JP2007314885A - Soft magnetic material with low coercive field strength, high permeability and improved resistance to corrosion - Google Patents

Soft magnetic material with low coercive field strength, high permeability and improved resistance to corrosion Download PDF

Info

Publication number
JP2007314885A
JP2007314885A JP2007168024A JP2007168024A JP2007314885A JP 2007314885 A JP2007314885 A JP 2007314885A JP 2007168024 A JP2007168024 A JP 2007168024A JP 2007168024 A JP2007168024 A JP 2007168024A JP 2007314885 A JP2007314885 A JP 2007314885A
Authority
JP
Japan
Prior art keywords
soft magnetic
mass
nickel alloy
magnetic iron
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007168024A
Other languages
Japanese (ja)
Inventor
Heike Hattendorf
ハッテンドルフ ハイケ
Angelika Kolb-Telieps
コルプ−テリープス アンゲリカ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VDM Metals GmbH
Original Assignee
ThyssenKrupp VDM GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7856134&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2007314885(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ThyssenKrupp VDM GmbH filed Critical ThyssenKrupp VDM GmbH
Publication of JP2007314885A publication Critical patent/JP2007314885A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Hard Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To melt a soft magnetic nickel-iron alloy satisfying the mentioned requirements to magnetic properties, corrosion resistance and wear resistance and also preferably used for a series of preferable applications in the case of a soft magnetic component. <P>SOLUTION: The invention relates to a soft magnetic nickel-iron alloy containing 35 to 65 mass% nickel, one or several of the rare earths cerium, lanthanum, praseodymium or neodymium and the impurities introduced during smelting, the sum of the rare earths being between 0.003 to 0.05 mass%, and the ratio of the sum of the rare earths by mass% is higher than the sulfur content by mass% at least by 4.4 times. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、軟磁性ニッケル鉄合金に関する。   The present invention relates to a soft magnetic nickel iron alloy.

Carl Heckの書物"Magnetische Werkstoffe und ihre technische Anwendung", Huetig Verlag, Heidelberg 1975, 第349頁以降の記載から、継電器の場合にアンカーおよびヨークの材料のために軟磁性材料を使用することは、公知である。   From the description of Carl Heck's book "Magnetische Werkstoffe und ihre technische Anwendung", Huetig Verlag, Heidelberg 1975, p. 349 et seq. is there.

材料の主要な要件は、僅かなエネルギーで大きな磁気的保持力を達成するための高い飽和電流密度、高い透過性、ひいては磁界の僅かな強さであり、即ち僅かな励起電流ならびに高い電流密度が空気間隙中で発生することができ、こうして大きな引力がアンカー上に作用する。僅かな保磁力は、励磁電流のバックスイングの際に継電器の僅かな開きを可能にする。   The main requirement of the material is a high saturation current density, high permeability to achieve a large magnetic coercivity with little energy, and thus a little strength of the magnetic field, ie a small excitation current as well as a high current density. It can be generated in the air gap and thus a large attractive force acts on the anchor. The slight coercivity allows the relay to be slightly opened during the back swing of the excitation current.

磁気的要件とともに、継電器材料には、なお交互耐候試験において耐蝕性が必要とされる。それというのも、全ての天候状態の際に継電器の正確な機能が要求されているからである。この要件は、耐蝕性が十分でない材料の場合には、完成部材を耐蝕性層で付加的に被覆させることによってのみ達成させることができる。   Along with magnetic requirements, relay materials still require corrosion resistance in alternating weathering tests. This is because the correct functioning of the relay is required in all weather conditions. This requirement can only be achieved by additionally coating the finished member with a corrosion-resistant layer in the case of materials with insufficient corrosion resistance.

アンカーとヨークの接触面は、ヨークとアンカーからなる磁気回路の高い透過性を達成させるために、できるだけ僅かな間隙を有しなければならない。この接触面は、継電器の開閉によって損なわれてはならない。それというのも、この場合には、継電器のトリガ電流が変化するからである。   The contact surface between the anchor and the yoke must have as little gap as possible in order to achieve a high permeability of the magnetic circuit consisting of the yoke and the anchor. This contact surface must not be damaged by opening and closing of the relay. This is because in this case, the trigger current of the relay changes.

また、類似の要件は、軟磁性材料からなる別の成形部材および打抜金属部材にも当てはまる。   Similar requirements apply to other molded and stamped metal members made of soft magnetic material.

継電器材料についての磁気的要件は、DIN 17405"直流継電器のための軟磁性材料(Weichmagnetische Werkstoffe fuer Gleichstromrelais)"に記載されている。次の第1表は、DIN 17405からの抜粋を示す。   The magnetic requirements for the relay material are described in DIN 17405 "Weichmagnetische Werkstoffe fuer Gleichstromrelais". The following Table 1 shows an excerpt from DIN 17405.

Figure 2007314885
Figure 2007314885

DIN 17745"ニッケルと鉄からなる錬合金(Knetlegierungen aus Nickel und Eisen)"には、種類RNi 12およびRNi 8のための出発材料としての合金Ni48(材料の番号1.3926および1.3927)が記載されている(第2表参照)。合金Ni36(材料の番号1.3911)は、種類RNi24のための出発材料である。   DIN 17745 “Knetlegierungen aus Nickel und Eisen” describes alloy Ni48 (material numbers 1.3926 and 1.3927) as starting material for types RNi 12 and RNi 8 (See Table 2). Alloy Ni36 (material number 1.3911) is the starting material for type RNi24.

