mortar. The material of the container is required not to be deformed at a high temperature of 1500 ° C. and not to react with a metal. As an example, alumina can be used. As the heat treatment furnace, a continuous furnace such as a pusher furnace or a roller hearth furnace, a box furnace, or a batch furnace such as a tubular furnace or a vacuum furnace can be used.

熱処理後、混合していた耐熱性粉末は、風力分級や篩による分離や、アルコールや水などで洗い流すことで容易に除去することができる。耐熱性粉末が残存しても高効率な軟磁性金属圧粉コアを得ることができるが、耐熱性粉末を除去することで、作製される軟磁性金属圧粉コアの密度と透磁率を高くすることができる。 After heat treatment, the mixed heat-resistant powder can be easily removed by air classification, separation with a sieve, or washing away with alcohol or water. Even if the heat-resistant powder remains, a high-efficiency soft magnetic metal dust core can be obtained, but by removing the heat-resistant powder, the density and magnetic permeability of the produced soft magnetic metal dust core are increased. be able to.

(軟磁性金属圧粉コアについて)
本発明で得られた軟磁性金属粉末は低い保磁力を示すことから、これを軟磁性金属圧粉コアに用いた場合には、損失が小さくなる。軟磁性金属圧粉コアの作製方法は、軟磁性金属粉末として本発明で得られた軟磁性金属粉末を使用すること以外は、一般的な製造方法で作製することができるが、一例を示す。
(About soft magnetic metal dust core)
Since the soft magnetic metal powder obtained in the present invention exhibits a low coercive force, the loss is reduced when it is used for a soft magnetic metal dust core. The method for producing the soft magnetic metal dust core can be produced by a general production method except that the soft magnetic metal powder obtained in the present invention is used as the soft magnetic metal powder, but an example is shown.

本発明の実施の形態における軟磁性金属粉末に対し、樹脂を混合して成形用造粒粉を作製する。樹脂にはエポキシ樹脂やシリコーン樹脂を用いることができ、成形時の保形性と電気的な絶縁性を有するもので、軟磁性金属粉末表面に均一に塗布できるものが好ましい。得られた成形用造粒粉を所望の形状の金型に装填し、加圧成形して成形体を得る。成形圧力は軟磁性金属粉末の組成や所望の成形密度により適宜選択することができるが、概ね600〜1600MPaの範囲である。必要に応じて潤滑剤を用いてもよい。得られた成形体は、熱硬化を行うことで軟磁性金属圧粉コアとする。あるいは、成形時の歪を除去するために熱処理を行い、軟磁性金属圧粉コアとする。熱処理の温度は500〜800℃で、窒素雰囲気やアルゴン雰囲気などの非酸化性雰囲気中で行うことが望ましい。 A granulated powder for molding is prepared by mixing a resin with the soft magnetic metal powder in the embodiment of the present invention. As the resin, an epoxy resin or a silicone resin can be used, and those having shape retention and electrical insulation during molding and preferably capable of being uniformly applied to the surface of the soft magnetic metal powder are preferable. The obtained granulated powder for molding is loaded into a mold having a desired shape, and pressure-molded to obtain a molded body. The molding pressure can be appropriately selected depending on the composition of the soft magnetic metal powder and the desired molding density, but is generally in the range of 600 to 1600 MPa. A lubricant may be used as necessary. The obtained molded body is made into a soft magnetic metal dust core by thermosetting. Alternatively, heat treatment is performed in order to remove distortion during molding, and a soft magnetic metal dust core is obtained. The heat treatment is preferably performed at a temperature of 500 to 800 ° C. in a non-oxidizing atmosphere such as a nitrogen atmosphere or an argon atmosphere.

以上、本発明の公的な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。 As mentioned above, although public embodiment of this invention was described, this invention is not limited to the said embodiment. The present invention can be variously modified without departing from the gist thereof.

<実施例1>造粒時の樹脂量と原料粉の炭素含有量と、熱処理後の炭素含有量について <Example 1> About the resin content at the time of granulation, the carbon content of raw material powder, and the carbon content after heat treatment

主組成がFeの、種々の炭素含有量の原料粉末を水アトマイズ法にて作製した。得られた原料粉末は篩い分けによって粒度を調整し、平均粒径を20μmとした。この粉末を、スプレードライヤーによって、原料粉末に対して10質量%のPVA(ポリビニルアルコール)水溶液を用いてそれぞれ造粒した。造粒粉の平均粒径は20μmとした。この造粒粉を、5質量%のAlN粉末と混合した後、アルミナ製のるつぼに装填し、管状炉に入れ、窒素雰囲気下1300℃で300min保持する高温熱処理を行った。造粒時に使用したPVAの量と原料粉末の炭素含有量は表1に示す量とした。(試料1−1、1−8,1−9、試料1−2〜1−7) Raw material powders having a main composition of Fe and various carbon contents were prepared by the water atomization method. The obtained raw material powder was adjusted in particle size by sieving to have an average particle size of 20 μm. This powder was granulated with a spray dryer using a 10% by mass PVA (polyvinyl alcohol) aqueous solution based on the raw material powder. The average particle size of the granulated powder was 20 μm. This granulated powder was mixed with 5% by mass of AlN powder, and then charged in an alumina crucible, placed in a tubular furnace, and subjected to high temperature heat treatment that was held at 1300 ° C. for 300 minutes in a nitrogen atmosphere. The amount of PVA used at the time of granulation and the carbon content of the raw material powder were as shown in Table 1. (Samples 1-1, 1-8, 1-9, Samples 1-2 to 1-7)

