JP2020152947A - Soft-magnetic powder, heat-treatment method for soft-magnetic powder, soft-magnetic material, powder magnetic core, and manufacturing method for powder magnetic core - Google Patents

Soft-magnetic powder, heat-treatment method for soft-magnetic powder, soft-magnetic material, powder magnetic core, and manufacturing method for powder magnetic core Download PDF

Info

Publication number
JP2020152947A
JP2020152947A JP2019051328A JP2019051328A JP2020152947A JP 2020152947 A JP2020152947 A JP 2020152947A JP 2019051328 A JP2019051328 A JP 2019051328A JP 2019051328 A JP2019051328 A JP 2019051328A JP 2020152947 A JP2020152947 A JP 2020152947A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic powder
powder
mass
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019051328A
Other languages
Japanese (ja)
Other versions
JP7221100B2 (en
Inventor
岳志 河内
Takashi Kawachi
岳志 河内
悠介 飯田
Yusuke Iida
悠介 飯田
井上 健一
Kenichi Inoue
健一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2019051328A priority Critical patent/JP7221100B2/en
Priority to CN201980093356.5A priority patent/CN113518674B/en
Priority to PCT/JP2019/050738 priority patent/WO2020188940A1/en
Priority to KR1020217026877A priority patent/KR20210137002A/en
Priority to TW109107341A priority patent/TWI832984B/en
Publication of JP2020152947A publication Critical patent/JP2020152947A/en
Application granted granted Critical
Publication of JP7221100B2 publication Critical patent/JP7221100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/03Press-moulding apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Abstract

To provide a soft-magnetic powder based on a FeSi(P) alloy that is excellent in humidity resistance.SOLUTION: A soft-magnetic powder contains 89.5-99.6 mass% of Fe, 0.2-9.0 mass% of Si, and 0-1.0 mass% of P. The soft-magnetic powder has a crystallite diameter on a plane (111) of 95 nm or greater.SELECTED DRAWING: None

Description

本発明は、軟磁性粉末、軟磁性粉末の熱処理方法、軟磁性材料、圧粉磁心及び圧粉磁心の製造方法に関する。 The present invention relates to a soft magnetic powder, a heat treatment method for a soft magnetic powder, a soft magnetic material, a powder magnetic core, and a method for producing a powder magnetic core.

電子機器には、例えばインダクタなどの、圧粉磁心を有する磁性部品が取り付けられている。圧粉磁心は一般的に、軟磁性粉末を必要に応じて樹脂などのバインダと複合化したうえで圧縮成型することで製造されている。この圧粉磁心に交流磁束を流すと一部のエネルギーが失われ、発熱するので電子機器において問題となる。このような鉄損はヒステリシス損失と渦電流損失とで構成される。ヒステリシス損失を小さくするためには、圧粉磁心の保磁力Hcを小さく、透磁率μを大きくすることが求められる。 A magnetic component having a dust core, such as an inductor, is attached to the electronic device. The dust core is generally manufactured by compounding a soft magnetic powder with a binder such as a resin and then compression molding it. When an AC magnetic flux is passed through this dust core, some energy is lost and heat is generated, which poses a problem in electronic devices. Such iron loss is composed of hysteresis loss and eddy current loss. In order to reduce the hysteresis loss, it is required to reduce the coercive force Hc of the dust core and increase the magnetic permeability μ.

軟磁性粉末としては、高い透磁率を得られることから、Siを含むFeSi合金粉末が提案されている(例えば、特許文献1を参照)。特許文献1では、Siを5〜7質量%配合することで、軟磁気特性を向上できることが記載されている。 As the soft magnetic powder, a FeSi alloy powder containing Si has been proposed because a high magnetic permeability can be obtained (see, for example, Patent Document 1). Patent Document 1 describes that the soft magnetic properties can be improved by blending 5 to 7% by mass of Si.

また特許文献2には、FeSi合金粉末に微量のPを添加することによって、その比抵抗を高め、渦電流損失低減などの効果が得られることが記載されている。 Further, Patent Document 2 describes that by adding a small amount of P to FeSi alloy powder, the specific resistance thereof is increased and effects such as reduction of eddy current loss can be obtained.

特開2016−171167号公報Japanese Unexamined Patent Publication No. 2016-171167 特開2017−224717号公報Japanese Unexamined Patent Publication No. 2017-224717

特許文献1や2に示されるように、Fe及びSi(さらにはP)を含む軟磁性粉末は磁気特性に優れている。このような軟磁性粉末から製造される圧粉磁心については、耐湿性が求められる。そのため軟磁性粉末自体にも耐湿性が求められる。 As shown in Patent Documents 1 and 2, the soft magnetic powder containing Fe and Si (further P) is excellent in magnetic properties. Moisture resistance is required for the dust core produced from such soft magnetic powder. Therefore, the soft magnetic powder itself is also required to have moisture resistance.

そこで本発明は、耐湿性に優れたFeSi(P)合金系の軟磁性粉末を提供することを課題とする。 Therefore, an object of the present invention is to provide a FeSi (P) alloy-based soft magnetic powder having excellent moisture resistance.

また、圧粉磁心の製造の際の圧縮においては、高温で加熱することによりバインダを分解・揮発させて除去し、実質的に軟磁性粉末成分のみからなる圧粉磁心とすることも行われている。この加熱はコストの観点から大気雰囲気で行えることが望ましい。そのためには、軟磁性粉末に耐酸化性が要求される。また高温となると一般に反応性が高まることからも、軟磁性粉末に耐酸化性が要求される。 Further, in the compression during the production of the dust core, the binder is decomposed and volatilized and removed by heating at a high temperature to obtain a dust core substantially composed of only the soft magnetic powder component. There is. From the viewpoint of cost, it is desirable that this heating can be performed in an air atmosphere. For that purpose, the soft magnetic powder is required to have oxidation resistance. Further, the soft magnetic powder is required to have oxidation resistance because the reactivity generally increases at a high temperature.

そこで本発明は、望ましくは、耐湿性に優れ、しかも耐酸化性に優れたFeSi(P)合金系の軟磁性粉末を提供することを課題とする。 Therefore, it is an object of the present invention to preferably provide a FeSi (P) alloy-based soft magnetic powder having excellent moisture resistance and oxidation resistance.

本発明者らは上記課題を解決するために鋭意検討した結果、結晶子径の大きなFeSi(P)合金系の軟磁性粉末が耐湿性に優れており、このような軟磁性粉末は、FeSi(P)合金からなる軟磁性粉末を特定の温度で熱処理することで製造できることを見出した。また本発明者らは、結晶子径が大きく、かつ酸素量と平均粒子径が所定の関係にあるFeSi(P)合金系の軟磁性粉末が、耐湿性に優れるとともに、耐酸化性にも優れ、このような軟磁性粉末は、FeSi(P)合金からなる軟磁性粉末を特定の温度かつ特定の雰囲気中で熱処理することで製造できることを見出した。以上のようにして、本発明者らは本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have found that FeSi (P) alloy-based soft magnetic powder having a large crystallite diameter has excellent moisture resistance, and such soft magnetic powder is obtained from FeSi ( P) It has been found that a soft magnetic powder made of an alloy can be produced by heat treatment at a specific temperature. In addition, the present inventors have excellent moisture resistance and oxidation resistance of FeSi (P) alloy-based soft magnetic powder having a large crystallite diameter and a predetermined relationship between the amount of oxygen and the average particle size. It has been found that such a soft magnetic powder can be produced by heat-treating a soft magnetic powder made of a FeSi (P) alloy at a specific temperature and in a specific atmosphere. As described above, the present inventors have completed the present invention.

すなわち本発明は、以下の通りである。
[1]Feを89.5〜99.6質量%、Siを0.2〜9.0質量%、Pを0〜1.0質量%含む軟磁性粉末であって、(111)面における結晶子径が95nm以上である、軟磁性粉末。
That is, the present invention is as follows.
[1] A soft magnetic powder containing 89.5 to 99.6% by mass of Fe, 0.2 to 9.0% by mass of Si, and 0 to 1.0% by mass of P, and crystals on the (111) plane. A soft magnetic powder having a child diameter of 95 nm or more.

[2]Nの含有量が800ppm以下である、[1]に記載の軟磁性粉末。 [2] The soft magnetic powder according to [1], wherein the N content is 800 ppm or less.

[3]前記軟磁性粉末におけるFe、Si及びPの含有量の合計が97.5質量%以上である、[1]又は[2]に記載の軟磁性粉末。 [3] The soft magnetic powder according to [1] or [2], wherein the total content of Fe, Si and P in the soft magnetic powder is 97.5% by mass or more.

[4]前記軟磁性粉末の酸素含有量(O)とレーザー回折散乱式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50)との積(O×D50)が、3.00(質量%・μm)以下である、[1]〜[3]のいずれかに記載の軟磁性粉末。 [4] The product (O × D50) of the oxygen content (O) of the soft magnetic powder and the cumulative 50% particle diameter (D50) based on the volume measured by the laser diffraction / scattering type particle size distribution measuring device is 3.00. The soft magnetic powder according to any one of [1] to [3], which is (mass% · μm) or less.

[5]前記積(O×D50)が2.30(質量%・μm)以下である、[4]に記載の軟磁性粉末。 [5] The soft magnetic powder according to [4], wherein the product (O × D50) is 2.30 (mass% · μm) or less.

[6]前記積(O×D50)が1.70〜2.00(質量%・μm)である、[5]に記載の軟磁性粉末。 [6] The soft magnetic powder according to [5], wherein the product (O × D50) is 1.70 to 2.00 (mass% · μm).

[7]Pを0.02〜0.5質量%含む、[1]〜[6]のいずれかに記載の軟磁性粉末。 [7] The soft magnetic powder according to any one of [1] to [6], which contains 0.02 to 0.5% by mass of P.

[8]Feを89.5〜99.6質量%、Siを0.2〜9.0質量%、Pを0〜1.0質量%含む軟磁性粉末を、500〜950℃で熱処理する工程を有する、軟磁性粉末の熱処理方法。 [8] A step of heat-treating a soft magnetic powder containing 89.5 to 99.6% by mass of Fe, 0.2 to 9.0% by mass of Si, and 0 to 1.0% by mass of P at 500 to 950 ° C. A method for heat-treating a soft magnetic powder.

[9]前記熱処理を、500〜850℃で行う、[8]に記載の軟磁性粉末の熱処理方法。 [9] The method for heat-treating a soft magnetic powder according to [8], wherein the heat treatment is performed at 500 to 850 ° C.