Figure 2007314885
Figure 2007314885

ニッケル鉄合金を溶融する場合には、望ましい合金元素とともになお脱酸元素および/または脱硫元素、例えばマンガン、珪素およびアルミニウムが必要とされる。更に、前記合金を有利な費用のために通常の製鋼技術を用いて製造する場合には、酸素、硫黄、燐、炭素、カルシウム、マグネシウム、クロム、モリブデン、銅およびコバルトの或る程度の最小の混加物は回避させることができる。この場合、通常の製鋼技術とは、開いたアーク炉中での溶融、ならびに引続く脱酸、脱硫および脱ガス化のための取鍋冶金および/またはVOD処理であることが理解される。その後に、ブロックもしくはストランド鋳造板用扁平鋼片は、1または2工程で約4mmの厚さになるまで熱間変形され、引続き場合によっては中間灼熱しながら最終厚さに冷間変形される。磁気的性質は、例えばドイツ連邦共和国特許出願公開第19612556号明細書A1の記載のように、炭素、窒素、酸素、硫黄および非金属介在物の混加物によって劣化される。非金属不純物は、溶融液の必要とされる脱酸処理および/または脱硫処理のために鋳造までに生じる。脱酸剤および/または脱硫剤に応じて、例えばカルシウム、マグネシウムまたはアルミニウムの酸化物が存在する。   When melting nickel-iron alloys, deoxidizing and / or desulfurizing elements such as manganese, silicon and aluminum are still required along with the desired alloying elements. In addition, if the alloy is produced using conventional steelmaking techniques for advantageous costs, some minimum of oxygen, sulfur, phosphorus, carbon, calcium, magnesium, chromium, molybdenum, copper and cobalt. Admixtures can be avoided. In this case, normal steelmaking techniques are understood to be ladle metallurgy and / or VOD treatment for melting in an open arc furnace and subsequent deoxidation, desulfurization and degasification. Thereafter, the flat steel pieces for block or strand cast plates are hot deformed in one or two steps to a thickness of about 4 mm, and in some cases cold deformed to the final thickness with intermediate heating. The magnetic properties are degraded by admixtures of carbon, nitrogen, oxygen, sulfur and non-metallic inclusions, as described for example in DE 1961556 A1. Non-metallic impurities are produced by casting due to the required deoxidation and / or desulfurization of the melt. Depending on the deoxidizer and / or desulfurizer, for example, oxides of calcium, magnesium or aluminum are present.

従って、前記困難を回避するために、これまでの公知技術水準による最高の要件をもつ軟磁性材料は、ドイツ連邦共和国特許出願公開第3910147号明細書およびドイツ連邦共和国特許第1259367号明細書に明らかに記載されているように、選択された清浄の使用材料を用いて真空技術により製造される。刊行物から公知の別の方法は、ドイツ連邦共和国特許出願公開第4105507号明細書に記載された、真空下または保護ガス下で先に溶融されたブロックの真空下または保護ガス下での極めて費用の掛かる高価な電気スラッジ再溶融法である。
ドイツ連邦共和国特許出願公開第19612556号明細書A1 ドイツ連邦共和国特許出願公開第3910147号明細 ドイツ連邦共和国特許第1259367号明細書 ドイツ連邦共和国特許出願公開第4105507号明細書 arl Heckの書物"Magnetische Werkstoffe und ihre technische Anwendung", Huetig Verlag, Heidelberg 1975, 第349頁以降
Therefore, in order to avoid the above-mentioned difficulty, soft magnetic materials having the highest requirements according to the state of the art so far are disclosed in DE 3910147 and DE 1259367. Manufactured by vacuum technology using selected clean use materials. Another method known from the publication is described in German Offenlegungsschrift DE 4 105 507, which is very costly under vacuum or under protective gas of blocks previously melted under vacuum or under protective gas. This is an expensive electric sludge remelting method.
German Patent Application Publication No. 19612556 A1 German Patent Application Publication No. 3910147 German Patent No. 1259367 German Patent Application Publication No. 4105507 arl Heck's book "Magnetische Werkstoffe und ihre technische Anwendung", Huetig Verlag, Heidelberg 1975, p. 349 et seq.

本発明の基礎となる課題は、磁気的性質、耐蝕性および耐摩耗性に対して記載された要件を満たしかつ軟磁性構成部材の場合の一連の好ましい用途に使用される軟磁性鉄ニッケル合金を溶融することである。   The problem underlying the present invention is a soft magnetic iron-nickel alloy that meets the requirements described for magnetic properties, corrosion resistance and wear resistance and is used in a series of preferred applications in the case of soft magnetic components. It is to melt.

この課題は、35〜65質量%のニッケル含量および希土類のセリウム、ランタン、プラセオジムもしくはネオジムの中の1つまたはそれ以上ならびに溶融に不可避の不純物を有し、この場合希土類の総和は、0.003〜0.05質量%であり、質量%での希土類含量の総和の割合が質量%での硫黄含量よりも少なくとも4.4倍大きい軟磁性鉄ニッケル合金によって解決される。   This task has a nickel content of 35 to 65% by weight and one or more of the rare earths cerium, lanthanum, praseodymium or neodymium and impurities inevitable for melting, in which case the sum of the rare earths is 0.003 This is solved by a soft magnetic iron-nickel alloy, which is ˜0.05% by mass and the proportion of the sum of the rare earth content in mass% is at least 4.4 times greater than the sulfur content in mass%.

本発明の対象の好ましい他の実施態様は、属する従属請求項から確認することができる。   Other preferred embodiments of the subject of the invention can be ascertained from the dependent claims to which they belong.

本発明による合金は、有利に製鋼技術、即ち開いたアーク炉中での溶融、ならびに引続く脱酸、脱硫および脱ガス化のための取鍋冶金および/またはVOD処理によって製造される。その後に、ブロックもしくはストランド鋳造板用扁平鋼片は、この帯状物からの部材の製造に必要とされる硬度に調節するために、1または2工程で約4mmの厚さになるまで熱間変形され、引続き場合によっては中間灼熱しながら最終厚さに冷間変形される。   The alloys according to the invention are preferably produced by steelmaking techniques, ie melting in an open arc furnace and subsequent ladle metallurgy and / or VOD treatment for deoxidation, desulfurization and degassing. Thereafter, the flat steel slab for the block or strand cast plate is hot deformed to a thickness of about 4 mm in one or two steps in order to adjust the hardness required for the production of members from this strip. Then, in some cases, it is cold deformed to the final thickness with intermediate heating.

前記合金からの部材の製造および800〜1150℃の温度での前記部材の灼熱に引き続いて、前記部材を用いて8A/m未満の保磁力を達成することができる。   Following manufacture of the member from the alloy and burning of the member at a temperature of 800-1150 ° C., a coercivity of less than 8 A / m can be achieved using the member.

本発明による合金の有利な場合の使用は、なかんずく継電器部材、例えばヨークとアンカーである。   The advantageous use of the alloys according to the invention is inter alia relay members, for example yokes and anchors.

