SK285293B6 - Soft magnetic nickel-iron alloy with low coercive field strength, high permeability and improved resistance to corrosion - Google Patents
Soft magnetic nickel-iron alloy with low coercive field strength, high permeability and improved resistance to corrosion Download PDFInfo
- Publication number
- SK285293B6 SK285293B6 SK1083-2000A SK10832000A SK285293B6 SK 285293 B6 SK285293 B6 SK 285293B6 SK 10832000 A SK10832000 A SK 10832000A SK 285293 B6 SK285293 B6 SK 285293B6
- Authority
- SK
- Slovakia
- Prior art keywords
- magnetically soft
- alloy according
- nickel alloy
- nickel
- resp
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14708—Fe-Ni based alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H50/00—Details of electromagnetic relays
- H01H50/16—Magnetic circuit arrangements
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Soft Magnetic Materials (AREA)
- Hard Magnetic Materials (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Powder Metallurgy (AREA)
- Conductive Materials (AREA)
Abstract
Description
Oblasť technikyTechnical field
Vynález sa týka magneticky mäkkej železoniklovej zliatiny.The invention relates to a magnetically soft iron-nickel alloy.
Doterajší stav technikyBACKGROUND OF THE INVENTION
Z knihy Carl Heck: „Magnetische Werkstoffe und ihre technische Anwendung“, Huting Verlag, Heidelberg 1975, str. 349 a ďalej, je známe použitie magneticky mäkkých materiálov na kotvu a jarmo relé.From Carl Heck: "Magnetische Werkstoffe und ihre Technische Anwendung", Huting Verlag, Heidelberg 1975, p. 349 et seq., It is known to use magnetically soft materials for anchor and yoke relays.
Hlavné požiadavky na materiál sú vysoká hustota nasýteného toku, aby bola dosiahnutá vysoká magnetická prídržná sila pri malej energii, vysoká permeabilita, takže sa môže vytvárať nízka hustota magnetického poľa, to znamená malý budiaci prúd a vysoká hustota toku vo vzduchovej medzere, a na kotvu pôsobí veľká priťahovacia sila. Malé koercitívne intenzity umožňujú ľahké otvorenie relé pri spätnom chode budiaceho prúdu.The main material requirements are high saturation flux density to achieve high magnetic holding force at low energy, high permeability so that low magnetic field density, i.e. low field current and high flux density in the air gap can be generated, and the armature acts high pulling force. The low coercive intensities allow easy opening of the relays when the excitation current is reversed.
Tabuľka 1: Materiály na relé podľa DIN 17405Table 1: Relay materials according to DIN 17405
Vedľa magnetických požiadaviek sú na materiál na relé kladené ešte požiadavky na odolnosť proti korózii pri striedavom klimatickom teste, lebo správna funkcia relé je nevyhnutná pri každom počasí. Tejto požiadavke je možné pri nedostatočne korózievzdomých materiáloch vyhovieť len prostredníctvom prídavných povlakov hotových súčastí korózievzdomou vrstvou.In addition to the magnetic requirements, the relay material also requires corrosion resistance in an alternating climate test, since the correct function of the relay is essential in all weather conditions. In case of insufficiently corrosion-resistant materials, this requirement can only be met by additional coatings of the finished parts with a corrosion-resistant layer.
Kontaktné plochy kotvy a jarma musia mať čo možno najmenšiu štrbinu, aby bola dosiahnutá vysoká permeabilita magnetického okruhu z jarma a kotvy. Nesmú byť poškodzované zapínaním relé, lebo potom sa mení spúšťači prúd relé.The anchor and yoke contact surfaces must have as little gap as possible to achieve high permeability of the yoke and anchor magnetic circuit. They must not be damaged by switching the relay on, since then the starting current of the relay changes.
Podobné magnetické požiadavky sú kladené tiež na iné výlisky a vysekávané súčasti z magneticky mäkkých materiálov.Similar magnetic requirements are also imposed on other moldings and die-cut parts of magnetically soft materials.
Magnetické požiadavky na materiál na relé sú uvedené v DIN 17405 „Weichmagnetische Werkstoffe fur Gleichstrom relais“. Nasledujúca tabuľka 1 predstavuje výťah z DIN 17405.The magnetic requirements for relay material are given in DIN 17405 "Weichmagnetische Werkstoffe fur Gleichstrom relais". The following table 1 shows the lift from DIN 17405.
DIN 17745 „Knetlegierungen aus Nickel und Eisen“ (tváriace zliatiny niklu a železa) opisuje zliatinu Ni 48 (materiál číslo 1.3926 a 1.3927) ako východiskové materiály pre druhy RNi 12 a RNi 8 (pozri tabuľka 2). Zliatina Ni 36 (materiál číslo 1.3911) je východiskový materiál pre druhy RNi 24.DIN 17745 “Nickel and Eisen Knetlegierungen aus Nickel and Iron” describes Ni 48 (material numbers 1.3926 and 1.3927) as starting materials for types RNi 12 and RNi 8 (see Table 2). Ni 36 alloy (material number 1.3911) is the starting material for RNi 24 types.
