EP1051714B1 - Soft magnetic nickel-iron alloy with low coercive field strength, high permeability and improved resistance to corrosion - Google Patents

Soft magnetic nickel-iron alloy with low coercive field strength, high permeability and improved resistance to corrosion Download PDF

Info

Publication number
EP1051714B1
EP1051714B1 EP99906109A EP99906109A EP1051714B1 EP 1051714 B1 EP1051714 B1 EP 1051714B1 EP 99906109 A EP99906109 A EP 99906109A EP 99906109 A EP99906109 A EP 99906109A EP 1051714 B1 EP1051714 B1 EP 1051714B1
Authority
EP
European Patent Office
Prior art keywords
mass
soft magnetic
max
alloy according
magnetic iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99906109A
Other languages
German (de)
French (fr)
Other versions
EP1051714B2 (en
EP1051714A1 (en
Inventor
Heike Hattendorf
Angelika Kolb-Telieps
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VDM Metals GmbH
Original Assignee
Krupp VDM GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7856134&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1051714(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Krupp VDM GmbH filed Critical Krupp VDM GmbH
Publication of EP1051714A1 publication Critical patent/EP1051714A1/en
Application granted granted Critical
Publication of EP1051714B1 publication Critical patent/EP1051714B1/en
Publication of EP1051714B2 publication Critical patent/EP1051714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements

Definitions

  • the invention relates to a soft magnetic nickel-iron alloy.
  • the main requirements for the material are a high saturation flux density in order to to achieve high magnetic holding forces with low energy, high permeability, thus a small magnetic field strength, i.e. a low excitation current and a high flux density can be generated in the air gap and so one great attraction to the anchor. Allow low coercivity easy opening of the relay when the excitation current drops.
  • the contact surfaces of anchor and yoke must have the smallest possible gap have to a high permeability of the magnetic circuit from yoke and Reach anchor. They must not be damaged by switching the relay as the trigger current of the relay changes.
  • nickel-iron alloys are in addition to the desired Alloy elements or deoxidation and / or desulfurization elements like manganese, silicon and aluminum.
  • certain minimal additions of oxygen, sulfur, phosphorus, carbon Do not avoid calcium, magnesium, chromium, molybdenum, copper and cobalt, if you compare these alloys with usual because of the cheap cost Wants to manufacture steel mill technology. Under common steel mill technology this involves melting in an open arc furnace with subsequent ladle metallurgy and / or VOD treatment for deoxidation, desulfurization and Degassing understood.
  • the block or the continuous casting slab is in one or two steps thermoformed to a thickness of about 4 mm and then Cold-formed to its final thickness, if necessary with intermediate annealing.
  • the magnetic Properties deteriorate, as z. B. described in DE 19612556 A1 by adding carbon, nitrogen, oxygen, Sulfur and on non-metallic inclusions.
  • Non-metallic contaminants arise due to the required deoxidation and / or desulfurization treatment the melt before pouring.
  • the deoxidation and / or Desulfurizing agents are e.g. Oxides of calcium, magnesium or aluminum.
  • JP-A 07166281 relates to a magnetic alloy for magnetic heads made of Ni and Fe with additions of Nd, Pr or Sm. Here is the amount of Ni over 78% by weight.
  • the object underlying the invention is a soft magnetic Melt iron-nickel alloy that meets the requirements described magnetic properties, corrosion and wear resistance suffices and for a number of preferred applications finds soft magnetic components.
  • This task is solved by a soft magnetic iron-nickel alloy with a nickel content of 35 - 65% by mass and one or more of the sides Earth cerium, lanthanum, praseodymium or neodymium as well as melting-related Impurities, the sum of rare earths between 0.003 and 0.05 mass% and the total proportion of rare earths cerium, Lanthanum, praseodymium and neodymium in mass% at least by a factor of 4.4 is greater than the sulfur content in mass%.
  • the alloy according to the invention is preferably produced by steelwork technology, ie by melting in an open arc with subsequent ladle metallurgy and / or VOD treatment (vacuum oxidation-decarburization) for deoxidation, desulfurization and degassing. Thereafter, the block or the continuous casting slab is thermoformed in one or two steps up to a thickness of about 4 mm and then cold-formed to final thickness, if necessary with intermediate annealing to adjust the hardness required for the production of parts from this strip. Following the production of parts from this alloy and the annealing of these parts at temperatures between 800 and 1150 ° C., these parts can achieve coercive field strengths of less than 8 A / m.
  • Preferred applications of the alloy according to the invention include Relay parts, like yokes and anchors.
  • Alloys with a nickel content of less than or equal to 55% by mass all show significantly stronger signs of corrosion on the surface after the end of this alternating climate test than the alloys with nickel contents of more than 75%.
  • B. Gehrmann, H. Hattendorf, A. Kolb-Telieps, W. Kramer, W. Möttgen, in Material and Corrosion 48, 535-541 (1997) and thus do not meet the above-described requirements for a relay material in terms of corrosion resistance without additional corrosion-improving measures.
  • the magnetic properties required by DIN 17405 on the other hand, were met, as the coercive field strengths Hc given in Table 3 demonstrate (prior art). Composition in mass% Hc in A / m Max.
  • the improvement in corrosion behavior according to the invention is surprisingly by desulfurizing the more corrosion-prone nickel-iron alloys with a nickel content of 35 mass% to 65 mass% Cer reached.
  • This is preferably done with a mixed metal from the chemical behavior of very similar rare earths cerium and / or lanthanum and / or praseodymium and / or neodymium.
  • cerium content in mass% must then be at least a factor of 4.4 higher be than the sulfur content in% by mass in order to completely bind the To reach sulfur through cerium.
  • deoxidation also has to be done with cerium or a mixed metal from the rare earths cerium, lanthanum, praseodymium, Neodymium the maximum size values of the sulfidic inclusions in line form SS less than 0.1 or 1.1, the maximum size values of the oxide inclusions in dissolved form OA (aluminum oxides) less than 2.2 or 3.2 or 4.2, the maximum size values of the oxide inclusions in line form OS (silicates) less than 5.2 or 6.2 or 7.2 and the maximum size values of the oxidic Inclusions in globular form OG less than 8.2 or 9.2.
  • the magnetic values of permeability and coercive field strength which show the batches E5407 and E0545 according to the invention, are within the usual range of fluctuation of the batches melted according to the prior art, as shown in Table 6.
  • Magnetic values of batches according to the prior art (T) and the batches (E) according to the invention measured on samples of 1 mm thickness after annealing from 1080 ° C. for 4 hours under hydrogen and cooling in the oven to 450 ° C.
  • the composition of the batches is shown in Table 4.
  • Table 8 shows the examination of the content of non-metallic inclusions according to DIN 50602 in various batches according to the prior art (T) and the batches (E) according to the invention.
  • material Degree of purity according to DIN 50602 Maximum size value (method M)
  • Batch SS OA OS Upper floor Limits 0.1 or 1.1 2.2 or 3.2 or 4.2 5.2 or 6.2 or 7.2 8.2 or 9.2 E5407 k. B. 2.1 k. B. 8.0 E0545 k. B. 2.2 k. B. 8.1 T4392 k. B. 2.2 k. B. 8.0 T5405 k. B. 2.0 k. B. 8.0 T5406 k. B. 2.2 k. B. 8.0 T5477 k. B. 2.1 k. B. 8.1 T5488 k. B. 2.0 k. B. 8.0 T2536 k. B 2.7 k. B kB
  • the batch T2536 has a maximum in the form of oxide inclusions in line form Size value of 2.7 (method M). This value is for the use of this Batch too high as material for relay parts. It leads to wear on the Contact surfaces of the relay and has the loss of functionality of the relay result.
  • the content of non-metallic inclusions is therefore according to the invention limited as follows:
  • the maximum size values according to DIN 50602 of the sulfidic inclusions in Line shapes SS are less than or equal to 0.1 or 1.1, the maximum size values according to DIN 50602 of the oxidized inclusions in dissolved form OA (aluminum oxides) less than or equal to 2.2 or 3.2 or 4.2, the maximum size values according to DIN 50602 the oxide inclusions in line form OS (silicates) less than or equal to 5.2 or 6.2 or 7.2 and the maximum size values according to DIN 50602 of the oxidic inclusions in globular form OG less than or equal to 8.2 or 9.2. All others in table 8 batches listed meet the requirements for the content of non-metallic Inclusions.

Abstract

The invention relates to a soft magnetic nickel-iron alloy containing 35-65 mass % nickel, one or several of the rare earths cerium, lanthanum, praseodymium or neodymium and the impurities introduced during smelting, the sum of the rare earths being between 0.003 and 0.05 mass %.

Description

Die Erfindung betrifft eine weichmagnetische Nickel-Eisen-Legierung.The invention relates to a soft magnetic nickel-iron alloy.