更に、本発明による鉄ニッケル合金は、なおさらに次の場合の使用に有利に使用することができる:
− 電磁弁の弁蓋および弁上部、
− ヨークもしくは極部分もしくは極片もしくは極薄板ならびに据付磁石および電磁石のアンカー、
− スプールコア、ステップバイステップ式モータの固定子ならびに電動機の回転子および固定子、
− センサーの成形部材および打抜金属部材、位置セルシンおよび位置レシーバー、
− 磁気ヘッドおよび磁気ヘッド遮蔽、
− 遮蔽、例えば電動機遮蔽、表示機器のための遮蔽容器および陰極管のための遮蔽。
Furthermore, the iron-nickel alloy according to the invention can still be advantageously used for the following cases:
-The valve lid and top of the solenoid valve,
-Yokes or pole parts or pole pieces or ultrathin plates and anchors for stationary and electromagnets,
-Spool core, step-by-step motor stator and motor rotor and stator,
-Sensor moldings and stamped metal parts, position sercine and position receiver;
-Magnetic head and magnetic head shielding,
-Shielding, eg motor shielding, shielding containers for display equipment and shielding for cathode tubes.

製鋼技術で製造された厚さ1.2mmの帯状体から、平らな試験体は、打ち抜きされ、清浄化され、水素雰囲気下で1080℃/4時間灼熱処理され、その後に炉中で300℃までに冷却された。この試験体について、DIN 50017に記載の耐候試験を55℃/90〜96%の空気湿度で8時間および25℃および95〜99%の空気湿度で16時間の28回の作業周期で実施した。36質量%〜81質量%のニッケル含量および部分的に添加剤、例えばクロム、銅および/またはモリブデンを有する合金について試験した(第3表参照)。55質量%以下のニッケル含量を有する合金は、前記の交互耐候試験の終結後に、75%を上廻るニッケル含量を有する合金よりも表面上の耐蝕現象が明らかに強いことを示し(B. Gehrmann, H. Hattendorf, A. Kolb-Telieps, W. Kramer, W. Moettgen, Material and Corrosion 48, 535-541 (1997))、したがって、耐蝕性を改善する付加的な手段なしには、耐蝕性についての継電器材料のための上記の要件は満たされない。これに対して、DIN 17405によって要求される性質は、第3表に例示的に記載された保磁力Hcが示す(公知技術水準)ように満たされた。   From a 1.2 mm thick strip produced by steelmaking technology, flat specimens are stamped, cleaned, heat treated at 1080 ° C./4 hours under hydrogen atmosphere, and then heated to 300 ° C. in a furnace. Cooled down. For this specimen, the weathering test described in DIN 50017 was carried out for 28 hours at 55 ° C./90-96% air humidity for 8 hours and at 25 ° C. and 95-99% air humidity for 16 hours. Alloys with a nickel content of 36% to 81% by weight and partially with additives such as chromium, copper and / or molybdenum were tested (see Table 3). Alloys with a nickel content of 55% by weight or less show a significantly stronger corrosion resistance on the surface than alloys with a nickel content higher than 75% after the end of the alternating weathering test (B. Gehrmann, H. Hattendorf, A. Kolb-Telieps, W. Kramer, W. Moettgen, Material and Corrosion 48, 535-541 (1997)), therefore, without additional means to improve corrosion resistance, The above requirements for relay material are not met. In contrast, the properties required by DIN 17405 were fulfilled as indicated by the coercivity Hc exemplarily described in Table 3 (prior art).

Figure 2007314885
Figure 2007314885

前記の試験体の腐食された位置で、REM/EDXによる交互耐候試験の終結後に硫黄が実測された。   Sulfur was measured at the corroded position of the specimen after the end of the alternating REM / EDX weathering test.

腐食挙動の本発明による改善は、意外なことに、35質量%〜65質量%のニッケル含量を有する腐食に敏感なニッケル鉄合金をCerで脱硫することによって達成される。この場合、これは、有利に化学的挙動で極めて類似した希土類のセリウムおよび/またはランタンおよび/またはプラセオジムおよび/またはネオジムからの混合金属を用いて実施される。全体的に硫黄を確実に結合させるために、十分に希土類原子が存在していなければならない。これは、例えば、大部分のセリウム含量を有する硫化スルフィドCeSの形成から出発する場合、即ち硫黄原子よりも多数のセリウム原子が合金中に存在する場合のことである。   The improvement according to the invention of the corrosion behavior is surprisingly achieved by desulfurizing with Cor a corrosion sensitive nickel iron alloy having a nickel content of 35% to 65% by weight. In this case, this is preferably carried out using mixed metals from rare earth cerium and / or lanthanum and / or praseodymium and / or neodymium which are very similar in chemical behavior. Sufficient rare earth atoms must be present to ensure that the sulfur is bound overall. This is the case, for example, when starting from the formation of sulfide sulfide CeS with the majority cerium content, ie when more cerium atoms are present in the alloy than sulfur atoms.

その後に、質量%でのセリウム含量は、セリウムによる硫黄の完全な結合を達成させるために、質量%での硫黄含量よりも少なくとも4.4倍大きくなければならない。相応することは、別の希土類のランタン、プラセオジムおよび/またはネオジムおよび希土類の全含量にも云えることである。   Thereafter, the cerium content in wt.% Must be at least 4.4 times greater than the sulfur content in wt.% In order to achieve complete binding of sulfur by cerium. The same applies to the total content of other rare earth lanthanum, praseodymium and / or neodymium and rare earth.

先に既に述べたように、こうして強い脱酸剤および脱硫剤、例えばセリウムの添加は、材料中に残留する反応生成物によって磁気的性質を損ないうる(A. Hoffmann, Ueber den Einfluss von verschiedenen Desoxidationselementen auf die Verformung und die Anfangspermeabilitaet von Ni-Fe-Legierungen, Z. angew. Physik 32, 第236〜241頁)。意外なことに、希土類の添加は、透過性および保磁力の磁性値が公知技術水準により溶融された装入物の通常の変動幅の範囲内にあるように配量することができる。   As already mentioned above, the addition of such strong deoxidizers and desulfurizers such as cerium can impair the magnetic properties by reaction products remaining in the material (A. Hoffmann, Ueber den Einfluss von verschiedenen Desoxidationselementen auf die Verformung und die Anfangspermeabilitaet von Ni-Fe-Legierungen, Z. angew. Physik 32, pp. 236-241). Surprisingly, the addition of rare earths can be metered such that the permeability and coercivity magnetic values are within the normal range of fluctuations of the melt melted according to the state of the art.