Tabuľka 2: Výťah z DIN 17745Table 2: Extract from DIN 17745
Pri tavení železoniklových zliatin sú vedľa požadovaných zložiek zliatiny nevyhnutné ešte dezoxidačné a/alebo odsírovacie prvky ako mangán, kremík a hliník. Okrem toho nie je možné vylúčiť určité minimálne prímesi kyslíka, síry, fosforu, uhlíka, draslíka, horčíka, chrómu, molybdénu, medi a kobaltu, keď sa tieto zmesi vyrábajú, kvôli priaznivým výrobným nákladom, obvyklou oceliarenskou technológiou. Obvyklou oceliarenskou technológiou sa rozumie tavenie v otvorenej oblúkovej peci s nasledujúcou panvovou metalurgiou a/alebo VOD-spracovaním na dezoxidáciu, odsírenie a odplynenie. Potom sa blok prípadne brama v jednom alebo dvoch krokoch tvári za tepla až na hrúbku asi 4 mm a potom sa tvári za studená na konečnú hrúbku, prípadne s medzivypaľovaním. Magnetické vlastnosti zhoršujú, ako je opísané napr. v DE 19612556 Al, prímesi uhlíka, dusíka, kyslíka, síry a nekovových výlučkov. Nekovo vé nečistoty vznikajú na základe nutného dezoxidačného a/alebo odsírovacieho spracovania taveniny pred odlievaním. Vždy podľa dezoxidačného a/alebo odsírovacieho prostriedku sú to napr. oxidy draslíka, horčíka alebo hliníka.In melting the iron-nickel alloys, in addition to the required alloy components, deoxidizing and / or desulfurizing elements such as manganese, silicon and aluminum are also necessary. Moreover, it is not possible to exclude certain minimum admixtures of oxygen, sulfur, phosphorus, carbon, potassium, magnesium, chromium, molybdenum, copper and cobalt when these mixtures are produced, due to the favorable production costs, by conventional steelmaking technology. Conventional steelmaking technology is understood to mean melting in an open arc furnace followed by ladle metallurgy and / or VOD treatment for deoxidation, desulphurisation and degassing. Thereafter, the block or slab is hot-faced to about 4 mm in one or two steps and then cold-cooled to a final thickness, optionally with inter-firing. Magnetic properties deteriorate as described e.g. in DE 19612556 Al, admixtures of carbon, nitrogen, oxygen, sulfur and non-metallic exudates. Non-metallic impurities result from the necessary deoxidizing and / or desulfurizing treatment of the melt before casting. Depending on the deoxidizing and / or desulfurizing agent, these are e.g. potassium, magnesium or aluminum oxides.
Aby bolo zamedzené týmto problémom, vyrábajú sa magneticky mäkké materiály, na ktoré sú kladené najvyššie požiadavky podľa stavu techniky doteraz z vybratých čistých východiskových materiálov pomocou vákuovej technológie, ako je uvedené v DE-A 3910147 a DE-C 1259367. Iná z literatúry známa možnosť je veľmi náročné a drahé elektrotroskové tavenie pod vákuom alebo pod ochrannou atmosférou blokov, dopredu tavených pod vákuom alebo pod ochrannou atmosférou, opísané v DE-A 410507.To avoid this problem, magnetically soft materials which are subject to the highest prior art requirements so far have been manufactured from selected pure starting materials by means of vacuum technology, as disclosed in DE-A 3910147 and DE-C 1259367. Another known option in the literature it is a very demanding and expensive electroslag melting under vacuum or under the protective atmosphere of blocks pre-melted under vacuum or under the protective atmosphere described in DE-A 410507.
Japonský dokument JP-A 07166281 sa týka magnetickej zliatiny na magnetické hlavy, ktorá sa skladá z Mi a Fe s prísadami Nd, Pr alebo Sm. Tuje množstvo Ni vyššie ako 78 % hmotn.Japanese document JP-A 07166281 relates to a magnetic alloy for magnetic heads consisting of Mi and Fe with additives Nd, Pr or Sm. The amount of Ni is greater than 78% by weight.
Podstata vynálezuSUMMARY OF THE INVENTION
Problém riešený vynálezom spočíva v tavení magneticky mäkkej železoniklovej zliatiny, ktorá vyhovuje opísaným požiadavkám na magnetické vlastnosti a na odolnosť proti korózii a opotrebovaní, a ktorá nachádza rad výhodných použití na magneticky mäkké súčasti.The problem solved by the invention resides in the smelting of a magnetically soft iron-nickel alloy which meets the described requirements for magnetic properties and corrosion and wear resistance, and which finds a number of preferred applications for magnetically soft components.
Tento problém je vyriešený magneticky mäkkou železoniklovou zliatinou s obsahom niklu 35 až 65 % hmotn., s jednou alebo viac vzácnych zemín cér, lantán, praseodým alebo neodým, a s nečistotami vzniknutými pri tavení, pričom celkové množstvo vzácnych zemín je medzi 0,003 aThis problem is solved by a magnetically soft iron-nickel alloy with a nickel content of 35 to 65% by weight, with one or more cerium rare earths, lanthanum, pig-iron or neodymium, and with melting impurities, with a total amount of rare earths between 0.003 and
SK 285293 Β6SK 285293 Β6
0,05 % hmotn., pričom súhrnný obsah vzácnych zemín céru, lantánu, praseodýmu a neodýmu v % hmotn. je aspoň0.05% by weight, the total rare earth content of cerium, lanthanum, praseodymium and neodymium in% by weight. is at least
4,4-krát väčší ako obsah síry v % hmotn.4.4 times the sulfur content in wt.
Výhodné uskutočnenia predmetu vynálezu sú zrejmé z príslušných závislých nárokov.Preferred embodiments of the invention are apparent from the respective dependent claims.
Zliatina podľa vynálezu sa výhodne vyrába oceliarenskou technológiou, to znamená tavením v otvorenej oblúkovej peci s nasledujúcou panvovou metalurgiou a/alebo VOD-spracovanim (vákuovou oxidačnou dekarburizáciou) na dezoxidáciu, odsírenie a odplynenie. Potom sa blok prípadne brama v jednom alebo dvoch krokoch tvári za tepla až na hrúbku asi 4 mm a potom sa tvári za studená na konečnú hrúbku, prípadne s medzivypaľovaním na nastavenie tvrdosti potrebnej na výrobu súčastí z tohto pása. V nadväznosti na výrobu súčastí z tejto zliatiny a vypaľovaní týchto súčastí pri teplotách medzi 800 až 1150 °C je možné s týmito súčasťami dosiahnuť koercitivne intenzity menšie ako 8 A/m.The alloy according to the invention is preferably produced by steel technology, i.e. by melting in an open arc furnace followed by ladle metallurgy and / or VOD treatment (vacuum oxidative decarburization) for deoxidation, desulphurisation and degassing. Thereafter, the block or slab is hot-faced to a thickness of about 4 mm in one or two steps and then cold-cooled to a final thickness, optionally with inter-firing, to adjust the hardness required to manufacture the components from the strip. Following the production of the alloy components and the firing of these components at temperatures between 800 and 1150 ° C, coercive intensities of less than 8 A / m can be achieved with these components.