Aus dem Buch "Magnetische Werkstoffe und ihre technische Anwendung" von Carl Heck, Hütig Verlag, Heidelberg 1975, S. 349ff ist bekannt, daß für das Material von Anker und Joch bei Relais weichmagnetische Werkstoffe eingesetzt werden.From the book "Magnetic materials and their technical application" by Carl Heck, Hütig Verlag, Heidelberg 1975, p. 349ff is known for the material of armature and yoke are used in relays with soft magnetic materials.

Die Hauptforderungen an den Werkstoff sind eine hohe Sättigungsflußdichte, um große magnetische Haltekräfte bei geringer Energie zu erreichen, eine hohe Permeabilität, damit eine kleine magnetische Feldstärke, d.h. ein geringer Erregungsstrom sowie eine hohe Flußdichte im Luftspalt erzeugt werden kann und so eine große Anziehungskraft auf den Anker wirkt. Geringe Koerzitivfeldstärken ermöglichen ein leichtes Öffnen des Relais bei Rückgang des Erregerstromes.The main requirements for the material are a high saturation flux density in order to to achieve high magnetic holding forces with low energy, high permeability, thus a small magnetic field strength, i.e. a low excitation current and a high flux density can be generated in the air gap and so one great attraction to the anchor. Allow low coercivity easy opening of the relay when the excitation current drops.

Neben den magnetischen Anforderungen bestehen an einen Relaiswerkstoff noch die Forderung der Korrosionsbeständigkeit in einem Wechselklimatest, da eine korrekte Funktion des Relais bei jeder Wetterlage erforderlich ist Diese Forderung kann bei nicht ausreichend korrosionsbeständigen Werkstoffen nur durch zusätzliches Beschichten der fertigen Teile mit einer korrosionsbeständigen Schicht erreicht werden.In addition to the magnetic requirements for a relay material the requirement of corrosion resistance in an alternating climate test, since a correct operation of the relay in any weather condition is required This requirement in the case of insufficiently corrosion-resistant materials, only by additional The finished parts are coated with a corrosion-resistant layer become.

Die Kontaktflächen von Anker und Joch müssen einen möglichst geringen Spalt aufweisen, um eine hohe Permeabilität des magnetischen Kreises aus Joch und Anker zu erreichen. Sie dürfen durch das Schalten des Relais nicht beschädigt werden, da sich dann der Auslösestrom des Relais verändert. The contact surfaces of anchor and yoke must have the smallest possible gap have to a high permeability of the magnetic circuit from yoke and Reach anchor. They must not be damaged by switching the relay as the trigger current of the relay changes.

Ähnliche Anforderungen bestehen auch für andere Form- und Stanzteile aus weichmagnetischen Werkstoffen.Similar requirements also exist for other molded and stamped parts soft magnetic materials.

Die magnetischen Anforderungen an einen Relaiswerkstoff beschreibt die DIN 17405 "Weichmagnetische Werkstoffe für Gleichstromrelais". Die folgende Tabelle 1 zeigt einen Auszug aus der DIN 17405. Relaiswerkstoffe nach DIN 17405 Werkstoff Koerzitivfeldstärke min. magnetische Induktion in T Kennzeichnende Legierungsbestandteile Kurzname Werkstoffnummer max. Hc in A/m bei einer Feldstärke H in A/m Massenanteil in % 20 50 100 300 500 4000 RNi 24 1.3911 24 0,20 0,45 0,70 0,90 1,00 1,18 36 Ni RNi 12 1.3926 12 0,50 0,90 1,10 1,25 1,35 1,45 50 Ni RNi 8 1.3927 8 0,50 0,90 1,10 1,25 1,35 1,45 50 Ni RNi 5 2.4596 5 0,50 0,65 0,70 0,75 70 bis 80 Ni, kleine Mengen Cu, Cr, Mo RNi 2 2.4595 2.5 0,50 0,65 0,70 0,75 The magnetic requirements for a relay material are described in DIN 17405 "Soft magnetic materials for DC relays". The following Table 1 shows an extract from DIN 17405. Relay materials according to DIN 17405 material Coercive field strength min. magnetic induction in T Characteristic alloy components Nickname Material number Max. Hc in A / m at a field strength H in A / m Mass fraction in% 20th 50 100 300 500 4000 RNi 24 1.3911 24th 0.20 0.45 0.70 0.90 1.00 1.18 36 Ni RNi 12 1.3926 12th 0.50 0.90 1.10 1.25 1.35 1.45 50 Ni RNi 8 1.3927 8th 0.50 0.90 1.10 1.25 1.35 1.45 50 Ni RNi 5 2.4596 5 0.50 0.65 0.70 0.75 70 to 80 Ni, small amounts of Cu, Cr, Mo RNi 2 2.4595 2.5 0.50 0.65 0.70 0.75

Die DIN 17745 "Knetlegierungen aus Nickel und Eisen beschreibt die Legierung Ni 48 (Werkstoffnummern 1.3926 und 1.3927) als Ausgangswerkstoffe für die Sorten RNi 12 und RNi 8 (siehe Tabelle 2). Die Legierung Ni 36 (Werkstoffnummer 1.3911) ist der Ausgangswerkstoff für die Sorten RNi 24. Auszug aus der DIN 17745 Kurzname Werkstoffnummer Zusammensetzung in Masse % Legierungsbestandteile Zulässige Beimischungen Ni 48 1.3926
1.3927
Ni min. 46, Fe 49 bis 53 C 0.05, Mn 0.5, Si 0,3
Ni 36 1.3911 ca. 36
DIN 17745 "Wrought alloys made of nickel and iron describes the alloy Ni 48 (material numbers 1.3926 and 1.3927) as the starting materials for the grades RNi 12 and RNi 8 (see table 2). The alloy Ni 36 (material number 1.3911) is the starting material for the grades RNi 24. Extract from DIN 17745 Nickname Material number Composition in mass% Alloy components Permissible admixtures Ni 48 1.3926
1.3927
Ni min. 46, Fe 49 to 53 C 0.05, Mn 0.5, Si 0.3
Ni 36 1.3911 approx. 36

Bei der Erschmelzung von Nickel-Eisen-Legierungen sind neben den gewünschten Legierungselementen noch Desoxidations- und/oder Entschwefelungselemente wie Mangan, Silizium und Aluminium notwendig. Außerdem lassen sich gewisse minimale Beimengungen von Sauerstoff, Schwefel, Phosphor, Kohlenstoff, Kalzium, Mag-nesium, Chrom, Molybdän, Kupfer und Kobalt nicht vermeiden, wenn man diese Legierungen wegen der günstigen Kosten mit üblicher Stahlwerkstechnologie herstellen will. Unter üblicher Stahlwerkstechnologie wird hierbei das Erschmelzen im offenen Lichtbogenofen mit nachfolgender Pfannenmetallurgie und/oder VOD-Behandlung zur Desoxidation, Entschwefelung und Entgasung verstanden. Danach wird der Block bzw. die Stranggußbramme in ein oder zwei Schritten warmverformt bis zu einer Dicke von etwa 4 mm und anschließend an Enddicke kaltverformt ggf. mit Zwischenglühungen. Die magnetischen Eigenschaften verschlechtern sich, wie es z. B. in DE 19612556 A1 beschrieben worden ist, durch Beimengungen an Kohlenstoff, Stickstoff, Sauerstoff, Schwefel und an nichtmetallischen Einschlüssen. Nichtmetallische Verunreinigungen entstehen aufgrund der erforderlichen Desoxidations- und/oder Entschwefelungsbehandlung der Schmelze vor dem Gießen. Je nach Desoxidations- und/oder Entschwefelungsmittel sind es z.B. Oxide des Kalziums, Magnesiums oder Aluminiums.When melting nickel-iron alloys are in addition to the desired Alloy elements or deoxidation and / or desulfurization elements like manganese, silicon and aluminum. In addition, certain minimal additions of oxygen, sulfur, phosphorus, carbon, Do not avoid calcium, magnesium, chromium, molybdenum, copper and cobalt, if you compare these alloys with usual because of the cheap cost Wants to manufacture steel mill technology. Under common steel mill technology this involves melting in an open arc furnace with subsequent ladle metallurgy and / or VOD treatment for deoxidation, desulfurization and Degassing understood. Then the block or the continuous casting slab is in one or two steps thermoformed to a thickness of about 4 mm and then Cold-formed to its final thickness, if necessary with intermediate annealing. The magnetic Properties deteriorate, as z. B. described in DE 19612556 A1 by adding carbon, nitrogen, oxygen, Sulfur and on non-metallic inclusions. Non-metallic contaminants arise due to the required deoxidation and / or desulfurization treatment the melt before pouring. Depending on the deoxidation and / or Desulfurizing agents are e.g. Oxides of calcium, magnesium or aluminum.