脱酸残留物は継電器の接触面から突出し、この接触面間に存在したままであり、継電器を後開閉する際に例えば酸化物残留物の場合の高い硬度によって、微細に研磨された接触面は、破壊されうることは、公知である。従って、継電器材料は、DIN 50602(方法M)による非金属介在物の極めて僅かな含量のみを有していてよい。それ故に、セリウムを用いるかまたは希土類のセリウム、ランタン、プラセオジム、ネオジムからの混合金属を用いての脱酸の場合にも、条痕形の硫化物介在物SSの最大寸法の値は、0.1未満もしくは1.1未満でなければならず、溶解された形での酸化物介在物OA(酸化アルミニウム)の最大寸法の値は、2.2未満もしくは3.2未満もしくは4.2未満でなければならず、条痕形の酸化物介在物OS(珪酸塩)の最大寸法の値は、5.2未満もしくは6.2未満もしくは7.2未満でなければならず、かつ粒状形の酸化物介在物OGの最大寸法の値が8.2未満もしくは9.2未満でなければならない。   The deoxidation residue protrudes from the contact surface of the relay and remains between these contact surfaces, and when the relay is opened and closed later, due to the high hardness in the case of oxide residue, for example, the finely polished contact surface is It is known that it can be destroyed. Accordingly, the relay material may have only a very small content of non-metallic inclusions according to DIN 50602 (Method M). Therefore, even in the case of deoxidation using cerium or a mixed metal from rare earth cerium, lanthanum, praseodymium, neodymium, the value of the maximum size of the streak-shaped sulfide inclusion SS is 0. The maximum dimension value of oxide inclusions OA (aluminum oxide) in dissolved form must be less than 1 or less than 1.1 and is less than 2.2 or less than 3.2 or less than 4.2 And the maximum dimension value of the oxide inclusions OS (silicate) in the form of streaks must be less than 5.2 or less than 6.2 or less than 7.2 and the oxidation of the granular form The maximum dimension value of the inclusion inclusion OG must be less than 8.2 or less than 9.2.

例として、30tのアーク炉中での製鋼技術を用いてニッケル約48%および僅かな添加量のマンガンおよび珪素を有するニッケル鉄合金が溶融され(装入物E5407およびE0545)、極めて類似した組成であるが、公知技術水準に相当する希土類の添加剤なしの装入物(装入物T4392、T5405およびT5406)と比較された。正確な組成は、第4表に示されている。   As an example, nickel iron alloys with about 48% nickel and slight additions of manganese and silicon were melted using steelmaking techniques in a 30 ton arc furnace (charges E5407 and E0545), with very similar compositions. There was a comparison with the rare earth additive-free charge (charges T4392, T5405 and T5406) corresponding to the state of the art. The exact composition is shown in Table 4.

Figure 2007314885
Figure 2007314885

微少量の硼素は、打ち抜き可能性の改善のために、装入物T4392、T5405、T5406およびE5407の場合に行なわれたように、添加されてよい。本発明による装入物E5407およびE0545中の質量%でのセリウム含量は、質量%での硫黄含量よりも4.4倍を上廻る程度の大きさである。   A small amount of boron may be added, as was done with charges T4392, T5405, T5406 and E5407, to improve punchability. The cerium content in mass% in the charges E5407 and E0545 according to the invention is about 4.4 times greater than the sulfur content in mass%.

溶融後に、ブロック圧延および引続く熱ストリップ圧延は、約4mmで行なわれ、引続き1.0mmの最終厚さまでの冷間再変形が行なわれた。   After melting, block rolling and subsequent hot strip rolling was performed at about 4 mm followed by cold re-deformation to a final thickness of 1.0 mm.

これから、25.5mmの直径を有する円形の試験体が打ち抜かれた。これは、E0545までの全ての装入物に当てはまる。この場合には、表面が微細に研磨された、鋳造試験体からの約15mm×15mm×5mmの断片が使用された。全ての試験体が清浄化され、試験体の一部が水素雰囲気下で970℃/6時間灼熱処理され、その後に炉中で300℃を下廻るまで冷却された。試験体の第2の部分は、水素雰囲気下で1030℃/2時間灼熱処理され、その後に炉中で300℃を下廻るまで冷却された。全ての試験体には、25℃および55%の空気湿分から55℃および98%の空気湿分への3時間の周期性で温度/湿分交換をもって2日間の短縮された耐候試験が行なわれた。この場合、試験体は、個別的にガラス皿中に平らに置かれ、したがって下側には、なお間隙腐蝕の鮮鋭な条件が支配的であった。結果は、第5表に示されている。   From this, a circular specimen having a diameter of 25.5 mm was punched out. This is true for all charges up to E0545. In this case, an approximately 15 mm × 15 mm × 5 mm piece from a cast specimen with a finely polished surface was used. All specimens were cleaned and a portion of the specimens were heat treated in a hydrogen atmosphere at 970 ° C. for 6 hours and then cooled to below 300 ° C. in a furnace. The second part of the specimen was heat-treated at 1030 ° C./2 hours in a hydrogen atmosphere, and then cooled in the furnace to below 300 ° C. All specimens were subjected to a 2-day shortened weathering test with a temperature / moisture exchange of 3 hours periodicity from 25 ° C. and 55% air moisture to 55 ° C. and 98% air moisture. It was. In this case, the specimens were individually laid flat in a glass dish, so that on the lower side, the sharp conditions of crevice corrosion were still dominant. The results are shown in Table 5.

Figure 2007314885
Figure 2007314885

本発明による装入物E5407およびE0545の場合には、腐蝕を全く実測することができず、一方、2つの比較装入物T5405およびT5406の場合には、全ての試験体で両面で腐蝕点が実測された。   In the case of the charges E5407 and E0545 according to the invention, no corrosion can be measured at all, whereas in the case of the two comparative charges T5405 and T5406, all specimens have corrosion points on both sides. It was actually measured.