[10]前記熱処理を、熱処理温度(℃)と熱処理を実施する雰囲気中の酸素濃度(ppm)との積(熱処理温度×雰囲気酸素濃度)が、70万(℃・ppm)以下となる条件で実施する、[8]又は[9]に記載の軟磁性粉末の熱処理方法。 [10] The heat treatment is performed under the condition that the product (heat treatment temperature x atmospheric oxygen concentration) of the heat treatment temperature (° C.) and the oxygen concentration (ppm) in the atmosphere in which the heat treatment is performed is 700,000 (° C. ppm) or less. The heat treatment method for soft magnetic powder according to [8] or [9], which is carried out.

[11]前記熱処理を、酸素濃度500ppm以下の雰囲気中で行う、[8]又は[9]に記載の軟磁性粉末の熱処理方法。 [11] The method for heat-treating a soft magnetic powder according to [8] or [9], wherein the heat treatment is performed in an atmosphere having an oxygen concentration of 500 ppm or less.

[12]前記熱処理を、700〜850℃で、酸素濃度50〜400ppmの雰囲気中で行う、[8]〜[11]のいずれかに記載の軟磁性粉末の熱処理方法。 [12] The method for heat-treating a soft magnetic powder according to any one of [8] to [11], wherein the heat treatment is performed at 700 to 850 ° C. in an atmosphere having an oxygen concentration of 50 to 400 ppm.

[13][1]〜[7]のいずれかに記載の軟磁性粉末とバインダとを含む、軟磁性材料。 [13] A soft magnetic material containing the soft magnetic powder according to any one of [1] to [7] and a binder.

[14][1]〜[7]のいずれかに記載の軟磁性粉末を含む圧粉磁心。 [14] A dust core containing the soft magnetic powder according to any one of [1] to [7].

[15][1]〜[7]のいずれかに記載の軟磁性粉末、または[13]に記載の軟磁性材料を所定の形状に成型し、得られた成型物を加熱して圧粉磁心を得る、圧粉磁心の製造方法。 [15] The soft magnetic powder according to any one of [1] to [7] or the soft magnetic material according to [13] is molded into a predetermined shape, and the obtained molded product is heated to obtain a dust core. A method of manufacturing a dust core.

本発明によれば、耐湿性に優れたFeSi(P)合金系の軟磁性粉末が提供される。本発明の好ましい態様の軟磁性粉末は、更に耐酸化性に優れている。 According to the present invention, a FeSi (P) alloy-based soft magnetic powder having excellent moisture resistance is provided. The soft magnetic powder of a preferred embodiment of the present invention is further excellent in oxidation resistance.

以下、本発明の軟磁性粉末及びその製造方法(軟磁性粉末の熱処理方法)の実施の形態を説明する。 Hereinafter, embodiments of the soft magnetic powder of the present invention and a method for producing the same (heat treatment method for the soft magnetic powder) will be described.

[軟磁性粉末]
本発明の軟磁性粉末の実施の形態は、Fe(鉄)及びSi(ケイ素)を含み、P(リン)を特定量含んでもよい合金組成の粉末である。この軟磁性粉末のことをFeSi(P)合金系の軟磁性粉末ともいう。Pが含まれる場合はFeSiPと記載する。以下、この軟磁性粉末について説明する。
[Soft magnetic powder]
An embodiment of the soft magnetic powder of the present invention is a powder having an alloy composition containing Fe (iron) and Si (silicon) and may contain a specific amount of P (phosphorus). This soft magnetic powder is also referred to as a FeSi (P) alloy-based soft magnetic powder. When P is contained, it is described as FeSiP. Hereinafter, this soft magnetic powder will be described.

<合金組成>
本発明の軟磁性粉末の実施の形態は、Feを89.5〜99.6質量%含む。軟磁性粉末におけるFeの含有量は、磁気特性や機械的特性の観点からこのような範囲とされ、好ましくは90.0〜99.0質量%であり、より好ましくは90.5〜95.5質量%である。
<Alloy composition>
Embodiments of the soft magnetic powder of the present invention contain 89.5-99.6% by mass of Fe. The content of Fe in the soft magnetic powder is in such a range from the viewpoint of magnetic properties and mechanical properties, preferably 90.0 to 99.0% by mass, and more preferably 90.5 to 95.5. It is mass%.

本発明の軟磁性粉末の実施の形態は、Siを0.2〜9.0質量%含む。軟磁性粉末におけるSiの含有量は、Feによる磁気特性や機械的特性を損なうことなく、透磁率などの磁気特性を向上させる観点から上記の範囲とされる。この磁気特性の観点から、Siの含有量は好ましくは0.5〜8.8質量%であり、より好ましくは4.0〜8.6質量%である。 The embodiment of the soft magnetic powder of the present invention contains 0.2 to 9.0% by mass of Si. The Si content in the soft magnetic powder is within the above range from the viewpoint of improving magnetic properties such as magnetic permeability without impairing the magnetic properties and mechanical properties due to Fe. From the viewpoint of this magnetic property, the Si content is preferably 0.5 to 8.8% by mass, more preferably 4.0 to 8.6% by mass.

本発明の軟磁性粉末の実施の形態は、Pを0〜1.0質量%含む(すなわち、含まなくてもよい)。少量のPの存在により、軟磁性粉末の絶縁性が高まり、圧粉磁心としたときの渦電流損失を低減することができる。この渦電流損失低減の観点から、Pの含有量は好ましくは0.02〜0.5質量%であり、より好ましくは0.03〜0.4質量%である。 Embodiments of the soft magnetic powder of the present invention contain 0 to 1.0% by mass of P (that is, may not be contained). The presence of a small amount of P enhances the insulating property of the soft magnetic powder, and can reduce the eddy current loss when the powder magnetic core is used. From the viewpoint of reducing the eddy current loss, the P content is preferably 0.02 to 0.5% by mass, more preferably 0.03 to 0.4% by mass.

また、本発明の軟磁性粉末の実施の形態において、Fe、Si及びPの含有量の合計は、不純物の含有による磁気特性の悪化を抑制する観点から、好ましくは97.5質量%以上であり、より好ましくは98.0質量%以上である。 Further, in the embodiment of the soft magnetic powder of the present invention, the total content of Fe, Si and P is preferably 97.5% by mass or more from the viewpoint of suppressing deterioration of magnetic properties due to the inclusion of impurities. , More preferably 98.0% by mass or more.

本発明の軟磁性粉末の実施の形態は、以上のFe、Si及びPに加えて、本発明の効果を奏する範囲で不純物を含んでもよい。不純物の例としては、Na(ナトリウム)、K(カリウム)、Ca(カルシウム)、Pd(パラジウム)、Mg(マグネシウム)、Co(コバルト)、Mo(モリブデン)、Zr(ジルコニウム)、C(炭素)、N(窒素)、O(酸素)、Cl(塩素)、Mn(マンガン)、Ni(ニッケル)、Cu(銅)、S(硫黄)、As(砒素)、B(硼素)、Sn(スズ)、Ti(チタン)、V(バナジウム)、Al(アルミニウム)が挙げられる。これらのうち酸素を除いたものの含有量は、合計で好ましくは1質量%以下であり、より好ましくは10〜6000ppmである。 The embodiment of the soft magnetic powder of the present invention may contain impurities in addition to the above Fe, Si and P as long as the effects of the present invention are exhibited. Examples of impurities are Na (sodium), K (potassium), Ca (calcium), Pd (palladium), Mg (magnesium), Co (cobalt), Mo (molybdenum), Zr (zirconium), C (carbon). , N (nitrogen), O (oxygen), Cl (chlorine), Mn (manganesium), Ni (nickel), Cu (copper), S (sulfur), As (arsenic), B (boron), Sn (tin) , Ti (titanium), V (vanadium), Al (aluminum). Of these, the content excluding oxygen is preferably 1% by mass or less in total, and more preferably 10 to 6000 ppm.

本発明の軟磁性粉末の実施の形態には、絶縁性その他、何らかの特性を軟磁性粉末に付与するために、元素を微量添加してもよい。このような微量添加元素の例としては、Na、K、Ca、Pd、Mg、Co、Mo、Zr、C、N、Cl、Mn、Ni、Cu、S、As、B、Sn、Ti、V、Alが挙げられる。これらの添加量は、合計で好ましくは1質量%以下であり、より好ましくは10〜6000ppmである。 In the embodiment of the soft magnetic powder of the present invention, a small amount of elements may be added in order to impart some property such as insulating property to the soft magnetic powder. Examples of such trace-added elements include Na, K, Ca, Pd, Mg, Co, Mo, Zr, C, N, Cl, Mn, Ni, Cu, S, As, B, Sn, Ti, V. , Al. The total amount of these additions is preferably 1% by mass or less, and more preferably 10 to 6000 ppm.

<結晶子径>
本発明の軟磁性粉末の実施の形態の(111)面における結晶子径は、95nm以上である。このように結晶子径が大きいことで、前記軟磁性粉末は耐湿性に優れ、当該粉末から耐湿性に優れた圧粉磁心を製造することができる。なお、結晶子径が非常に大きい軟磁性粉末の製造は困難であることと、前記の耐湿性を考慮すると、軟磁性粉末の結晶子径は好ましくは96〜250nmであり、より好ましくは99〜180nmである。結晶子径はX線回折法で測定することができる。本発明の軟磁性粉末の実施の形態の合金組成の場合、回折角θに対して2θ=51.5°〜53.5°の範囲内又はその付近に(111)面のピークが現れ、これから結晶子径を算出することができる。結晶子径の測定方法の詳細については、後述の実施例で説明する。
<Crystalline diameter>
The crystallite diameter on the (111) plane of the embodiment of the soft magnetic powder of the present invention is 95 nm or more. Due to the large crystallite diameter as described above, the soft magnetic powder has excellent moisture resistance, and a dust core having excellent moisture resistance can be produced from the powder. Considering that it is difficult to produce a soft magnetic powder having a very large crystallite diameter and the above-mentioned moisture resistance, the crystallite diameter of the soft magnetic powder is preferably 96 to 250 nm, more preferably 99 to 99. It is 180 nm. The crystallite diameter can be measured by an X-ray diffraction method. In the case of the alloy composition of the embodiment of the soft magnetic powder of the present invention, a peak of the (111) plane appears in or near the range of 2θ = 51.5 ° to 53.5 ° with respect to the diffraction angle θ, and from this The crystallite diameter can be calculated. The details of the method for measuring the crystallite diameter will be described in Examples described later.

