JP2004146563A - Compound magnetic material - Google Patents

Compound magnetic material Download PDF

Info

Publication number
JP2004146563A
JP2004146563A JP2002309341A JP2002309341A JP2004146563A JP 2004146563 A JP2004146563 A JP 2004146563A JP 2002309341 A JP2002309341 A JP 2002309341A JP 2002309341 A JP2002309341 A JP 2002309341A JP 2004146563 A JP2004146563 A JP 2004146563A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic material
magnetic
metal soft
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002309341A
Other languages
Japanese (ja)
Inventor
Takeshi Takahashi
高橋 岳史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002309341A priority Critical patent/JP2004146563A/en
Publication of JP2004146563A publication Critical patent/JP2004146563A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound magnetic material in which an electromagnetic part such as a choke coil can be miniaturized, which can be used in a high frequency band, and which has a superior magnetic characteristic. <P>SOLUTION: An insulating binding agent is added to metallic magnetic powder where content of Si is 1wt% to 8wt%, content of Mn is not more than 0.09wt% and a remaining part is formed of Fe and inevitable impurity. It is pressurized and shaped and a compact is formed. Heat treatment is performed in a temperature region of 750 to 1000°C at a non-oxidating atmosphere. Thus, the compound magnetic material having the superior soft magnetic characteristic is realized. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は電子機器の主要な受動部品であるインダクタ、チョークコイル、トランス及びその他の磁性素子に用いられる高性能な複合磁性材料に関するものである。
【0002】
【従来の技術】
電子機器の小型/薄型化に伴い、これらに用いられる受動部品や半導体デバイスも小型化、薄型化することが強く求められている。一方、CPUなどのLSIは高集積化しており、特に高速なCPUに供給される電源回路には数A〜数十Aの電流が供給されることがある。
【0003】
従って、これらの電源供給回路に用いられるチョークコイル等の磁性素子においては小型/薄型化の要求とともに直流重畳によるインダクタンスの低下が少ないことが必要とされている。さらに又、使用周波数領域も高周波化しており、高周波領域においてコア損失の低いことが求められている。すなわち大電流、高周波領域で使用することが可能であり、かつ小型/薄型化した磁性素子を供給することが求められている。
【0004】
これらの要望に対して、チョークコイル、トランス等の磁性素子に用いられる磁性材料としてはフェライト軟磁性材料や金属磁性材料が挙げられる。しかし、フェライト軟磁性材料は金属磁性材料に比べて飽和磁束密度が低いために磁気飽和によるインダクタンスの低下が大きく、直流重畳特性が劣るという課題を有している。そのため、通常はコアの磁路を妨げる垂直方向にギャップを設けて、見掛けの透磁率を下げて使用することが行われている。しかしながら、このようなギャップの形成は振動によるノイズ音の発生源となったり、さらに透磁率を下げても飽和磁束密度は低いままであるため直流重畳特性は金属磁性材料より悪いといった問題点がある。
【0005】
一方、金属磁性材料はフェライト材料に比べて飽和磁束密度が著しく大きいという特性を有しているので直流重畳特性は優れている。しかしながら、構成材料が金属であることから固有抵抗が低いために数百kHz〜MHzの高周波領域では渦電流損失が大きくなり、そのままでは使用することができないという欠点がある。
【0006】
そのために金属磁性材料を粉末化したものを用い、粉末粒子間の絶縁処理を施し、加圧成形して圧粉磁芯として使用されている。この圧粉磁芯として良好な磁気特性を得るためには絶縁処理された金属軟磁性粉末の充填率を高める必要があり、数ton/cm〜20ton/cmでの高圧成形を行う必要がある。このとき、高圧成形時に導入される加圧歪みにより磁気特性は著しく低下する。この低下した磁気特性を改善する対策として、焼鈍という熱処理を成形後にすることによって歪を開放する作業が行われている。
【0007】
なお、この出願の発明に関する先行技術文献情報としては、例えば特許文献1が知られている。
【0008】
【特許文献1】
特開平6−299114号公報
【0009】
【発明が解決しようとする課題】
一般的な金属磁性材料における回復は融点の1/2以上の温度で起こる現象であり、Fe過剰組成の合金において歪みを開放するための熱処理温度としては少なくとも600℃以上は必要であり、加工歪みの開放には焼鈍温度をより高温とするほど有効となる。
【0010】
しかしながら、従来の圧粉磁芯の絶縁結着剤として使用されるエポキシ樹脂、フェノール樹脂、塩化ビニル樹脂等のほとんどの有機系樹脂は加工歪みを開放するために高温で熱処理を施すと、有機系樹脂の耐熱性が低いために熱分解してしまうことから、無機系の絶縁結着剤を使用する必要がある。この無機系の絶縁結着剤としては水ガラス、ポリシロキサン樹脂の提案がなされているが、これらの耐熱温度は500〜600℃であり、それ以上の温度での焼鈍処理は困難である。
【0011】
