JP2022068108A - Alloy powder, manufacturing method for alloy powder, soft magnetic material, dust core and manufacturing method for dust core - Google Patents

Alloy powder, manufacturing method for alloy powder, soft magnetic material, dust core and manufacturing method for dust core Download PDF

Info

Publication number
JP2022068108A
JP2022068108A JP2021164273A JP2021164273A JP2022068108A JP 2022068108 A JP2022068108 A JP 2022068108A JP 2021164273 A JP2021164273 A JP 2021164273A JP 2021164273 A JP2021164273 A JP 2021164273A JP 2022068108 A JP2022068108 A JP 2022068108A
Authority
JP
Japan
Prior art keywords
mass
alloy powder
content
molten metal
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021164273A
Other languages
Japanese (ja)
Inventor
岳志 河内
Takashi Kawachi
圭介 山田
Keisuke Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Publication of JP2022068108A publication Critical patent/JP2022068108A/en
Pending legal-status Critical Current

Links

Abstract

To provide Fe-Ni-based alloy powder with higher permeability.SOLUTION: Provided is alloy powder containing Fe, Ni and B, where a content of B is 0.04 to 1.5 mass% and the spheroidicity is 0.80 or higher.SELECTED DRAWING: None

Description

本発明は、所定の金属組成を有する合金粉末、合金粉末の製造方法及びその関連技術に関する。 The present invention relates to an alloy powder having a predetermined metal composition, a method for producing the alloy powder, and related techniques thereof.

近年、電子機器の動作速度や応答性向上ニーズの増大等に伴い電子機器の動作周波数が高くなってきている。このような流れの中で、従来広く使用されている軟磁性材料である電磁鋼板やフェライトでは十分に対応できない場合が出てきた。 In recent years, the operating frequency of electronic devices has been increasing along with the increasing operating speed and needs for improving responsiveness of electronic devices. Under such circumstances, there have been cases where electrical steel sheets and ferrites, which are soft magnetic materials widely used in the past, cannot be sufficiently dealt with.

また、機器の小型化の要請もあり、軟磁性粉末を必要に応じてバインダ等と混合してプレス成型して製造される、圧粉磁心が注目されている。軟磁性粉末を使用したプレス成型では、大きさを含めて形状の自由度が高く、圧粉磁心を自在にデザインすることができるからである。軟磁性粉末に求められる主要な特性として、保磁力と透磁率が挙げられる。これらはいずれも磁気損失を構成するヒステリシス損失に影響し、保磁力が低く、透磁率が高いほどヒステリシス損失が小さくなる。 In addition, there is a demand for miniaturization of equipment, and a powder magnetic core manufactured by mixing soft magnetic powder with a binder or the like as necessary and press-molding is attracting attention. This is because the press molding using the soft magnetic powder has a high degree of freedom in shape including the size, and the powder magnetic core can be freely designed. The main characteristics required for soft magnetic powder are coercive force and magnetic permeability. All of these affect the hysteresis loss that constitutes the magnetic loss, and the lower the coercive force and the higher the magnetic permeability, the smaller the hysteresis loss.

前記軟磁性粉末の例としては、Fe(鉄)-Ni(ニッケル)合金粉末が挙げられる(例えば特許文献1)。 Examples of the soft magnetic powder include Fe (iron) -Ni (nickel) alloy powder (for example, Patent Document 1).

特開2018-178254号公報Japanese Unexamined Patent Publication No. 2018-178254

本発明の目的は、より透磁率に優れたFe-Ni系合金粉末を提供することである。 An object of the present invention is to provide a Fe—Ni alloy powder having a higher magnetic permeability.

本発明者らは上記課題を解決するために鋭意検討した結果、Fe-Ni合金粉末に特定量のB(ホウ素)を含有させることにより、透磁率の高いFe-Ni系合金粉末が得られることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have obtained a Fe—Ni alloy powder having a high magnetic permeability by containing a specific amount of B (boron) in the Fe—Ni alloy powder. The present invention was completed.