Um diese Schwierigkeit zu vermeiden, werden deshalb weichmagnetische Werkstoffe mit den höchsten Anforderungen nach dem Stand der Technik bisher mit ausgewählt sauberen Einsatzwerkstoffen mit Hilfe der Vakuumtechnologie hergestellt, wie es in der DE-A 3910147 und in der DE-C 1259367 ausdrücklich angegeben wird. Eine andere aus der Literatur bekannte Möglichkeit ist das in DE-A 4105507 beschriebene sehr aufwendige und teure Elektroschlackenumschmelzverfahren unter Vakuum oder Schutzgas von vorher unter Vakuum oder Schutzgas erschmolzenen Blöcken.To avoid this difficulty, soft magnetic materials are therefore used with the highest requirements according to the state of the art selected clean feed materials manufactured using vacuum technology, as expressly stated in DE-A 3910147 and in DE-C 1259367 becomes. Another possibility known from the literature is that in DE-A 4105507 described very complex and expensive electroslag remelting process under vacuum or inert gas from previously under vacuum or inert gas melted blocks.

Die JP-A 07166281 betrifft eine magnetische Legierung für Magnetköpfe, bestehend aus Ni und Fe mit Zusätzen von Nd, Pr oder Sm. Hier liegt die Menge an Ni über 78 Gew.-%.JP-A 07166281 relates to a magnetic alloy for magnetic heads made of Ni and Fe with additions of Nd, Pr or Sm. Here is the amount of Ni over 78% by weight.

Die der Erfindung zugrunde liegende Aufgabe besteht darin, eine weichmagnetische Eisen-Nickel-Legierung zu erschmelzen, die den beschriebenen Anforderungen an die magnetischen Eigenschaften, an die Korrosions- und an die Verschleißbeständigkeit genügt und die für eine Reihe bevorzugter Anwendungen bei weichmagnetischen Bauteilen findet. The object underlying the invention is a soft magnetic Melt iron-nickel alloy that meets the requirements described magnetic properties, corrosion and wear resistance suffices and for a number of preferred applications finds soft magnetic components.

Gelöst wird diese Aufgabe durch eine weichmagnetische Eisen-Nickel-Legierung mit einem Nickelgehalt von 35 - 65 Masse-% und einer oder mehreren der Seitenen Erden Cer, Lanthan, Praseodym oder Neodym sowie erschmelzungsbedingten Verunreinigungen, wobei die Summe der Seltenen Erden zwischen 0,003 und 0,05 Masse-% liegt und der summenmäßige Anteil der Seltenen Erden Cer, Lanthan, Praseodym und Neodym in Masse-% mindestens um den Faktor 4,4 größer ist, als der Gehalt an Schwefel in Masse-%.This task is solved by a soft magnetic iron-nickel alloy with a nickel content of 35 - 65% by mass and one or more of the sides Earth cerium, lanthanum, praseodymium or neodymium as well as melting-related Impurities, the sum of rare earths between 0.003 and 0.05 mass% and the total proportion of rare earths cerium, Lanthanum, praseodymium and neodymium in mass% at least by a factor of 4.4 is greater than the sulfur content in mass%.

Vorteilhafte Weiterbildungen des Erfindungsgegenstandes sind den zugehörigen Unteransprüchen zu entnehmen.Advantageous developments of the subject matter of the invention are the associated See subclaims.

Die erfindungsgemäße Legierung wird vorzugsweise durch Stahlwerkstechnologie, d.h. durch Erschmelzung im offenen Lichtbogen mit nachfolgender Pfannenmetallurgie und/oder VOD-Behandlung (Vacuum-Oxidation-Decarburization) zur Desoxidation, Entschwefelung und Entgasung erzeugt. Danach wird der Block bzw. die Stranggußbramme in ein oder zwei Schritten warmverformt bis zu einer Dicke von etwa 4 mm und anschließend an Enddicke kaltverformt ggf. mit Zwischenglühungen zur Einstellung der für die Herstellung von Teilen aus diesem Band benötigten Härte.
Im Anschluß an die Herstellung von Teilen aus dieser Legierung und dem Glühen dieser Teile bei Temperaturen zwischen 800 und 1150 °C können mit diesen Teilen Koerzitivfeldstärken von weniger als 8 A/m erreicht werden.
The alloy according to the invention is preferably produced by steelwork technology, ie by melting in an open arc with subsequent ladle metallurgy and / or VOD treatment (vacuum oxidation-decarburization) for deoxidation, desulfurization and degassing. Thereafter, the block or the continuous casting slab is thermoformed in one or two steps up to a thickness of about 4 mm and then cold-formed to final thickness, if necessary with intermediate annealing to adjust the hardness required for the production of parts from this strip.
Following the production of parts from this alloy and the annealing of these parts at temperatures between 800 and 1150 ° C., these parts can achieve coercive field strengths of less than 8 A / m.

Bevorzugte Anwendungsfälle der erfindungsgemäßen Legierung sind u.a. Relaisteile, wie Joche und Anker.Preferred applications of the alloy according to the invention include Relay parts, like yokes and anchors.

Darüber hinaus ist die erfindungsgemäße Eisen-Nickel-Legierung noch für folgende weitere Anwendungsfälle sinnvoll einsetzbar:

  • Ventildeckel und Ventiltöpfe von Magnetventilen
  • Joche bzw. Polstücke bzw. Polschuhe bzw. Polbleche und Anker von Halteund Elektromagneten
  • Spulenkerne und Statoren von Schrittschaltmotoren sowie Rotoren und Statoren von Elektromotoren
  • Form- und Stanzteile von Sensoren, Positionsgebem und -aufnehmem
  • Magnetköpfe und Magnetkopfabschirmungen
  • Abschirmungen, wie z. B. Motorabschirmungen, Abschirmbecher für Anzeigeinstrumente und Abschirmungen für Kathodenstrahlröhren.
In addition, the iron-nickel alloy according to the invention can also be usefully used for the following further applications:
  • Valve covers and valve pots of solenoid valves
  • Yokes or pole pieces or pole shoes or pole sheets and armatures of holding and electromagnets
  • Coil cores and stators of stepper motors as well as rotors and stators of electric motors
  • Molded and stamped parts from sensors, position sensors and sensors
  • Magnetic heads and magnetic head shields
  • Shields such as B. motor shields, shield cups for display instruments and shields for cathode ray tubes.