また、磁気特性向上のために、より成形圧力を高める被成形体中における金属軟磁性粉の充填率を高めるほど、金属軟磁性粉末間の距離が短くなる(金属軟磁性粉の絶縁層の厚みを厚くすることができなくなる)ことから、焼鈍のための熱処理温度の高温化はより難しくなる。
【0012】
本発明は上記従来の技術における課題を解決し、金属軟磁性粉の充填率の高い成形物においても高温での焼鈍処理を可能とし、磁気特性の優れた複合磁性材料を提供するものである。
【0013】
【課題を解決するための手段】
上記課題を解決するために本発明の請求項1に記載の発明は、Siの含有量が1wt%以上8wt%以下であり、Mnの含有量が0.09wt%以下であり、残部がFe及び不可避な不純物からなる金属軟磁性粉に絶縁性結着剤を添加し、加圧成形して成形体とし、非酸化性雰囲気にて熱処理して形成した複合磁性材料であり、これにより優れた軟磁気特性を有する複合磁性材料を実現することができる。
【0014】
請求項2に記載の発明は、熱処理温度が750℃以上1000℃以下である請求項1に記載の複合磁性材料であり、加圧成形時に導入される加工歪みを十分に開放することが可能となり、低損失、良好な透磁率を実現することができる。
【0015】
請求項3に記載の発明は、被成形物中における金属軟磁性粉の充填率が体積換算で85%以上である請求項1に記載の複合磁性材料であり、低損失、良好な透磁率を実現することができる。
【0016】
請求項4に記載の発明は、金属軟磁性粉の平均粒径が1〜100μmである請求項1に記載の複合磁性材料であり、高周波数領域でも低いコア損失、良好な透磁率を実現することができる。なお、本発明における平均粒径とは、粒径が小さなものからカウントしていき、積算が全体の50%となったときの粒子径を意味する。
【0017】
請求項5に記載の発明は、金属軟磁性粉の酸素含有量が4500ppm以下である請求項1に記載の複合磁性材料であり、これにより優れた軟磁気特性を実現することができる。
【0018】
【発明の実施の形態】
以下、本発明の複合磁性材料について実施の形態を用いて説明する。
【0019】
(実施の形態1)
以下、実施の形態1により請求項1〜3に記載の発明について説明する。
【0020】
実施の形態1における複合磁性材料は、Siの含有量が1wt%以上8wt%以下であり、Mnの含有量が0.09wt%以下であり、残部がFe及び不可避な不純物からなる金属軟磁性粉に絶縁性結着剤を添加し、加圧成形して成形体とし、非酸化性雰囲気にて750〜1000℃で熱処理したものである。
【0021】
また、本発明における複合磁性材料は被成形物中における金属軟磁性粉の充填率が体積換算で85%以上であるものである。
【0022】
焼鈍処理温度の高温化の実現を目的として鋭意検討を行った結果、Fe−Si系においてMn組成が大きく磁気損失に影響を及ぼすことを見出した。
【0023】
すなわち、Mnの組成範囲を0.09wt%以下とすることにより、金属軟磁性粉の充填率が体積換算で85%以上である高密度成形体においても、750〜1000℃の高温での熱処理後も金属軟磁性粉の粒子間絶縁を保持することが可能であり、優れた軟磁気特性を実現することができる。
【0024】
また、Mn組成が0.09wt%より多いと高温熱処理後において金属軟磁性粉の粒子間絶縁を十分保持することができず渦電流損失が増大するためである。
【0025】
また、金属軟磁性粉の高純度化(低Mn化)に関しては原材料である鉄源の高純度化を図る必要があり、Mn含有量が0.01wt%より少なくするには電解精錬法等の製造方法を用いる必要があり、この電解精錬法は高コストとなるために、Mn組成は0.01〜0.09wt%の範囲が生産性の観点から最も効果的である。
【0026】
また、本発明におけるSiの役割は軟磁気特性を向上させるものであり、磁気異方性、磁歪定数を小さくするとともに固有の電気抵抗を高めて渦電流損失を低減させる効果がある。
【0027】
さらに、Si添加量としては1wt%以上8wt%以下が好ましい。Siの添加量が1wt%より少ないと軟磁気特性の改善効果に乏しく、8wt%より多いと飽和磁化の低下が大きく直流重畳特性が低下するからである。
【0028】
次に、本発明における絶縁性結着剤としては金属軟磁性粉を被覆するように絶縁性の酸化物を形成するものが好ましく、それらはシラン系、チタン系、クロム系等のカップリング剤、シリコン系樹脂またはSiO、TiO、Al等の酸化物粉末などが挙げられるが、より好ましくは安価で分散性の良いシラン系、チタン系、クロム系等のカップリング剤およびシリコン系樹脂である。
【0029】
また、成形体強度の観点から、例えばエポキシ樹脂、アクリル樹脂、ブチラール樹脂などを副成分として添加することも可能である。
【0030】
さらに、本発明における熱処理とは加圧成形時に金属軟磁性粉に導入される加工歪みによる磁気特性の低下を防ぐためのものであり、加工歪みの開放が目的である。その熱処理温度としてはより高温とするほうが良いが、あまり温度を上げると絶縁物が分解あるいは変化することにより、金属軟磁性粉の粒子間絶縁が不充分となり渦電流損失が増大するために好ましくない。
【0031】
本発明における金属軟磁性粉の熱処理温度として少なくとも700℃以上、より好ましくは750℃以上であり、1000℃以下であることが好ましい。
【0032】
また、熱処理時における雰囲気は非酸化性であることが好ましく、アルゴンガス、ヘリウムガス等の不活性ガス雰囲気、窒素ガス、水素ガス等の中性/還元性ガス雰囲気、真空雰囲気などが非酸化性雰囲気として挙げられる。
【0033】
本発明における複合軟磁性体は被成形物中の金属軟磁性粉末の充填率が体積換算で85%以上であることにより優れた磁気特性を実現することができる。金属軟磁性粉末の充填率が85%より低いと磁気損失、直流重畳特性などの磁気特性が低くなり、より好ましくは87%以上である。
【0034】
また、本発明に用いられる金属軟磁性粉の酸素含有量としては4500ppm以下が好ましい。酸素含有量が4500ppmより多いと磁気特性の低下が著しく好ましくない。より好ましい酸素含有量は4000ppm以下である。
【0035】
以下に、本発明の実施例を説明する。
【0036】
(実施例1)
平均粒径が20μmで、(表1)に示す組成のFe−Si系合金粉末を用意した。用意したFe−Si系合金粉末に対して、シリコン樹脂を0.8重量部添加混合してコンパウンドを作成した。得られたコンパウンドを用いて、10〜15ton/cmで加圧成形し金属軟磁性粉の充填率が体積換算で85wt%以上のトロイダルコアを作成し、このトロイダルコアを窒素雰囲気中にて820℃で1h熱処理を行い、磁気特性評価用サンプルを作成した。
【0037】
得られた磁気特性評価用サンプルについて直流重畳特性、コア損失特性について測定評価を行った。直流重畳特性については、印加磁場50Oe、周波数100kHzにおける透磁率をLCRメータにて測定し、評価した。
【0038】
コア損失特性は交流B−Hカーブ測定機を用いて測定周波数100kHz、測定磁束密度0.1Tで測定を行った。その結果を(表1)に示す。
【0039】
(表1)より、本発明の請求項1〜3の発明において良好な直流重畳特性、低いコア損失特性を示す複合磁性材料を実現していることがわかる。
【0040】
【表1】