すなわち本発明は、以下の通りである。
[1]FeとNiとBを含む合金粉末であって、Bの含有量が0.04~1.5質量%であり、球形度が0.80以上である、合金粉末。
That is, the present invention is as follows.
[1] An alloy powder containing Fe, Ni, and B, having a B content of 0.04 to 1.5% by mass and a sphericity of 0.80 or more.

[2]Bの含有量が0.04~1.0質量%である、[1]に記載の合金粉末。 [2] The alloy powder according to [1], wherein the content of B is 0.04 to 1.0% by mass.

[3]レーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50)が0.1~15μmである、[1]又は[2]に記載の合金粉末。 [3] The alloy powder according to [1] or [2], wherein the cumulative 50% particle diameter (D50) on a volume basis measured by a laser diffraction type particle size distribution measuring device is 0.1 to 15 μm.

[4]Bの含有量が0.05~0.8質量%である、[1]~[3]のいずれかに記載の合金粉末。 [4] The alloy powder according to any one of [1] to [3], wherein the content of B is 0.05 to 0.8% by mass.

[5]Fe及びNiの含有量の合計が96質量%以上である、[1]~[4]のいずれかに記載の合金粉末。 [5] The alloy powder according to any one of [1] to [4], wherein the total content of Fe and Ni is 96% by mass or more.

[6]FeとNiとBの含有量の合計が96.05質量%以上である、[1]~[5]のいずれかに記載の合金粉末。 [6] The alloy powder according to any one of [1] to [5], wherein the total content of Fe, Ni and B is 96.05% by mass or more.

[7]Feの含有量が18~58質量%であり、Niの含有量が40~80質量%であり、Bの含有量が0.13~0.6質量%である、[1]~[6]のいずれかに記載の合金粉末。 [7] Fe content is 18 to 58% by mass, Ni content is 40 to 80% by mass, and B content is 0.13 to 0.6% by mass, [1] to The alloy powder according to any one of [6].

[8]Feの含有量が6~38質量%であり、Niの含有量が60~92質量%であり、Bの含有量が0.04~0.30質量%である、[1]~[6]のいずれかに記載の合金粉末。 [8] Fe content is 6 to 38% by mass, Ni content is 60 to 92% by mass, and B content is 0.04 to 0.30% by mass, [1] to The alloy powder according to any one of [6].

[9]Feの含有量が6~38質量%であり、Niの含有量が60~92質量%であり、Bの含有量が0.04~0.11質量%である、[1]~[5]のいずれかに記載の合金粉末。 [9] Fe content is 6 to 38% by mass, Ni content is 60 to 92% by mass, and B content is 0.04 to 0.11% by mass, [1] to The alloy powder according to any one of [5].

[10]FeとNiとBとを含む溶湯であって、当該溶湯中のBの含有量が0.04~1.7質量%である溶湯を調製し、この溶湯を落下させながら、落下する溶湯の流れに流体を吹き付けることで溶湯を粉砕及び凝固させて合金粉末を得る、合金粉末の製造方法。 [10] A molten metal containing Fe, Ni, and B, wherein the content of B in the molten metal is 0.04 to 1.7% by mass is prepared, and the molten metal is dropped while being dropped. A method for producing an alloy powder, which obtains an alloy powder by crushing and solidifying the molten metal by spraying a fluid on the flow of the molten metal.

[11]前記溶湯中のBの含有量が0.04~1.0質量%である、[10]に記載の合金粉末の製造方法。 [11] The method for producing an alloy powder according to [10], wherein the content of B in the molten metal is 0.04 to 1.0% by mass.

[12]前記溶湯中のBの含有量が0.05~0.8質量%である、[10]に記載の合金粉末の製造方法。 [12] The method for producing an alloy powder according to [10], wherein the content of B in the molten metal is 0.05 to 0.8% by mass.

[13]前記溶湯中のFe、Ni及びBの含有量の合計が96.05質量%以上である、[10]~[12]のいずれかに記載の合金粉末の製造方法。 [13] The method for producing an alloy powder according to any one of [10] to [12], wherein the total content of Fe, Ni and B in the molten metal is 96.05% by mass or more.