Aus einem mit Stahlwerkstechnologie hergestelltem Band von 1,2 mm Dicke wurden flache Proben ausgestanzt, gereinigt, einer Glühbehandlung von 1080°C/4 Stunden unter Wasserstoff unterzogen und danach im Ofen bis 300°C abgekühlt. An diese Proben wurde der in DIN 50017 beschriebene Klimatest mit 28 Zyklen von 8 Stunden bei 55°C/90 bis 96% Luftfeuchtigkeit und 16 Stunden bei 25°C und 95 bis 99% Luftfeuchtigkeit durchgeführt. Es wurden Legierungen mit Nickelgehalten von 36 Masse % bis 81 Masse % und teilweise Zusätzen wie Chrom, Kupfer und/oder Molybdän untersucht (siehe Tabelle 3). Die Legierungen mit einem Nickelgehalt kleiner gleich 55 Masse % zeigen nach Ende dieses Wechselklimatestes alle deutlich stärkere Korrosionserscheinungen auf der Oberfläche als die Legierungen mit Nickelgehalten von mehr als 75%.(B. Gehrmann, H. Hattendorf, A. Kolb-Telieps, W. Kramer, W. Möttgen, in Material and Corrosion 48, 535-541 (1997)) und erfüllen so nicht die oben beschriebenen Anforderungen für einen Relaiswerkstoff an die Korrosionsbeständigkeit ohne zusätzliche korrosionsverbessemde Maßnahmen. Die von der DIN 17405 geforderten magnetischen Eigenschaften wurden dagegen erfüllt, wie die in Tabelle 3 beispielhaft angegebenen Koerzitivfeldstärken Hc darlegen (Stand der Technik). Zusammensetzung in Masse % Hc in A/m max. Hc nach DIN 17405 Legierung Fe Ni Mo Cr Cu Mn Si Fe-36Ni 62,90 36,50 0,01 0,03 0,03 0,27 0,18 4,2 24 Fe-40Ni 58,35 40,75 0,02 0,05 0,04 0,50 0,18 4,7 Fe-41Ni 58,50 40,65 0,01 <0,01 0,04 0,47 0,21 3,2 Fe-45Ni 54,25 44,70 0,02 0,02 0,02 0,58 0,28 2,5 Fe-47Ni-6Cr 45,85 47,30 <0,01 6,04 0,01 0,21 0,26 3,8 Fe-48Ni 51,70 47,50 0,04 0,03 0,02 0,41 0,20 2,4 8 Fe-50Ni 48,85 50,70 0,01 0,04 0,03 0,21 0,05 3,5 8 Fe-55Ni 43,70 55,45 0,06 0,06 0,05 0,42 0,14 12,5 Fe-76Ni Cr Cu 16,05 75,95 0,10 2,00 4,96 0,60 0,22 0,87 2,5 Fe77Ni-Ti, Nb 14,80 77,30 0,01 0,10 4,50 0,49 0,24 2,4 2,5 Fe-77Ni-Mo, Cu 13,85 77,15 3,45 0,10 4,47 0,53 0,33 0,85 2,5 Fe-80Ni-Mo 13,95 80,10 4,75 0,05 0,09 0,50 0,33 0,44 2,5 Fe-81Ni-Mo 12,45 81,50 5,27 0,03 0,05 0,43 0,13 1,23 2,5 Flat samples were punched out of a 1.2 mm thick band produced with steelwork technology, cleaned, subjected to an annealing treatment of 1080 ° C./4 hours under hydrogen and then cooled to 300 ° C. in an oven. The climate test described in DIN 50017 was carried out on these samples with 28 cycles of 8 hours at 55 ° C / 90 to 96% humidity and 16 hours at 25 ° C and 95 to 99% humidity. Alloys with nickel contents of 36 mass% to 81 mass% and some additives such as chromium, copper and / or molybdenum were examined (see table 3). Alloys with a nickel content of less than or equal to 55% by mass all show significantly stronger signs of corrosion on the surface after the end of this alternating climate test than the alloys with nickel contents of more than 75%. (B. Gehrmann, H. Hattendorf, A. Kolb-Telieps, W. Kramer, W. Möttgen, in Material and Corrosion 48, 535-541 (1997)) and thus do not meet the above-described requirements for a relay material in terms of corrosion resistance without additional corrosion-improving measures. The magnetic properties required by DIN 17405, on the other hand, were met, as the coercive field strengths Hc given in Table 3 demonstrate (prior art). Composition in mass% Hc in A / m Max. Hc according to DIN 17405 alloy Fe Ni Mon Cr Cu Mn Si Fe-36Ni 62.90 36.50 0.01 0.03 0.03 0.27 0.18 4.2 24th Fe-40Ni 58.35 40.75 0.02 0.05 0.04 0.50 0.18 4.7 Fe-41Ni 58.50 40.65 0.01 <0.01 0.04 0.47 0.21 3.2 Fe-45Ni 54.25 44.70 0.02 0.02 0.02 0.58 0.28 2.5 Fe-47Ni-6Cr 45.85 47.30 <0.01 6.04 0.01 0.21 0.26 3.8 Fe-48Ni 51.70 47.50 0.04 0.03 0.02 0.41 0.20 2.4 8th Fe-50Ni 48.85 50.70 0.01 0.04 0.03 0.21 0.05 3.5 8th Fe-55Ni 43.70 55.45 0.06 0.06 0.05 0.42 0.14 12.5 Fe-76Ni Cr Cu 16.05 75.95 0.10 2.00 4.96 0.60 0.22 0.87 2.5 Fe77Ni-Ti, Nb 14.80 77.30 0.01 0.10 4.50 0.49 0.24 2.4 2.5 Fe-77Ni-Mo, Cu 13.85 77.15 3.45 0.10 4.47 0.53 0.33 0.85 2.5 Fe-80Ni-Mo 13.95 80.10 4.75 0.05 0.09 0.50 0.33 0.44 2.5 Fe-81Ni-Mo 12.45 81.50 5.27 0.03 0.05 0.43 0.13 1.23 2.5

In den korrodierten Stellen dieser Proben wurde nach Ende des Wechselklimatestes mittels REM/EDX Schwefel gefunden.In the corroded areas of these samples was after the end of the alternating climate test found sulfur using REM / EDX.

Die erfindungsgemäße Verbesserung des Korrosionsverhaltens wird überraschenderweise durch eine Entschwefelung der korrosionsanfälligeren Nickel-Eisen-Legierungen mit einem Nickelgehalt von 35 Masse % bis 65 Masse % mit Cer erreicht. Dabei wird dies vorzugsweise mit einem Mischmetall aus den im chemischen Verhalten sehr ähnlichen Seltenen Erden Cer und/oder Lanthan und/oder Praseodym und/oder Neodym durchgeführt. Um sämtlichen Schwefel sicher abzubinden, müssen ausreichend Seltene Erden-Atome vorhanden sein. Geht man von der Bildung z.B. des Cersulfids mit dem größten Cer Anteil CeS aus, so ist das der Fall, wenn mehr Cer Atome als Schwefelatome in der Legierung vorhanden sind.The improvement in corrosion behavior according to the invention is surprisingly by desulfurizing the more corrosion-prone nickel-iron alloys with a nickel content of 35 mass% to 65 mass% Cer reached. This is preferably done with a mixed metal from the chemical behavior of very similar rare earths cerium and / or lanthanum and / or praseodymium and / or neodymium. For all the sulfur to bind securely, sufficient rare earth atoms must be present. If you start with education e.g. cerium sulfide with the largest cerium content CeS out, this is the case if there are more cerium atoms than sulfur atoms in the alloy available.

Danach muß der Cergehalt in Masse % mindestens um den Faktor 4,4 größer sein als der Schwefelgehalt in Masse %, um eine vollständige Abbindung des Schwefels durch Cer zu erreichen. Entsprechendes gilt für die anderen Seltenen Erden Lanthan, Praseodym und/oder Neodym und für den Summengehalt an Seltenen Erden.The cerium content in mass% must then be at least a factor of 4.4 higher be than the sulfur content in% by mass in order to completely bind the To reach sulfur through cerium. The same applies to the other rare ones Earth lanthanum, praseodymium and / or neodymium and for the total content Rare Earth.

Wie vorher schon erwähnt, kann der Zusatz eines so starken Desoxidations- und Entschwefelungsmittels wie beispielsweise Cer durch die im Material verbliebenen Reaktionsprodukte die magnetischen Eigenschaften beeinträchtigen (A. Hoffmann, Über den Einfluß von verschiedenen Desoxidationselementen auf die Verformung und die Anfangspermeabilität von Ni-Fe-Legierungen, Z. angew. Physik 32, Seite 236 bis 241). Überraschenderweise läßt sich die Zugabe an Seltenen Erden so dosieren, daß die magnetischen Werte von Permeabilität und Koerzitivfeldstärke im Rahmen der üblichen Schwankungsbreite der nach dem Stand der Technik erschmolzenen Chargen liegen.As previously mentioned, the addition of such a strong deoxidation and Desulfurizing agents such as cerium by those remaining in the material Reaction products that impair magnetic properties (A. Hoffmann, About the influence of different deoxidation elements on the deformation and the initial permeability of Ni-Fe alloys, Z. Appl. Physik 32, page 236 to 241). Surprisingly, the addition of rare earths can be done in this way dose that the magnetic values of permeability and coercive force within the usual range of fluctuation according to the prior art melted batches.

Es ist bekannt, daß Desoxidationsrückstände aus den Kontaktflächen des Relais herausbrechen, zwischen diesen Flächen liegen bleiben und durch ihre z. B. bei oxidischen Rückständen größere Härte beim weiteren Schalten des Relais die feingeschliffenen Kontaktflächen zerstören können. Deshalb dürfen die Relaiswerkstoffe nur einen sehr geringen Gehalt an nichtmetallischen Einschlüssen nach DIN 50602 (Verfahren M) aufweisen. Darum müssen auch bei der Desoxidation mit Cer bzw. einem Mischmetall aus den seltenen Erden Cer, Lanthan, Praseodym, Neodym die maximalen Größenwerte der sulfidischen Einschlüsse in Strichform SS kleiner 0.1 bzw. 1.1, die maximalen Größenwerte der oxidischen Einschlüsse in aufgelöster Form OA (Aluminiumoxide) kleiner 2.2 bzw. 3.2 bzw. 4.2, die maximalen Größenwerte der oxidischen Einschlüsse in Strichform OS (Silikate) kleiner 5.2 bzw. 6.2 bzw. 7.2 und die maximalen Größenwerte der oxidischen Einschlüsse in globularer Form OG kleiner 8.2 bzw. 9.2 sein.It is known that deoxidation residues from the contact surfaces of the relay break out, stay between these surfaces and through their z. B. at oxidic residues greater hardness when switching the relay further can destroy finely ground contact surfaces. Therefore the relay materials are allowed only a very low content of non-metallic inclusions DIN 50602 (method M). That is why deoxidation also has to be done with cerium or a mixed metal from the rare earths cerium, lanthanum, praseodymium, Neodymium the maximum size values of the sulfidic inclusions in line form SS less than 0.1 or 1.1, the maximum size values of the oxide inclusions in dissolved form OA (aluminum oxides) less than 2.2 or 3.2 or 4.2, the maximum size values of the oxide inclusions in line form OS (silicates) less than 5.2 or 6.2 or 7.2 and the maximum size values of the oxidic Inclusions in globular form OG less than 8.2 or 9.2.