Figure 2004146563
【0041】
(実施例2)
平均粒径が19μmで、(表2)に示す組成のFe−Si系金属軟磁性粉を用い、このFe−Si系金属軟磁性粉末に対してシランカップリング剤を0.9重量部添加混合してコンパウンドを作成した。
【0042】
得られたコンパウンドを用い、成形圧力を変化させて被成形物中の金属軟磁性粉の充填率が(表2)に示すように制御されたトロイダルコアを作成した。
【0043】
得られたトロイダルコアをAr中800℃で1.2h熱処理を行った。
【0044】
その後、得られたサンプルについて直流重畳特性、コア損失特性について測定評価を行った。直流重畳特性については印加磁場50Oe、周波数100kHzにおける透磁率をLCRメータにて測定し評価した。またコア損失特性は交流B−Hカーブ測定機を用いて、測定周波数100kHz、測定磁束密度0.1Tで測定を行った。結果を(表2)に示す。
【0045】
【表2】
Figure 2004146563
【0046】
(表2)より、本発明の請求項1〜3の発明において良好な直流重畳特性、低いコア損失特性を示す複合磁性材料を実現していることがわかる。
【0047】
(実施例3)
合金組成が重量%で94.56Fe−5.2Si−0.04Mn−0.2O、平均粒系が18μmの金属軟磁性粉を用い、この金属軟磁性粉末に対してシリコン樹脂1.0重量部を添加混合してコンパウンドを作成した。得られたコンパウンドを用いて12ton/cmで加圧成形を行い、トロイダルコアを作成した後、窒素中にて(表3)に示す温度にて45分間熱処理を行った。
【0048】
このように作成したトロイダルコアにおける金属軟磁性粉の充填率は88.1wt%であった。得られたトロイダルコアのサンプルについて直流重畳特性、コア損失特性について評価を行った。直流重畳特性については、印加磁場50Oe、周波数100kHzにおける透磁率をLCRメータにて測定し評価した。
【0049】
コア損失特性は交流B−Hカーブ測定機を用いて、測定周波数100kHz、測定磁束密度0.1Tで測定を行った。結果を(表3)に示す。
【0050】
【表3】
Figure 2004146563
【0051】
(表3)より、本発明の請求項1〜3の発明において良好な直流重畳特性、低いコア損失特性を示す複合磁性材料を実現していることがわかる。
【0052】
(実施の形態2)
以下、実施の形態2を用いて、本発明の請求項4に記載の発明について説明する。
【0053】
本発明に用いられる金属軟磁性粉末の平均粒径としては、1.0μm以上100μm以下が好ましい。平均粒径が1.0μmより小さいと成形密度が低くなり、透磁率が低下するため好ましくない。平均粒径が100μmより大きくなると高周波での渦電流損失が大きくなり好ましくない。さらに好ましくは50μm以下とすることが良い。
【0054】
本実施の形態2における金属軟磁性粉末として、合金組成が重量%で95.11Fe−4.20Si−0.05Mn−0.32Oであり、(表4)に示す平均粒径を有する金属軟磁性粉末を用い、この金属軟磁性粉末に対してシリコン樹脂を0.9重量部添加混合してコンパウンドを作成した。得られたコンパウンドを用いて、12ton/cmで加圧成形を行いトロイダルコアを作成し、窒素ガス中で780℃で1h熱処理して評価用サンプルを作成した。
【0055】
得られた評価用サンプルについて、透磁率、コア損失特性の評価を行った。透磁率については、周波数100kHzにおける初透磁率をLCRメータにて測定して評価した。またコア損失特性は交流B−Hカーブ測定機を用いて測定周波数100kHz、測定磁束密度0.1Tで測定を行った。
【0056】
その結果を(表4)に示す。
【0057】
【表4】
Figure 2004146563
【0058】
(表4)より、平均粒径が1〜100μmにおいて、好ましくは1〜50μmにおいて低損失な磁気特性を示す複合磁性材料を実現していることがわかる。
【0059】
(実施の形態3)
以下、実施の形態3を用いて、本発明の請求項5に記載の発明について説明する。
【0060】
本発明に用いられる金属軟磁性粉の酸素含有量としては4500ppm以下が好ましい。酸素含有量が4500ppmより多いと磁気特性の低下が著しく好ましくない。より好ましい酸素含有量は4000ppm以下である。
【0061】
実施の形態3における複合磁性材料の合成組成は、重量%で、Siが3.5%、Mnが0.05%、(表5)に示す酸素量を含み、残部がFeであり、その平均粒径が23μmの金属軟磁性粉末を用いた。この金属軟磁性粉末に対して、シリコン樹脂を0.8重量部添加混合してコンパウンドを作成した。得られたコンパウンドを用いて11ton/cmで加圧成形を行いトロイダルコアを作成した。その後、このトロイダルコアを窒素ガス中で800℃で1h熱処理して評価用サンプルを作成した。得られた評価用サンプルについて、透磁率、コア損失特性について評価を行った。評価方法は実施の形態2と同じ方法で行った。その評価結果を(表5)に示す。
【0062】
【表5】
Figure 2004146563
【0063】
(表5)より、酸素含有量が4500ppm以下において、好ましくは4000ppm以下において良好な軟磁気特性を示す複合磁性材料を実現することができる。
【0064】
【発明の効果】
以上説明したように、本発明によれば直流重量特性、コア損失などの軟磁気特性に優れた複合磁性材料を実現することが可能となり、小型で大電流及び高周波領域で使用可能な磁性素子を実現することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-performance composite magnetic material used for inductors, choke coils, transformers, and other magnetic elements, which are main passive components of electronic devices.
[0002]
[Prior art]
As electronic devices become smaller and thinner, passive components and semiconductor devices used for them are also required to be smaller and thinner. On the other hand, LSIs such as CPUs are highly integrated, and a current of several A to several tens A may be supplied to a power supply circuit particularly supplied to a high-speed CPU.
[0003]
Therefore, magnetic elements such as choke coils used in these power supply circuits are required to be smaller and thinner and to have less decrease in inductance due to DC superposition. Furthermore, the operating frequency region is also increasing in frequency, and low core loss is required in the high frequency region. That is, there is a demand to provide a magnetic element that can be used in a large current and high frequency range and that is small and thin.
[0004]
In response to these demands, magnetic materials used for magnetic elements such as choke coils and transformers include ferrite soft magnetic materials and metallic magnetic materials. However, since the ferrite soft magnetic material has a lower saturation magnetic flux density than the metallic magnetic material, there is a problem that the inductance is greatly reduced due to magnetic saturation and the DC superimposition characteristic is inferior. Therefore, usually, a gap is provided in the vertical direction that obstructs the magnetic path of the core to reduce the apparent magnetic permeability. However, there is a problem that the formation of such a gap is a source of noise noise due to vibration, and the DC superposition characteristic is worse than that of a metal magnetic material because the saturation magnetic flux density remains low even if the magnetic permeability is further reduced. .
[0005]
On the other hand, the metallic magnetic material has a characteristic that the saturation magnetic flux density is remarkably large as compared with the ferrite material, so that the DC superposition characteristic is excellent. However, since the constituent material is a metal, the specific resistance is low, so that the eddy current loss increases in a high frequency range of several hundred kHz to MHz, and there is a disadvantage that it cannot be used as it is.
[0006]
For this purpose, a powdered metal magnetic material is used, an insulating treatment is performed between the powder particles, and the powder magnetic material is pressed and used as a dust core. This in order to obtain good magnetic properties as a dust core, it is necessary to increase the filling ratio of the metal soft magnetic powder that has been insulated, it is necessary to perform a high-pressure molding of several ton / cm 2 ~20ton / cm 2 is there. At this time, the magnetic properties are remarkably deteriorated due to the pressure strain introduced during high-pressure molding. As a countermeasure for improving the lowered magnetic properties, an operation of releasing the strain by performing a heat treatment called annealing after forming is performed.