[14][1]~[8]のいずれかに記載の合金粉末とバインダとを含む、軟磁性材料。 [14] A soft magnetic material containing the alloy powder according to any one of [1] to [8] and a binder.

[15][1]~[8]のいずれかに記載の合金粉末を含む圧粉磁心。 [15] A powder magnetic core containing the alloy powder according to any one of [1] to [8].

[16][1]~[8]のいずれかに記載の合金粉末、または[14]に記載の軟磁性材料を所定の形状に成型し、得られた成型物を加熱して圧粉磁心を得る、圧粉磁心の製造方法。 [16] The alloy powder according to any one of [1] to [8] or the soft magnetic material according to [14] is molded into a predetermined shape, and the obtained molded product is heated to form a dust core. Obtaining, a method for manufacturing a powder magnetic core.

本発明によれば、透磁率に優れたFe-Ni系合金粉末が提供される。 According to the present invention, an Fe—Ni alloy powder having excellent magnetic permeability is provided.

以下、本発明の合金粉末等の実施の形態を説明する。
[合金粉末]
<組成>
本発明の合金粉末の実施の形態は、Fe(鉄)とNi(ニッケル)とB(ホウ素)を含み、Bの含有量が0.04~1.5質量%である、軟磁性の合金粉末である。以下、この粉末を構成する各元素について説明する。
Hereinafter, embodiments of the alloy powder and the like of the present invention will be described.
[Alloy powder]
<Composition>
An embodiment of the alloy powder of the present invention is a soft magnetic alloy powder containing Fe (iron), Ni (nickel) and B (boron) and having a B content of 0.04 to 1.5% by mass. Is. Hereinafter, each element constituting this powder will be described.

(Fe)
Feは前記合金粉末の磁気特性や機械的特性に寄与する元素である。合金粉末におけるFeの含有量は、磁気特性や機械的特性の観点から、好ましくは5~90質量%であり、より好ましくは10~85質量%である。高透磁率及び低保磁力を達成する観点からは、Feの含有量は6~38質量%であることが好ましく、8~18質量%であることがより好ましい。更に、直流重畳特性が重視される用途向けに高飽和磁化を達成する観点からは、Feの含有量は18~58質量%であることが好ましく、30~57質量%であることがより好ましい。
(Fe)
Fe is an element that contributes to the magnetic properties and mechanical properties of the alloy powder. The content of Fe in the alloy powder is preferably 5 to 90% by mass, more preferably 10 to 85% by mass, from the viewpoint of magnetic properties and mechanical properties. From the viewpoint of achieving high magnetic permeability and low coercive force, the Fe content is preferably 6 to 38% by mass, more preferably 8 to 18% by mass. Further, from the viewpoint of achieving high saturation magnetization for applications in which DC superimposition characteristics are important, the Fe content is preferably 18 to 58% by mass, more preferably 30 to 57% by mass.

(Ni)
Niは本発明の合金粉末の実施の形態の磁気特性及び耐食特性に寄与する元素である。合金粉末におけるNiの含有量は、磁気特性及び耐食特性の観点から、好ましくは8~93質量%であり、より好ましくは13~78質量%である。高透磁率及び低保磁力を達成する観点からは、Niの含有量は60~92質量%であることが好ましく、70~92質量%がより好ましく、80~90質量%であることがさらに好ましい。更に、直流重畳特性が重視される用途向けに高飽和磁化を達成する観点からは、Niの含有量は40~80質量%であることが好ましく、42~68質量%であることがより好ましい。
(Ni)
Ni is an element that contributes to the magnetic properties and corrosion resistance properties of the embodiment of the alloy powder of the present invention. The content of Ni in the alloy powder is preferably 8 to 93% by mass, more preferably 13 to 78% by mass, from the viewpoint of magnetic properties and corrosion resistance. From the viewpoint of achieving high magnetic permeability and low coercive force, the Ni content is preferably 60 to 92% by mass, more preferably 70 to 92% by mass, and even more preferably 80 to 90% by mass. .. Further, from the viewpoint of achieving high saturation magnetization for applications in which DC superimposition characteristics are important, the Ni content is preferably 40 to 80% by mass, more preferably 42 to 68% by mass.