こうして強力な脱酸剤および脱硫剤、例えばセリウムの添加は、前記したように材料中に残存する反応生成物によって磁気的性質を損ないうる。意外なことに、本発明による装入物E5407およびE0545が示す透過率および保磁力の磁性値は、第6表に示されているように、公知技術水準により溶融された装入物の通常の変動幅の範囲内にある。
第6表:公知技術水準による装入物(T)の磁性値と水素雰囲気下で1080℃/4時間の灼熱後および炉中での450℃までの冷却後に厚さ1mmの試験体について測定された本発明による装入物(E)の磁性値。装入物の組成は、第4表に示されている。
Thus, the addition of strong deoxidizers and desulfurizers such as cerium can impair the magnetic properties due to the reaction products remaining in the material as described above. Surprisingly, the permeability and coercivity magnetic values exhibited by the charges E5407 and E0545 according to the present invention, as shown in Table 6, are the usual values of charges melted according to the state of the art. It is within the range of fluctuation.
Table 6: Measured values for specimens with a thickness of 1 mm after a magnetic value of the charge (T) according to the state of the art and after ignition at 1080 ° C./4 hours in a hydrogen atmosphere and after cooling to 450 ° C. in a furnace. The magnetic value of the charge (E) according to the invention. The composition of the charge is shown in Table 4.

Figure 2007314885
Figure 2007314885

ブロック圧延および熱ストリップ圧延の際に性質の点で第7表に記載された、公知技術水準の組成を有する2つの装入物を第2の装入物と見なした。   Two charges having a known state of the art composition described in Table 7 in terms of properties during block rolling and hot strip rolling were considered as second charges.

2つの装入物は、本質的に希土類の異なる含量によってのみ区別される。   The two charges are distinguished only by essentially different contents of rare earths.

Figure 2007314885
Figure 2007314885

0.054%の希土類の全含量を有する装入物T0626の場合には、熱成形の際に亀裂が形成され、その後にブロックは、金属屑であった。このように高い希土類含量は、劣悪な熱変形挙動をまねく。これに対して、装入物T0624は、ブロックならびに約4mmの厚さを有する熱ストリップに圧延される。希土類は化学的に類似した挙動を有しているので、本発明によれば、熱変形の問題を回避させるために、希土類のセリウム、ランタン、プラセオジム、ネオジムの総和の含量は、最大で0.05質量%に制限することができる。   In the case of charge T0626 with a total rare earth content of 0.054%, cracks were formed during thermoforming, after which the blocks were scrap metal. Such a high rare earth content leads to poor thermal deformation behavior. In contrast, the charge T0624 is rolled into a block as well as a heat strip having a thickness of about 4 mm. Since rare earths have a chemically similar behavior, according to the present invention, the total content of rare earths cerium, lanthanum, praseodymium and neodymium is not more than 0. It can be limited to 05% by mass.

第8表は、公知技術水準による種々の装入物(T)および本発明による装入物(E)についてのDIN 50602による非金属介在物の含量の試験を示す。   Table 8 shows a test of the content of non-metallic inclusions according to DIN 50602 for various charges (T) according to the state of the art and charges (E) according to the invention.

Figure 2007314885
Figure 2007314885

装入物T2536は、条痕形の酸化物の介在物の際に2.7の最大寸法を有する(方法M)。この値は、継電器部材のための材料として前記装入物を使用するためには高すぎる。この値は、継電器の接触面に対して摩滅をまねき、継電器の機能性の損失を結果としてまねく。従って、非金属の介在物の含量は、本発明によれば、次のように制限される:
条痕形の硫化物介在物SSのDIN 50602による最大寸法の値は、0.1以下もしくは1.1以下であり、溶解された形での酸化物介在物OA(酸化アルミニウム)のDIN 50602による最大寸法の値は、2.2以下もしくは3.2以下もしくは4.2以下であり、条痕形の酸化物介在物OS(珪酸塩)のDIN 50602による最大寸法の値は、5.2以下もしくは6.2以下もしくは7.2以下であり、かつ粒状形の酸化物介在物OGのDIN 50602による最大寸法の値は、8.2以下もしくは9.2以下である。第8表に記載された別の全ての装入物は、非金属の介在物の含量に対する条件を満たしている。
Charge T2536 has a maximum dimension of 2.7 with streak-shaped oxide inclusions (Method M). This value is too high to use the charge as material for the relay member. This value results in wear to the contact surface of the relay and results in loss of relay functionality. Thus, according to the present invention, the content of non-metallic inclusions is limited as follows:
The maximum dimension value according to DIN 50602 of the streak-shaped sulfide inclusion SS is 0.1 or less or 1.1 or less, and according to DIN 50602 of the oxide inclusion OA (aluminum oxide) in a dissolved form The maximum dimension value is 2.2 or less, or 3.2 or less, or 4.2 or less, and the maximum dimension value according to DIN 50602 of the streak-shaped oxide inclusion OS (silicate) is 5.2 or less. Alternatively, the maximum dimension value according to DIN 50602 of the granular oxide inclusion OG is not more than 8.2 or not more than 9.2. All other charges listed in Table 8 meet the requirements for the content of non-metallic inclusions.

Claims (15)