<軟磁性粉末の酸素含有量と平均粒子径の積>
本発明者らの検討の結果、軟磁性粉末中の酸素の含有量(O)は、軟磁性粉末の耐湿性及び耐酸化性、並びに磁気特性に影響することがわかった。なお、酸素含有量は粉末の粒子径が小さくなるほど大きくなるので、本発明においては粒子径による酸素含有量の変動を補正すべく、酸素含有量(O)と、軟磁性粉末のレーザー回折散乱式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50)との積(O×D50(質量%・μm))を採用する。前記積(O×D50(質量%・μm))は、軟磁性粉末の耐湿性の観点から3.00(質量%・μm)以下であることが好ましく、耐湿性と磁気特性(特に透磁率)の観点から2.30(質量%・μm)以下であることがより好ましく、耐湿性及び耐酸化性の観点から特に好ましくは1.70〜2.00(質量%・μm)である。
<Product of oxygen content of soft magnetic powder and average particle size>
As a result of the study by the present inventors, it was found that the oxygen content (O) in the soft magnetic powder affects the moisture resistance and oxidation resistance of the soft magnetic powder, as well as the magnetic properties. Since the oxygen content increases as the particle size of the powder decreases, in the present invention, the oxygen content (O) and the laser diffraction / scattering type of the soft magnetic powder are used to correct the fluctuation of the oxygen content due to the particle size. The product (O × D50 (mass% · μm)) with the cumulative 50% particle diameter (D50) based on the volume measured by the particle size distribution measuring device is adopted. The product (O × D50 (mass% · μm)) is preferably 3.00 (mass% · μm) or less from the viewpoint of moisture resistance of the soft magnetic powder, and has moisture resistance and magnetic properties (particularly magnetic permeability). From the viewpoint of moisture resistance and oxidation resistance, it is more preferably 2.30 (mass% · μm) or less, and particularly preferably 1.70 to 2.00 (mass% · μm).

<酸素含有量(O)>
本発明の軟磁性粉末の実施の形態の酸素含有量(O)は、優れた磁気特性の観点から好ましくは0.1〜1.5質量%であり、より好ましくは0.15〜0.85質量%である。
<Oxygen content (O)>
The oxygen content (O) of the embodiment of the soft magnetic powder of the present invention is preferably 0.1 to 1.5% by mass, more preferably 0.15 to 0.85, from the viewpoint of excellent magnetic properties. It is mass%.

<窒素含有量>
本発明の軟磁性粉末の実施の形態のN(窒素)の含有量は、優れた磁気特性の観点から好ましくは800ppm以下である。なお、Nの軟磁性粉末からの完全な除去は困難であることを考慮すると、Nの含有量は、より好ましくは1〜700ppmである。
<Nitrogen content>
The content of N (nitrogen) in the embodiment of the soft magnetic powder of the present invention is preferably 800 ppm or less from the viewpoint of excellent magnetic properties. Considering that it is difficult to completely remove N from the soft magnetic powder, the content of N is more preferably 1 to 700 ppm.

<平均粒子径(D50)>
本発明の軟磁性粉末の実施の形態のレーザー回折散乱式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50)は特に限定されないが、粒子径を小さくすると渦電流損失を低減できることから、0.1〜10μmであることが好ましく、0.5〜5μmであることがより好ましい。
<Average particle size (D50)>
The cumulative 50% particle size (D50) based on the volume measured by the laser diffraction / scattering type particle size distribution measuring device according to the embodiment of the soft magnetic powder of the present invention is not particularly limited, but the eddy current loss can be reduced by reducing the particle size. Therefore, it is preferably 0.1 to 10 μm, and more preferably 0.5 to 5 μm.

<BET比表面積>
本発明の軟磁性粉末の実施の形態のBET1点法により測定した比表面積(BET比表面積)は、粉末の粒子表面への酸化物の発生を抑制して良好な磁気特性を発揮する観点から、好ましくは0.15〜3.00m/gであり、より好ましくは0.20〜2.50m/gである。
<BET specific surface area>
The specific surface area (BET specific surface area) measured by the BET one-point method of the embodiment of the soft magnetic powder of the present invention is from the viewpoint of suppressing the generation of oxides on the particle surface of the powder and exhibiting good magnetic properties. It is preferably 0.15 to 3.00 m 2 / g, and more preferably 0.25 to 2.50 m 2 / g.

<タップ密度(TAP)>
本発明の軟磁性粉末の実施の形態のタップ密度(TAP)は、粉末の充填密度を高めて良好な磁気特性を発揮する観点から、好ましくは2.0〜7.5g/cmであり、より好ましくは2.5〜6.5g/cmである。
<Tap Density (TAP)>
The tap density (TAP) of the embodiment of the soft magnetic powder of the present invention is preferably 2.0 to 7.5 g / cm 3 from the viewpoint of increasing the packing density of the powder and exhibiting good magnetic properties. More preferably, it is 2.5 to 6.5 g / cm 3 .

<形状>
本発明の軟磁性粉末の実施の形態の形状は、特に限定されず、球状や略球状であってもよく、粒状や薄片状(フレーク状)、あるいは歪な形状(不定形)であってもよい。
<Shape>
The shape of the embodiment of the soft magnetic powder of the present invention is not particularly limited, and may be spherical or substantially spherical, and may be granular, flaky (flakes), or distorted (indeterminate). Good.

[本発明の軟磁性粉末を製造する方法(軟磁性粉末の熱処理方法)]
以上説明した本発明の軟磁性粉末は、本発明の軟磁性粉末の熱処理方法の実施の形態により製造することができる。当該熱処理方法は、特定の軟磁性粉末を、特定条件で熱処理する工程(熱処理工程)を有する。
[Method for producing soft magnetic powder of the present invention (heat treatment method for soft magnetic powder)]
The soft magnetic powder of the present invention described above can be produced according to the embodiment of the heat treatment method for the soft magnetic powder of the present invention. The heat treatment method includes a step (heat treatment step) of heat-treating a specific soft magnetic powder under specific conditions.

<原料粉末>
本発明の軟磁性粉末の熱処理方法の実施の形態において、熱処理工程に付される軟磁性粉末(以下「原料粉末」ともいう)は、本発明の軟磁性粉末の実施の形態と粒子径や形状などは実質的に同じであるが、結晶子径が異なり、また酸素含有量に関する特性も若干異なる。
<Raw material powder>
In the embodiment of the heat treatment method for soft magnetic powder of the present invention, the soft magnetic powder (hereinafter, also referred to as “raw material powder”) applied to the heat treatment step is the embodiment of the soft magnetic powder of the present invention, and the particle size and shape. Etc. are substantially the same, but the crystallite diameters are different, and the characteristics regarding the oxygen content are also slightly different.

すなわち、原料粉末は、Fe及びSiを含み、Pを含んでもよい軟磁性粉末であって、Feを89.5〜99.6質量%、好ましくは90.0〜99.0質量%、より好ましくは90.5〜95.5質量%含み、Siを0.2〜9.0質量%、好ましくは0.5〜8.8質量%、より好ましくは4.0〜8.6質量%含み、Pを0〜1.0質量%、好ましくは0.02〜0.5質量%、より好ましくは0.03〜0.4質量%含み、当該軟磁性粉末におけるFe、Si及びPの含有量の合計は、好ましくは97.5質量%以上であり、より好ましくは98.0質量%以上である。また、原料粉末は通常Fe、Si、Pに加えて不純物を含んでもよく、その例としては、Na(ナトリウム)、K(カリウム)、Ca(カルシウム)、Pd(パラジウム)、Mg(マグネシウム)、Co(コバルト)、Mo(モリブデン)、Zr(ジルコニウム)、C(炭素)、N(窒素)、O(酸素)、Cl(塩素)、Mn(マンガン)、Ni(ニッケル)、Cu(銅)、S(硫黄)、As(砒素)、B(硼素)、Sn(スズ)、Ti(チタン)、V(バナジウム)、Al(アルミニウム)が挙げられ、これらのうち酸素を除いたものの含有量は、合計で好ましくは1質量%以下であり、より好ましくは10〜6000ppmである。原料粉末における微量添加元素の例としては、Na、K、Ca、Pd、Mg、Co、Mo、Zr、C、N、Cl、Mn、Ni、Cu、S、As、B、Sn、Ti、V、Alが挙げられる。これらの添加量は、合計で好ましくは1質量%以下であり、より好ましくは10〜6000ppmである。 That is, the raw material powder is a soft magnetic powder containing Fe and Si and may contain P, and contains Fe in an amount of 89.5 to 99.6% by mass, preferably 90.0 to 99.0% by mass, more preferably. Containing 90.5 to 95.5% by mass, 0.2 to 9.0% by mass of Si, preferably 0.5 to 8.8% by mass, and more preferably 4.0 to 8.6% by mass. P is contained in an amount of 0 to 1.0% by mass, preferably 0.02 to 0.5% by mass, more preferably 0.03 to 0.4% by mass, and the content of Fe, Si and P in the soft magnetic powder. The total is preferably 97.5% by mass or more, and more preferably 98.0% by mass or more. The raw material powder may usually contain impurities in addition to Fe, Si, and P. Examples thereof include Na (sodium), K (potassium), Ca (calcium), Pd (palladium), Mg (magnesium), and so on. Co (cobalt), Mo (molybdenum), Zr (zirconium), C (carbon), N (nitrogen), O (oxygen), Cl (chlorine), Mn (manganesium), Ni (nickel), Cu (copper), Examples include S (sulfur), As (arsenic), B (boron), Sn (tin), Ti (titanium), V (vanadium), and Al (aluminum), and the content of these excluding oxygen is The total is preferably 1% by mass or less, and more preferably 10 to 6000 ppm. Examples of trace elements added in the raw material powder are Na, K, Ca, Pd, Mg, Co, Mo, Zr, C, N, Cl, Mn, Ni, Cu, S, As, B, Sn, Ti, V. , Al. The total amount of these additions is preferably 1% by mass or less, and more preferably 10 to 6000 ppm.