(B)
Bは、本発明の合金粉末の実施の形態の球形度を高めて高透磁率に寄与する元素であり、合金粉末中の含有量は透磁率を高める観点から0.04~1.5質量%に設定される。透磁率を高める観点から、前記含有量は、0.04~1.0質量%であることが好ましく、0.05~0.8質量%であることがさらに好ましい。高透磁率及び低保磁力を達成する観点からは、Bの含有量は0.04~0.11質量%であることが好ましく、0.05~0.09質量%であることがより好ましい。更に、直流重畳特性が重視される用途向けに高飽和磁化を達成する観点からは、Bの含有量は0.13~0.6質量%であることが好ましく、0.13~0.4質量%であることがより好ましい。
(B)
B is an element that contributes to high magnetic permeability by increasing the sphericity of the embodiment of the alloy powder of the present invention, and the content in the alloy powder is 0.04 to 1.5% by mass from the viewpoint of increasing magnetic permeability. Is set to. From the viewpoint of increasing the magnetic permeability, the content is preferably 0.04 to 1.0% by mass, more preferably 0.05 to 0.8% by mass. From the viewpoint of achieving high magnetic permeability and low coercive force, the content of B is preferably 0.04 to 0.11% by mass, more preferably 0.05 to 0.09% by mass. Further, from the viewpoint of achieving high saturation magnetization for applications where DC superimposition characteristics are important, the content of B is preferably 0.13 to 0.6% by mass, preferably 0.13 to 0.4% by mass. % Is more preferable.

(Fe及びNiの含有量の合計)
本発明の合金粉末の実施の形態において、Fe及びNiの含有量の合計は、合金粉末の磁気特性、機械的特性及び耐食特性の観点から、好ましくは96質量%以上であり、より好ましくは97~99.9質量%であり、更に好ましくは98~99.8質量%である。
(Total content of Fe and Ni)
In the embodiment of the alloy powder of the present invention, the total content of Fe and Ni is preferably 96% by mass or more, more preferably 97, from the viewpoint of magnetic properties, mechanical properties and corrosion resistance properties of the alloy powder. It is ~ 99.9% by mass, more preferably 98-99.8% by mass.

(Fe、Ni及びBの含有量の合計)
本発明の合金粉末の実施の形態において、Fe、Ni及びBの含有量の合計は、合金粉末の磁気特性、機械的特性及び耐食特性の観点から、好ましくは96.05質量%以上であり、より好ましくは97.05~99.95質量%であり、更に好ましくは98.05~99.85質量%である。
(Total content of Fe, Ni and B)
In the embodiment of the alloy powder of the present invention, the total content of Fe, Ni and B is preferably 96.05% by mass or more from the viewpoint of the magnetic property, mechanical property and corrosion resistance property of the alloy powder. It is more preferably 97.05 to 99.95% by mass, and even more preferably 98.05 to 99.85% by mass.

また、各元素の含有量については、Feの含有量が18~58質量%であり、Niの含有量が40~80質量%であり、Bの含有量が0.13~0.6質量%であることが好ましい。このような含有量とすることにより、機械的特性および耐食特性を高く維持し、磁気特性については高透磁率や低保磁力を実現しながらも、飽和磁化をより高くすることができる。
一方、磁気特性のうち保磁力をより低くし、かつ透磁率を高くする観点からは、Feの含有量が6~38質量%であり、Niの含有量が60~92質量%であり、Bの含有量が0.04~0.30質量%であることが好ましい。また、Feの含有量が6~38質量%であり、Niの含有量が60~92質量%であり、Bの含有量が0.04~0.11質量%であることがさらに好ましい。このような含有量とすることにより、機械的特性および耐食特性を高く維持し、磁気特性については高透磁率や高飽和磁化を実現しながらも、保磁力をより低くすることができる。
Regarding the content of each element, the Fe content is 18 to 58% by mass, the Ni content is 40 to 80% by mass, and the B content is 0.13 to 0.6% by mass. Is preferable. By setting such a content, it is possible to maintain high mechanical properties and corrosion resistance properties, and to realize high magnetic permeability and low coercive force for magnetic properties, while further increasing saturation magnetization.
On the other hand, from the viewpoint of lowering the coercive force and increasing the magnetic permeability among the magnetic properties, the Fe content is 6 to 38% by mass, the Ni content is 60 to 92% by mass, and B. The content of is preferably 0.04 to 0.30% by mass. Further, it is more preferable that the Fe content is 6 to 38% by mass, the Ni content is 60 to 92% by mass, and the B content is 0.04 to 0.11% by mass. By setting such a content, it is possible to maintain high mechanical properties and corrosion resistance properties, and to realize high magnetic permeability and high saturation magnetization for magnetic properties, while lowering the coercive force.