Als Beispiel wurde mit Stahlwerkstechnologie im 30 t Lichtbogenofen eine Nickel-Eisen-Legierung mit ca. 48 % Nickel und geringfügigen Zusätzen an Mangan und Silizium erschmolzen (Chargen E5407 und E0545) und mit Chargen einer sehr ähnlicher Zusammensetzung, aber ohne den Zusatz von Seltenen Erden, die dem Stand der Technik entsprechen, (Chargen T4392, T5405 und T5406) verglichen. Die genauen Zusammensetzungen zeigt die Tabelle 4.

Figure 00080001
As an example, a nickel-iron alloy with approx. 48% nickel and minor additions of manganese and silicon was melted using steelwork technology in a 30-ton arc furnace (batches E5407 and E0545) and with batches of a very similar composition, but without the addition of rare earths which correspond to the prior art (batches T4392, T5405 and T5406) compared. The exact compositions are shown in Table 4.
Figure 00080001

Geringfügige Mengen an Bor können zur Verbesserung der Stanzbarkeit zugegeben werden, wie es bei den Chargen T4392, T5405, T5406 und E5407 erfolgt ist. Die Menge des Cergehaltes in Masse % in den erfindungsgemäßen Charge E5407 und E0545 ist um mehr als den Faktor 4,4 größer als der Schwefelgehalt in Masse %.Small amounts of boron can be added to improve punchability as with batches T4392, T5405, T5406 and E5407. The amount of the cerium content in mass% in the batch according to the invention E5407 and E0545 is more than the factor 4.4 larger than the sulfur content in Dimensions %.

Nach der Erschmelzung erfolgte eine Block- und anschließend eine Warmbandwalzung an etwa 4 mm und eine anschließenden Kaltumformung bis an Enddicke 1,0 mm. After the melting, block and then hot strip rolling followed about 4 mm and a subsequent cold forming to final thickness 1.0 mm.

Daraus wurden runde Proben mit einem Durchmesser von 25,5 mm gestanzt. Dies gilt für alle Chargen bis auf E0545. Hier wurde ein Stück von ca. 15 mm x15 mm x 5 mm aus einer Gußprobe verwendet, dessen Flächen feingeschliffen wurden. Alle Proben wurden gereinigt und ein Teil der Proben wurde einer Glühbehandlung von 970°C/6 Stunden unter Wasserstoff unterzogen und danach im Ofen bis unterhalb von 300°C abgekühlt. Der zweite Teil der Proben wurde einer Glühbehandlung von 1030°C/2 Stunden unter Wasserstoff unterzogen und danach im Ofen bis unterhalb von 300°C abgekühlt. Alle Proben sind dem verkürztem Klimatest von 2 Tagen mit einem Temperatur/ Feuchtigkeitswechsel im Rhythmus von 3 Stunden von 25°C und 55% Luftfeuchtigkeit auf 55°C und 98% Luftfeuchtigkeit unterzogen worden. Die Proben lagen dabei einzeln flach in Glasschalen, so daß auf der Unterseite noch die verschärften Bedingungen einer Spaltkorrosion herrschten. Das Ergebnis zeigt Tabelle 5. Klimatestergebnisse Charge Nach verkürztem Klimatest: Proben mit Korrosionsansätzen/ Gesamtzahl der getesteten Proben Bemerkungen 970°C/6 Stunden 1030°C/2 Stunden T5405 10/10 10/10 Beidseitig, mehrere eindeutige Punkte pro Probe T5406 10/10 10/10 Beidseitig, mehrere eindeutige Punkte pro Probe E5407 0/10 0/10 E0545 0/1 Round samples with a diameter of 25.5 mm were punched out of them. This applies to all batches except E0545. Here a piece of approx. 15 mm x15 mm x 5 mm from a cast sample was used, the surfaces of which were ground. All samples were cleaned and part of the samples were subjected to an annealing treatment of 970 ° C / 6 hours under hydrogen and then cooled in the oven to below 300 ° C. The second part of the samples was subjected to an annealing treatment of 1030 ° C / 2 hours under hydrogen and then cooled in the oven to below 300 ° C. All samples were subjected to the shortened climate test of 2 days with a temperature / humidity change every 3 hours from 25 ° C and 55% humidity to 55 ° C and 98% humidity. The samples lay individually flat in glass dishes, so that the more severe conditions of crevice corrosion still prevailed on the underside. The result is shown in Table 5. Climate test results Batch After a shortened climate test: samples with corrosion approaches / total number of samples tested Remarks 970 ° C / 6 hours 1030 ° C / 2 hours T5405 10/10 10/10 On both sides, several unique points per sample T5406 10/10 10/10 On both sides, several unique points per sample E5407 0/10 0/10 E0545 0/1

Bei den erfindungsgemäßen Charge E5407 und E0545 war keine Korrosion zu finden, während bei den beiden Vergleichschargen T5405 und T5406 sich bei jeder Probe auf beiden Seiten Korrosionspunkte fanden.There was no corrosion to batch E5407 and E0545 according to the invention find, while in the two comparison batches T5405 and T5406 each Sample corrosion spots found on both sides.

Der Zusatz eines so starken Desoxidations- und Entschwefelungsmittels wie Cer kann, wie vorher beschrieben, durch die im Material verbliebenen Reaktionsprodukte die magnetischen Eigenschaften beeinträchtigen. Überraschenderweise liegen die magnetischen Werte von Permeabilität und Koerzitivfeldstärke, die die erfindungsgemäßen Chargen E5407 und E0545 zeigen, im Rahmen der üblichen Schwankungsbreite der nach dem Stand der Technik erschmolzenen Chargen, wie die Tabelle 6 zeigt. Magnetische Werte von Chargen nach dem Stand der Technik (T) und der erfindungsgemäßen Chargen (E) gemessen an Proben von 1 mm Dicke nach einer Glühung von 1080°C/4h unter Wasserstoff und einer Abkühlung im Ofen bis 450°C. Die Zusammensetzung der Chargen zeigt Tabelle 4. Werkstoff Koerzitiv-feldstärke min. magnetische Induktion in T Statische Werte Kurzname Werkstoffnummer Hc in A/m bei einer Feldstärke H in A/m µ4 µmax 20 50 100 300 500 4000 RNi 24 1.3911 <24 0,20 0,45 0,70 0,90 1,00 1,18 RNi 12 1.3926 <12 0,50 0,90 1,10 1,25 1,35 1,45 RNi 8 1.3927 <8 0,50 0,90 1,10 1,25 1,35 1,45 Charge E5407 4,2 1,02 1,12 1,18 1,31 1,50 1,56 10200 97800 E0545 2,6 11690 133770 T2536 1,9 8000 179600 T4392 3,8 1,07 1,16 1,22 1,36 1,44 1,54 5000 154700 T5405 2,5 1,06 1,14 1,20 1,32 1,41 1,57 9200 142100 T5406 2,1 1,06 1,14 1,20 1,33 1,42 1,53 10000 158900 T5477 2,76 1,08 1,17 1,21 1,34 1,42 1,53 8200 135100 T5488 5,21 1,09 1,20 1,35 1,40 1,46 1,54 2600 99850 The addition of such a strong deoxidizing and desulfurizing agent as cerium can, as previously described, impair the magnetic properties due to the reaction products remaining in the material. Surprisingly, the magnetic values of permeability and coercive field strength, which show the batches E5407 and E0545 according to the invention, are within the usual range of fluctuation of the batches melted according to the prior art, as shown in Table 6. Magnetic values of batches according to the prior art (T) and the batches (E) according to the invention measured on samples of 1 mm thickness after annealing from 1080 ° C. for 4 hours under hydrogen and cooling in the oven to 450 ° C. The composition of the batches is shown in Table 4. material Coercive field strength min. magnetic induction in T Static values Nickname Material number Hc in A / m at a field strength H in A / m µ4 µmax 20th 50 100 300 500 4000 RNi 24 1.3911 <24 0.20 0.45 0.70 0.90 1.00 1.18 RNi 12 1.3926 <12 0.50 0.90 1.10 1.25 1.35 1.45 RNi 8 1.3927 <8 0.50 0.90 1.10 1.25 1.35 1.45 Batch E5407 4.2 1.02 1.12 1.18 1.31 1.50 1.56 10200 97800 E0545 2.6 11690 133770 T2536 1.9 8000 179600 T4392 3.8 1.07 1.16 1.22 1.36 1.44 1.54 5000 154700 T5405 2.5 1.06 1.14 1.20 1.32 1.41 1.57 9200 142100 T5406 2.1 1.06 1.14 1.20 1.33 1.42 1.53 10,000 158900 T5477 2.76 1.08 1.17 1.21 1.34 1.42 1.53 8200 135100 T5488 5.21 1.09 1.20 1.35 1.40 1.46 1.54 2600 99850

Als zweites wurden zwei Chargen mit der in Tabelle 7 angegebenen Zusammensetzung gemäß Stand der Technik in ihren Eigenschaften bei der Block- und der Warmbandwalzung betrachtet.Second, two batches were made with the composition shown in Table 7 according to the prior art in their properties in the block and Hot strip rolling considered.