[0007]
As prior art document information relating to the invention of this application, for example, Patent Document 1 is known.
[0008]
[Patent Document 1]
JP-A-6-299114
[Problems to be solved by the invention]
The recovery in a general metal magnetic material is a phenomenon that occurs at a temperature equal to or more than 1/2 of the melting point. In an alloy having an excess Fe composition, a heat treatment temperature of at least 600 ° C. is required to release strain. The higher the annealing temperature is, the more effective the opening of the steel is.
[0010]
However, most organic resins such as epoxy resin, phenolic resin, and vinyl chloride resin used as insulating binders for conventional dust cores are subjected to heat treatment at high temperatures to release processing strain. Since the resin is thermally decomposed due to its low heat resistance, it is necessary to use an inorganic insulating binder. Water glass and polysiloxane resin have been proposed as inorganic insulating binders, but their heat-resistant temperatures are 500 to 600 ° C., and annealing at higher temperatures is difficult.
[0011]
Further, in order to improve the magnetic properties, the distance between the metal soft magnetic powders becomes shorter as the filling rate of the metal soft magnetic powders in the compact to be formed is further increased (the thickness of the insulating layer of the metal soft magnetic powders). Cannot be increased), so that it is more difficult to increase the heat treatment temperature for annealing.
[0012]
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the prior art, and provides a composite magnetic material which is capable of performing an annealing treatment at a high temperature even in a molded product having a high filling rate of metal soft magnetic powder and has excellent magnetic properties.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 of the present invention is characterized in that the content of Si is 1 wt% or more and 8 wt% or less, the content of Mn is 0.09 wt% or less, and the balance is Fe and A composite magnetic material formed by adding an insulating binder to a metal soft magnetic powder consisting of unavoidable impurities, forming a compact by pressing, and heat-treating in a non-oxidizing atmosphere. A composite magnetic material having magnetic properties can be realized.
[0014]
According to a second aspect of the present invention, there is provided the composite magnetic material according to the first aspect, wherein the heat treatment temperature is 750 ° C. or more and 1000 ° C. or less. , Low loss, and good magnetic permeability can be realized.
[0015]
According to a third aspect of the present invention, there is provided the composite magnetic material according to the first aspect, wherein a filling rate of the metal soft magnetic powder in the molded article is 85% or more in terms of volume, and a low loss and a good magnetic permeability are obtained. Can be realized.
[0016]
According to a fourth aspect of the present invention, there is provided the composite magnetic material according to the first aspect, wherein the metal soft magnetic powder has an average particle size of 1 to 100 μm, and realizes low core loss and good magnetic permeability even in a high frequency region. be able to. In the present invention, the average particle diameter means the particle diameter when the particle diameter is counted from the smallest one and the integration becomes 50% of the whole.
[0017]
According to a fifth aspect of the present invention, there is provided the composite magnetic material according to the first aspect, wherein the metal soft magnetic powder has an oxygen content of 4500 ppm or less, whereby excellent soft magnetic properties can be realized.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the composite magnetic material of the present invention will be described using embodiments.
[0019]
(Embodiment 1)
Hereinafter, the first to third aspects of the present invention will be described with reference to the first embodiment.
[0020]
The composite magnetic material according to the first embodiment has a metal soft magnetic powder having a Si content of 1 wt% to 8 wt%, a Mn content of 0.09 wt% or less, and a balance of Fe and unavoidable impurities. , An insulating binder was added to the mixture, and the mixture was pressed and formed into a molded body, which was heat-treated at 750 to 1000 ° C. in a non-oxidizing atmosphere.
[0021]
In the composite magnetic material of the present invention, the filling rate of the metal soft magnetic powder in the molded article is 85% or more in terms of volume.
[0022]
As a result of intensive studies for the purpose of realizing a high annealing temperature, it was found that the Mn composition greatly affects magnetic loss in the Fe-Si system.
[0023]
In other words, by setting the composition range of Mn to 0.09 wt% or less, even in a high-density compact having a filling rate of the metal soft magnetic powder of 85% or more in terms of volume, after heat treatment at a high temperature of 750 to 1000 ° C. Can also maintain the inter-particle insulation of the metal soft magnetic powder, and can realize excellent soft magnetic characteristics.
[0024]
On the other hand, if the Mn composition is more than 0.09 wt%, the inter-particle insulation of the metal soft magnetic powder cannot be sufficiently maintained after the high-temperature heat treatment, and the eddy current loss increases.
[0025]