(O(酸素))
本発明の合金粉末の実施の形態における酸素の含有量(酸素量)は、合金粉末の透磁率の観点から0.75質量%以下であることが好ましい(酸素量は通常0.05質量%以上である)。同様な観点から、酸素量は0.06~0.60質量%であることがより好ましい。
(O (oxygen))
The oxygen content (oxygen content) in the embodiment of the alloy powder of the present invention is preferably 0.75% by mass or less from the viewpoint of the magnetic permeability of the alloy powder (the oxygen content is usually 0.05% by mass or more). Is). From the same viewpoint, the amount of oxygen is more preferably 0.06 to 0.60% by mass.

なお酸素量は粉末の粒子径が小さくなるほど大きくなるので、粒子径による酸素含有量の変動を補正すべく、酸素量(O)と、合金粉末のレーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50)との積(O×D50(質量%・μm))を採用してもよい。前記積(O×D50(質量%・μm))は、合金粉末の高透磁率を達成する観点から、5(質量%・μm)以下であることが好ましく、0.2~2(質量%・μm)であることがより好ましい。 Since the amount of oxygen increases as the particle size of the powder becomes smaller, the amount of oxygen (O) and the volume standard measured by the laser diffraction type particle size distribution measuring device of the alloy powder are used to correct the fluctuation of the oxygen content due to the particle size. The product (O × D50 (mass% · μm)) with the cumulative 50% particle size (D50) of the above may be adopted. The product (O × D50 (mass% · μm)) is preferably 5 (mass% · μm) or less, and 0.2 to 2 (mass% · μm), from the viewpoint of achieving high magnetic permeability of the alloy powder. It is more preferably μm).

(C(炭素))
本発明の合金粉末の実施の形態における炭素の含有量(炭素量)は、磁気特性への悪影響を抑制する観点から、好ましくは0.003~0.20質量%であり、より好ましくは0.006~0.05質量%である。
(C (carbon))
The carbon content (carbon content) in the embodiment of the alloy powder of the present invention is preferably 0.003 to 0.20% by mass, and more preferably 0. It is 006 to 0.05% by mass.

(その他の元素)
本発明の合金粉末の実施の形態は、以上説明したFe、Ni、B、O及びC以外に、本発明の効果を奏する範囲でその他の元素を含んでもよい。その例としては、Na(ナトリウム)、K(カリウム)、Mg(マグネシウム)、Ca(カルシウム)、St(ストロンチウム)、Ba(バリウム)、Ti(チタン)、Zr(ジルコニウム)、V(バナジウム)、Cr(クロム)、Pd(パラジウム)、Mo(モリブデン)、Mn(マンガン)、Co(コバルト)、Cu(銅)、Al(アルミニウム)、Si(ケイ素)、Sn(スズ)、N(窒素)、P(リン)、S(硫黄)、Cl(塩素)が挙げられる。これらは不可避不純物として前記合金粉末中に存在する場合があり、また、何らかの機能発揮を狙って意図的に微量添加される場合もある。これらの元素の合金粉末中の含有量は、合計で好ましくは1質量%以下であり、より好ましくは10~5000ppmである。
(Other elements)
The embodiment of the alloy powder of the present invention may contain other elements in addition to Fe, Ni, B, O and C described above as long as the effects of the present invention are exhibited. Examples are Na (sodium), K (potassium), Mg (magnesium), Ca (calcium), St (strontium), Ba (barium), Ti (titanium), Zr (zyrosine), V (vanadium), Cr (chromium), Pd (palladium), Mo (molybdenum), Mn (manganesium), Co (cobalt), Cu (copper), Al (aluminum), Si (silicon), Sn (tin), N (nitrogen), Examples thereof include P (phosphorus), S (sulfur) and Cl (chlorine). These may be present in the alloy powder as unavoidable impurities, or may be intentionally added in a small amount for the purpose of exerting some function. The total content of these elements in the alloy powder is preferably 1% by mass or less, more preferably 10 to 5000 ppm.