試料1−1、1−8、1−9、および試料1−2〜1−7について、混合したAlN粉末をエタノールで洗い流したのち、軟磁性金属粉末粒子内の炭素含有量を、非分散型赤外線吸収法による炭素硫黄同時分析装置(LECO社製、CS600型)を用いて定量した。また、酸素量を、酸素分析装置(LECO社製、TC600)を用いて定量した。結果を表1に示す。 For Samples 1-1, 1-8, 1-9, and Samples 1-2 to 1-7, after the mixed AlN powder was washed away with ethanol, the carbon content in the soft magnetic metal powder particles was determined to be non-dispersed. Quantification was performed using a carbon-sulfur simultaneous analyzer (LECO, CS600 type) by infrared absorption method. The amount of oxygen was quantified using an oxygen analyzer (LECO, TC600). The results are shown in Table 1.

試料1−1、1−8、1−9、および試料1−2〜1−7について、粉末の保磁力を測定した。粉末の保磁力は、φ6mm×5mmのプラスチックケースに20mgの粉末を入れ、パラフィンを融解、凝固させて固定したものを保磁力計(東北特殊鋼社製、K−HC1000型)にて測定した。測定磁界は150kA/mで行った。測定結果を表1に示す。ここで、保磁力の値が350A/m以下の場合に、低保磁力であると判断した。 The coercivity of the powder was measured for Samples 1-1, 1-8, 1-9, and Samples 1-2 to 1-7. The coercive force of the powder was measured with a coercive force meter (K-HC1000 type, manufactured by Tohoku Special Steel Co., Ltd.), in which 20 mg of powder was put in a plastic case of φ6 mm × 5 mm, and paraffin was melted and solidified. The measurement magnetic field was 150 kA / m. The measurement results are shown in Table 1. Here, when the coercive force was 350 A / m or less, it was determined that the coercive force was low.

試料1−1、1−8、1−9、および試料1−2〜1−7の粉末を冷間埋め込み樹脂で固定し、断面を切り出し、鏡面研磨を行った。鏡面研磨した粒子断面をナイタール(エタノール+1%硝酸)でエッチングした。ランダムに選んだ100個の粒子の結晶粒界を観察し、一個の結晶粒からなる粒子の割合を算出した。結果を表1に示す。 The powders of Samples 1-1, 1-8, 1-9, and Samples 1-2 to 1-7 were fixed with a cold embedding resin, the cross section was cut out, and mirror polishing was performed. The mirror-polished particle cross section was etched with nital (ethanol + 1% nitric acid). The grain boundaries of 100 randomly selected grains were observed, and the ratio of grains consisting of one crystal grain was calculated. The results are shown in Table 1.

試料1−1、1−8、1−9、および試料1−2〜1−7の粉末を用いて圧粉コアを作製した。粉末100質量%に対し、シリコーン樹脂を2.4質量%加え、ニーダーで混練したものを、355μmのメッシュで整粒して成形用顆粒を作製した。これを外径17.5mm、内径11.0mmのトロイダル形状の金型に充填し、成形圧980MPaで加圧し成形体を得た。コア重量は5gとした。得られた成形体を、ベルト炉を用いて750℃で30min、窒素雰囲気中で熱処理して圧粉コアとした。 Powder cores were prepared using the powders of Samples 1-1, 1-8, 1-9, and Samples 1-2 to 1-7. To 100% by mass of powder, 2.4% by mass of silicone resin was added and kneaded with a kneader to adjust the size with a 355 μm mesh to produce granules for molding. This was filled in a toroidal mold having an outer diameter of 17.5 mm and an inner diameter of 11.0 mm, and pressed at a molding pressure of 980 MPa to obtain a molded body. The core weight was 5 g. The obtained molded body was heat-treated in a nitrogen atmosphere at 750 ° C. for 30 minutes using a belt furnace to obtain a powder core.

得られた圧粉コアについてコアロスを評価した。コアロスはBHアナライザ(岩通計測社製SY−8258)を用いて周波数20kHz,測定磁束密度50mTの条件で測定した。結果を表1に示す。 The core loss was evaluated about the obtained powder core. The core loss was measured using a BH analyzer (SY-8258 manufactured by Iwadori Measurement Co., Ltd.) under the conditions of a frequency of 20 kHz and a measurement magnetic flux density of 50 mT. The results are shown in Table 1.

試料1−2〜1−7では、軟磁性金属粉末の炭素含有量を100〜1000ppmとすることで、試料1−1、1−8,1−9よりも低い保磁力が得られた。また、試料1−3、1−4、1−5では、軟磁性金属粉末に含まれる炭素量が200〜500ppmとすることで、保磁力がさらに小さくなる。試料1−1では炭素量が少ないため、結晶粒成長させる効果が小さく、試料1−2〜1−7と比べて、保磁力が大きい。試料1−8、1−9では、軟磁性金属粉末の炭素含有量が1000ppm超であるため、試料1−2〜1−7と比べて、保磁力が大きい。 In Samples 1-2 to 1-7, the coercive force lower than that of Samples 1-1, 1-8, and 1-9 was obtained by setting the carbon content of the soft magnetic metal powder to 100 to 1000 ppm. In Samples 1-3, 1-4, and 1-5, the coercive force is further reduced by setting the amount of carbon contained in the soft magnetic metal powder to 200 to 500 ppm. In Sample 1-1, since the amount of carbon is small, the effect of crystal grain growth is small, and the coercive force is large as compared with Samples 1-2 to 1-7. In Samples 1-8 and 1-9, since the carbon content of the soft magnetic metal powder is more than 1000 ppm, the coercive force is larger than those of Samples 1-2 to 1-7.