Výhodné prípady použitia zliatiny podľa vynálezu sú okrem iného súčasti relé, ako jarmá a kotvy.Preferred cases of use of the alloy according to the invention are, inter alia, relay components such as yokes and anchors.
Okrem toho je železoniklová zliatina podľa vynálezu účelne použiteľná ešte na nasledujúce ďalšie prípady použitia:In addition, the ferro-nickel alloy according to the invention can be conveniently used for the following other applications:
- vrchnáky a telesá magnetických ventilov,- Solenoid valve caps and housings
-jarmá, prípadne póly, prípadne pólové nadstavce, príp. pólové plechy a kotvy prídržných magnetov, príp. elektromagnetov-arms or poles, or pole extensions, resp. pole plates and anchors of holding magnets, resp. electromagnets
- jadrá cievok a statory krokových prepínacích motorov, ako aj rotory a statory elektromotorov,- coil cores and stators of stepper switching motors as well as rotors and stators of electric motors,
- lisované a vysekávané diely snímačov, vysielačov a snímačov polohy,- molded and die-cut parts of sensors, transmitters and position sensors,
- magnetické hlavy a odtienenie magnetických hláv,- magnetic heads and shielding of magnetic heads,
- odtienenie, ako napríklad odtienenie motorov, tieniace kryty na meracie prístroje a odtienenie katódových trubíc.- screening, such as motor screening, shielding for measuring instruments and cathode ray tube screening.
Z pása s hrúbkou 1,2 mm vyrobeného oceliarenskou technológiou boli vyseknuté ploché vzorky, vyčistené, podrobené vypaľovaniu pri 1080 °C počas 4 hodín v atmosfére vodíka a potom ochladené v peci na 300 °C. Na týchto vzorkách bol uskutočnený klimatický test opísaný v DIN 50017 s 28 cyklami po 8 hodinách pri 55 °C a 90 až 96 % vlhkosti vzduchu a 16 hodinách pri 25 °C a 95 až 99 % vlhkosti vzduchu. Boli skúmané zliatiny s obsahom niklu 36 až 81 % hmotn. a čiastočne s prísadami ako chróm, meď a/alebo molybdén (pozri tabuľka 3). Zliatiny s obsahom niklu menším ako 55 % hmotn. majú po skončení tohto striedavého klimatického testu všetky silnejšie prejavy korózie na povrchu ako zliatiny s obsahmi niklu viac ako 75 % (B. Gehrmann, H. Hattendorf, A. Kolb-Telieps, W. Kramer, W. Mottgen: Materiál and Corrosion 48, 535 - 541 (1997)) a nespĺňajú tak, bez dodatočných protikoróznych opatrení, uvedené požiadavky na materiál na relé, pokiaľ ide o odolnosť proti korózii. Magnetické vlastnosti požadované DIN 17405 boli naproti tomu splnené, ako ukazujú koercitivne intenzity Hc uvedené v tabuľke 3 (stav techniky)·Flat specimens were punched from a 1.2 mm thick strip produced by steel technology, cleaned, baked at 1080 ° C for 4 hours under a hydrogen atmosphere, and then cooled in an oven at 300 ° C. These samples were subjected to the climate test described in DIN 50017 with 28 cycles of 8 hours at 55 ° C and 90 to 96% air humidity and 16 hours at 25 ° C and 95 to 99% air humidity. Alloys with a nickel content of 36 to 81% by weight were investigated. and partly with additives such as chromium, copper and / or molybdenum (see Table 3). Alloys with a nickel content of less than 55% by weight. have, after completion of this alternating climatic test, all the more severe surface corrosion effects than alloys with more than 75% nickel (B. Gehrmann, H. Hattendorf, A. Kolb-Telieps, W. Kramer, W. Mottgen: Material and Corrosion 48, 535-541 (1997)) and thus do not, without additional anti-corrosion measures, meet the aforementioned requirements for relay material in terms of corrosion resistance. The magnetic properties required by DIN 17405, on the other hand, were met, as shown by the coercive intensities Hc shown in Table 3 (prior art).
Tabuľka 3Table 3
Na korodovaných miestach týchto vzoriek bola po skončení striedavých klimatických testov prostredníctvom REM/EDX nájdená síra.Sulfur was found at the corroded sites of these samples after the alternating climate tests by REM / EDX.
Zlepšenie korózneho chovania podľa vynálezu je prekvapivo dosiahnuté prostredníctvom odsírenia na koróziu náchylných železoniklových zliatin s obsahom niklu 35 až 65 % hmotn. cérom. To sa výhodne uskutočňuje zmesovým kovom zo skupiny chemickým správaním veľmi podobných vzácnych zemín cér a/alebo lantán a/alebo praseodým a/alebo neodým. Aby bola spoľahlivo viazaná všetka síra, musí byť prítomné dostatočné množstvo atómov vzácnych zemín. Vychádzajúc napríklad z vytvárania sírnika céru s najväčším podielom CeS, je to prípad, keď je v zliatine prítomných viac atómov céru ako atómov síry.Surprisingly, the improvement of the corrosion behavior according to the invention is achieved by means of desulfurization for the corrosion of susceptible iron-nickel alloys with a nickel content of 35 to 65% by weight. cerium. This is preferably done with a mixed metal of the group by the chemical behavior of very similar rare earth cereals and / or lanthanum and / or prime and / or neodymium. Sufficient rare earth atoms must be present to reliably bind all sulfur. Starting from, for example, the formation of cerium sulphide with the largest proportion of CeS, this is the case when more cerium atoms are present in the alloy than sulfur atoms.