Die beiden Chargen unterscheiden sich im wesentlichen nur durch den unterschiedlichen Gehalt an Seltenen Erden. Element Grenzwerte Charge T0626 T0624 Ni 36,2 36,45 Mn 0,25 0,26 max. 0,5 Si 0,20 0,19 max. 0.3 Al 0,009 0,009 max. 0,010 Mg 0,0030 0,003 max. 0,002 Ca max. 0,002 Cer 0,029 0.001 La 0,017 Pr 0,002 Nd 0,006 Summe Seltene Erden 0,054 0,002 max. 0,050 S 0,002 0,002 max. 0,0040 O 0,0050 0,0020 max. 0,0040 N 0,0025 0,0020 C 0,004 0,009 max. 0,05 P 0,002 0,002 Cr 0,04 0,01 Mo 0,06 0,06 Cu 0,05 0,09 Co 0,05 0,03 B - - The only difference between the two batches is the difference in the rare earth content. element Limits Batch T0626 T0624 Ni 36.2 36.45 Mn 0.25 0.26 Max. 0.5 Si 0.20 0.19 Max. 0.3 Al 0.009 0.009 Max. 0.010 Mg 0.0030 0.003 Max. 0.002 Approx Max. 0.002 cerium 0.029 0.001 La 0.017 Pr 0.002 Nd 0.006 Total rare earths 0.054 0.002 Max. 0.050 S 0.002 0.002 Max. 0.0040 O 0.0050 0.0020 Max. 0.0040 N 0.0025 0.0020 C. 0.004 0.009 Max. 0.05 P 0.002 0.002 Cr 0.04 0.01 Mon 0.06 0.06 Cu 0.05 0.09 Co 0.05 0.03 B - -

Bei der Charge T0626 mit einem Summengehalt an Seltenen Erden von 0,054% bildeten sich bei der Warmformgebung Risse und der Block war danach Schrott. Ein so hoher Gehalt an Seltenen Erden führt zu einem schlechteren Warmformgebungsverhalten. Die Charge T0624 ließ sich dagegen sowohl an Block als auch an Warmband mit einer Dicke von ca. 4 mm walzen. Da sich die Seltenen Erden chemisch ähnlich verhalten, ist erfindungsgemäß der Gehalt der Summe der Seltenen Erden Cer, Lanthan, Praseodym, Neodym auf maximal 0,05 Masse % zu begrenzen, um Warmformgebungsprobleme zu vermeiden. For batch T0626 with a total rare earth content of 0.054% Cracks formed during hot forming and the block was then scrap. Such a high content of rare earths leads to poorer thermoforming behavior. Batch T0624, on the other hand, could be used on both block and Roll hot strip with a thickness of approx. 4 mm. Because the rare earth Behavior chemically similar, according to the invention is the content of the sum of the rare Earth cerium, lanthanum, praseodymium, neodymium to a maximum of 0.05% by mass limit to avoid thermoforming problems.

Tabelle 8 zeigt die Untersuchung des Gehaltes an nichtmetallischen Einschlüssen nach DIN 50602 an verschiedenen Chargen nach dem Stand der Technik (T) und den erfindungsgemäßen Chargen (E). Werkstoff Reinheitsgrad nach DIN 50602: Maximaler Größenwert (Verfahren M) Charge SS OA OS OG Grenzwerte 0.1 bzw. 1.1 2.2 bzw. 3.2 bzw. 4.2 5.2 bzw. 6.2 bzw. 7.2 8.2 bzw. 9.2 E5407 k. B. 2.1 k. B. 8.0 E0545 k. B. 2.2 k. B. 8.1 T4392 k. B. 2.2 k. B. 8.0 T5405 k. B. 2.0 k. B. 8.0 T5406 k. B. 2.2 k. B. 8.0 T5477 k. B. 2.1 k. B. 8.1 T5488 k. B. 2.0 k. B. 8.0 T2536 k. B 2.7 k. B k.B Table 8 shows the examination of the content of non-metallic inclusions according to DIN 50602 in various batches according to the prior art (T) and the batches (E) according to the invention. material Degree of purity according to DIN 50602: Maximum size value (method M) Batch SS OA OS Upper floor Limits 0.1 or 1.1 2.2 or 3.2 or 4.2 5.2 or 6.2 or 7.2 8.2 or 9.2 E5407 k. B. 2.1 k. B. 8.0 E0545 k. B. 2.2 k. B. 8.1 T4392 k. B. 2.2 k. B. 8.0 T5405 k. B. 2.0 k. B. 8.0 T5406 k. B. 2.2 k. B. 8.0 T5477 k. B. 2.1 k. B. 8.1 T5488 k. B. 2.0 k. B. 8.0 T2536 k. B 2.7 k. B kB

Die Charge T2536 hat bei den oxidischen Einschlüssen in Strichform einen maximalen Größenwert von 2.7 (Verfahren M). Dieser Wert ist für den Einsatz dieser Charge als Werkstoff für Relaisteile zu hoch. Er führt zu einem Verschleiß an den Kontaktflächen des Relais und hat den Verlust der Funktionsfähigkeit des Relais zur Folge. Der Gehalt an nichtmetallischen Einschlüssen wird deshalb erfindungsgemäß wie folgt begrenzt:The batch T2536 has a maximum in the form of oxide inclusions in line form Size value of 2.7 (method M). This value is for the use of this Batch too high as material for relay parts. It leads to wear on the Contact surfaces of the relay and has the loss of functionality of the relay result. The content of non-metallic inclusions is therefore according to the invention limited as follows:

Die maximalen Größenwerte nach DIN 50602 der sulfidischen Einschlüsse in Strichform SS sind kleiner gleich 0.1 bzw. 1.1, die maximalen Größenwerte nach DIN 50602 der oxidischen Einschlüsse in aufgelöster Form OA (Aluminiumoxide) kleiner gleich 2.2 bzw. 3.2 bzw. 4.2, die maximalen Größenwerte nach DIN 50602 der oxidischen Einschlüsse in Strichform OS (Silikate) kleiner gleich 5.2 bzw. 6.2 bzw. 7.2 und die maximalen Größenwerte nach DIN 50602 der oxidischen Einschlüsse in globularer Form OG kleiner gleich 8.2 bzw. 9.2. Alle anderen in Tabelle 8 aufgelisteten Chargen erfüllen die Bedingungen für den Gehalt an nichtmetallischen Einschlüssen.The maximum size values according to DIN 50602 of the sulfidic inclusions in Line shapes SS are less than or equal to 0.1 or 1.1, the maximum size values according to DIN 50602 of the oxidized inclusions in dissolved form OA (aluminum oxides) less than or equal to 2.2 or 3.2 or 4.2, the maximum size values according to DIN 50602 the oxide inclusions in line form OS (silicates) less than or equal to 5.2 or 6.2 or 7.2 and the maximum size values according to DIN 50602 of the oxidic inclusions in globular form OG less than or equal to 8.2 or 9.2. All others in table 8 batches listed meet the requirements for the content of non-metallic Inclusions.