35〜65質量%のニッケル含量および希土類のセリウム、ランタン、プラセオジム、ネオジムの中の1つまたはそれ以上ならびに溶融に不可避の不純物を有し、この場合希土類の総和は、0.003〜0.05質量%である軟磁性材料。   Having a nickel content of 35 to 65% by weight and one or more of the rare earths cerium, lanthanum, praseodymium, neodymium and impurities unavoidable for melting, in which case the sum of the rare earths is 0.003 to 0.05 Soft magnetic material that is mass%. 合金が最大で0.05質量%のセリウム含量を有する、請求項1記載の軟磁性材料。   2. The soft magnetic material according to claim 1, wherein the alloy has a cerium content of up to 0.05% by weight. 合金が脱酸添加剤および/または脱硫添加剤としてマンガン最大で0.5質量%、珪素最大で0.5質量%およびマグネシウム最大で0.002質量%とカルシウム最大で0.002質量%とアルミニウム最大で0.010質量%と硫黄最大で0.004質量%と酸素最大で0.004質量%との混加物ならびに溶融に不可避の微少量の他の混加物を含有する、請求項1または2記載の軟磁性材料。   Alloy is deoxidizing additive and / or desulfurizing additive up to 0.5 mass% manganese, up to 0.5 mass% silicon, up to 0.002 mass% magnesium, up to 0.002 mass% calcium and aluminum 2. A mixture of a maximum of 0.010% by weight, a maximum of 0.004% by weight of sulfur and a maximum of 0.004% by weight of oxygen and a small amount of other additives inevitable for melting. Or the soft-magnetic material of 2. 質量%での希土類含量の総和の割合が質量%での硫黄含量よりも少なくとも4.4倍大きい、請求項1から3までのいずれか1項に記載の軟磁性材料。   The soft magnetic material according to any one of claims 1 to 3, wherein the ratio of the sum of the rare earth contents in mass% is at least 4.4 times greater than the sulfur content in mass%. 合金が0.002質量%までの硼素を含有する、請求項1から4までのいずれか1項に記載の軟磁性材料。   5. A soft magnetic material according to claim 1, wherein the alloy contains up to 0.002% by weight of boron. 請求項1から5までのいずれか1項に記載の軟磁性鉄ニッケル合金を溶融する方法において、材料合金を開いたアーク炉中で溶融し、次に脱酸、脱硫および脱ガス化のための取鍋冶金および/またはVOD処理を行なう、請求項1から5までのいずれか1項に記載の軟磁性鉄ニッケル合金を溶融する方法。   A method for melting a soft magnetic iron-nickel alloy according to any one of claims 1 to 5, wherein the material alloy is melted in an open arc furnace and then for deoxidation, desulfurization and degasification. The method for melting the soft magnetic iron-nickel alloy according to any one of claims 1 to 5, wherein ladle metallurgy and / or VOD treatment is performed. 溶融合金中で次のパラメーター:
− 条痕形の硫化物介在物の最大寸法の値が0.1未満もしくは1.1未満であること、
− 溶解された形での酸化物介在物OA(酸化アルミニウム)の最大寸法の値が2.2もしくは3.2もしくは4.2未満であること、
− 条痕形の酸化物介在物OS(珪酸塩)の最大寸法の値が5.2もしくは6.2もしくは7.2未満であること、
− 粒状形の酸化物介在物OGの最大寸法の値が8.2もしくは9.2であること
に調節される、請求項6記載の方法。
The following parameters in the molten alloy:
The maximum dimension value of the streak-shaped sulfide inclusion is less than 0.1 or less than 1.1;
The maximum dimension value of the oxide inclusions OA (aluminum oxide) in dissolved form is less than 2.2 or 3.2 or 4.2;
-The maximum dimension value of the oxide inclusions OS (silicate) in the form of streaks is less than 5.2 or 6.2 or 7.2;
The method according to claim 6, wherein the value of the maximum dimension of the particulate oxide inclusion OG is adjusted to 8.2 or 9.2.
前記合金から部材を製造しかつこの部材を800℃〜1150℃の温度で灼熱した後に、8A/m未満の保磁力を達成させる、請求項6または7記載の方法。   The method according to claim 6 or 7, wherein a coercive force of less than 8 A / m is achieved after producing a member from the alloy and heating the member at a temperature between 800C and 1150C. 継電器部材のための材料としての請求項1から8までのいずれか1項に記載の軟磁性鉄ニッケル合金の使用。   Use of the soft magnetic iron-nickel alloy according to any one of claims 1 to 8 as material for a relay member. 電磁弁の弁蓋および弁上部のための材料としての請求項1から8までのいずれか1項に記載の軟磁性鉄ニッケル合金の使用。   Use of the soft magnetic iron-nickel alloy according to any one of claims 1 to 8 as a material for a valve lid and a valve upper part of a solenoid valve. ヨークもしくは極部分もしくは極片もしくは極薄板ならびに据付磁石および電磁石のアンカーのための材料としての請求項1から8までのいずれか1項に記載の軟磁性鉄ニッケル合金の使用。   Use of the soft magnetic iron-nickel alloy according to any one of claims 1 to 8 as a material for yokes or pole pieces or pole pieces or ultrathin plates and anchors for stationary magnets and electromagnets. スプールコア、ステップバイステップ式モータの固定子ならびに電動機の回転子および固定子のための材料としての請求項1から8までのいずれか1項に記載の軟磁性鉄ニッケル合金の使用。   Use of the soft magnetic iron-nickel alloy according to any one of claims 1 to 8 as a material for a spool core, a step-by-step motor stator and a motor rotor and stator. センサーの成形部材および打抜金属部材、位置セルシンおよび位置レシーバーのための材料としての請求項1から8までのいずれか1項に記載の軟磁性鉄ニッケル合金の使用。   Use of the soft magnetic iron-nickel alloy according to any one of claims 1 to 8 as a material for the forming and stamping metal parts of the sensor, the position cell thin and the position receiver. 磁気ヘッドおよび磁気ヘッド遮蔽のための材料としての請求項1から8までのいずれか1項に記載の軟磁性鉄ニッケル合金の使用。   Use of the soft magnetic iron-nickel alloy according to any one of claims 1 to 8 as a material for magnetic heads and magnetic head shielding. 遮蔽のための材料としての請求項1から8までのいずれか1項に記載の軟磁性鉄ニッケル合金の使用。   Use of the soft magnetic iron-nickel alloy according to any one of claims 1 to 8 as a material for shielding.
JP2007168024A 1998-01-30 2007-06-26 Soft magnetic material with low coercive field strength, high permeability and improved resistance to corrosion Pending JP2007314885A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19803598A DE19803598C1 (en) 1998-01-30 1998-01-30 Soft magnetic iron-nickel alloy for relay armatures and yokes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000529731A Division JP2002502118A (en) 1998-01-30 1999-01-08 Soft magnetic material with low coercivity, high permeability and improved corrosion resistance

Publications (1)

Publication Number Publication Date
JP2007314885A true JP2007314885A (en) 2007-12-06

Family

ID=7856134

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2000529731A Pending JP2002502118A (en) 1998-01-30 1999-01-08 Soft magnetic material with low coercivity, high permeability and improved corrosion resistance
JP2007168024A Pending JP2007314885A (en) 1998-01-30 2007-06-26 Soft magnetic material with low coercive field strength, high permeability and improved resistance to corrosion

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2000529731A Pending JP2002502118A (en) 1998-01-30 1999-01-08 Soft magnetic material with low coercivity, high permeability and improved corrosion resistance

Country Status (15)

Country Link
EP (1) EP1051714B2 (en)
JP (2) JP2002502118A (en)
KR (1) KR100384768B1 (en)
CN (1) CN1163915C (en)
AT (1) ATE211297T1 (en)
CZ (1) CZ301345B6 (en)
DE (2) DE19803598C1 (en)
ES (1) ES2169597T5 (en)
HU (1) HU222469B1 (en)
PL (1) PL192145B1 (en)
PT (1) PT1051714E (en)
SK (1) SK285293B6 (en)
TR (1) TR200002190T2 (en)
TW (1) TW418406B (en)
WO (1) WO1999039358A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216818A (en) * 2015-05-14 2016-12-22 Tdk株式会社 Soft magnetic metal powder, and, soft magnetic metal dust core
CN107326270A (en) * 2017-05-26 2017-11-07 太仓明仕金属制造有限公司 A kind of metal handware plating nickel material