<球形度>
本発明の合金粉末の実施の形態は、Bを所定量含んでおり、代表的には後述するアトマイズ法で製造される。所定量のBの作用により、前記合金粉末の球形度が高まっており、具体的には前記球形度は0.80以上である。このように球形度が高いと、圧粉磁心などの磁性部品とするときに粉末が良好に充填されて粉末同士の接触面積が大きくなり、良好な磁気特性(高い透磁率)が発揮される。なお、球形度が高すぎて真球に近づくと、反対に粉末同士の接触面積が小さくなる場合があるので、合金粉末の球形度は、好ましくは0.81~0.92である。
<Sphericity>
An embodiment of the alloy powder of the present invention contains a predetermined amount of B, and is typically produced by an atomizing method described later. Due to the action of a predetermined amount of B, the sphericity of the alloy powder is increased, and specifically, the sphericity is 0.80 or more. When the degree of sphericity is high as described above, the powder is satisfactorily filled when the magnetic component such as a dust core is formed, the contact area between the powders becomes large, and good magnetic characteristics (high magnetic permeability) are exhibited. If the sphericity is too high and approaches a true sphere, the contact area between the powders may be smaller, so the sphericity of the alloy powder is preferably 0.81 to 0.92.

なお球形度の測定方法は以下の通りである。
合金粉末とエポキシ樹脂と硬化剤を混合し、真空脱泡する。真空脱泡した混合物を試料台に乗せ、120℃で硬化させる。硬化したサンプルをクロスセクションポリッシャー(IB-19530CP、日本電子製)を用いて研磨することで、粒子断面の試料を作成する。得られた粒子断面をFE-SEM(JSM-7200F、日本電子製)を用いて、1視野内に10~20粒子が撮影されるように1,000~10,000倍の拡大画像を撮影する。画像解析式粒度分布測定ソフトウェア(Mac-View、マウンテック株式会社)を用いて、撮影した複数の画像について、粒子形状の全体が撮影され、他の粒子とくっついていない、長径が合金粉末のD50に対して±1μmの範囲の大きさの粒子を計1000個選択する。なお長径とは、粒子の輪郭上の2点を結ぶ線分であって、輪郭の外を通ることのない線分のうち、長さが最大のものの長さである。粒子の選択には点ツールもしくは簡単ツールを用いる。選択した各粒子の面積及び周囲長を前記ソフトウェアにより求め、これらより各粒子の円形度係数を求め、その平均値を本発明における球形度とする。なお円形度係数は、以下の式により求められる。
The method for measuring the sphericity is as follows.
The alloy powder, epoxy resin and curing agent are mixed and vacuum defoamed. The vacuum defoamed mixture is placed on a sample table and cured at 120 ° C. A sample with a particle cross section is prepared by polishing the cured sample with a cross section polisher (IB-19530CP, manufactured by JEOL Ltd.). Using FE-SEM (JSM-7200F, manufactured by JEOL Ltd.), the obtained particle cross section is photographed at a magnification of 1,000 to 10,000 times so that 10 to 20 particles are photographed in one field of view. .. Using image analysis type particle size distribution measurement software (Mac-View, Mountech Co., Ltd.), the entire particle shape of multiple images taken is taken, and the major axis is D50, which is an alloy powder that does not stick to other particles. On the other hand, a total of 1000 particles having a size in the range of ± 1 μm are selected. The major axis is a line segment connecting two points on the contour of the particle, and is the length of the line segment having the maximum length among the line segments that do not pass outside the contour. Use the point tool or the simple tool to select particles. The area and peripheral length of each selected particle are obtained by the software, the circularity coefficient of each particle is obtained from these, and the average value thereof is taken as the sphericity in the present invention. The circularity coefficient is calculated by the following formula.