原料粉末のN(窒素)の含有量は、好ましくは800ppm以下であり、より好ましくは1〜700ppmである。原料粉末のレーザー回折散乱式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50)は、好ましくは0.1〜10μm、より好ましくは0.5〜5μmであり、BET1点法により測定した比表面積(BET比表面積)は、好ましくは0.15〜3.00m/g、より好ましくは0.20〜2.50m/gであり、タップ密度(TAP)は、好ましくは2.0〜7.5g/cm、より好ましくは2.5〜6.5g/cmである。また原料粉末の形状は、特に限定されず、球状や略球状であってもよく、粒状や薄片状(フレーク状)、あるいは歪な形状(不定形)であってもよい。 The N (nitrogen) content of the raw material powder is preferably 800 ppm or less, more preferably 1 to 700 ppm. The volume-based cumulative 50% particle size (D50) measured by the laser diffraction scattering type particle size distribution measuring device of the raw material powder is preferably 0.1 to 10 μm, more preferably 0.5 to 5 μm, and is measured by the BET 1-point method. The measured specific surface area (BET specific surface area) is preferably 0.15 to 3.00 m 2 / g, more preferably 0.25 to 2.50 m 2 / g, and the tap density (TAP) is preferably 2. .0 to 7.5 g / cm 3 , more preferably 2.5 to 6.5 g / cm 3 . The shape of the raw material powder is not particularly limited, and may be spherical or substantially spherical, and may be granular, flaky (flake-shaped), or distorted (amorphous).

(結晶子径)
原料粉末の(111)面における結晶子径は特に限定されないが、本発明の熱処理の実施の形態による処理を施していない従来のFeSi(P)軟磁性粉末(すなわち原料粉末)の結晶子径は、通常50〜92nm程度であり、これに対して本発明で規定する熱処理を実施することによって、その結晶子径を95nm以上に成長させることができる。
(Crystall diameter)
The crystallite diameter on the (111) plane of the raw material powder is not particularly limited, but the crystallite diameter of the conventional FeSi (P) soft magnetic powder (that is, the raw material powder) that has not been treated according to the heat treatment embodiment of the present invention is Usually, it is about 50 to 92 nm, and by carrying out the heat treatment specified in the present invention, the crystallite diameter thereof can be grown to 95 nm or more.

(酸素含有量と平均粒子径の積)
本発明の軟磁性粉末の熱処理方法の実施の形態は、好ましくは特定の酸素濃度の雰囲気中で原料粉末を熱処理するものであり、原料粉末の熱処理によって、粉末中の酸素含有量(O)が若干影響を受ける場合がある。原料粉末の酸素含有量(O)とレーザー回折散乱式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50)との積(O×D50(質量%・μm))は、特に制限されないが、通常1.10〜3.50(質量%・μm)の範囲である。
(Product of oxygen content and average particle size)
The embodiment of the heat treatment method for soft magnetic powder of the present invention preferably heat-treats the raw material powder in an atmosphere having a specific oxygen concentration, and the heat treatment of the raw material powder increases the oxygen content (O) in the powder. May be slightly affected. The product (O × D50 (mass% · μm)) of the oxygen content (O) of the raw material powder and the cumulative 50% particle diameter (D50) based on the volume measured by the laser diffraction / scattering type particle size distribution measuring device is particularly limited. Although not, it is usually in the range of 1.10 to 3.50 (mass% · μm).

(酸素含有量(O))
前記の通り、本発明の軟磁性粉末の熱処理方法の実施の形態を原料粉末に対して実施することにより、粉末中の酸素含有量(O)が若干影響を受ける場合がある。原料粉末の酸素含有量(O)は、特に制限されないが、通常0.05〜1.4質量%である。
(Oxygen content (O))
As described above, the oxygen content (O) in the powder may be slightly affected by carrying out the embodiment of the heat treatment method for the soft magnetic powder of the present invention on the raw material powder. The oxygen content (O) of the raw material powder is not particularly limited, but is usually 0.05 to 1.4% by mass.

以上説明した原料粉末は、公知の方法、例えばガスアトマイズ法や水アトマイズ法、プラズマなどを利用した気相法により製造することができ、また市販品として購入することもできる。 The raw material powder described above can be produced by a known method, for example, a gas atomization method, a water atomization method, a vapor phase method using plasma, or the like, or can be purchased as a commercially available product.

<熱処理工程>
本発明の軟磁性粉末の熱処理方法の実施の形態における熱処理工程では、以上説明した原料粉末を、500〜950℃で熱処理する。このような高温で熱処理することで、原料粉末の結晶子を成長させて、本発明で規定される大きな結晶子径を持つ、耐湿性に優れ、圧粉磁心の製造原料として有用な軟磁性粉末が得られる。
<Heat treatment process>
In the heat treatment step in the embodiment of the heat treatment method for soft magnetic powder of the present invention, the raw material powder described above is heat-treated at 500 to 950 ° C. By heat-treating at such a high temperature, the crystallites of the raw material powder are grown, and the soft magnetic powder having a large crystallite diameter specified in the present invention, having excellent moisture resistance, and being useful as a raw material for producing a dust core. Is obtained.

この熱処理の条件について、熱処理温度(℃)と熱処理を実施する雰囲気中の酸素濃度(ppm)との積(熱処理温度×雰囲気酸素濃度)が、70万(℃・ppm)以下となる条件で熱処理を実施すると、耐湿性に優れた軟磁性粉末を得ることができる。前記積(熱処理温度×雰囲気酸素濃度)は、好ましくは500〜65万(℃・ppm)である。 Regarding the conditions of this heat treatment, the heat treatment is performed under the condition that the product (heat treatment temperature x atmospheric oxygen concentration) of the heat treatment temperature (° C) and the oxygen concentration (ppm) in the atmosphere in which the heat treatment is performed is 700,000 (° C · ppm) or less. When the above is carried out, a soft magnetic powder having excellent moisture resistance can be obtained. The product (heat treatment temperature × atmospheric oxygen concentration) is preferably 5 to 650,000 (° C. ppm).

本発明の熱処理方法の実施の形態の熱処理工程においては、前記積(熱処理温度×雰囲気酸素濃度)を満足しつつ、かつ温度500〜850℃で熱処理を実施することで、耐酸化性にも優れた軟磁性粉末を得ることができる。 In the heat treatment step of the embodiment of the heat treatment method of the present invention, the heat treatment is performed at a temperature of 500 to 850 ° C. while satisfying the product (heat treatment temperature × atmospheric oxygen concentration), so that the oxidation resistance is also excellent. A soft magnetic powder can be obtained.

前記熱処理工程における熱処理を実施する雰囲気中の酸素濃度は、高いと粉末の酸化を引き起こして磁気特性に悪影響することから、500ppm以下が好ましい。特に、前記雰囲気中の酸素濃度を50〜400ppmとし、かつ700〜850℃で熱処理を行うと、耐湿性、耐酸化性及び磁気特性(特に透磁率)の全てに非常に優れた軟磁性粉末を得ることができる。熱処理を実施する雰囲気における好ましい酸素濃度は前記の通りであるが、残部すなわち前記雰囲気中の酸素以外の組成については、原料粉末と反応性を実質的に示さなければ特に限定されるものではない。前記雰囲気は、本発明の効果を好適に奏する観点から、実質的に酸素と不活性元素とのみからなる(酸素と不活性元素の合計が99.5体積%以上である)ことが好ましい。前記不活性元素の例としては、ヘリウム、ネオン、アルゴン、窒素などが挙げられる。これらの中でも、コストの観点から窒素が好ましい。 The oxygen concentration in the atmosphere in which the heat treatment is performed in the heat treatment step is preferably 500 ppm or less because high oxygen concentration causes oxidation of the powder and adversely affects the magnetic properties. In particular, when the oxygen concentration in the atmosphere is set to 50 to 400 ppm and the heat treatment is performed at 700 to 850 ° C., a soft magnetic powder having excellent moisture resistance, oxidation resistance and magnetic properties (particularly magnetic permeability) is obtained. Obtainable. The preferable oxygen concentration in the atmosphere in which the heat treatment is performed is as described above, but the balance, that is, the composition other than oxygen in the atmosphere is not particularly limited as long as it does not substantially show reactivity with the raw material powder. From the viewpoint of preferably exerting the effects of the present invention, the atmosphere is preferably substantially composed of only oxygen and an inert element (the total of oxygen and the inert element is 99.5% by volume or more). Examples of the inert element include helium, neon, argon, nitrogen and the like. Among these, nitrogen is preferable from the viewpoint of cost.

また、熱処理工程における熱処理は、熱処理後の粉末の電気絶縁性を高め、また生産性及び酸化による磁気特性の低下を防止する観点から、10〜1800分間実施することが好ましく、20〜1200分間実施することがより好ましい。 Further, the heat treatment in the heat treatment step is preferably carried out for 10 to 1800 minutes, preferably for 20 to 1200 minutes, from the viewpoint of improving the electrical insulation of the powder after the heat treatment and preventing the deterioration of the magnetic properties due to productivity and oxidation. It is more preferable to do so.

<その他の工程>
熱処理工程を経た軟磁性粉末に対しては、その他の工程を実施してもよい。例えば熱処理により粉末の凝集が生じた場合、これに対して解砕工程を実施してもよい。
<Other processes>
For the soft magnetic powder that has undergone the heat treatment step, other steps may be carried out. For example, when powder agglomeration occurs due to heat treatment, a crushing step may be carried out for this.

<軟磁性材料>
以上説明した本発明の軟磁性粉末の実施の形態は、圧粉磁心の製造原料である軟磁性材料として用いることができ、当該材料を使用して、耐湿性に優れた圧粉磁心を製造することができる。
<Soft magnetic material>
The embodiment of the soft magnetic powder of the present invention described above can be used as a soft magnetic material which is a raw material for producing a dust core, and the material is used to produce a powder magnetic core having excellent moisture resistance. be able to.

軟磁性粉末それ自体を軟磁性材料として使用することもできるし、バインダと混合した軟磁性材料とすることもできる。後者の場合、例えば軟磁性粉末をバインダ(絶縁樹脂及び/又は無機バインダ)と混合し、造粒することで、粒状の複合体粉末(軟磁性材料)を得ることができる。この軟磁性材料における軟磁性粉末の含有量は、良好な磁気特性を達成する観点から、80〜99.9質量%であることが好ましい。同様な観点から、バインダの軟磁性材料における含有量は、0.1〜20質量%であることが好ましい。 The soft magnetic powder itself can be used as a soft magnetic material, or it can be a soft magnetic material mixed with a binder. In the latter case, for example, a soft magnetic powder is mixed with a binder (insulating resin and / or an inorganic binder) and granulated to obtain a granular composite powder (soft magnetic material). The content of the soft magnetic powder in this soft magnetic material is preferably 80 to 99.9% by mass from the viewpoint of achieving good magnetic properties. From the same viewpoint, the content of the binder in the soft magnetic material is preferably 0.1 to 20% by mass.