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10143397A1 (en) * 2001-09-04 2003-03-27 Pierburg Gmbh Angle angle detection device and magnetic field detection device
DE102009010244A1 (en) * 2009-02-17 2010-08-19 Linde Material Handling Gmbh Control device for a mobile work machine, in particular an industrial truck
DE102009012794B3 (en) 2009-03-13 2010-11-11 Vacuumschmelze Gmbh & Co. Kg Low-hysteresis sensor
CN102306526B (en) * 2011-05-19 2012-11-28 浙江科达磁电有限公司 Fe-Ni-Mo alloy soft magnetic material and manufacturing method thereof
CN102314980B (en) * 2011-05-19 2012-11-28 浙江科达磁电有限公司 Ferrum-nickel-molybdenum alloy soft magnetic material with magnetic permeability mu being 60 and manufacturing method thereof
CN102314981B (en) * 2011-05-19 2012-11-28 浙江科达磁电有限公司 Ferrum-nickel-molybdenum alloy soft magnetic material with magnetic permeability mu being 125 and manufacturing method thereof
CN102314984B (en) * 2011-05-19 2012-11-28 浙江科达磁电有限公司 Ferrum-nickel-molybdenum alloy soft magnetic material with magnetic permeability mu being 26 and manufacturing method thereof
CN102306527B (en) * 2011-05-23 2012-11-28 浙江科达磁电有限公司 Fe-Ni alloy soft magnetic material with magnetic permeability mu of 75 and manufacturing method for Fe-Ni alloy soft magnetic material
CN102306530B (en) * 2011-05-23 2012-11-28 浙江科达磁电有限公司 Fe-Ni alloy soft magnetic material with magnetic permeability mu of 60 and manufacturing method for Fe-Ni alloy soft magnetic material
CN102306529B (en) * 2011-05-23 2012-11-28 浙江科达磁电有限公司 Fe-Ni alloy soft magnetic material with magnetic permeability mu of 26 and manufacturing method for Fe-Ni alloy soft magnetic material
CN102306528B (en) * 2011-05-23 2012-11-28 浙江科达磁电有限公司 Fe-Ni alloy soft magnetic material with magnetic permeability mu of 125 and manufacturing method for Fe-Ni alloy soft magnetic material
CN102723158B (en) * 2012-07-06 2015-12-02 白皞 Containing the high magnetic permeability Ni-Fe magnetically soft alloy and its production and use of rare earth
JP6143539B2 (en) * 2013-05-08 2017-06-07 日本冶金工業株式会社 Ni-Fe-based permalloy alloy excellent in hot workability and AC magnetic characteristics and method for producing the same
CN103498102B (en) * 2013-08-29 2017-03-22 上海惠北特种合金有限公司 Precise alloy formula for automatic flame-out protection device of gas cooker and its preparation method
CN104439234B (en) * 2014-12-20 2017-01-11 河南省龙峰新材料有限公司 Preparing method for nickel-silicon-aluminum soft magnetic material doped with rare earth elements
CN104593670B (en) * 2015-01-17 2017-05-31 东莞市大晋涂层科技有限公司 A kind of preparation method of the Ni-based soft magnetic materials of iron
DE102018127918A1 (en) 2018-11-08 2020-05-14 Vacuumschmelze Gmbh & Co. Kg Method of manufacturing a soft magnetic alloy part
CN111101057B (en) * 2019-12-25 2021-05-25 北京北冶功能材料有限公司 Soft magnetic alloy strip for ultralow-temperature magnetic shielding and preparation method thereof
CN111564273A (en) * 2020-04-23 2020-08-21 钢铁研究总院 FeNi soft magnetic alloy with low cost and high saturation magnetic induction intensity and preparation method thereof
CN111863536A (en) * 2020-08-04 2020-10-30 贵州天义电器有限责任公司 Driving structure of micro-miniature sealed electromagnetic relay
CN112176222B (en) * 2020-10-30 2021-12-17 东北大学 Ce-containing Fe-Ni permalloy material and preparation method thereof
DE102021111286A1 (en) * 2021-04-30 2022-11-03 Magnetec Gmbh Dampening sheet and method of making a dampening sheet
CN116162868B (en) * 2023-01-17 2024-06-14 北京北冶功能材料有限公司 Medium nickel soft magnetic alloy and preparation method thereof
CN116377284B (en) * 2023-03-08 2024-06-14 北京北冶功能材料有限公司 Iron-nickel-based soft magnetic alloy foil and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965315A (en) * 1972-10-27 1974-06-25
JPS53124799A (en) * 1977-04-06 1978-10-31 Toshiba Corp Magnetic sealed material
JPS63243251A (en) * 1987-03-31 1988-10-11 Nippon Yakin Kogyo Co Ltd Fe-ni-cr corrosion-resisting magnetic material and its production
JPH0645848B2 (en) * 1989-10-07 1994-06-15 財団法人電気磁気材料研究所 Manufacturing method of wear resistant high permeability alloy for magnetic recording / reproducing head and magnetic recording / reproducing head
JPH0762483A (en) * 1993-08-30 1995-03-07 Nisshin Steel Co Ltd Refining method of soft magnetic alloy
JPH07102350A (en) * 1993-10-06 1995-04-18 Daido Steel Co Ltd Production of fe-base magnetic alloy powder
JPH07166281A (en) * 1993-12-08 1995-06-27 Sumitomo Special Metals Co Ltd Wear resistant magnetic alloy
JPH09296210A (en) * 1996-03-08 1997-11-18 Nisshin Steel Co Ltd Method for melting high purity high nickel molten steel