試料1−2〜1−7と試料1−1、1−8、1−9のコアロスを比較すると、本発明の軟磁性金属粉末を用いた軟磁性金属圧粉コアは、コアの損失が改善された。 Comparing the core loss of Samples 1-2 to 1-7 and Samples 1-1, 1-8, and 1-9, the soft magnetic metal powder core using the soft magnetic metal powder of the present invention has improved core loss. It was done.

Figure 2016216818
Figure 2016216818

<実施例2>軟磁性金属粉末のSi量、Ni量とCr量 <Example 2> Si amount, Ni amount and Cr amount of soft magnetic metal powder

Si量、Ni量とCr量が表2に示す組成の、鉄または鉄とNiを主成分とする原料粉末を水アトマイズ法にてそれぞれ作製した。Fe−3.0%Si及びFe−4.5%Siについては、種々の炭素含有量の原料粉末を水アトマイズ法にて作製した。得られた原料粉末は篩い分けによって粒度を調整し、平均粒径を20μmとした。この粉末に10質量%のPVA水溶液を、PVAが原料粉末に対して固体比で0.8質量%となる濃度で用いてスラリー化し、スプレードライヤーによってそれぞれ造粒した。造粒粉の平均粒径は20μmとした。この造粒粉を、5質量%のAl粉末と混合した後、アルミナ製のるつぼに装填し、管状炉に入れ、窒素雰囲気下1300℃で60minの高温熱処理を行った。得られた軟磁性金属粉末の金属粒子内の炭素含有量は、混合したAl粉末をエタノールで洗い流したのち、非分散型赤外線吸収法による炭素硫黄同時分析装置(LECO社製、CS600型)を用いて、試料1と同様の手順で定量した。(試料2−1〜28) The raw material powder which has iron, iron, and Ni as a main component with the composition which the amount of Si, Ni, and Cr shown in Table 2 was produced by the water atomization method, respectively. About Fe-3.0% Si and Fe-4.5% Si, the raw material powder of various carbon content was produced by the water atomization method. The obtained raw material powder was adjusted in particle size by sieving to have an average particle size of 20 μm. A 10% by mass PVA aqueous solution was slurried in this powder using PVA at a concentration of 0.8% by mass with respect to the raw material powder, and each was granulated by a spray dryer. The average particle size of the granulated powder was 20 μm. This granulated powder was mixed with 5% by mass of Al 2 O 3 powder, then loaded into an alumina crucible, placed in a tubular furnace, and subjected to high temperature heat treatment at 1300 ° C. for 60 minutes in a nitrogen atmosphere. The carbon content in the metal particles of the obtained soft magnetic metal powder was determined by rinsing the mixed Al 2 O 3 powder with ethanol, and then analyzing the carbon-sulfur simultaneous analysis apparatus (non-dispersive infrared absorption method, manufactured by LECO, model CS600). ) Using the same procedure as Sample 1. (Samples 2-1 to 28)

試料2−1〜2−28について、粉末の保磁力を測定した。粉末の保磁力は、φ6mm×5mmのプラスチックケースに20mgの粉末を入れ、パラフィンを融解、凝固させて固定したものを保磁力計(東北特殊鋼社製、K−HC1000型)にて測定した。測定磁界は150kA/mで行った。測定結果を表2に示す。 For samples 2-1 to 2-28, the coercive force of the powder was measured. The coercive force of the powder was measured with a coercive force meter (K-HC1000 type, manufactured by Tohoku Special Steel Co., Ltd.), in which 20 mg of powder was put in a plastic case of φ6 mm × 5 mm, and paraffin was melted and solidified. The measurement magnetic field was 150 kA / m. The measurement results are shown in Table 2.

試料2−1〜2−28について、防請性の試験を行った。粉末を冷間埋め込み樹脂で固定し、断面を切り出し、鏡面研磨を行った。それを60℃相対湿度95%の恒温恒湿槽中に2000時間放置した。その後、金属粒子の断面をランダムに20個観察し、発錆している金属粒子の割合を算出した。これらの結果を表2に示す。 Samples 2-1 to 2-28 were tested for proofing. The powder was fixed with cold embedding resin, the cross section was cut out, and mirror polishing was performed. It was left in a constant temperature and humidity chamber at 60 ° C. and 95% relative humidity for 2000 hours. Thereafter, 20 cross sections of the metal particles were observed at random, and the ratio of rusting metal particles was calculated. These results are shown in Table 2.