前記絶縁樹脂の具体例としては、(メタ)アクリル樹脂、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂が挙げられる。前記無機バインダの具体例としては、シリカバインダー、アルミナバインダーが挙げられる。さらに、軟磁性材料(軟磁性粉末単体の場合と、粉末とバインダの混合物の場合の双方)は必要に応じてワックス、滑剤などのその他の成分を含んでもよい。 Specific examples of the insulating resin include (meth) acrylic resin, silicone resin, epoxy resin, phenol resin, urea resin, and melamine resin. Specific examples of the inorganic binder include a silica binder and an alumina binder. Further, the soft magnetic material (both the soft magnetic powder alone and the mixture of the powder and the binder) may contain other components such as wax and lubricant, if necessary.

<圧粉磁心>
以上説明した軟磁性材料を所定の形状に成型して加熱することで、本発明の軟磁性粉末の実施の形態を含む圧粉磁心を製造することができる。より具体的には、軟磁性材料を所定形状の金型に入れ、加圧し加熱(加熱温度は好ましくは200〜1200℃であり、より好ましくは300〜1000℃である)することで圧粉磁心を得る。しかも、本発明の軟磁性粉末は耐酸化性に優れるため、この圧粉磁心を得る作業は大気雰囲気で行える。
<Powder magnetic core>
By molding the soft magnetic material described above into a predetermined shape and heating it, a powder magnetic core including the embodiment of the soft magnetic powder of the present invention can be produced. More specifically, the soft magnetic material is placed in a mold having a predetermined shape, pressurized and heated (the heating temperature is preferably 200 to 1200 ° C., more preferably 300 to 1000 ° C.) to obtain a dust core. To get. Moreover, since the soft magnetic powder of the present invention has excellent oxidation resistance, the work of obtaining the dust core can be performed in an air atmosphere.

以下、実施例により本発明をより詳細に説明するが、本発明はこれらにより何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

[参考例1(Ref.1)]
タンディッシュ炉中で、電解鉄(純度:99.95質量%以上)14.5kgとシリコンメタル(純度:99質量%以上)1.01kgとFeP合金(Fe72wt%、P26wt%)28.5gとを窒素雰囲気下において1700℃で加熱溶解した溶湯を、窒素雰囲気下においてタンディッシュ炉の底部から落下させながら、水圧150MPa、水量160L/分で高圧水(pH10.3)を吹き付けて急冷凝固させ、得られたスラリーを固液分離し、固形物を水洗し、真空中、40℃、30時間の条件で乾燥した。
[Reference Example 1 (Ref. 1)]
In a tundish furnace, 14.5 kg of electrolytic iron (purity: 99.95% by mass or more), 1.01 kg of silicon metal (purity: 99% by mass or more), and 28.5 g of FeP alloy (Fe 72 wt%, P 26 wt%) were added. The molten metal heated and melted at 1700 ° C. in a nitrogen atmosphere is rapidly cooled and solidified by spraying high-pressure water (pH 10.3) at a water pressure of 150 MPa and a water volume of 160 L / min while dropping from the bottom of the tundish furnace in a nitrogen atmosphere. The resulting slurry was separated into solid and liquid, the solid was washed with water, and dried in vacuum at 40 ° C. for 30 hours.

このようにして得られた略球状のFeSiP合金粉末1について、組成(Fe、Si、Pの含有量、酸素含有量、炭素含有量及び窒素含有量)、BET比表面積、タップ密度(TAP)、粒度分布、結晶子径及び磁気特性を求め、さらに耐湿性及び耐酸化性の評価を行った。結果は下記の表1及び2に示している。以下、これらの測定や評価の方法の詳細を説明する。 With respect to the substantially spherical FeSiP alloy powder 1 thus obtained, the composition (Fe, Si, P content, oxygen content, carbon content and nitrogen content), BET specific surface area, tap density (TAP), The particle size distribution, crystallite diameter and magnetic properties were determined, and the moisture resistance and oxidation resistance were evaluated. The results are shown in Tables 1 and 2 below. The details of these measurement and evaluation methods will be described below.

[組成]
FeSiP合金粉末1の組成の測定は、以下の通り行った。
[composition]
The composition of FeSiP alloy powder 1 was measured as follows.

Feは、滴定法により、JIS M8263(クロム鉱石−鉄定量方法)に準拠して、以下のように分析を行った。まず、試料(FeSiP合金粉末1)0.1gに硫酸と塩酸を加えて加熱分解し、硫酸の白煙が発生するまで加熱した。放冷後、水と塩酸を加えて加温して可溶性塩類を溶解させた。そして、得られた試料溶液に温水を加えて液量を120〜130mL程度にし、液温を90〜95℃程度にしてからインジゴカルミン溶液を数滴加え、塩化チタン(III)溶液を試料溶液の色が黄緑から青、次いで無色透明になるまで加えた。引き続き試料溶液が青色の状態を5秒間保持するまで二クロム酸カリウム溶液を加えた。この試料溶液中の鉄(II)を、自動滴定装置を用いて二クロム酸カリウム標準溶液で滴定し、Fe量を求めた。 Fe was analyzed by the titration method according to JIS M8263 (chromium ore-iron quantification method) as follows. First, sulfuric acid and hydrochloric acid were added to 0.1 g of a sample (FeSiP alloy powder 1), and the mixture was heated and decomposed, and heated until white smoke of sulfuric acid was generated. After allowing to cool, water and hydrochloric acid were added and heated to dissolve soluble salts. Then, warm water is added to the obtained sample solution to adjust the liquid volume to about 120 to 130 mL, the liquid temperature is adjusted to about 90 to 95 ° C., a few drops of the indigo carmine solution are added, and the titanium (III) chloride solution is added to the sample solution. Add until the color changed from yellow-green to blue, then colorless and transparent. The potassium dichromate solution was subsequently added until the sample solution remained blue for 5 seconds. Iron (II) in this sample solution was titrated with a potassium dichromate standard solution using an automatic titrator to determine the amount of Fe.

Siは、重量法により、以下のように分析を行った。まず、試料(FeSiP合金粉末1)に塩酸と過塩素酸を加えて加熱分解し、過塩素酸の白煙が発生するまで加熱した。引き続き加熱して乾固させた。放冷後、水と塩酸を加えて加温して可溶性塩類を溶解させた。続いて、不溶解残渣を、ろ紙を用いてろ過し、残渣をろ紙ごとるつぼに移し、乾燥、灰化させた。放冷後、るつぼごと秤量した。少量の硫酸とフッ化水素酸を加え、加熱して乾固させた後、強熱した。放冷後、るつぼごと秤量した。そして、1回目の秤量値から2回目の秤量値を差し引き、重量差をSiOとして計算してSi量を求めた。 Si was analyzed by the gravimetric method as follows. First, hydrochloric acid and perchloric acid were added to the sample (FeSiP alloy powder 1) to decompose it by heating, and the sample (FeSiP alloy powder 1) was heated until white smoke of perchloric acid was generated. It was subsequently heated to dryness. After allowing to cool, water and hydrochloric acid were added and heated to dissolve soluble salts. Subsequently, the insoluble residue was filtered using a filter paper, and the residue was transferred to a crucible together with the filter paper, dried and incinerated. After allowing to cool, the crucible was weighed together. A small amount of sulfuric acid and hydrofluoric acid were added, and the mixture was heated to dryness and then heated strongly. After allowing to cool, the crucible was weighed together. Then, the second weighing value was subtracted from the first weighing value, and the weight difference was calculated as SiO 2 to obtain the Si amount.

Pは、誘導結合プラズマ(ICP)発光分析装置(株式会社日立ハイテクサイエンス製のSPS3520V)を用いて、分析を行った。その結果、P量は0.057質量%であった。 P was analyzed using an inductively coupled plasma (ICP) emission spectrometer (SPS3520V manufactured by Hitachi High-Tech Science Corporation). As a result, the amount of P was 0.057% by mass.

酸素含有量及び窒素含有量は、酸素・窒素・水素分析装置(株式会社堀場製作所製のEMGA−920)により測定した。 The oxygen content and nitrogen content were measured by an oxygen / nitrogen / hydrogen analyzer (EMGA-920 manufactured by HORIBA, Ltd.).

炭素含有量は、炭素・硫黄分析装置(株式会社堀場製作所製のEMIA−22V)により測定した。 The carbon content was measured with a carbon / sulfur analyzer (EMIA-22V manufactured by HORIBA, Ltd.).

[BET比表面積]
BET比表面積は、BET比表面積測定器(株式会社マウンテック製のMacsorb)を使用して、測定器内に105℃で20分間窒素ガスを流して脱気した後、窒素とヘリウムの混合ガス(N:30体積%、He:70体積%)を流しながら、BET1点法により測定した。
[BET specific surface area]
For the BET specific surface area, a BET specific surface area measuring device (Macsorb manufactured by Mountech Co., Ltd.) was used to flow nitrogen gas into the measuring device at 105 ° C. for 20 minutes to degas, and then a mixed gas of nitrogen and helium (N). 2 :30% by volume, He: 70% by volume) was measured by the BET 1-point method.

[タップ密度]
タップ密度(TAP)は、特開2007−263860号公報に記載された方法と同様に、FeSiP合金粉末1を内径6mm×高さ11.9mmの有底円筒形のダイに容積の80%まで充填して合金粉末層を形成し、この合金粉末層の上面に0.160N/mの圧力を均一に加え、この圧力で合金粉末がこれ以上密に充填されなくなるまで前記合金粉末層を圧縮した後、合金粉末層の高さを測定し、この合金粉末層の高さの測定値と、充填された合金粉末の重量とから、合金粉末の密度を求め、これをFeSiP合金粉末1のタップ密度とした。
[Tap density]
The tap density (TAP) is the same as the method described in JP-A-2007-263860, in which FeSiP alloy powder 1 is filled into a bottomed cylindrical die having an inner diameter of 6 mm and a height of 11.9 mm up to 80% of the volume. To form an alloy powder layer, a pressure of 0.160 N / m 2 was uniformly applied to the upper surface of the alloy powder layer, and the alloy powder layer was compressed at this pressure until the alloy powder was no longer densely packed. After that, the height of the alloy powder layer is measured, the density of the alloy powder is obtained from the measured value of the height of the alloy powder layer and the weight of the filled alloy powder, and this is calculated as the tap density of FeSiP alloy powder 1. And said.