V súlade s tým musí byť obsah céru v % hmotn. aspoňAccordingly, the cerium content in wt. at least
4,4-krát väčší ako obsah síry v % hmotn., aby bolo dosiahnuté úplné viazanie síry cérom. Zodpovedajúca podmienka platí pre ďalšie vzácne zeminy lantán, praseodým a/alebo neodým a na celkový obsah vzácnych zemín.4.4 times greater than the sulfur content in% by weight in order to achieve complete binding of the sulfur by the cerium. The corresponding condition applies to other rare earths lanthanum, praseodine and / or neodymium and to the total rare earth content.
Ako už bolo zmienené, môže prídavok tak silného dezoxidačného a odsírovacieho prostriedku, ako je napríklad cér v dôsledku reakčných produktov v materiáli ovplyvniť magnetické vlastnosti (A. Hoffmann, Uber den Einfluss von verschiedenen Desoxidationselementen auf die Verformung und die Anfangspermeabilitat von Ni-Fe-Legierungen, Z. Angew. Physik 32, str. 236 až 241). Prekvapivo je možné dávkovať prídavok vzácnych zemín tak, že magnetické hodnoty permeability a koercitívnej intenzity ležia v rámci medzí odchýlok šarží tavených podľa stavu techniky.As already mentioned, the addition of a strong deoxidizing and desulfurizing agent such as cerium as a result of reaction products in the material can affect the magnetic properties (A. Hoffmann, Uber den Einfluss von verschiedenen Desoxidationselementen auf die Verformung und die Anfangspermeabilitat von Ni-Fe-Legierung (Z. Angew. Physik 32: 236-241). Surprisingly, the addition of rare earths can be dosed such that the magnetic values of permeability and coercive intensity lie within the limits of the variations of the batches fused according to the prior art.
Je známe, že dezoxidačné zostatky z kontaktných plôch relé sa odlamujú, zostávajú ležať medzi týmito plochami a svojou, napríklad v prípade oxidických zostatkov, väčšou tvrdosťou môžu pri ďalšom spínaní relé zničiť jemne brúsené kontaktné plochy. Preto môžu materiály na relé mať len veľmi malý obsah nekovových vtrúsenín podľa DINIt is known that deoxidizing residues from the relay contact surfaces break off, remaining between these surfaces and, for example in the case of oxide residues, higher hardness can destroy finely ground contact surfaces when the relay is switched again. Therefore, relay materials can have only a very low content of non-metallic inclusions according to DIN
50602 (spôsob M). Preto tiež pri dezoxidácii cérom, prípadne zmesovým kovom vzácnych zemín céru, lantánu, praseodýmu a neodýmu, musia byť maximálne hodnoty sulfidických vtrúsenín vo vláknitej forme SS menšie ako 0,1 príp. 1,1, maximálne hodnoty oxidických vtrúsenín v rozpustenej forme OA (oxid hlinitý) menšie ako 2,2 prípadne 3,2 príp. 4,2, maximálne hodnoty oxidických vtrúsenín vo vláknitej forme OS (silikáty) menšie ako 5,2 príp. 6,2 príp. 7,2 a maximálne hodnoty oxidických vtrúsenín v globulámej forme OG menšie ako 8,2, príp. 9,2.50602 (method M). Therefore, also in the case of deoxidation with cerium, or a rare earth mixed metal of cerium, lanthanum, praseodymium and neodymium, the maximum values of sulfide inclusions in the fibrous form of SS must be less than 0.1 resp. 1.1, maximum values of oxidic inclusions in dissolved form of OA (alumina) less than 2.2 and 3.2, respectively. 4.2, maximum values of oxidic inclusions in the fibrous form of OS (silicates) less than 5.2 resp. 6,2 resp. 7.2 and maximum values of oxidic inclusions in globular form of OG less than 8.2, resp. 9.2.
Príklady uskutočnenia vynálezuDETAILED DESCRIPTION OF THE INVENTION
Ako príklad bola tavená oceliarenskou technológiou v 30 t oblúkovej peci železoniklová zliatina obsahujúca asi 48 % niklu a malé prísady mangánu a kremíka (šarža E5407 a E0545) a porovnaná so šaržami veľmi podobného zloženia, ale bez prísady vzácnych zemín, zodpovedajúcimi stavu techniky (šarža T4392, T5405 a T5406). Presné zloženia sú uvedené v tabuľke 4.By way of example, a steel-alloy technology in a 30-ton arc furnace was made of an iron-nickel alloy containing about 48% nickel and small manganese and silicon additives (batches E5407 and E0545) and compared to batches of very similar composition but without the rare earth additions corresponding to the state of the art (batch T4392) , T5405 and T5406). The exact compositions are given in Table 4.
Tabuľka 4: Zloženie šarží podľa stavu techniky (T) a šarží podľa vynálezu (E). Všetky údaje sú v % hmotn.Table 4: Composition of Batches of the Prior Art (T) and Batches of the Invention (E). All data are in wt.
Malé množstvá boru môžu byť pridané na zlepšenie raziteľnosti, ako je to pri šaržiach T4392, T5405, T5406 a E5407. Obsah boru v % hmotn. v šarží podľa vynálezu E5407 a E0545 je viac ako 4,4-krát väčší ako obsah síry v % hmotn.Small amounts of boron can be added to improve stampability, such as batches T4392, T5405, T5406 and E5407. Boron content in wt. in batches according to the invention E5407 and E0545 is more than 4.4 times greater than the sulfur content in wt.
Po roztavení bolo uskutočnené blokové valcovanie, následne valcovanie pása za tepla na asi 4 mm, a potom tvárenie za studená na konečnú hrúbku 1,0 mm.After melting, block rolling was carried out, followed by hot rolling the strip to about 4 mm, and then cold forming to a final thickness of 1.0 mm.