試料2−4〜2−8、2−11~2−15、2−17、2−18は、Siの含有量が2〜15質量%の範囲にあることから、230A/m未満の非常に低い保磁力が得られている。一方、試料2−9、2−10、2−16は、Siの含有量が2〜15質量%の範囲内であるものの、炭素量が適正ではないため、粉の保磁力が大きくなってしまった。また、試料2−19はSiの含有量が18質量%と多いため、250A/mより大きな保磁力となった。また、試料2−20〜2−23の金属粉末組成は、試料2−12の金属粉末組成に対してCrが添加されたものとなるが、Crが添加されても、粉の保磁力にはほとんど影響がないことが分かる。そして、Crを1.0質量%以上添加することで、発錆する粒子の割合を0%にすることができる。 Samples 2-4 to 2-8, 2-11 to 2-15, 2-17, and 2-18 have a Si content in the range of 2 to 15% by mass. Low coercivity is obtained. On the other hand, Samples 2-9, 2-10, and 2-16 have Si content in the range of 2 to 15% by mass, but the carbon content is not appropriate, so the coercive force of the powder is increased. It was. Sample 2-19 had a coercive force greater than 250 A / m because the Si content was as high as 18% by mass. In addition, the metal powder composition of Samples 2-20 to 2-23 is obtained by adding Cr to the metal powder composition of Sample 2-12, but even if Cr is added, the coercive force of the powder It turns out that there is almost no influence. And the ratio of the rusting particle | grains can be made 0% by adding 1.0 mass% or more of Cr.

Figure 2016216818
Figure 2016216818

<実施例3>円形度、結晶粒径、酸素量と圧粉コアの評価 <Example 3> Evaluation of circularity, crystal grain size, oxygen content and dust core

Fe−6.5%Siの組成の原料粉末を水アトマイズ法にて作製した。原料粉末は篩い分けによって粒度を調整し、平均粒径を75μmとした。原料粉末は炭素含有量が250ppmのものを選定した。この原料粉末を、原料粉末に対して10質量%の樹脂溶液を加えてスラリー化した後、スプレードライヤーによって造粒した。樹脂溶液はエポキシアセトン溶液とし、原料粉末に対してエポキシ樹脂は固体比0.3質量%の量とした。造粒粉の平均粒径は75μmとした。この造粒粉を、5質量%のBN粉末と混合した後、アルミナ製のるつぼに装填し、管状炉に入れ、窒素雰囲気下で高温熱処理を行い、混合していたBN粉末をエタノールで洗い流して軟磁性金属粉末を得た。これらの軟磁性金属粉末について、表3に示す温度と時間で熱処理を行った。(試料3−1〜3−3) A raw material powder having a composition of Fe-6.5% Si was produced by a water atomization method. The raw material powder was adjusted in particle size by sieving to have an average particle size of 75 μm. The raw material powder having a carbon content of 250 ppm was selected. This raw material powder was made into a slurry by adding 10% by mass of a resin solution to the raw material powder, and then granulated by a spray dryer. The resin solution was an epoxy acetone solution, and the amount of the epoxy resin was 0.3% by mass with respect to the raw material powder. The average particle size of the granulated powder was 75 μm. This granulated powder is mixed with 5% by mass of BN powder, then loaded into an alumina crucible, placed in a tubular furnace, subjected to high-temperature heat treatment in a nitrogen atmosphere, and the mixed BN powder is washed away with ethanol. A soft magnetic metal powder was obtained. These soft magnetic metal powders were heat-treated at the temperatures and times shown in Table 3. (Samples 3-1 to 3-3)

試料3−3の軟磁性金属粉末に対し水素雰囲気中600℃で1時間の還元処理を行い、軟磁性金属粉末を得た。(試料3−4) The soft magnetic metal powder of Sample 3-3 was reduced at 600 ° C. for 1 hour in a hydrogen atmosphere to obtain a soft magnetic metal powder. (Sample 3-4)

Fe−6.5%Siの組成の原料粉末をガスアトマイズ法にて作製した。原料粉末は篩い分けによって粒度を調整し、平均粒径を75μmとした。この原料粉末を、原料粉末に対して10質量%の樹脂溶液を加えてスラリー化した後、スプレードライヤーによって造粒した。樹脂溶液はエポキシアセトン溶液とし、原料粉末に対してエポキシ樹脂は固体比0.3質量%の量とした。造粒粉の平均粒径は75μmとした。この造粒粉を、5質量%のBN粉末と混合した後、アルミナ製のるつぼに装填し、管状炉に入れ、窒素雰囲気下で高温熱処理を行い、混合していたBN粉末をエタノールで洗い流して軟磁性金属粉末を得た。この軟磁性金属粉末について、表3に示す温度と時間で熱処理を行った。その後、この軟磁性金属粉末に対し水素雰囲気中600℃で1時間の還元処理を行い軟磁性金属粉末を得た。(試料3−5) A raw material powder having a composition of Fe-6.5% Si was produced by a gas atomizing method. The raw material powder was adjusted in particle size by sieving to have an average particle size of 75 μm. This raw material powder was made into a slurry by adding 10% by mass of a resin solution to the raw material powder, and then granulated by a spray dryer. The resin solution was an epoxy acetone solution, and the amount of the epoxy resin was 0.3% by mass with respect to the raw material powder. The average particle size of the granulated powder was 75 μm. This granulated powder is mixed with 5% by mass of BN powder, then loaded into an alumina crucible, placed in a tubular furnace, subjected to high-temperature heat treatment in a nitrogen atmosphere, and the mixed BN powder is washed away with ethanol. A soft magnetic metal powder was obtained. This soft magnetic metal powder was heat-treated at the temperature and time shown in Table 3. Thereafter, this soft magnetic metal powder was subjected to a reduction treatment at 600 ° C. for 1 hour in a hydrogen atmosphere to obtain a soft magnetic metal powder. (Sample 3-5)