In addition, it is necessary to increase the purity of the iron source, which is a raw material, in order to increase the purity of the metal soft magnetic powder (lower Mn). To reduce the Mn content to less than 0.01 wt%, it is necessary to use an electrolytic refining method or the like. It is necessary to use a production method, and since this electrolytic refining method is expensive, the range of 0.01 to 0.09 wt% of Mn composition is most effective from the viewpoint of productivity.
[0026]
Further, the role of Si in the present invention is to improve soft magnetic properties, and has the effect of reducing magnetic anisotropy and magnetostriction constant, and increasing intrinsic electric resistance to reduce eddy current loss.
[0027]
Further, the amount of Si added is preferably 1 wt% or more and 8 wt% or less. This is because if the amount of Si is less than 1 wt%, the effect of improving the soft magnetic properties is poor, and if it is more than 8 wt%, the saturation magnetization is greatly reduced and the DC superimposition characteristics are reduced.
[0028]
Next, as the insulating binder in the present invention, those which form an insulating oxide so as to coat the metal soft magnetic powder are preferable, and they are silane-based, titanium-based, chromium-based coupling agents, Examples thereof include a silicon-based resin or oxide powder such as SiO 2 , TiO 2 , and Al 2 O 3 , and more preferably, a coupling agent such as a silane-based, titanium-based, or chromium-based coupling agent, which is inexpensive and has good dispersibility, and a silicon-based resin. Resin.
[0029]
In addition, from the viewpoint of the strength of the molded body, for example, an epoxy resin, an acrylic resin, a butyral resin, or the like can be added as an auxiliary component.
[0030]
Further, the heat treatment in the present invention is for preventing a decrease in magnetic properties due to processing strain introduced into the metal soft magnetic powder at the time of pressure molding, and is aimed at releasing the processing strain. It is better to set the heat treatment temperature to a higher temperature. However, if the temperature is too high, the insulator is decomposed or changed, so that the inter-particle insulation of the metal soft magnetic powder becomes insufficient and the eddy current loss increases, which is not preferable. .
[0031]
The heat treatment temperature of the metal soft magnetic powder in the present invention is at least 700 ° C or more, more preferably 750 ° C or more, and preferably 1000 ° C or less.
[0032]
The atmosphere during the heat treatment is preferably non-oxidizing, and an inert gas atmosphere such as argon gas and helium gas, a neutral / reducing gas atmosphere such as nitrogen gas and hydrogen gas, and a vacuum atmosphere are non-oxidizing. Atmosphere.
[0033]
The composite soft magnetic material according to the present invention can realize excellent magnetic properties when the filling rate of the metal soft magnetic powder in the molded article is 85% or more in terms of volume. When the filling rate of the metal soft magnetic powder is lower than 85%, the magnetic properties such as magnetic loss and direct current superimposition characteristics are lowered, more preferably 87% or more.
[0034]
The metal soft magnetic powder used in the present invention preferably has an oxygen content of 4500 ppm or less. If the oxygen content is more than 4500 ppm, the decrease in magnetic properties is extremely undesirable. A more preferred oxygen content is 4000 ppm or less.
[0035]
Hereinafter, examples of the present invention will be described.
[0036]
(Example 1)
An Fe-Si alloy powder having an average particle size of 20 μm and a composition shown in (Table 1) was prepared. 0.8 parts by weight of a silicon resin was added to and mixed with the prepared Fe-Si-based alloy powder to prepare a compound. The obtained compound is pressure-molded at 10 to 15 ton / cm 2 to prepare a toroidal core having a filling rate of metal soft magnetic powder of 85 wt% or more in terms of volume, and this toroidal core is subjected to 820 in a nitrogen atmosphere. Heat treatment was performed at 1 ° C. for 1 hour to prepare a sample for evaluating magnetic properties.
[0037]
With respect to the obtained magnetic property evaluation sample, the DC superimposition property and the core loss property were measured and evaluated. The DC superposition characteristics were evaluated by measuring the magnetic permeability at an applied magnetic field of 50 Oe and a frequency of 100 kHz using an LCR meter.
[0038]
The core loss characteristics were measured at a measurement frequency of 100 kHz and a measured magnetic flux density of 0.1 T using an AC BH curve measuring machine. The results are shown in (Table 1).
[0039]
From Table 1, it can be seen that the composite magnetic materials exhibiting good direct current superposition characteristics and low core loss characteristics are realized in the inventions of claims 1 to 3 of the present invention.
[0040]
[Table 1]
Figure 2004146563
[0041]
(Example 2)
An Fe-Si metal soft magnetic powder having an average particle size of 19 μm and a composition shown in Table 2 was used, and 0.9 part by weight of a silane coupling agent was added to the Fe-Si metal soft magnetic powder. And made a compound.
[0042]
Using the obtained compound, a molding pressure was changed to produce a toroidal core in which the filling factor of the metal soft magnetic powder in the molded article was controlled as shown in (Table 2).
[0043]
The obtained toroidal core was heat-treated in Ar at 800 ° C. for 1.2 hours.
[0044]