[粒度分布]
粒度分布については、レーザー回折散乱式粒度分布測定装置(SYMPATEC社製のへロス粒度分布測定装置(HELOS&RODOS(気流式の分散モジュール)))を使用して、分散圧5barで体積基準の粒度分布を求めた。
[Particle size distribution]
For the particle size distribution, use a laser diffraction / scattering type particle size distribution measuring device (SIMPATEC's Heros particle size distribution measuring device (HELOS & RODOS (air flow type dispersion module))) to obtain a volume-based particle size distribution at a dispersion pressure of 5 bar. I asked.

[結晶子径の測定]
X線回折装置(リガク製、型式RINT−UltimaIII)を用いてFeSiP合金粉末1の(111)面における結晶子径を測定した。X線源にはコバルトを使用し、加速電圧40kV、電流30mAでX線を発生させた。発散スリット開口角は1/3°、散乱スリット開口角は2/3°、受光スリット幅は0.3mmである。半価幅の正確な測定のため、ステップスキャンにて2θが51.5〜53.5°の範囲を測定間隔0.02°、計数時間5秒、積算回数3回で測定を行った。
[Measurement of crystallite diameter]
The crystallite diameter on the (111) plane of the FeSiP alloy powder 1 was measured using an X-ray diffractometer (manufactured by Rigaku, model RINT-Ultima III). Cobalt was used as the X-ray source, and X-rays were generated at an accelerating voltage of 40 kV and a current of 30 mA. The divergent slit opening angle is 1/3 °, the scattering slit opening angle is 2/3 °, and the light receiving slit width is 0.3 mm. In order to accurately measure the half-value range, a step scan was performed in a range of 2θ of 51.5 to 53.5 ° with a measurement interval of 0.02 °, a counting time of 5 seconds, and an integration number of 3 times.

得られた回折チャートから粉末X線解析ソフトウェアPDXL2を使用して、シェラーの式(Dhkl=Kλ/βcosθ)により結晶子径を求めた。この式中、Dhklは結晶子径(hklに垂直な方向の結晶子の大きさ)(Å)、λは測定X線の波長(オングストローム)(Cuターゲット;1.54059Å)、βは結晶子の大きさによる回折線の広がり(rad)(半価幅を用いて表す)、θは回折角のブラッグ角(rad)(入射角と反射角が等しいときの角度であり、ピークトップの角度を使用する)、KはScherrer定数(Dやβの定義などにより異なるが、K=0.9とする)である。なお、計算には(111)面のピークデータを使用した。 From the obtained diffraction chart, the crystallite diameter was determined by Scheller's equation (Dhkl = Kλ / βcosθ) using the powder X-ray analysis software PDXL2. In this formula, Dhkl is the crystallite diameter (size of the crystallite in the direction perpendicular to hkl) (Å), λ is the wavelength of the measured X-ray (Angstrom) (Cu target; 1.54059Å), and β is the crystallite. The spread of the diffraction line according to the magnitude (rad) (expressed using the half-value width), θ is the Bragg angle (rad) of the diffraction angle (the angle when the incident angle and the reflection angle are equal, and the peak top angle is used. ), K is a Scherrer constant (K = 0.9, although it depends on the definition of D and β). The peak data of the (111) plane was used for the calculation.

[磁気特性(透磁率、保持力、及び飽和磁化)の測定]
FeSiP合金粉末1とビスフェノールF型エポキシ樹脂(株式会社テスク製;一液性エポキシ樹脂B−1106)を97:3の質量割合で秤量し、真空撹拌・脱泡ミキサー(EME社製;V−mini300)を用いてこれらを混練し、供試粉末がエポキシ樹脂中に分散したペーストとした。このペーストをホットプレート上で30℃で2hr乾燥させて合金粉末と樹脂の複合体としたのち、粉末状に解粒して、複合体粉末とした。この複合体粉末0.2gをドーナッツ状の容器内に入れて、ハンドプレス機により9800N(1Ton)の荷重をかけることにより、外径7mm、内径3mmのトロイダル形状の成形体を得た。この成形体について、RFインピーダンス/マテリアル・アナライザ(アジレント・テクノロジー社製;E4991A)とテストフィクスチャ(アジレント・テクノロジー社製;16454A)を用い、10MHzにおける複素比透磁率の実数部μ’を測定した。
[Measurement of magnetic properties (permeability, holding power, and saturation magnetization)]
FeSiP alloy powder 1 and bisphenol F type epoxy resin (manufactured by TISC Co., Ltd .; one-component epoxy resin B-1106) are weighed at a mass ratio of 97: 3, and vacuum stirring / defoaming mixer (manufactured by EME; V-mini300). ) Was kneaded to obtain a paste in which the test powder was dispersed in the epoxy resin. This paste was dried on a hot plate at 30 ° C. for 2 hours to form a composite of an alloy powder and a resin, and then granulated into a powder to obtain a composite powder. 0.2 g of this composite powder was placed in a donut-shaped container, and a load of 9800 N (1 Ton) was applied by a hand press to obtain a toroidal molded product having an outer diameter of 7 mm and an inner diameter of 3 mm. For this molded product, the real part μ'of the complex relative permeability at 10 MHz was measured using an RF impedance / material analyzer (manufactured by Agilent Technologies; E4991A) and a test fixture (manufactured by Agilent Technologies; 16454A). ..

また、高感度型振動試料型磁力計(東英工業株式会社製:VSM−P7−15型)を用い、印加磁界(10kOe)、M測定レンジ(50emu)、ステップビット100bit、時定数0.03sec、ウエイトタイム0.1secでFeSiP合金粉末1の磁気特性を測定した。B−H曲線により、飽和磁化σs及び保磁力Hcを求めた。なお、処理定数はメーカー指定に従った。具体的には下記の通りである。 In addition, using a high-sensitivity vibrating sample magnetometer (manufactured by Toei Kogyo Co., Ltd .: VSM-P7-15 type), applied magnetic field (10 kOe), M measurement range (50 emu), step bit 100 bits, time constant 0.03 sec. The magnetic properties of the FeSiP alloy powder 1 were measured with a weight time of 0.1 sec. The saturation magnetization σs and the coercive force Hc were determined from the BH curve. The processing constants were specified by the manufacturer. Specifically, it is as follows.

交点検出:最小二乗法 M平均点数 0 H平均点数 0
Ms Width:8 Mr Width:8 Hc Width:8 SFD Width:8 S.Star Width:8
サンプリング時間(秒):90
2点補正 P1(Oe):1000
2点補正 P2(Oe):4500
Intersection detection: least squares method M average score 0 H average score 0
Ms With: 8 Mr With: 8 Hc With: 8 SFD With: 8 S.M. Star With: 8
Sampling time (seconds): 90
2-point correction P1 (Oe): 1000
2-point correction P2 (Oe): 4500

[耐湿性の評価]
FeSiP合金粉末1の耐湿性は、Δσsを指標として、以下のようにして評価した。
当該粉末を、温度と湿度を管理した大気雰囲気下(温度:60℃、相対湿度:90%)で7日間保管した後、高感度型振動試料型磁力計(東英工業株式会社製:VSM−P7−15型)を用い、印加磁界(10kOe)、M測定レンジ(50emu)、ステップビット100bit、時定数0.03sec、ウエイトタイム0.1secでFeSiP合金粉末1の飽和磁化σs(印加磁場10kOe時の1g当たりの磁化)を測定した。得られたσs(A)と、上記雰囲気下で保管する前のσs(B)との差をΔσsとした。
Δσs=σs(B)―σs(A)
[Evaluation of moisture resistance]
The moisture resistance of FeSiP alloy powder 1 was evaluated as follows using Δσs as an index.
After storing the powder in an atmospheric atmosphere (temperature: 60 ° C., relative humidity: 90%) in which temperature and humidity are controlled for 7 days, a high-sensitivity vibrating sample magnetometer (manufactured by Toei Kogyo Co., Ltd .: VSM-) Using a P7-15 type), the saturated magnetization σs of the FeSiP alloy powder 1 (when the applied magnetic field is 10 kOe), the applied magnetic field (10 kOe), the M measurement range (50 emu), the step bit 100 bits, the time constant 0.03 sec, and the weight time 0.1 sec. Magnetization per gram) was measured. The difference between the obtained σs (A) and σs (B) before storage in the above atmosphere was defined as Δσs.
Δσs = σs (B) -σs (A)

[耐酸化性の評価]
FeSiP合金粉末1の耐酸化性は、以下のようにして評価した。
[Evaluation of oxidation resistance]
The oxidation resistance of FeSiP alloy powder 1 was evaluated as follows.

示差熱熱重量同時測定装置(SIIナノテクノロジー株式会社のEXATERTG/DTA6300型)により加熱時の重量増加率を求めた。具体的には、20mgのFeSiP合金粉末1を試料容器(アルミナオープン型試料容器φ5.2mm、高さ2.5mm)に入れ、当該容器を前記測定装置のホルダにセットし、測定装置内に流量200ml/minでAirを流して(すなわち大気雰囲気下で)、室温(25℃)から昇温速度5℃/minで800℃まで昇温して分析を行った。700℃まで昇温させて計測された試料容器内の合金粉末の重量(C)と加熱前の合金粉末の重量(D)の差(加熱により増加した重量)の、加熱前の合金粉末の重量(D)に対する増加率(%)を求めた。
増加率(%)={(C)−(D)}/(D)×100
The weight increase rate during heating was determined by a differential thermogravimetric simultaneous measuring device (EXATERT G / DTA6300 type of SII Nanotechnology Co., Ltd.). Specifically, 20 mg of FeSiP alloy powder 1 is placed in a sample container (alumina open type sample container φ5.2 mm, height 2.5 mm), the container is set in the holder of the measuring device, and the flow rate is set in the measuring device. The analysis was carried out by flowing Air at 200 ml / min (that is, in an air atmosphere) and raising the temperature from room temperature (25 ° C.) to 800 ° C. at a heating rate of 5 ° C./min. The weight of the alloy powder before heating, which is the difference (weight increased by heating) between the weight (C) of the alloy powder in the sample container and the weight (D) of the alloy powder before heating measured by raising the temperature to 700 ° C. The rate of increase (%) with respect to (D) was calculated.
Rate of increase (%) = {(C)-(D)} / (D) x 100

[実施例1]
上記参考例1(Ref.1)で得られたFeSiP合金粉末1に対して、炉を使用し、酸素を1.0ppm含む窒素雰囲気中、昇温速度10℃/minで600℃に加温し、この熱処理温度600℃にて30分間熱処理を実施して略球状のFeSiP合金粉末2を得た。この合金粉末2について、参考例1(Ref.1)と同様の方法で、組成(Fe、Si、Pの含有量、酸素含有量、炭素含有量及び窒素含有量)、BET比表面積、タップ密度(TAP)、粒度分布、結晶子径及び磁気特性を求め、さらに耐湿性及び耐酸化性の評価を行った。FeSiP合金粉末2のP量はFeSiP合金粉末1のものとほぼ同等であった。
[Example 1]
The FeSiP alloy powder 1 obtained in Reference Example 1 (Ref. 1) was heated to 600 ° C. at a heating rate of 10 ° C./min in a nitrogen atmosphere containing 1.0 ppm of oxygen using a furnace. The heat treatment was carried out at this heat treatment temperature of 600 ° C. for 30 minutes to obtain a substantially spherical FeSiP alloy powder 2. The composition (Fe, Si, P content, oxygen content, carbon content and nitrogen content), BET specific surface area, and tap density of this alloy powder 2 in the same manner as in Reference Example 1 (Ref. 1). (TAP), particle size distribution, crystallite diameter and magnetic properties were determined, and moisture resistance and oxidation resistance were evaluated. The amount of P in the FeSiP alloy powder 2 was almost the same as that in the FeSiP alloy powder 1.