得られた軟磁性金属粉末粒子中のC含有量は、非分散型赤外線吸収法による炭素硫黄同時分析装置(LECO社製、CS600型)を用いて定量した。酸素量は、酸素分析装置(LECO社製、TC600)を用いて定量した。結果を表3に示す。 The C content in the obtained soft magnetic metal powder particles was quantified using a carbon-sulfur simultaneous analyzer (LECO, CS600 type) by a non-dispersive infrared absorption method. The amount of oxygen was quantified using an oxygen analyzer (LE600, TC600). The results are shown in Table 3.

粉末として得られた、試料3−1〜3−5について、粉末の保磁力を測定した。粉末の保磁力は、φ6mm×5mmのプラスチックケースに20mgの粉末を入れ、パラフィンを融解、凝固させて固定したものを保磁力計(東北特殊鋼社製、K−HC1000型)にて測定した。測定磁界は150kA/mである。測定結果を表3に示す。 About the samples 3-1 to 3-5 obtained as powder, the coercive force of the powder was measured. The coercive force of the powder was measured with a coercive force meter (K-HC1000 type, manufactured by Tohoku Special Steel Co., Ltd.), in which 20 mg of powder was put in a plastic case of φ6 mm × 5 mm, and paraffin was melted and solidified. The measurement magnetic field is 150 kA / m. Table 3 shows the measurement results.

試料3−1〜3−5の粉末を冷間埋め込み樹脂で固定し、断面を切り出し、鏡面研磨を行った。粒子の断面をランダムに100個観察し、各粒子のWadellの円形度を測定し、円形度が0.80以上である粒子の割合を算出した。結果を表3に示す。 The powders of Samples 3-1 to 3-5 were fixed with cold embedding resin, the cross section was cut out, and mirror polishing was performed. 100 cross sections of the particles were observed at random, the Wadell circularity of each particle was measured, and the proportion of particles having a circularity of 0.80 or more was calculated. The results are shown in Table 3.

試料3−1〜3−5の粉末を冷間埋め込み樹脂で固定し、断面を切り出し、鏡面研磨を行った。鏡面研磨した粒子断面をナイタール(エタノール+1%硝酸)でエッチングした。ランダムに選んだ100個の粒子の結晶粒界を観察し、一個の結晶粒からなる粒子の割合を算出した。結果を表3に示した。 The powders of Samples 3-1 to 3-5 were fixed with cold embedding resin, the cross section was cut out, and mirror polishing was performed. The mirror-polished particle cross section was etched with nital (ethanol + 1% nitric acid). The grain boundaries of 100 randomly selected grains were observed, and the ratio of grains consisting of one crystal grain was calculated. The results are shown in Table 3.

試料3−1〜3−5の粉末を用いて圧粉コアを作製した。粉末100質量%に対し、シリコーン樹脂を2.4質量%加え、ニーダーで混練したものを、355μmのメッシュで整粒して成形用顆粒を作製した。これを外径17.5mm、内径11.0mmのトロイダル形状の金型に充填し、成形圧980MPaで加圧し成形体を得た。コア重量は5gとした。得られた成形体を、ベルト炉を用いて750℃で30min、窒素雰囲気中で熱処理して圧粉コアとした。 A powder core was prepared using the powders of Samples 3-1 to 3-5. To 100% by mass of powder, 2.4% by mass of silicone resin was added and kneaded with a kneader to adjust the size with a 355 μm mesh to produce granules for molding. This was filled in a toroidal mold having an outer diameter of 17.5 mm and an inner diameter of 11.0 mm, and pressed at a molding pressure of 980 MPa to obtain a molded body. The core weight was 5 g. The obtained molded body was heat-treated in a nitrogen atmosphere at 750 ° C. for 30 minutes using a belt furnace to obtain a powder core.

得られた圧粉コアについてコアロスを評価した。コアロスはBHアナライザ(岩通計測社製SY−8258)を用いて周波数20kHz,測定磁束密度50mTの条件で測定した。結果を表3に示す。 The core loss was evaluated about the obtained powder core. The core loss was measured using a BH analyzer (SY-8258 manufactured by Iwadori Measurement Co., Ltd.) under the conditions of a frequency of 20 kHz and a measurement magnetic flux density of 50 mT. The results are shown in Table 3.

試料3−1〜3−3の比較より、熱処理温度を高温、かつ、熱処理時間を60min以上とすることで軟磁性金属粉末を構成する粒子の90%以上が一個の結晶粒が得られた。また、軟磁性金属粉末を構成する粒子の90%以上が一個の結晶粒とすることで、低い保磁力が得られた。また、試料3−3と3−4の比較より、粒子断面の円形度が0.80以上である粒子の割合が90%以上であると保磁力が小さくなる。試料3−4と3−5の比較より、酸素量が500ppm以下とすると保磁力がさらに小さくなる。 From comparison of Samples 3-1 to 3-3, 90% or more of the particles constituting the soft magnetic metal powder were obtained as a single crystal grain by setting the heat treatment temperature to a high temperature and the heat treatment time to 60 minutes or more. Moreover, a low coercive force was obtained by making 90% or more of the particles constituting the soft magnetic metal powder into one crystal grain. Further, from the comparison between Samples 3-3 and 3-4, the coercive force is reduced when the ratio of particles having a circularity of a particle cross section of 0.80 or more is 90% or more. From the comparison between Samples 3-4 and 3-5, the coercive force is further reduced when the oxygen content is 500 ppm or less.