Z toho boli vyrazené kruhové vzorky s priemerom 25,5 mm. To piati pre všetky šarže až na E0545. Tu bol použitý kus asi 15 mm x 15 nim x 5 mm odliatej vzorky, ktorého plochy boli hladko brúsené. Všetky vzorky boli vyčistené a časť vzoriek bola podrobená vypaľovaniu pri 970 °C počas 6 hodín v atmosfére vodíka a potom v peci ochladená pod 300 CC. Druhá časť vzoriek bola podrobená vypaľovaniu pri 1030 °C počas 2 hodín v atmosfére vodíka a potom v peci ochladená pod 300 °C. Všetky vzorky boli podrobené skrátenému klimatickému testu počas 2 dní so striedaním teploty/vlhkosti v rytme 3 hodín z 25 °C a 55 % vlhkosti na 55 °C a 98 % vlhkosť. Vzorky pritom ležali jednotlivo na plocho v sklenených miskách, takže na spodnej strane panovali ešte tvrdšie podmienky štrbinovej korózie. Výsledok je uvedený v tabuľke 5.Circular samples with a diameter of 25.5 mm were punched out of this. This five for all lots except E0545. Here a piece of about 15 mm x 15 mm x 5 mm cast sample was used, the surfaces of which were smoothly ground. All samples were cleaned and a portion of the samples was fired at 970 ° C for 6 hours under a hydrogen atmosphere and then cooled to below 300 ° C in an oven. The other sample was fired at 1030 ° C for 2 hours under a hydrogen atmosphere cooled below 300 ° C. All samples were subjected to a shortened climatic test for 2 days with a temperature / humidity rhythm of 3 hours from 25 ° C and 55% humidity to 55 ° C and 98% humidity. The samples lay flat on the glass pans, so that even more severe crevice corrosion conditions prevailed on the underside. The result is shown in Table 5.
Tabuľka 5: Výsledky klimatických testovTable 5: Results of climate tests
V šaržiach E5407 a E0545 podľa vynálezu nebola pozorovaná žiadna korózia, zatiaľ čo v obidvoch porovnávacích šaržiach T5405 a T5406 sa v každej vzorke nachádzali na obidvoch stranách body s koróziou.No corrosion was observed in batches E5407 and E0545 according to the invention, whereas in both comparative batches T5405 and T5406, there were corrosion points on both sides in each sample.
Prísada takého silného dezoxidačného a odsírovacieho prostriedku, akým je cér, môže, ako je uvedené, v dôsledku prítomnosti reakčných produktov zostávajúcich v materiáli nepriaznivo ovplyvniť magnetické vlastnosti. Prekvapivo ležia magnetické hodnoty permeability a koercitívnej inten zity, ktoré majú šarže E5407 a E0545 podľa vynálezu, v rámci obvyklých medzí odchýlok šarží tavených podľa stavu techniky, ako je zrejmé z tabuľky 6.The addition of such a strong deoxidizing and desulfurizing agent, such as cerium, may, as stated, adversely affect the magnetic properties due to the presence of reaction products remaining in the material. Surprisingly, the magnetic permeability and coercive intensities values of batches E5407 and E0545 according to the invention lie within the usual variation limits of batches fused according to the state of the art, as shown in Table 6.
Tabuľka 6: Magnetické hodnoty šarží podľa stavu techniky (T) a šarží podľa vynálezu (E) merané na vzorkách s hrúbkou 1 mm po vypaľovaní pri 1080 °C počas 4 hodín a ochladení v peci na 450 °C. Zloženie šarží je uvedené v tabuľke 4.Table 6: Magnetic values of prior art batches (T) and batches of the invention (E) measured on samples of 1 mm thickness after firing at 1080 ° C for 4 hours and cooled in an oven at 450 ° C. The batch composition is shown in Table 4.
Ďalej boli sledované vlastnosti pri blokovom valcovaní a pri valcovaní pása za tepla dvoch šarží so zložením podľa stavu techniky, uvedenom v tabuľke 7.Further, the block rolling and hot rolling properties of two batches of the prior art composition shown in Table 7 were studied.
Obidve šarže sa líšili v podstate len rôznym obsahom vzácnych zemín.The two lots differed basically only with different rare earth contents.
Tabuľka 7Table 7
V prípade šarže T06 26 s celkovým obsahom vzácnych zemín 0,054 % sa pri tvárení za tepla vytvárali trhliny a blok potom išiel do šrotu. Takto vysoký obsah vzácnych zemín vedie na horšie tepelno-tváriace vlastnosti. Šarža T0624 bola naproti tomu valcovaná tak do bloku, ako tiež na pás valcovaný za tepla s hrúbkou asi 4 mm. Pretože sa vzácne zeminy chovajú chemicky podobne, je podľa vyná lezu nutné obmedziť celkové množstvo vzácnych zemín céru, lantánu, praseodýmu a neodýmu na maximálne 0,05 % hmotn., aby bolo zamedzené problémom pri tvárení za tepla.In the case of batch T06 26 with a total rare earth content of 0.054% cracks formed during hot forming and the block was then scrapped. Such a high rare earth content leads to worse heat-forming properties. Batch T0624, on the other hand, was rolled into both a block and a hot-rolled strip of about 4 mm thickness. Since the rare earths behave chemically in a similar manner, according to the invention, it is necessary to limit the total amount of cerium, lanthanum, praseodymium and neodymium rare earths to a maximum of 0.05% by weight in order to avoid hot forming problems.
Tabuľka 8 obsahuje vyšetrenie obsahu nekovových vtrúsenin podľa D1N 50602 v rôznych šaržiach podľa stavu techniky (T) a podľa vynálezu (E).Table 8 contains an examination of the content of non-metallic inclusions according to D1N 50602 in different batches according to the prior art (T) and according to the invention (E).