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1259367B (en) * 1957-06-11 1968-01-25 Forsch Metallische Spezialwerk Process for the production of a magnetizable material with a rectangular hysteresis loop and preferably high initial permeability from Ni-Fe alloys
JPS61276946A (en) * 1985-05-30 1986-12-06 Toshiba Corp Soft magnetic alloy for reed switch
US4881989A (en) * 1986-12-15 1989-11-21 Hitachi Metals, Ltd. Fe-base soft magnetic alloy and method of producing same
JP2611994B2 (en) * 1987-07-23 1997-05-21 日立金属株式会社 Fe-based alloy powder and method for producing the same
US4948434A (en) * 1988-04-01 1990-08-14 Nkk Corporation Method for manufacturing Ni-Fe alloy sheet having excellent DC magnetic property and excellent AC magnetic property
EP0342923B1 (en) * 1988-05-17 1993-09-01 Kabushiki Kaisha Toshiba Fe-based soft magnetic alloy
DE4105507A1 (en) * 1990-02-26 1991-08-29 Krupp Widia Gmbh Soft magnetic iron-nickel alloys prodn. - using electroslag melting with special slag to improve purity of alloy and magnetic permeability
JP2500541B2 (en) * 1991-03-22 1996-05-29 日本電気株式会社 Microwave amplifier circuit
JPH0653039A (en) * 1992-08-03 1994-02-25 Hitachi Ltd Corrosion-resistant magnetic film and magnetic head using the same
US5755986A (en) * 1995-09-25 1998-05-26 Alps Electric Co., Ltd. Soft-magnetic dielectric high-frequency composite material and method for making the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965315A (en) * 1972-10-27 1974-06-25
JPS53124799A (en) * 1977-04-06 1978-10-31 Toshiba Corp Magnetic sealed material
JPS63243251A (en) * 1987-03-31 1988-10-11 Nippon Yakin Kogyo Co Ltd Fe-ni-cr corrosion-resisting magnetic material and its production
JPH0645848B2 (en) * 1989-10-07 1994-06-15 財団法人電気磁気材料研究所 Manufacturing method of wear resistant high permeability alloy for magnetic recording / reproducing head and magnetic recording / reproducing head
JPH0762483A (en) * 1993-08-30 1995-03-07 Nisshin Steel Co Ltd Refining method of soft magnetic alloy
JPH07102350A (en) * 1993-10-06 1995-04-18 Daido Steel Co Ltd Production of fe-base magnetic alloy powder
JPH07166281A (en) * 1993-12-08 1995-06-27 Sumitomo Special Metals Co Ltd Wear resistant magnetic alloy
JPH09296210A (en) * 1996-03-08 1997-11-18 Nisshin Steel Co Ltd Method for melting high purity high nickel molten steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216818A (en) * 2015-05-14 2016-12-22 Tdk株式会社 Soft magnetic metal powder, and, soft magnetic metal dust core
CN107326270A (en) * 2017-05-26 2017-11-07 太仓明仕金属制造有限公司 A kind of metal handware plating nickel material

Also Published As

Publication number Publication date
PL341568A1 (en) 2001-04-23
SK10832000A3 (en) 2001-03-12
KR20010040436A (en) 2001-05-15
CZ301345B6 (en) 2010-01-20
JP2002502118A (en) 2002-01-22
HUP0003646A3 (en) 2001-04-28
ATE211297T1 (en) 2002-01-15
SK285293B6 (en) 2006-10-05
DE59900588D1 (en) 2002-01-31
KR100384768B1 (en) 2003-06-18
TR200002190T2 (en) 2000-11-21
EP1051714B1 (en) 2001-12-19
CN1163915C (en) 2004-08-25
TW418406B (en) 2001-01-11
HUP0003646A2 (en) 2001-02-28
PT1051714E (en) 2002-06-28
PL192145B1 (en) 2006-09-29
CZ20002616A3 (en) 2000-11-15
HU222469B1 (en) 2003-07-28
ES2169597T5 (en) 2008-11-01
DE19803598C1 (en) 1999-04-29
ES2169597T3 (en) 2002-07-01
CN1275238A (en) 2000-11-29
EP1051714B2 (en) 2008-04-30
WO1999039358A1 (en) 1999-08-05
EP1051714A1 (en) 2000-11-15

Similar Documents

Publication Publication Date Title
JP2007314885A (en) Soft magnetic material with low coercive field strength, high permeability and improved resistance to corrosion
RU2696887C1 (en) Sheet from non-textured electrical steel and method of manufacturing thereof
TW408184B (en) Manufacturing method for producing Titanium killed steel with smooth surface texture
US20090277304A1 (en) Process for production of fe based amorphous alloy
US9057115B2 (en) Soft magnetic iron-cobalt-based alloy and process for manufacturing it
JP2971080B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
JP3852419B2 (en) Non-oriented electrical steel sheet
US7704450B2 (en) High-purity ferroboron, a mother alloy for iron-base amorphous alloy, an iron-base amorphous alloy, and methods for producing the same
JP2016180146A (en) Soft magnetic wire, bar steel and soft magnetic steel component
JP7475181B2 (en) Ferritic Stainless Steel
JP4267437B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing and its manufacturing method
CN109097679B (en) Marine low-magnetic steel and preparation method thereof
CN102383070A (en) Additive for B-Si containing iron-based amorphous alloy and nanocrystalline alloy
JP2006233284A (en) Iron-nickel-based magnetic alloy excellent in hot-workability and production method therefor
JP6989000B2 (en) Manufacturing method of slab slab, which is a material for non-oriented electrical steel sheets
JPH10212555A (en) Nonoriented silicon steel sheet excellent in magnetic property and its production
JP2002161328A (en) METHOD FOR MANUFACTURING Fe-Ni BASED PERMALLOY SUPERIOR IN MAGNETIC CHARACTERISTICS
JP2003286534A (en) Processes for producing highly pure ferroboron, mother alloy for iron-based amorphous alloy and iron-based amorphous alloy
JP2001011589A (en) Nonoriented electric steel sheet having high magnetic flux density and low core loss and its production
JP2002206144A (en) Fe-Ni BASED ALLOY HAVING EXCELLENT SURFACE PROPERTY AND PRODUCTION METHOD THEREFOR
JP2006241519A (en) Method for manufacturing steel sheet for magnetic shielding material
JPH0742555B2 (en) Non-oriented electrical steel sheet with excellent iron loss characteristics after magnetic annealing
JP2003286549A (en) High-purity ferroboron and production method therefor
JP2003100506A (en) Composite magnetic member material having electric insulating film and its manufacturing method, composite magnetic member having electric insulating film and its manufacturing method, and motor using the same
JPS62133041A (en) Soft magnetic material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100903

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101027

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101101

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110428