Figure 2016216818
Figure 2016216818

以上説明した通り、本発明の軟磁性金属粉末は保磁力が低く、この軟磁性金属粉末を用いて軟磁性金属圧粉コアを作製することで低い損失のコアを得ることができる。この軟磁性金属粉末あるいは軟磁性金属圧粉コアは損失が低いことから、高効率化を実現できるので、電源回路などの電気・磁気デバイス等に広く且つ有効に利用可能である。 As described above, the soft magnetic metal powder of the present invention has a low coercive force, and a low loss core can be obtained by producing a soft magnetic metal dust core using the soft magnetic metal powder. Since this soft magnetic metal powder or soft magnetic metal powder core has low loss, high efficiency can be realized, and it can be widely and effectively used for electric and magnetic devices such as power supply circuits.

本発明の実施の形態における軟磁性金属粉末の熱処理過程の模式図である。It is a schematic diagram of the heat treatment process of the soft magnetic metal powder in the embodiment of the present invention.

1…原料粉末、2…樹脂、3…耐熱性粉末、4…樹脂の燃焼後の残留物   DESCRIPTION OF SYMBOLS 1 ... Raw material powder, 2 ... Resin, 3 ... Heat resistant powder, 4 ... Residue after combustion of resin

Figure 2016216818
Figure 2016216818

Figure 2016216818
Figure 2016216818

Claims (9)

炭素を含む、鉄または鉄とNiを主成分とする軟磁性金属粉末であって、
前記軟磁性金属粉末の金属粒子内の炭素の含有量が100〜1000ppmであることを特徴とする軟磁性金属粉末。
A soft magnetic metal powder containing carbon and containing iron or iron and Ni as main components,
The soft magnetic metal powder, wherein the content of carbon in the metal particles of the soft magnetic metal powder is 100 to 1000 ppm.
請求項1に記載の軟磁性金属粉末であって、Siの含有量が2〜15質量%であることを特徴とする請求項1に記載の軟磁性金属粉末。 The soft magnetic metal powder according to claim 1, wherein the content of Si is 2 to 15% by mass. 請求項1に記載の軟磁性金属粉末であって、
Niの含有量が30〜80質量%、
FeとNiの含有量の合計が90質量%以上であることを特徴とする請求項1に記載の軟磁性金属粉末。
The soft magnetic metal powder according to claim 1,
Ni content is 30-80% by mass,
2. The soft magnetic metal powder according to claim 1, wherein the total content of Fe and Ni is 90% by mass or more.
請求項1〜3のいずれかに記載の軟磁性金属粉末であって、前記軟磁性金属粉末を構成する粒子の90%以上が一個の結晶粒からなることを特徴とする請求項1〜3のいずれかに記載の軟磁性金属粉末。 The soft magnetic metal powder according to any one of claims 1 to 3, wherein 90% or more of the particles constituting the soft magnetic metal powder are composed of one crystal grain. The soft magnetic metal powder according to any one of the above. 請求項1〜4のいずれかに記載の軟磁性金属粉末であって、粒子内に含まれる酸素量が500ppm以下であることを特徴とする軟磁性金属粉末。 The soft magnetic metal powder according to any one of claims 1 to 4, wherein the amount of oxygen contained in the particles is 500 ppm or less. 請求項1〜5のいずれかに記載の軟磁性金属粉末であって、Crを10質量%以下であることを特徴とする軟磁性金属粉末。 The soft magnetic metal powder according to any one of claims 1 to 5, wherein Cr is 10 mass% or less. 請求項1〜6のいずれかに記載の軟磁性金属粉末であって、前記金属粉末の90%以上の粒子の円形度が0.80以上であることを特徴とする軟磁性金属粉末。 The soft magnetic metal powder according to any one of claims 1 to 6, wherein 90% or more of the particles of the metal powder have a circularity of 0.80 or more. 請求項1〜7のいずれかに記載の軟磁性金属粉末を用いて作製された軟磁性金属圧粉コア。 A soft magnetic metal dust core produced by using the soft magnetic metal powder according to claim 1. インダクタ用コアまたはリアクトル用コアとして用いられることを特徴とする請求項8に記載の軟磁性金属圧粉コア。 The soft magnetic metal dust core according to claim 8, wherein the soft magnetic metal dust core is used as an inductor core or a reactor core.
JP2016055579A 2015-05-14 2016-03-18 Soft magnetic metal powder, and, soft magnetic metal dust core Pending JP2016216818A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610313272.6A CN106158218B (en) 2015-05-14 2016-05-12 Soft magnetic metal powder and soft magnetic metal compressed-core
KR1020160058274A KR102068972B1 (en) 2015-05-14 2016-05-12 Soft magnetic metal powder and soft magnetic metal dust core

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015098891 2015-05-14
JP2015098891 2015-05-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2016240522A Division JP6380770B2 (en) 2015-05-14 2016-12-12 Soft magnetic metal powder and soft magnetic metal powder core.
JP2016240521A Division JP6380769B2 (en) 2015-05-14 2016-12-12 Soft magnetic metal powder and soft magnetic metal powder core.