After that, the obtained samples were measured and evaluated for DC superimposition characteristics and core loss characteristics. The DC superposition characteristics were evaluated by measuring the magnetic permeability at an applied magnetic field of 50 Oe and a frequency of 100 kHz using an LCR meter. The core loss characteristics were measured at a measurement frequency of 100 kHz and a measured magnetic flux density of 0.1 T using an AC BH curve measuring machine. The results are shown in (Table 2).
[0045]
[Table 2]
Figure 2004146563
[0046]
From Table 2, it can be seen that the composite magnetic materials exhibiting good direct current superposition characteristics and low core loss characteristics are realized in the inventions of claims 1 to 3 of the present invention.
[0047]
(Example 3)
A metal soft magnetic powder having an alloy composition of 94.56 Fe-5.2 Si-0.04 Mn-0.2 O in weight% and an average grain size of 18 [mu] m was used, and 1.0 part by weight of a silicon resin with respect to the metal soft magnetic powder. Was added and mixed to prepare a compound. The obtained compound was subjected to pressure molding at 12 ton / cm 2 to form a toroidal core, and then heat-treated in nitrogen at a temperature shown in (Table 3) for 45 minutes.
[0048]
The filling rate of the metal soft magnetic powder in the toroidal core thus prepared was 88.1 wt%. DC bias characteristics and core loss characteristics of the obtained toroidal core samples were evaluated. The DC superposition characteristics were evaluated by measuring the magnetic permeability at an applied magnetic field of 50 Oe and a frequency of 100 kHz using an LCR meter.
[0049]
The core loss characteristics were measured at a measurement frequency of 100 kHz and a measured magnetic flux density of 0.1 T using an AC BH curve measuring machine. The results are shown in (Table 3).
[0050]
[Table 3]
Figure 2004146563
[0051]
From Table 3, it can be seen that in the inventions of claims 1 to 3 of the present invention, a composite magnetic material exhibiting good direct-current superposition characteristics and low core loss characteristics has been realized.
[0052]
(Embodiment 2)
Hereinafter, the second embodiment of the present invention will be described with reference to a second embodiment.
[0053]
The average particle size of the metal soft magnetic powder used in the present invention is preferably from 1.0 μm to 100 μm. If the average particle size is smaller than 1.0 μm, the molding density is lowered, and the magnetic permeability is undesirably reduced. If the average particle size is larger than 100 μm, the eddy current loss at a high frequency is increased, which is not preferable. More preferably, the thickness is 50 μm or less.
[0054]
The metal soft magnetic powder according to the second embodiment has an alloy composition of 95.11Fe-4.20Si-0.05Mn-0.32O in weight% and an average particle size shown in (Table 4). Using a powder, 0.9 parts by weight of a silicone resin was added to and mixed with the metal soft magnetic powder to prepare a compound. Using the obtained compound, pressure molding was performed at 12 ton / cm 2 to form a toroidal core, which was heat-treated at 780 ° C. for 1 hour in a nitrogen gas to prepare a sample for evaluation.
[0055]
The obtained samples for evaluation were evaluated for magnetic permeability and core loss characteristics. The magnetic permeability was evaluated by measuring the initial magnetic permeability at a frequency of 100 kHz with an LCR meter. The core loss characteristics were measured at a measurement frequency of 100 kHz and a measured magnetic flux density of 0.1 T using an AC BH curve measuring machine.
[0056]
The results are shown in (Table 4).
[0057]
[Table 4]
Figure 2004146563
[0058]
Table 4 shows that a composite magnetic material exhibiting low-loss magnetic properties at an average particle diameter of 1 to 100 μm, preferably 1 to 50 μm is realized.
[0059]
(Embodiment 3)
Hereinafter, the third embodiment of the present invention will be described with reference to a third embodiment.
[0060]
The oxygen content of the metal soft magnetic powder used in the present invention is preferably 4500 ppm or less. If the oxygen content is more than 4500 ppm, the decrease in magnetic properties is extremely undesirable. A more preferred oxygen content is 4000 ppm or less.
[0061]
The composite composition of the composite magnetic material in the third embodiment is as follows: 3.5% by weight, 0.05% by weight of Mn, 0.05% by weight of Mn, the amount of oxygen shown in Table 5, and the balance being Fe. Metal soft magnetic powder having a particle size of 23 μm was used. 0.8 parts by weight of a silicone resin was added to and mixed with the metal soft magnetic powder to prepare a compound. The obtained compound was pressed at 11 ton / cm 2 to form a toroidal core. Thereafter, this toroidal core was heat-treated at 800 ° C. for 1 hour in a nitrogen gas to prepare a sample for evaluation. The obtained evaluation samples were evaluated for magnetic permeability and core loss characteristics. The evaluation method was the same as in the second embodiment. The evaluation results are shown in (Table 5).
[0062]
[Table 5]
Figure 2004146563
[0063]
From Table 5, it is possible to realize a composite magnetic material exhibiting good soft magnetic properties when the oxygen content is 4500 ppm or less, preferably 4000 ppm or less.
[0064]
【The invention's effect】
As described above, according to the present invention, it is possible to realize a composite magnetic material having excellent soft magnetic characteristics such as direct current weight characteristics and core loss, and to provide a small-sized magnetic element that can be used in a large current and high frequency region. Can be realized.