Claims (14)

  1. Soft magnetic iron-nickel alloy having a nickel content of 35-65 % by mass and comprising one or more of the rare earths cerium, lanthanum, praseodymium, neodymium as well as impurities resulting from the melting process, the sum of the rare earths being between 0.003 and 0.05 % by mass and the total part of the rare earths cerium, lanthanum, praseodymium and neodymium in % by mass being greater by at least factor 4.4 than the sulphur content in % by mass.
  2. Soft magnetic alloy according to claim 1,
    characterized in that
    the alloy comprises a cerium content of maximum 0.05 % by mass.
  3. Soft magnetic alloy according to claim 1 or 2,
    characterized in that
    the alloy comprises max. 0.5 % by mass manganese, max. 0.5 % by mass silicium and admixtures of max. 0.002 % by mass magnesium, max. 0.002 % by mass calcium, max. 0.010 % by mass aluminium, max. 0.004 % by mass sulphur, max. 0.004 % by mass oxygen and further small quantities of admixtures resulting from the melting process as deoxidation and/or desulphurization additions.
  4. Soft magnetic alloy according to one of the claims 1 through 3,
    characterized in that
    the alloy contains up to 0.002 / by mass boron.
  5. Method for melting a soft magnetic iron-nickel alloy according to claim 1 through 4,
    characterized in that
    the alloy is molten in the open arc furnace with following ladle metallurgy and/or VOD treatment for deoxidation, desulphurization and degasifying.
  6. Method according to claim 5,
    characterized in that
    the following parameters are set in the molten alloy:
    the maximum size values of the sulphured inclusions in line form are beneath 0.1 respectively 1.1
    the maximum size values of the oxidic inclusions in dissolved form OA (aluminium oxide) are beneath 2.2 respectively 3.2 respectively 4.2
    the maximum size values of the oxidic inclusions in line form OS (silicates) are beneath 5.2 respectively 6.2 respectively 7.2
    the maximum size values of the oxidic inclusions in globular form OG are beneath 8.2 respectively 9.2.
  7. Method according to claim 5 or 6,
    characterized in that
    after manufacturing parts of this alloy and annealing these parts at temperatures between 800°C and 1150°C, coercive field strengths of less than 8A/m are obtained.
  8. Use of a soft magnetic iron-nickel alloy according to one of the claims 1 though 4 as material for relay parts.
  9. Use of a soft magnetic iron-nickel alloy according to one of the claims 1 though 4 as material for valve bonnets and pots of solenoid valves.
  10. Use of a soft magnetic iron-nickel alloy according to one of the claims 1 though 4 as material for yokes respectively pole pieces respectively pole shoes respectively pole sheets and armatures of no-work magnets and electromagnets.
  11. Use of a soft magnetic iron-nickel alloy according to one of the claims 1 though 4 as material for coil cores, stators of step motors and rotors and stators of electromotors.
  12. Use of a soft magnetic iron-nickel alloy according to one of the claims 1 though 4 as material for structural and punched parts of sensors, position transmitters and position receivers.
  13. Use of a soft magnetic iron-nickel alloy according to one of the claims 1 though 4 as material for magnet heads and magnet head shields.
  14. Use of a soft magnetic iron-nickel alloy according to one of the claims 1 though 4 as material for shields.
EP99906109A 1998-01-30 1999-01-08 Soft magnetic nickel-iron alloy with low coercive field strength, high permeability and improved resistance to corrosion Expired - Lifetime EP1051714B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19803598A DE19803598C1 (en) 1998-01-30 1998-01-30 Soft magnetic iron-nickel alloy for relay armatures and yokes
DE19803598 1998-01-30
PCT/EP1999/000066 WO1999039358A1 (en) 1998-01-30 1999-01-08 Soft magnetic nickel-iron alloy with low coercive field strength, high permeability and improved resistance to corrosion

Publications (3)

Publication Number Publication Date
EP1051714A1 EP1051714A1 (en) 2000-11-15
EP1051714B1 true EP1051714B1 (en) 2001-12-19
EP1051714B2 EP1051714B2 (en) 2008-04-30

Family

ID=7856134

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99906109A Expired - Lifetime EP1051714B2 (en) 1998-01-30 1999-01-08 Soft magnetic nickel-iron alloy with low coercive field strength, high permeability and improved resistance to corrosion

Country Status (15)

Country Link
EP (1) EP1051714B2 (en)
JP (2) JP2002502118A (en)
KR (1) KR100384768B1 (en)
CN (1) CN1163915C (en)
AT (1) ATE211297T1 (en)
CZ (1) CZ301345B6 (en)
DE (2) DE19803598C1 (en)
ES (1) ES2169597T5 (en)
HU (1) HU222469B1 (en)
PL (1) PL192145B1 (en)
PT (1) PT1051714E (en)
SK (1) SK285293B6 (en)
TR (1) TR200002190T2 (en)
TW (1) TW418406B (en)
WO (1) WO1999039358A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10143397A1 (en) * 2001-09-04 2003-03-27 Pierburg Gmbh Angle angle detection device and magnetic field detection device
DE102009010244A1 (en) * 2009-02-17 2010-08-19 Linde Material Handling Gmbh Control device for a mobile work machine, in particular an industrial truck
DE102009012794B3 (en) 2009-03-13 2010-11-11 Vacuumschmelze Gmbh & Co. Kg Low-hysteresis sensor
CN102306526B (en) * 2011-05-19 2012-11-28 浙江科达磁电有限公司 Fe-Ni-Mo alloy soft magnetic material and manufacturing method thereof
CN102314980B (en) * 2011-05-19 2012-11-28 浙江科达磁电有限公司 Ferrum-nickel-molybdenum alloy soft magnetic material with magnetic permeability mu being 60 and manufacturing method thereof
CN102314984B (en) * 2011-05-19 2012-11-28 浙江科达磁电有限公司 Ferrum-nickel-molybdenum alloy soft magnetic material with magnetic permeability mu being 26 and manufacturing method thereof
CN102314981B (en) * 2011-05-19 2012-11-28 浙江科达磁电有限公司 Ferrum-nickel-molybdenum alloy soft magnetic material with magnetic permeability mu being 125 and manufacturing method thereof
CN102306528B (en) * 2011-05-23 2012-11-28 浙江科达磁电有限公司 Fe-Ni alloy soft magnetic material with magnetic permeability mu of 125 and manufacturing method for Fe-Ni alloy soft magnetic material
CN102306527B (en) * 2011-05-23 2012-11-28 浙江科达磁电有限公司 Fe-Ni alloy soft magnetic material with magnetic permeability mu of 75 and manufacturing method for Fe-Ni alloy soft magnetic material
CN102306529B (en) * 2011-05-23 2012-11-28 浙江科达磁电有限公司 Fe-Ni alloy soft magnetic material with magnetic permeability mu of 26 and manufacturing method for Fe-Ni alloy soft magnetic material
CN102306530B (en) * 2011-05-23 2012-11-28 浙江科达磁电有限公司 Fe-Ni alloy soft magnetic material with magnetic permeability mu of 60 and manufacturing method for Fe-Ni alloy soft magnetic material
CN102723158B (en) * 2012-07-06 2015-12-02 白皞 Containing the high magnetic permeability Ni-Fe magnetically soft alloy and its production and use of rare earth
JP6143539B2 (en) * 2013-05-08 2017-06-07 日本冶金工業株式会社 Ni-Fe-based permalloy alloy excellent in hot workability and AC magnetic characteristics and method for producing the same
CN103498102B (en) * 2013-08-29 2017-03-22 上海惠北特种合金有限公司 Precise alloy formula for automatic flame-out protection device of gas cooker and its preparation method
CN104439234B (en) * 2014-12-20 2017-01-11 河南省龙峰新材料有限公司 Preparing method for nickel-silicon-aluminum soft magnetic material doped with rare earth elements
CN104593670B (en) * 2015-01-17 2017-05-31 东莞市大晋涂层科技有限公司 A kind of preparation method of the Ni-based soft magnetic materials of iron
JP2016216818A (en) * 2015-05-14 2016-12-22 Tdk株式会社 Soft magnetic metal powder, and, soft magnetic metal dust core
CN107326270A (en) * 2017-05-26 2017-11-07 太仓明仕金属制造有限公司 A kind of metal handware plating nickel material
DE102018127918A1 (en) 2018-11-08 2020-05-14 Vacuumschmelze Gmbh & Co. Kg Method of manufacturing a soft magnetic alloy part
CN111101057B (en) * 2019-12-25 2021-05-25 北京北冶功能材料有限公司 Soft magnetic alloy strip for ultralow-temperature magnetic shielding and preparation method thereof
CN111564273A (en) * 2020-04-23 2020-08-21 钢铁研究总院 FeNi soft magnetic alloy with low cost and high saturation magnetic induction intensity and preparation method thereof
CN111863536A (en) * 2020-08-04 2020-10-30 贵州天义电器有限责任公司 Driving structure of micro-miniature sealed electromagnetic relay
CN112176222B (en) * 2020-10-30 2021-12-17 东北大学 Ce-containing Fe-Ni permalloy material and preparation method thereof
CN116377284A (en) * 2023-03-08 2023-07-04 北京北冶功能材料有限公司 Iron-nickel-based soft magnetic alloy foil and preparation method and application thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1259367B (en) * 1957-06-11 1968-01-25 Forsch Metallische Spezialwerk Process for the production of a magnetizable material with a rectangular hysteresis loop and preferably high initial permeability from Ni-Fe alloys
JPS5411775B2 (en) * 1972-10-27 1979-05-17
JPS53124799A (en) * 1977-04-06 1978-10-31 Toshiba Corp Magnetic sealed material
JPS61276946A (en) 1985-05-30 1986-12-06 Toshiba Corp Soft magnetic alloy for reed switch
US4881989A (en) * 1986-12-15 1989-11-21 Hitachi Metals, Ltd. Fe-base soft magnetic alloy and method of producing same
JPS63243251A (en) * 1987-03-31 1988-10-11 Nippon Yakin Kogyo Co Ltd Fe-ni-cr corrosion-resisting magnetic material and its production
JP2611994B2 (en) * 1987-07-23 1997-05-21 日立金属株式会社 Fe-based alloy powder and method for producing the same
US4948434A (en) * 1988-04-01 1990-08-14 Nkk Corporation Method for manufacturing Ni-Fe alloy sheet having excellent DC magnetic property and excellent AC magnetic property
EP0342923B1 (en) * 1988-05-17 1993-09-01 Kabushiki Kaisha Toshiba Fe-based soft magnetic alloy
JPH0645848B2 (en) * 1989-10-07 1994-06-15 財団法人電気磁気材料研究所 Manufacturing method of wear resistant high permeability alloy for magnetic recording / reproducing head and magnetic recording / reproducing head
DE4105507A1 (en) * 1990-02-26 1991-08-29 Krupp Widia Gmbh Soft magnetic iron-nickel alloys prodn. - using electroslag melting with special slag to improve purity of alloy and magnetic permeability
JP2500541B2 (en) * 1991-03-22 1996-05-29 日本電気株式会社 Microwave amplifier circuit
JPH0653039A (en) * 1992-08-03 1994-02-25 Hitachi Ltd Corrosion-resistant magnetic film and magnetic head using the same
JPH0762483A (en) * 1993-08-30 1995-03-07 Nisshin Steel Co Ltd Refining method of soft magnetic alloy
JPH07102350A (en) * 1993-10-06 1995-04-18 Daido Steel Co Ltd Production of fe-base magnetic alloy powder
JPH07166281A (en) * 1993-12-08 1995-06-27 Sumitomo Special Metals Co Ltd Wear resistant magnetic alloy
US5755986A (en) * 1995-09-25 1998-05-26 Alps Electric Co., Ltd. Soft-magnetic dielectric high-frequency composite material and method for making the same
JP3594757B2 (en) * 1996-03-08 2004-12-02 日新製鋼株式会社 Melting method for high purity high Ni molten steel