Publications (1)

Publication Number Publication Date
JP2016216818A true JP2016216818A (en) 2016-12-22

Family

ID=57580069

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016055579A Pending JP2016216818A (en) 2015-05-14 2016-03-18 Soft magnetic metal powder, and, soft magnetic metal dust core
JP2016240521A Active JP6380769B2 (en) 2015-05-14 2016-12-12 Soft magnetic metal powder and soft magnetic metal powder core.
JP2016240522A Active JP6380770B2 (en) 2015-05-14 2016-12-12 Soft magnetic metal powder and soft magnetic metal powder core.

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2016240521A Active JP6380769B2 (en) 2015-05-14 2016-12-12 Soft magnetic metal powder and soft magnetic metal powder core.
JP2016240522A Active JP6380770B2 (en) 2015-05-14 2016-12-12 Soft magnetic metal powder and soft magnetic metal powder core.

Country Status (1)

Country Link
JP (3) JP2016216818A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018206835A (en) * 2017-05-31 2018-12-27 Tdk株式会社 Soft magnetic alloy particle and electronic component
JP2019090103A (en) * 2017-11-16 2019-06-13 Tdk株式会社 Soft magnetic metal powder, production method thereof and soft magnetic metal dust core
JP2020152947A (en) * 2019-03-19 2020-09-24 Dowaエレクトロニクス株式会社 Soft-magnetic powder, heat-treatment method for soft-magnetic powder, soft-magnetic material, powder magnetic core, and manufacturing method for powder magnetic core
JP2020161695A (en) * 2019-03-27 2020-10-01 Tdk株式会社 Soft magnetic metal powder
JP2021036577A (en) * 2019-08-21 2021-03-04 Tdk株式会社 Dust core
JP2021036576A (en) * 2019-08-21 2021-03-04 Tdk株式会社 Composite particles and dust core
US11854725B2 (en) 2017-11-16 2023-12-26 Tdk Corporation Soft magnetic metal powder, method for producing the same, and soft magnetic metal dust core

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009502A1 (en) 2020-07-10 2022-01-13 Jfeミネラル株式会社 Metal powder and pressed powder body thereof, and production methods therefor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273564A (en) * 2003-03-05 2004-09-30 Daido Steel Co Ltd Dust core
JP2006261378A (en) * 2005-03-17 2006-09-28 Sumida Corporation Compound core and its manufacturing method
JP2007314885A (en) * 1998-01-30 2007-12-06 Thyssenkrupp Vdm Gmbh Soft magnetic material with low coercive field strength, high permeability and improved resistance to corrosion
JP2010010673A (en) * 2008-05-30 2010-01-14 Hitachi Ltd Soft magnetic powders for magnetic compact, and magnetic compact using the same soft magnetic powders
JP2010133023A (en) * 2008-11-07 2010-06-17 Hitachi Metal Precision:Kk Ferritic stainless steel-based soft magnetic material and method for production thereof
JP2012197474A (en) * 2011-03-18 2012-10-18 Tdk Corp Fe-Ni ALLOY POWDER
JP2013098384A (en) * 2011-11-01 2013-05-20 Sumitomo Electric Ind Ltd Dust core
JP2013204108A (en) * 2012-03-29 2013-10-07 Toyota Motor Corp Method for producing powder for magnetic core
JP2014156635A (en) * 2013-02-15 2014-08-28 Seiko Epson Corp Soft magnetic powder, powder magnetic core, magnetic element, and electronic apparatus
JP5682724B1 (en) * 2014-05-14 2015-03-11 Tdk株式会社 Soft magnetic metal powder and soft magnetic metal powder core

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535021A (en) * 1976-07-06 1978-01-18 Toshiba Corp Magnetic alloy
JPS6050860B2 (en) * 1976-11-15 1985-11-11 株式会社日立製作所 Method for manufacturing wear-resistant high permeability magnetic material
JPS62277703A (en) * 1986-05-26 1987-12-02 Hitachi Metals Ltd Fe-ni alloy dust core
JPH09170001A (en) * 1995-12-15 1997-06-30 Tdk Corp Production of soft magnetic iron powder and dust core
JP4701531B2 (en) * 2001-01-18 2011-06-15 パナソニック株式会社 Dust core
JP4070069B2 (en) * 2001-03-21 2008-04-02 日立粉末冶金株式会社 Method for producing sintered soft magnetic stainless steel with excellent corrosion resistance
JP5682723B1 (en) * 2014-05-14 2015-03-11 Tdk株式会社 Soft magnetic metal powder and soft magnetic metal powder core
JP5682725B1 (en) * 2014-05-14 2015-03-11 Tdk株式会社 Soft magnetic metal powder and soft magnetic metal powder core