Claims (5)

Siの含有量が1wt%以上8wt%以下であり、Mnの含有量が0.09wt%以下であり、残部がFe及び不可避な不純物からなる金属軟磁性粉に絶縁性結着剤を添加し、加圧成形して成形体とし、非酸化性雰囲気にて熱処理して形成した複合磁性材料。An insulating binder is added to a metal soft magnetic powder having a Si content of 1 wt% or more and 8 wt% or less, a Mn content of 0.09 wt% or less, and a balance of Fe and unavoidable impurities; A composite magnetic material formed by pressing into a molded body and heat-treated in a non-oxidizing atmosphere. 熱処理温度が750℃以上1000℃以下である請求項1に記載の複合磁性材料。The composite magnetic material according to claim 1, wherein the heat treatment temperature is 750C or more and 1000C or less. 被成形物中における金属軟磁性粉の充填率が体積換算で85%以上である請求項1に記載の複合磁性材料。The composite magnetic material according to claim 1, wherein a filling rate of the metal soft magnetic powder in the molded article is 85% or more in terms of volume. 金属軟磁性粉の平均粒径が1〜100μmである請求項1に記載の複合磁性材料。The composite magnetic material according to claim 1, wherein the average particle size of the metal soft magnetic powder is 1 to 100 m. 金属軟磁性粉の酸素含有量が4500ppm以下である請求項1に記載の複合磁性材料。The composite magnetic material according to claim 1, wherein the metal soft magnetic powder has an oxygen content of 4500 ppm or less.
JP2002309341A 2002-10-24 2002-10-24 Compound magnetic material Pending JP2004146563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002309341A JP2004146563A (en) 2002-10-24 2002-10-24 Compound magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002309341A JP2004146563A (en) 2002-10-24 2002-10-24 Compound magnetic material