Tabuľka 8Table 8
Šarža T2536 má v prípade oxidických vtrúsenin vo vláknitej forme maximálnu hodnotu 2,7 (spôsob M). Táto hodnota je na použitie tejto šarže na súčasti relé príliš vysoká. Vedie na opotrebovanie kontaktných plôch relé a má za následok stratu funkčnosti relé. Obsah nekovových vtrúsenín je preto podľa vynálezu obmedzený nasledovne:Batch T2536 has a maximum value of 2.7 in the case of oxidic inclusions in the fibrous form (method M). This value is too high to use this batch on the relay components. It leads to wear on the relay contact surfaces and results in the loss of relay functionality. The content of non-metallic inclusions is therefore limited according to the invention as follows:
Maximálne hodnoty podľa DIN 50602 sulfidických vtrúsenin vo vláknitej forme SS sú menšie alebo sa rovnajú 0,1, prípadne 1,1, maximálne hodnoty podľa DIN 50602 oxidických vtrúsenin v rozpustenej forme OA (oxid hlinitý) menšie alebo rovnajúce sa 2,2, prípadne 3,2, príp. 4,2, maximálne hodnoty podľa DIN 5060 2 oxidických vtrúsenin vo vláknitej forme OS (silikáty) menšie alebo rovnajúce sa 5,2, príp. 6,2, príp. 7,2 a maximálne hodnoty podľa DIN 50602 oxidických vtrúsenin v globulámej forme OG menšie alebo rovnajúce sa 8,2, príp. 9,2. Všetky v tabuľke 8 u vedené šarže spĺňajú podmienky na obsah nekovových vtrúsenín.The maximum values according to DIN 50602 of sulfide inclusions in fibrous form SS are less than or equal to 0.1 and 1.1, respectively, the maximum values according to DIN 50602 of oxidized inclusions in dissolved form OA (alumina) less than or equal to 2.2 and 3 respectively. , 2, resp. 4.2, maximum values according to DIN 5060 2 oxide inclusions in fibrous form OS (silicates) less than or equal to 5.2, resp. 6.2, resp. 7.2 and maximum values according to DIN 50602 of oxidic inclusions in globular form OG less than or equal to 8.2, resp. 9.2. All of the batches listed in Table 8 meet the conditions for non-metallic inclusions.
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19803598A DE19803598C1 (en) | 1998-01-30 | 1998-01-30 | Soft magnetic iron-nickel alloy for relay armatures and yokes |
PCT/EP1999/000066 WO1999039358A1 (en) | 1998-01-30 | 1999-01-08 | Soft magnetic nickel-iron alloy with low coercive field strength, high permeability and improved resistance to corrosion |
Publications (2)
Publication Number | Publication Date |
---|---|
SK10832000A3 SK10832000A3 (en) | 2001-03-12 |
SK285293B6 true SK285293B6 (en) | 2006-10-05 |
Family
ID=7856134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SK1083-2000A SK285293B6 (en) | 1998-01-30 | 1999-01-08 | Soft magnetic nickel-iron alloy with low coercive field strength, high permeability and improved resistance to corrosion |
Country Status (15)
Country | Link |
---|---|
EP (1) | EP1051714B2 (en) |
JP (2) | JP2002502118A (en) |
KR (1) | KR100384768B1 (en) |
CN (1) | CN1163915C (en) |
AT (1) | ATE211297T1 (en) |
CZ (1) | CZ301345B6 (en) |
DE (2) | DE19803598C1 (en) |
ES (1) | ES2169597T5 (en) |
HU (1) | HU222469B1 (en) |
PL (1) | PL192145B1 (en) |
PT (1) | PT1051714E (en) |
SK (1) | SK285293B6 (en) |
TR (1) | TR200002190T2 (en) |
TW (1) | TW418406B (en) |
WO (1) | WO1999039358A1 (en) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10143397A1 (en) * | 2001-09-04 | 2003-03-27 | Pierburg Gmbh | Angle angle detection device and magnetic field detection device |
DE102009010244A1 (en) * | 2009-02-17 | 2010-08-19 | Linde Material Handling Gmbh | Control device for a mobile work machine, in particular an industrial truck |
DE102009012794B3 (en) | 2009-03-13 | 2010-11-11 | Vacuumschmelze Gmbh & Co. Kg | Low-hysteresis sensor |
CN102306526B (en) * | 2011-05-19 | 2012-11-28 | 浙江科达磁电有限公司 | Fe-Ni-Mo alloy soft magnetic material and manufacturing method thereof |
CN102314980B (en) * | 2011-05-19 | 2012-11-28 | 浙江科达磁电有限公司 | Ferrum-nickel-molybdenum alloy soft magnetic material with magnetic permeability mu being 60 and manufacturing method thereof |
CN102314981B (en) * | 2011-05-19 | 2012-11-28 | 浙江科达磁电有限公司 | Ferrum-nickel-molybdenum alloy soft magnetic material with magnetic permeability mu being 125 and manufacturing method thereof |
CN102314984B (en) * | 2011-05-19 | 2012-11-28 | 浙江科达磁电有限公司 | Ferrum-nickel-molybdenum alloy soft magnetic material with magnetic permeability mu being 26 and manufacturing method thereof |
CN102306527B (en) * | 2011-05-23 | 2012-11-28 | 浙江科达磁电有限公司 | Fe-Ni alloy soft magnetic material with magnetic permeability mu of 75 and manufacturing method for Fe-Ni alloy soft magnetic material |
CN102306530B (en) * | 2011-05-23 | 2012-11-28 | 浙江科达磁电有限公司 | Fe-Ni alloy soft magnetic material with magnetic permeability mu of 60 and manufacturing method for Fe-Ni alloy soft magnetic material |
CN102306529B (en) * | 2011-05-23 | 2012-11-28 | 浙江科达磁电有限公司 | Fe-Ni alloy soft magnetic material with magnetic permeability mu of 26 and manufacturing method for Fe-Ni alloy soft magnetic material |