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314885A (en) * 1998-01-30 2007-12-06 Thyssenkrupp Vdm Gmbh Soft magnetic material with low coercive field strength, high permeability and improved resistance to corrosion
JP2004273564A (en) * 2003-03-05 2004-09-30 Daido Steel Co Ltd Dust core
JP2006261378A (en) * 2005-03-17 2006-09-28 Sumida Corporation Compound core and its manufacturing method
JP2010010673A (en) * 2008-05-30 2010-01-14 Hitachi Ltd Soft magnetic powders for magnetic compact, and magnetic compact using the same soft magnetic powders
JP2010133023A (en) * 2008-11-07 2010-06-17 Hitachi Metal Precision:Kk Ferritic stainless steel-based soft magnetic material and method for production thereof
JP2012197474A (en) * 2011-03-18 2012-10-18 Tdk Corp Fe-Ni ALLOY POWDER
JP2013098384A (en) * 2011-11-01 2013-05-20 Sumitomo Electric Ind Ltd Dust core
JP2013204108A (en) * 2012-03-29 2013-10-07 Toyota Motor Corp Method for producing powder for magnetic core
JP2014156635A (en) * 2013-02-15 2014-08-28 Seiko Epson Corp Soft magnetic powder, powder magnetic core, magnetic element, and electronic apparatus
JP5682724B1 (en) * 2014-05-14 2015-03-11 Tdk株式会社 Soft magnetic metal powder and soft magnetic metal powder core

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018206835A (en) * 2017-05-31 2018-12-27 Tdk株式会社 Soft magnetic alloy particle and electronic component
JP2019090103A (en) * 2017-11-16 2019-06-13 Tdk株式会社 Soft magnetic metal powder, production method thereof and soft magnetic metal dust core
US11854725B2 (en) 2017-11-16 2023-12-26 Tdk Corporation Soft magnetic metal powder, method for producing the same, and soft magnetic metal dust core
JP2020152947A (en) * 2019-03-19 2020-09-24 Dowaエレクトロニクス株式会社 Soft-magnetic powder, heat-treatment method for soft-magnetic powder, soft-magnetic material, powder magnetic core, and manufacturing method for powder magnetic core
WO2020188940A1 (en) * 2019-03-19 2020-09-24 Dowaエレクトロニクス株式会社 Soft magnetic powder, soft magnetic powder heat processing method, soft magnetic material, pressed powder magnetic core, and pressed powder magnetic core production method
CN113518674A (en) * 2019-03-19 2021-10-19 同和电子科技有限公司 Soft magnetic powder, method for heat treatment of soft magnetic powder, soft magnetic material, dust core, and method for producing dust core
JP7221100B2 (en) 2019-03-19 2023-02-13 Dowaエレクトロニクス株式会社 Soft magnetic powder, soft magnetic material and dust core
CN113518674B (en) * 2019-03-19 2023-09-08 同和电子科技有限公司 Soft magnetic powder, heat treatment method for soft magnetic powder, soft magnetic material, dust core, and method for producing dust core
JP2020161695A (en) * 2019-03-27 2020-10-01 Tdk株式会社 Soft magnetic metal powder
JP7177393B2 (en) 2019-03-27 2022-11-24 Tdk株式会社 soft magnetic metal powder
JP2021036577A (en) * 2019-08-21 2021-03-04 Tdk株式会社 Dust core
JP2021036576A (en) * 2019-08-21 2021-03-04 Tdk株式会社 Composite particles and dust core

Also Published As

Publication number Publication date
JP6380769B2 (en) 2018-08-29
JP2017092482A (en) 2017-05-25
JP2017092481A (en) 2017-05-25
JP6380770B2 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
JP6380769B2 (en) Soft magnetic metal powder and soft magnetic metal powder core.
JP5920495B2 (en) Soft magnetic metal powder and soft magnetic metal powder core using the powder
JP5682723B1 (en) Soft magnetic metal powder and soft magnetic metal powder core
JP6511832B2 (en) Soft magnetic metal powder and soft magnetic metal powder core using the powder
JP5374537B2 (en) Soft magnetic powder, granulated powder, dust core, electromagnetic component, and method for manufacturing dust core
JP6511831B2 (en) Soft magnetic metal powder and soft magnetic metal powder core using the powder
JP5958571B1 (en) Soft magnetic metal dust core
JP2005064444A (en) Method for producing nano-scale grain metal powder having excellent high-frequency characteristic and method for manufacturing high-frequency soft magnetic core using the same
KR102068972B1 (en) Soft magnetic metal powder and soft magnetic metal dust core
JP6742440B2 (en) MnCoZn ferrite and method for producing the same
TWI778112B (en) Fe-BASED ALLOY, CRYSTALLINE Fe-BASED ALLOY ATOMIZED POWDER, AND MAGNETIC CORE
JP2015201481A (en) Powder-compact magnetic core arranged by use of nanocrystal soft magnetic alloy powder, and manufacturing method thereof
JP2009147252A (en) Compound magnetic material and method of manufacturing thereof
JP2005116820A (en) Dust core
JP5682724B1 (en) Soft magnetic metal powder and soft magnetic metal powder core
JP5682725B1 (en) Soft magnetic metal powder and soft magnetic metal powder core
JP6553833B1 (en) MnCoZn-based ferrite and method for producing the same
JP6553834B1 (en) MnCoZn-based ferrite and method for producing the same
Wang et al. Crystallization kinetics and magnetic properties of Fe^ sub 73.5^ Si^ sub 13.5^ B^ sub 9^ Cu^ sub 1^ Nb^ sub 1^ V^ sub 2^ nanocrystalline powder cores
Wang et al. Crystallization kinetics and magnetic properties of Fe73. 5Si13. 5B9Cu1Nb1V2 nanocrystalline powder cores

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160913

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161212