Publications (1)

Publication Number Publication Date
JP2004146563A true JP2004146563A (en) 2004-05-20

Family

ID=32455193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002309341A Pending JP2004146563A (en) 2002-10-24 2002-10-24 Compound magnetic material

Country Status (1)

Country Link
JP (1) JP2004146563A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126553A1 (en) * 2005-05-26 2006-11-30 Toyota Jidosha Kabushiki Kaisha Low magnetostriction body and dust core using same
JP2007211299A (en) * 2006-02-09 2007-08-23 Fuji Electric Holdings Co Ltd Method for producing soft magnetic compact
JP2013167000A (en) * 2012-02-16 2013-08-29 Hitachi Metals Ltd Metal powder, method for producing the same, and dust core
JP2019077952A (en) * 2017-09-04 2019-05-23 Dowaエレクトロニクス株式会社 Soft magnetic powder, soft magnetic material, manufacturing method of powder magnetic core
WO2020188940A1 (en) * 2019-03-19 2020-09-24 Dowaエレクトロニクス株式会社 Soft magnetic powder, soft magnetic powder heat processing method, soft magnetic material, pressed powder magnetic core, and pressed powder magnetic core production method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126553A1 (en) * 2005-05-26 2006-11-30 Toyota Jidosha Kabushiki Kaisha Low magnetostriction body and dust core using same
JP2006332328A (en) * 2005-05-26 2006-12-07 Toyota Central Res & Dev Lab Inc Low magnetostrictive element and powder magnetic core using the same
KR100964731B1 (en) * 2005-05-26 2010-06-21 도요타 지도샤(주) Low magnetostriction body, dust core using the same and manufacturing method the same
JP2007211299A (en) * 2006-02-09 2007-08-23 Fuji Electric Holdings Co Ltd Method for producing soft magnetic compact
JP2013167000A (en) * 2012-02-16 2013-08-29 Hitachi Metals Ltd Metal powder, method for producing the same, and dust core
KR20200050948A (en) * 2017-09-04 2020-05-12 도와 일렉트로닉스 가부시키가이샤 Method for manufacturing soft magnetic powder, Fe powder or alloy powder containing Fe, soft magnetic material, and method for producing metal core
JP2019077952A (en) * 2017-09-04 2019-05-23 Dowaエレクトロニクス株式会社 Soft magnetic powder, soft magnetic material, manufacturing method of powder magnetic core
KR102428560B1 (en) * 2017-09-04 2022-08-02 도와 일렉트로닉스 가부시키가이샤 Method for producing soft magnetic powder, Fe powder or alloy powder containing Fe, soft magnetic material, and method for producing powder core
WO2020188940A1 (en) * 2019-03-19 2020-09-24 Dowaエレクトロニクス株式会社 Soft magnetic powder, soft magnetic powder heat processing method, soft magnetic material, pressed powder magnetic core, and pressed powder magnetic core production method
JP2020152947A (en) * 2019-03-19 2020-09-24 Dowaエレクトロニクス株式会社 Soft-magnetic powder, heat-treatment method for soft-magnetic powder, soft-magnetic material, powder magnetic core, and manufacturing method for powder magnetic core
CN113518674A (en) * 2019-03-19 2021-10-19 同和电子科技有限公司 Soft magnetic powder, method for heat treatment of soft magnetic powder, soft magnetic material, dust core, and method for producing dust core
JP7221100B2 (en) 2019-03-19 2023-02-13 Dowaエレクトロニクス株式会社 Soft magnetic powder, soft magnetic material and dust core
CN113518674B (en) * 2019-03-19 2023-09-08 同和电子科技有限公司 Soft magnetic powder, heat treatment method for soft magnetic powder, soft magnetic material, dust core, and method for producing dust core

Similar Documents

Publication Publication Date Title
JP5501970B2 (en) Powder magnetic core and manufacturing method thereof
WO2010082486A1 (en) Process for producing composite magnetic material, dust core formed from same, and process for producing dust core
JP3624681B2 (en) Composite magnetic material and method for producing the same
CN102971100B (en) Composite magnetic body and manufacture method thereof
JP5063861B2 (en) Composite dust core and manufacturing method thereof
JP2007019134A (en) Method of manufacturing composite magnetic material
JP2001011563A (en) Manufacture of composite magnetic material
WO2015009050A1 (en) Soft magnetic core having excellent high-current dc bias characteristics and core loss characteristics and method of manufacturing same
JP2007299871A (en) Manufacturing method of compound magnetic substance and compound magnetic substance obtained by using the same
EP1598836A1 (en) High-frequency core and inductance component using the same
KR20120098921A (en) Reactor and method for producing same
JP2009302420A (en) Dust core and manufacturing method thereof
US8808566B2 (en) Composite magnetic material
JP2009185312A (en) Composite soft magnetic material, dust core using the same, and their production method
EP2330602B1 (en) Composite magnetic material and process for producing the composite magnetic material
JP2003217919A (en) Dust core and high-frequency reactor using the same
JP6229166B2 (en) Composite magnetic material for inductor and manufacturing method thereof
KR20020071285A (en) Composite metal powder for power factor correction having good dc biased characteristics and method of processing soft magnetic core by thereof using
JP2012204744A (en) Soft magnetic metal powder, method for producing the same, powder magnetic core and method for producing the same
JP2012222062A (en) Composite magnetic material
JP2009147252A (en) Compound magnetic material and method of manufacturing thereof
WO2003060930A1 (en) Powder magnetic core and high frequency reactor using the same
JP2003160847A (en) Composite magnetic material, magnetic element using the same, and manufacture method therefor
JP4106966B2 (en) Composite magnetic material and manufacturing method thereof
JP2003243215A (en) Composite magnetic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050628

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929