CN102306528B (en) * | 2011-05-23 | 2012-11-28 | 浙江科达磁电有限公司 | Fe-Ni alloy soft magnetic material with magnetic permeability mu of 125 and manufacturing method for Fe-Ni alloy soft magnetic material |
CN102723158B (en) * | 2012-07-06 | 2015-12-02 | 白皞 | Containing the high magnetic permeability Ni-Fe magnetically soft alloy and its production and use of rare earth |
JP6143539B2 (en) * | 2013-05-08 | 2017-06-07 | 日本冶金工業株式会社 | Ni-Fe-based permalloy alloy excellent in hot workability and AC magnetic characteristics and method for producing the same |
CN103498102B (en) * | 2013-08-29 | 2017-03-22 | 上海惠北特种合金有限公司 | Precise alloy formula for automatic flame-out protection device of gas cooker and its preparation method |
CN104439234B (en) * | 2014-12-20 | 2017-01-11 | 河南省龙峰新材料有限公司 | Preparing method for nickel-silicon-aluminum soft magnetic material doped with rare earth elements |
CN104593670B (en) * | 2015-01-17 | 2017-05-31 | 东莞市大晋涂层科技有限公司 | A kind of preparation method of the Ni-based soft magnetic materials of iron |
JP2016216818A (en) * | 2015-05-14 | 2016-12-22 | Tdk株式会社 | Soft magnetic metal powder, and, soft magnetic metal dust core |
CN107326270A (en) * | 2017-05-26 | 2017-11-07 | 太仓明仕金属制造有限公司 | A kind of metal handware plating nickel material |
DE102018127918A1 (en) | 2018-11-08 | 2020-05-14 | Vacuumschmelze Gmbh & Co. Kg | Method of manufacturing a soft magnetic alloy part |
CN111101057B (en) * | 2019-12-25 | 2021-05-25 | 北京北冶功能材料有限公司 | Soft magnetic alloy strip for ultralow-temperature magnetic shielding and preparation method thereof |
CN111564273A (en) * | 2020-04-23 | 2020-08-21 | 钢铁研究总院 | FeNi soft magnetic alloy with low cost and high saturation magnetic induction intensity and preparation method thereof |
CN111863536A (en) * | 2020-08-04 | 2020-10-30 | 贵州天义电器有限责任公司 | Driving structure of micro-miniature sealed electromagnetic relay |
CN112176222B (en) * | 2020-10-30 | 2021-12-17 | 东北大学 | Ce-containing Fe-Ni permalloy material and preparation method thereof |
DE102021111286A1 (en) * | 2021-04-30 | 2022-11-03 | Magnetec Gmbh | Dampening sheet and method of making a dampening sheet |
CN116162868B (en) * | 2023-01-17 | 2024-06-14 | 北京北冶功能材料有限公司 | Medium nickel soft magnetic alloy and preparation method thereof |
CN116377284B (en) * | 2023-03-08 | 2024-06-14 | 北京北冶功能材料有限公司 | Iron-nickel-based soft magnetic alloy foil and preparation method and application thereof |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1259367B (en) * | 1957-06-11 | 1968-01-25 | Forsch Metallische Spezialwerk | Process for the production of a magnetizable material with a rectangular hysteresis loop and preferably high initial permeability from Ni-Fe alloys |
JPS5411775B2 (en) * | 1972-10-27 | 1979-05-17 | ||
JPS53124799A (en) * | 1977-04-06 | 1978-10-31 | Toshiba Corp | Magnetic sealed material |
JPS61276946A (en) * | 1985-05-30 | 1986-12-06 | Toshiba Corp | Soft magnetic alloy for reed switch |
US4881989A (en) * | 1986-12-15 | 1989-11-21 | Hitachi Metals, Ltd. | Fe-base soft magnetic alloy and method of producing same |
JPS63243251A (en) * | 1987-03-31 | 1988-10-11 | Nippon Yakin Kogyo Co Ltd | Fe-ni-cr corrosion-resisting magnetic material and its production |
JP2611994B2 (en) * | 1987-07-23 | 1997-05-21 | 日立金属株式会社 | Fe-based alloy powder and method for producing the same |
US4948434A (en) * | 1988-04-01 | 1990-08-14 | Nkk Corporation | Method for manufacturing Ni-Fe alloy sheet having excellent DC magnetic property and excellent AC magnetic property |
EP0342923B1 (en) * | 1988-05-17 | 1993-09-01 | Kabushiki Kaisha Toshiba | Fe-based soft magnetic alloy |
JPH0645848B2 (en) * | 1989-10-07 | 1994-06-15 | 財団法人電気磁気材料研究所 | Manufacturing method of wear resistant high permeability alloy for magnetic recording / reproducing head and magnetic recording / reproducing head |
DE4105507A1 (en) * | 1990-02-26 | 1991-08-29 | Krupp Widia Gmbh | Soft magnetic iron-nickel alloys prodn. - using electroslag melting with special slag to improve purity of alloy and magnetic permeability |
JP2500541B2 (en) * | 1991-03-22 | 1996-05-29 | 日本電気株式会社 | Microwave amplifier circuit |
JPH0653039A (en) * | 1992-08-03 | 1994-02-25 | Hitachi Ltd | Corrosion-resistant magnetic film and magnetic head using the same |
JPH0762483A (en) * | 1993-08-30 | 1995-03-07 | Nisshin Steel Co Ltd | Refining method of soft magnetic alloy |
JPH07102350A (en) * | 1993-10-06 | 1995-04-18 | Daido Steel Co Ltd | Production of fe-base magnetic alloy powder |
JPH07166281A (en) * | 1993-12-08 | 1995-06-27 | Sumitomo Special Metals Co Ltd | Wear resistant magnetic alloy |
US5755986A (en) * | 1995-09-25 | 1998-05-26 | Alps Electric Co., Ltd. | Soft-magnetic dielectric high-frequency composite material and method for making the same |