Also Published As

Publication number Publication date
HU222469B1 (en) 2003-07-28
EP1051714B2 (en) 2008-04-30
TR200002190T2 (en) 2000-11-21
ES2169597T5 (en) 2008-11-01
CZ301345B6 (en) 2010-01-20
HUP0003646A2 (en) 2001-02-28
WO1999039358A1 (en) 1999-08-05
CN1163915C (en) 2004-08-25
ES2169597T3 (en) 2002-07-01
PT1051714E (en) 2002-06-28
KR20010040436A (en) 2001-05-15
ATE211297T1 (en) 2002-01-15
PL341568A1 (en) 2001-04-23
JP2002502118A (en) 2002-01-22
CZ20002616A3 (en) 2000-11-15
JP2007314885A (en) 2007-12-06
EP1051714A1 (en) 2000-11-15
DE59900588D1 (en) 2002-01-31
CN1275238A (en) 2000-11-29
KR100384768B1 (en) 2003-06-18
SK285293B6 (en) 2006-10-05
PL192145B1 (en) 2006-09-29
HUP0003646A3 (en) 2001-04-28
TW418406B (en) 2001-01-11
SK10832000A3 (en) 2001-03-12
DE19803598C1 (en) 1999-04-29

Similar Documents

Publication Publication Date Title
EP1051714B1 (en) Soft magnetic nickel-iron alloy with low coercive field strength, high permeability and improved resistance to corrosion
US8012270B2 (en) Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it
EP1918407B1 (en) Iron-cobalt based soft magnetic alloy and method for its manufacture
DE2856794C2 (en) Thin strip of highly siliconized steel produced by continuous casting with rapid cooling
EP2756106A1 (en) Non-grain-oriented higher-strength electrical strip with high polarisation and method for the production thereof
DE102007035774B4 (en) Soft magnetic iron-cobalt based alloy and process for its preparation
DE102014100589A1 (en) Soft magnetic iron-cobalt based alloy and process for its preparation
DE10320350B3 (en) Soft magnetic iron-based alloy used as a material for magnetic bearings and rotors, e.g. in electric motors and in aircraft construction contains alloying additions of cobalt, vanadium and zirconium
DE19928764B4 (en) Low coercivity iron-cobalt alloy and process for producing iron-cobalt alloy semi-finished product
DE19904951A1 (en) Soft magnetic iron-nickel alloy for relay, magnetic valve, magnet, motor and sensor parts, magnetic heads and screens has silicon and/or niobium additions and can be produced by conventional steel making technology
DE102016222805A1 (en) Semi-finished product and method for producing a CoFe alloy
DE19628139C1 (en) Use of a corrosion-resistant soft magnetic iron-nickel-chrome alloy for yokes and armatures of electromagnetic relays
DE19900351A1 (en) New soft magnetic iron-nickel alloy, especially for relay armatures and yokes, has a high nickel content and contains cerium and-or other rare earths
EP0740313B1 (en) Use of a magnetically soft nickel-iron alloy with high saturation induction and Vickers-hardness for relay components
JP4852804B2 (en) Non-oriented electrical steel sheet
JPH05255817A (en) Corrosion resistant soft magnetic material
KR100210570B1 (en) Fe-ni alloys for electron gun parts and punched electron gun parts
KR20240064676A (en) Semi-hard magnetic steel parts
EP0818551A1 (en) Use of an iron-nickel-alloy for electromagnetic parts
EP1492212A2 (en) Soft magnetic alloy, stepping motor for an electric timepiece, such as a Quartz clock, with a stator made of such a soft magnetic alloy
DE1533382B1 (en) Iron-nickel alloys enhanced by uranium
WO1997037361A1 (en) Low-retentivity nickel-ion alloy
JPH09249943A (en) Iron-nickel alloy for electronic gun parts good in punchability and worked part
JPH0320446A (en) Electrical sheet for thick plate
DE1171624B (en) Use of a ferritic steel for the production of magnetically effective components in a corrosive environment

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000301

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR IT LI PT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010523

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR IT LI PT

REF Corresponds to:

Ref document number: 211297

Country of ref document: AT

Date of ref document: 20020115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59900588

Country of ref document: DE

Date of ref document: 20020131

ET Fr: translation filed
REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20020314

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2169597

Country of ref document: ES

Kind code of ref document: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: VACUUMSCHMELZE GMBH & CO. KG

Effective date: 20020820

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: THYSSENKRUPP VDM GMBH

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: KRUPP VDM GMBH

Free format text: KRUPP VDM GMBH#PLETTENBERGER STRASSE 2#58791 WERDOHL (DE) -TRANSFER TO- KRUPP VDM GMBH#PLETTENBERGER STRASSE 2#58791 WERDOHL (DE)

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20080430

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT CH DE ES FR IT LI PT

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20080630

Kind code of ref document: T5

ET3 Fr: translation filed ** decision concerning opposition
REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59900588

Country of ref document: DE

Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE

Effective date: 20130221

Ref country code: DE

Ref legal event code: R081

Ref document number: 59900588

Country of ref document: DE

Owner name: VDM METALS INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: THYSSENKRUPP VDM GMBH, 58791 WERDOHL, DE

Effective date: 20130221

Ref country code: DE

Ref legal event code: R081

Ref document number: 59900588

Country of ref document: DE

Owner name: VDM METALS GMBH, DE

Free format text: FORMER OWNER: THYSSENKRUPP VDM GMBH, 58791 WERDOHL, DE

Effective date: 20130221

Ref country code: DE

Ref legal event code: R081

Ref document number: 59900588

Country of ref document: DE

Owner name: OUTOKUMPU VDM GMBH, DE

Free format text: FORMER OWNER: THYSSENKRUPP VDM GMBH, 58791 WERDOHL, DE

Effective date: 20130221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59900588

Country of ref document: DE

Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59900588

Country of ref document: DE

Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE

Effective date: 20140526

Ref country code: DE

Ref legal event code: R081

Ref document number: 59900588

Country of ref document: DE

Owner name: VDM METALS INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: OUTOKUMPU VDM GMBH, 58791 WERDOHL, DE

Effective date: 20140526

Ref country code: DE

Ref legal event code: R081

Ref document number: 59900588

Country of ref document: DE

Owner name: VDM METALS GMBH, DE

Free format text: FORMER OWNER: OUTOKUMPU VDM GMBH, 58791 WERDOHL, DE

Effective date: 20140526

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160120

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20160105

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59900588

Country of ref document: DE

Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59900588

Country of ref document: DE

Owner name: VDM METALS INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: VDM METALS GMBH, 58791 WERDOHL, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170710

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180122

Year of fee payment: 20

Ref country code: ES

Payment date: 20180226

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180119

Year of fee payment: 20

Ref country code: AT

Payment date: 20180122

Year of fee payment: 20

Ref country code: IT

Payment date: 20180129

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59900588

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 211297

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190108

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190109