[実施例2〜6、比較例1〜4]
熱処理温度と窒素雰囲気中の酸素濃度を下記表1に示すように変更した以外は、実施例1と同様にして、それぞれ略球状のFeSiP合金粉末3〜11を得た。これらの合金粉末について、参考例1(Ref.1)と同様の方法で、組成(Fe、Si、Pの含有量、酸素含有量、炭素含有量及び窒素含有量)、BET比表面積、タップ密度(TAP)、粒度分布、結晶子径及び磁気特性を求め、さらに耐湿性及び耐酸化性の評価を行った。FeSiP合金粉末3〜11のP量はFeSiP合金粉末1のものとほぼ同等であった。
[Examples 2 to 6, Comparative Examples 1 to 4]
Substantially spherical FeSiP alloy powders 3 to 11 were obtained in the same manner as in Example 1 except that the heat treatment temperature and the oxygen concentration in the nitrogen atmosphere were changed as shown in Table 1 below. For these alloy powders, the composition (Fe, Si, P content, oxygen content, carbon content and nitrogen content), BET specific surface area, and tap density are the same as in Reference Example 1 (Ref. 1). (TAP), particle size distribution, crystallite diameter and magnetic properties were determined, and moisture resistance and oxidation resistance were evaluated. The amount of P in the FeSiP alloy powders 3 to 11 was almost the same as that in the FeSiP alloy powder 1.

[参考例2(Ref.2)]
溶湯原料を電解鉄(純度:99.95質量%以上)14.03kgとシリコンメタル(純度:99質量%以上)0.975kgとした以外は、参考例1と同様にして、参考例2のFeSi合金粉末1を得た。
[Reference Example 2 (Ref. 2)]
FeSi of Reference Example 2 in the same manner as in Reference Example 1 except that the raw materials for the molten metal were electrolytic iron (purity: 99.95% by mass or more) 14.03 kg and silicon metal (purity: 99% by mass or more) 0.975 kg. Alloy powder 1 was obtained.

このようにして得られた略球状のFeSi合金粉末1について、参考例1(Ref.1)と同様の方法で、組成(Fe、Siの含有量、酸素含有量、炭素含有量及び窒素含有量)、BET比表面積、タップ密度(TAP)、粒度分布、結晶子径及び磁気特性を求め、さらに耐湿性及び耐酸化性の評価を行った。 The substantially spherical FeSi alloy powder 1 thus obtained has a composition (Fe, Si content, oxygen content, carbon content and nitrogen content) in the same manner as in Reference Example 1 (Ref. 1). ), BET specific surface area, tap density (TAP), particle size distribution, crystallite diameter and magnetic properties were determined, and moisture resistance and oxidation resistance were evaluated.

[実施例7]
上記参考例2(Ref.2)で得られたFeSi合金粉末1に対して、実施例1と同様にして熱処理を行い、略球状のFeSi合金粉末2を得た。この合金粉末について、参考例1(Ref.1)と同様の方法で、組成(Fe、Siの含有量、酸素含有量、炭素含有量及び窒素含有量)、BET比表面積、タップ密度(TAP)、粒度分布、結晶子径及び磁気特性を求め、さらに耐湿性及び耐酸化性の評価を行った。
[Example 7]
The FeSi alloy powder 1 obtained in Reference Example 2 (Ref. 2) was heat-treated in the same manner as in Example 1 to obtain a substantially spherical FeSi alloy powder 2. The composition (Fe, Si content, oxygen content, carbon content and nitrogen content), BET specific surface area, and tap density (TAP) of this alloy powder in the same manner as in Reference Example 1 (Ref. 1). , Particle size distribution, crystallite diameter and magnetic properties were obtained, and moisture resistance and oxidation resistance were evaluated.

以上の結果を下記表1及び2にまとめる。

Figure 2020152947
Figure 2020152947
The above results are summarized in Tables 1 and 2 below.
Figure 2020152947
Figure 2020152947

比較例と実施例の比較から、特定の組成のFeSi(P)合金系軟磁性粉末を600℃以上の高温で熱処理することによって得られた軟磁性粉末は、結晶子径が99nm以上と大きく、これを成形体として耐湿性を評価した時(Δσs)、優れた結果を示すことがわかる。 From the comparison between Comparative Examples and Examples, the soft magnetic powder obtained by heat-treating the FeSi (P) alloy-based soft magnetic powder having a specific composition at a high temperature of 600 ° C. or higher has a large crystallite diameter of 99 nm or more. It can be seen that when the moisture resistance is evaluated using this as a molded product (Δσs), excellent results are shown.

また実施例3とその他の実施例の比較から、熱処理温度を900℃未満とすることで、窒素含有量の少ない軟磁性粉末が得られることがわかる。 Further, from the comparison between Example 3 and other Examples, it can be seen that a soft magnetic powder having a low nitrogen content can be obtained by setting the heat treatment temperature to less than 900 ° C.

実施例6とその他の実施例の比較から、熱処理温度と熱処理雰囲気中の酸素濃度との積が60万(℃・ppm)以下となる条件でFeSi(P)合金系軟磁性粉末を熱処理した場合、得られた軟磁性粉末は酸素含有量(O)と平均粒子径(D50)の積が2.62(質量%・μm)以下であり、これについての上記耐湿性が特に良好になることがわかる。 From the comparison between Example 6 and other examples, when the FeSi (P) alloy-based soft magnetic powder is heat-treated under the condition that the product of the heat treatment temperature and the oxygen concentration in the heat treatment atmosphere is 600,000 (° C. ppm) or less. The obtained soft magnetic powder has a product of the oxygen content (O) and the average particle size (D50) of 2.62 (mass% · μm) or less, and the moisture resistance for this may be particularly good. Recognize.

実施例5及び6とその他の実施例の比較から、熱処理雰囲気中の酸素濃度を100ppm以下とすることで、酸素含有量(O)と平均粒子径(D50)の積が2.10(質量%・μm)以下の軟磁性粉末が得られ、これの成形体の透磁率(μ’)が優れていることがわかる。 From the comparison between Examples 5 and 6 and other Examples, the product of the oxygen content (O) and the average particle size (D50) is 2.10 (mass%) by setting the oxygen concentration in the heat treatment atmosphere to 100 ppm or less. A soft magnetic powder of μm) or less is obtained, and it can be seen that the magnetic permeability (μ') of the molded product thereof is excellent.

実施例4とその他の実施例の比較から、熱処理温度を800℃とし、かつ熱処理雰囲気中の酸素濃度を100ppmとすることで、酸素含有量(O)と平均粒子径(D50)の積が1.68(質量%・μm)より大きく2.10(質量%・μm)より小さい軟磁性粉末が得られ、これは耐酸化性に優れるとともに、耐湿性に特に優れ、透磁率(μ’)も優れていることがわかる。 From the comparison between Example 4 and other examples, by setting the heat treatment temperature to 800 ° C. and the oxygen concentration in the heat treatment atmosphere to 100 ppm, the product of the oxygen content (O) and the average particle size (D50) is 1. A soft magnetic powder larger than .68 (mass% μm) and smaller than 2.10 (mass% μm) was obtained, which has excellent oxidation resistance, moisture resistance, and magnetic permeability (μ'). It turns out to be excellent.

Claims (15)