JP3594757B2 (en) * | 1996-03-08 | 2004-12-02 | 日新製鋼株式会社 | Melting method for high purity high Ni molten steel |
-
1998
- 1998-01-30 DE DE19803598A patent/DE19803598C1/en not_active Revoked
-
1999
- 1999-01-08 WO PCT/EP1999/000066 patent/WO1999039358A1/en active IP Right Grant
- 1999-01-08 DE DE59900588T patent/DE59900588D1/en not_active Expired - Lifetime
- 1999-01-08 CZ CZ20002616A patent/CZ301345B6/en not_active IP Right Cessation
- 1999-01-08 CN CNB998014117A patent/CN1163915C/en not_active Expired - Lifetime
- 1999-01-08 PL PL341568A patent/PL192145B1/en unknown
- 1999-01-08 PT PT99906109T patent/PT1051714E/en unknown
- 1999-01-08 SK SK1083-2000A patent/SK285293B6/en not_active IP Right Cessation
- 1999-01-08 ES ES99906109T patent/ES2169597T5/en not_active Expired - Lifetime
- 1999-01-08 JP JP2000529731A patent/JP2002502118A/en active Pending
- 1999-01-08 TR TR2000/02190T patent/TR200002190T2/en unknown
- 1999-01-08 HU HU0003646A patent/HU222469B1/en not_active IP Right Cessation
- 1999-01-08 KR KR10-2000-7008231A patent/KR100384768B1/en not_active IP Right Cessation
- 1999-01-08 EP EP99906109A patent/EP1051714B2/en not_active Expired - Lifetime
- 1999-01-08 AT AT99906109T patent/ATE211297T1/en active
- 1999-01-19 TW TW088100793A patent/TW418406B/en not_active IP Right Cessation
-
2007
- 2007-06-26 JP JP2007168024A patent/JP2007314885A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
PL341568A1 (en) | 2001-04-23 |
SK10832000A3 (en) | 2001-03-12 |
KR20010040436A (en) | 2001-05-15 |
CZ301345B6 (en) | 2010-01-20 |
JP2002502118A (en) | 2002-01-22 |
HUP0003646A3 (en) | 2001-04-28 |
ATE211297T1 (en) | 2002-01-15 |
DE59900588D1 (en) | 2002-01-31 |
KR100384768B1 (en) | 2003-06-18 |
TR200002190T2 (en) | 2000-11-21 |
EP1051714B1 (en) | 2001-12-19 |
JP2007314885A (en) | 2007-12-06 |
CN1163915C (en) | 2004-08-25 |
TW418406B (en) | 2001-01-11 |
HUP0003646A2 (en) | 2001-02-28 |
PT1051714E (en) | 2002-06-28 |
PL192145B1 (en) | 2006-09-29 |
CZ20002616A3 (en) | 2000-11-15 |
HU222469B1 (en) | 2003-07-28 |
ES2169597T5 (en) | 2008-11-01 |
DE19803598C1 (en) | 1999-04-29 |
ES2169597T3 (en) | 2002-07-01 |
CN1275238A (en) | 2000-11-29 |
EP1051714B2 (en) | 2008-04-30 |
WO1999039358A1 (en) | 1999-08-05 |
EP1051714A1 (en) | 2000-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SK285293B6 (en) | Soft magnetic nickel-iron alloy with low coercive field strength, high permeability and improved resistance to corrosion | |
EP2824192B1 (en) | Calcium treatment method for a non-oriented electrical steel sheet | |
US20090038439A1 (en) | Process for producing steel for high-carbon steel wire material with excellent drawability and fatique characteristics | |
JP6603033B2 (en) | High Mn content Fe-Cr-Ni alloy and method for producing the same | |
JP2971080B2 (en) | Non-oriented electrical steel sheet with excellent magnetic properties | |
KR100711410B1 (en) | Highly Ductile Steel Sheet and Method of Manufacturing the Same | |
EP1352981B1 (en) | Iron-nickel alloy material for shadow mask with excellent suitability for etching | |
JP6722740B2 (en) | Ferritic stainless steel with excellent magnetic properties | |
JP7475181B2 (en) | Ferritic Stainless Steel | |
CN109097679B (en) | Marine low-magnetic steel and preparation method thereof | |
DE19904951A1 (en) | Soft magnetic iron-nickel alloy for relay, magnetic valve, magnet, motor and sensor parts, magnetic heads and screens has silicon and/or niobium additions and can be produced by conventional steel making technology | |
JP2015034329A (en) | Fe-Ni-BASED PERMALLOY ALLOY AND PRODUCTION METHOD THEREOF | |
KR980009496A (en) | Corrosion Resistance Soft Magnetic Iron-Nickel-Chrome Alloys | |
JPH08134604A (en) | Soft-magnetic material, excellent in magnetic flux density, coercive force, and corrosion resistance and having high electric resistance, and its production | |
JP2020063473A (en) | Ferritic stainless steel plate excellent in magnetic characteristics | |
JP2001348652A (en) | Nonoriented silicon steel sheet and its production method | |
JPS61147846A (en) | High permeability 'pb permalloy(r)' | |
JP2002206144A (en) | Fe-Ni BASED ALLOY HAVING EXCELLENT SURFACE PROPERTY AND PRODUCTION METHOD THEREFOR | |
JP2003105501A (en) | Fe-Ni BASED ALLOY FOR LOW THERMAL EXPANSION HIGH RIGIDITY SHADOW MASK HAVING EXCELLENT SURFACE PROPERTY AND ETCHING WORKABILITY, AND PRODUCTION METHOD THEREFOR | |
JPH10212555A (en) | Nonoriented silicon steel sheet excellent in magnetic property and its production | |
SU956596A1 (en) | Magnetically soft steel | |
JP2002020842A (en) | Fe-Ni ALLOY EXCELLENT IN CORROSION RESISTANCE | |
JPH0320446A (en) | Electrical sheet for thick plate | |
JPH108222A (en) | Composite magnetic member and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Patent lapsed due to non-payment of maintenance fees |
Effective date: 20170108 |