Feを89.5〜99.6質量%、Siを0.2〜9.0質量%、Pを0〜1.0質量%含む軟磁性粉末であって、
(111)面における結晶子径が95nm以上である、軟磁性粉末。
A soft magnetic powder containing 89.5 to 99.6% by mass of Fe, 0.2 to 9.0% by mass of Si, and 0 to 1.0% by mass of P.
A soft magnetic powder having a crystallite diameter of 95 nm or more on the (111) plane.
Nの含有量が800ppm以下である、請求項1に記載の軟磁性粉末。 The soft magnetic powder according to claim 1, wherein the content of N is 800 ppm or less. 前記軟磁性粉末におけるFe、Si及びPの含有量の合計が97.5質量%以上である、請求項1又は2に記載の軟磁性粉末。 The soft magnetic powder according to claim 1 or 2, wherein the total content of Fe, Si and P in the soft magnetic powder is 97.5% by mass or more. 前記軟磁性粉末の酸素含有量(O)とレーザー回折散乱式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50)との積(O×D50)が、3.00(質量%・μm)以下である、請求項1〜3のいずれかに記載の軟磁性粉末。 The product (O × D50) of the oxygen content (O) of the soft magnetic powder and the cumulative 50% particle diameter (D50) on a volume basis measured by a laser diffraction / scattering particle size distribution measuring device is 3.00 (mass%). The soft magnetic powder according to any one of claims 1 to 3, which is μm) or less. 前記積(O×D50)が2.30(質量%・μm)以下である、請求項4に記載の軟磁性粉末。 The soft magnetic powder according to claim 4, wherein the product (O × D50) is 2.30 (mass% · μm) or less. 前記積(O×D50)が1.70〜2.00(質量%・μm)である、請求項5に記載の軟磁性粉末。 The soft magnetic powder according to claim 5, wherein the product (O × D50) is 1.70 to 2.00 (mass% · μm). Pを0.02〜0.5質量%含む、請求項1〜6のいずれかに記載の軟磁性粉末。 The soft magnetic powder according to any one of claims 1 to 6, which contains 0.02 to 0.5% by mass of P. Feを89.5〜99.6質量%、Siを0.2〜9.0質量%、Pを0〜1.0質量%含む軟磁性粉末を、500〜950℃で熱処理する工程を有する、軟磁性粉末の熱処理方法。 It has a step of heat-treating a soft magnetic powder containing 89.5 to 99.6% by mass of Fe, 0.2 to 9.0% by mass of Si, and 0 to 1.0% by mass of P at 500 to 950 ° C. Heat treatment method for soft magnetic powder. 前記熱処理を、500〜850℃で行う、請求項8に記載の軟磁性粉末の熱処理方法。 The method for heat-treating a soft magnetic powder according to claim 8, wherein the heat treatment is performed at 500 to 850 ° C. 前記熱処理を、熱処理温度(℃)と熱処理を実施する雰囲気中の酸素濃度(ppm)との積(熱処理温度×雰囲気酸素濃度)が、70万(℃・ppm)以下となる条件で実施する、請求項8又は9に記載の軟磁性粉末の熱処理方法。 The heat treatment is carried out under the condition that the product (heat treatment temperature x atmospheric oxygen concentration) of the heat treatment temperature (° C.) and the oxygen concentration (ppm) in the atmosphere in which the heat treatment is performed is 700,000 (° C. ppm) or less. The method for heat-treating a soft magnetic powder according to claim 8 or 9. 前記熱処理を、酸素濃度500ppm以下の雰囲気中で行う、請求項8又は9に記載の軟磁性粉末の熱処理方法。 The method for heat-treating a soft magnetic powder according to claim 8 or 9, wherein the heat treatment is performed in an atmosphere having an oxygen concentration of 500 ppm or less. 前記熱処理を、700〜850℃で、酸素濃度50〜400ppmの雰囲気中で行う、請求項8〜11のいずれかに記載の軟磁性粉末の熱処理方法。 The method for heat-treating a soft magnetic powder according to any one of claims 8 to 11, wherein the heat treatment is performed at 700 to 850 ° C. in an atmosphere having an oxygen concentration of 50 to 400 ppm. 請求項1〜7のいずれかに記載の軟磁性粉末とバインダとを含む、軟磁性材料。 A soft magnetic material containing the soft magnetic powder according to any one of claims 1 to 7 and a binder. 請求項1〜7のいずれかに記載の軟磁性粉末を含む圧粉磁心。 A powder magnetic core containing the soft magnetic powder according to any one of claims 1 to 7. 請求項1〜7のいずれかに記載の軟磁性粉末、または請求項13に記載の軟磁性材料を所定の形状に成型し、得られた成型物を加熱して圧粉磁心を得る、圧粉磁心の製造方法。
A dust compact obtained by molding the soft magnetic powder according to any one of claims 1 to 7 or the soft magnetic material according to claim 13 into a predetermined shape and heating the obtained molded product to obtain a dust core. How to make a magnetic core.
JP2019051328A 2019-03-19 2019-03-19 Soft magnetic powder, soft magnetic material and dust core Active JP7221100B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019051328A JP7221100B2 (en) 2019-03-19 2019-03-19 Soft magnetic powder, soft magnetic material and dust core
CN201980093356.5A CN113518674B (en) 2019-03-19 2019-12-25 Soft magnetic powder, heat treatment method for soft magnetic powder, soft magnetic material, dust core, and method for producing dust core
PCT/JP2019/050738 WO2020188940A1 (en) 2019-03-19 2019-12-25 Soft magnetic powder, soft magnetic powder heat processing method, soft magnetic material, pressed powder magnetic core, and pressed powder magnetic core production method
KR1020217026877A KR20210137002A (en) 2019-03-19 2019-12-25 Soft magnetic powder, heat treatment method of soft magnetic powder, soft magnetic material, powder core and manufacturing method of powder core
TW109107341A TWI832984B (en) 2019-03-19 2020-03-06 Soft magnetic powder, method for heat treatment of soft magnetic powder, soft magnetic material, dust core and method for producing dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019051328A JP7221100B2 (en) 2019-03-19 2019-03-19 Soft magnetic powder, soft magnetic material and dust core

Publications (2)

Publication Number Publication Date
JP2020152947A true JP2020152947A (en) 2020-09-24
JP7221100B2 JP7221100B2 (en) 2023-02-13

Family

ID=72519864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019051328A Active JP7221100B2 (en) 2019-03-19 2019-03-19 Soft magnetic powder, soft magnetic material and dust core

Country Status (5)

Country Link
JP (1) JP7221100B2 (en)
KR (1) KR20210137002A (en)
CN (1) CN113518674B (en)
TW (1) TWI832984B (en)
WO (1) WO2020188940A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289417A (en) * 2001-01-18 2002-10-04 Matsushita Electric Ind Co Ltd Composite magnetic material, magnetic device, and its manufacturing method
JP2004146563A (en) * 2002-10-24 2004-05-20 Matsushita Electric Ind Co Ltd Compound magnetic material
JP2008124270A (en) * 2006-11-13 2008-05-29 Daido Steel Co Ltd METHOD OF REDUCING CORE LOSS OF Fe-Si-BASED DUST CORE
JP2010272604A (en) * 2009-05-20 2010-12-02 Nec Tokin Corp Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
JP2013197394A (en) * 2012-03-21 2013-09-30 Seiko Epson Corp Magnetic powder for magnetic fluid, magnetic fluid and damper
JP2016216818A (en) * 2015-05-14 2016-12-22 Tdk株式会社 Soft magnetic metal powder, and, soft magnetic metal dust core
JP2017008376A (en) * 2015-06-23 2017-01-12 大同特殊鋼株式会社 Fe-BASED ALLOY COMPOSITION, SOFT MAGNETIC POWDER, COMPOSITE MAGNETIC BODY AND MANUFACTURING METHOD OF SOFT MAGNETIC POWDER
JP2018206787A (en) * 2017-05-30 2018-12-27 トヨタ自動車株式会社 Method for manufacturing powder-compact magnetic core
JP2019090103A (en) * 2017-11-16 2019-06-13 Tdk株式会社 Soft magnetic metal powder, production method thereof and soft magnetic metal dust core

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6501148B2 (en) 2015-03-12 2019-04-17 日立化成株式会社 Magnetic sheet material using green compact and method of manufacturing the same
JP6459154B2 (en) * 2015-06-19 2019-01-30 株式会社村田製作所 Magnetic powder and manufacturing method thereof, magnetic core and manufacturing method thereof, and coil component
JP6651082B2 (en) * 2015-07-31 2020-02-19 Jfeスチール株式会社 Method for manufacturing soft magnetic powder core
JP6683544B2 (en) 2016-06-15 2020-04-22 Tdk株式会社 Soft magnetic metal fired body and coil type electronic component

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289417A (en) * 2001-01-18 2002-10-04 Matsushita Electric Ind Co Ltd Composite magnetic material, magnetic device, and its manufacturing method
JP2004146563A (en) * 2002-10-24 2004-05-20 Matsushita Electric Ind Co Ltd Compound magnetic material
JP2008124270A (en) * 2006-11-13 2008-05-29 Daido Steel Co Ltd METHOD OF REDUCING CORE LOSS OF Fe-Si-BASED DUST CORE
JP2010272604A (en) * 2009-05-20 2010-12-02 Nec Tokin Corp Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
JP2013197394A (en) * 2012-03-21 2013-09-30 Seiko Epson Corp Magnetic powder for magnetic fluid, magnetic fluid and damper
JP2016216818A (en) * 2015-05-14 2016-12-22 Tdk株式会社 Soft magnetic metal powder, and, soft magnetic metal dust core
JP2017008376A (en) * 2015-06-23 2017-01-12 大同特殊鋼株式会社 Fe-BASED ALLOY COMPOSITION, SOFT MAGNETIC POWDER, COMPOSITE MAGNETIC BODY AND MANUFACTURING METHOD OF SOFT MAGNETIC POWDER
JP2018206787A (en) * 2017-05-30 2018-12-27 トヨタ自動車株式会社 Method for manufacturing powder-compact magnetic core
JP2019090103A (en) * 2017-11-16 2019-06-13 Tdk株式会社 Soft magnetic metal powder, production method thereof and soft magnetic metal dust core

Also Published As

Publication number Publication date
CN113518674B (en) 2023-09-08
CN113518674A (en) 2021-10-19
TW202039882A (en) 2020-11-01
TWI832984B (en) 2024-02-21
WO2020188940A1 (en) 2020-09-24
JP7221100B2 (en) 2023-02-13
KR20210137002A (en) 2021-11-17

Similar Documents

Publication Publication Date Title
JP6851448B2 (en) Heat treatment method for soft magnetic powder
JP6712655B2 (en) Soft magnetic powder, soft magnetic material, and method for manufacturing dust core
JP5732945B2 (en) Fe-Ni alloy powder
EP3689825A1 (en) Mn-zn ferrite particles, resin molded body, soft magnetic mixed powder, and magnetic core
JP2018186212A (en) Soft magnetic powder, method for manufacturing the same, soft magnetic material, and method for manufacturing powder-compact magnetic core
JP4288674B2 (en) Method for producing magnetic metal fine particles and magnetic metal fine particles
JP2000086685A (en) Production of iron carbonyl silicide, and iron carbonyl silicide
JP2018178254A (en) Fe-Ni-BASED ALLOY POWDER AND MANUFACTURING METHOD THEREFOR
JP7221100B2 (en) Soft magnetic powder, soft magnetic material and dust core
JP2019218611A (en) Method for producing phosphoric acid-surface treated soft magnetic powder, and phosphoric acid-surface treated soft magnetic powder
WO2019045100A1 (en) Soft magnetic powder, method for producing fe powder or alloy powder containing fe, soft magnetic material, and method for producing dust core
Forster et al. Sodium borohydride reduction of aqueous iron–zirconium solutions: chemical routes to amorphous and nanocrystalline Fe–Zr–B alloys
WO2020090849A1 (en) Soft magnetic powder, soft magnetic powder heat treatment method, soft magnetic material, dust core, and dust core manufacturing method
WO2021241466A1 (en) Soft magnetic powder, method for producing soft magnetic powder, soft magnetic material, powder magnetic core, and method for producing powder magnetic core
JP2022068108A (en) Alloy powder, manufacturing method for alloy powder, soft magnetic material, dust core and manufacturing method for dust core
JPH03153851A (en) Soft-magnetic material and its production
JP5024683B2 (en) Magnetic beads
JP2024062727A (en) Soft magnetic powders, metal powders, dust cores, magnetic elements and electronic devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230201

R150 Certificate of patent or registration of utility model

Ref document number: 7221100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150