円形度係数=4×π×S/L
S:粒子の面積 L:粒子の周囲長
Circularity coefficient = 4 × π × S / L 2
S: Particle area L: Perimeter of the particle

<平均粒子径(D50)>
本発明の合金粉末の実施の形態のレーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50)は特に限定されないが、微細な粒子とすることで渦電流損失を低減する観点からは、0.1~15μmであることが好ましく、0.5~8μmであることがより好ましく、1.5~5μmであることがさらに好ましい。
<Average particle size (D50)>
The cumulative 50% particle diameter (D50) based on the volume measured by the laser diffraction type particle size distribution measuring device according to the embodiment of the alloy powder of the present invention is not particularly limited, but the eddy current loss is reduced by using fine particles. From the viewpoint, it is preferably 0.1 to 15 μm, more preferably 0.5 to 8 μm, and even more preferably 1.5 to 5 μm.

<BET比表面積>
本発明の合金粉末の実施の形態のBET1点法により測定した比表面積(BET比表面積)は、粉末の粒子表面への酸化物の発生を抑制して良好な磁気特性を発揮する観点から、好ましくは0.2~2m/gであり、より好ましくは0.3~1m/gである。
<BET specific surface area>
The specific surface area (BET specific surface area) measured by the BET one-point method according to the embodiment of the alloy powder of the present invention is preferable from the viewpoint of suppressing the generation of oxides on the particle surface of the powder and exhibiting good magnetic properties. Is 0.2 to 2 m 2 / g, more preferably 0.3 to 1 m 2 / g.

<タップ密度>
本発明の合金粉末の実施の形態のタップ密度は、粉末の充填密度を高めて良好な磁気特性を発揮する観点から、好ましくは2.0~7.5g/cmであり、より好ましくは2.8~6.5g/cmである。
<Tap density>
The tap density of the embodiment of the alloy powder of the present invention is preferably 2.0 to 7.5 g / cm 3 and more preferably 2 from the viewpoint of increasing the packing density of the powder and exhibiting good magnetic properties. It is 0.8 to 6.5 g / cm 3 .

[合金粉末の製造方法]
以上説明した本発明の合金粉末は、本発明の合金粉末の製造方法により製造することができる。以下、当該製造方法の実施の形態について説明する。
[Manufacturing method of alloy powder]
The alloy powder of the present invention described above can be produced by the method for producing an alloy powder of the present invention. Hereinafter, embodiments of the manufacturing method will be described.

<溶湯の調製(溶湯調製工程)>
本発明の合金粉末の製造方法の形態では、FeとNiとBとを含む溶湯を調製する。溶湯中のBの含有量は、合金粉末において上記組成を実現する観点から、0.04~1.7質量%とするとよい。溶湯の調製は、原料となる金属を、それらのうち融点が最高のものの融点以上に加熱して溶融させることで、行うことができる。なお溶湯中の各元素の含有量は、溶湯原料の仕込み割合とする。
<Preparation of molten metal (melt preparation process)>
In the form of the method for producing an alloy powder of the present invention, a molten metal containing Fe, Ni and B is prepared. The content of B in the molten metal is preferably 0.04 to 1.7% by mass from the viewpoint of realizing the above composition in the alloy powder. The molten metal can be prepared by heating and melting the metal as a raw material to a temperature equal to or higher than the melting point of the one having the highest melting point. The content of each element in the molten metal shall be the ratio of the raw materials for the molten metal.

得られる合金粉末の透磁率の観点から、溶湯中のBの含有量は、0.04~1.1質量%であることが好ましく、さらに0.04~1.0質量%が好ましく、さらにまた、0.05~0.9質量%であることが好ましく、0.05~0.8質量%であることがより好ましい。溶湯中のFeの含有量は、合金粉末の磁気特性や機械的特性の観点から、好ましくは5~90質量%であり、より好ましくは10~85質量%である。溶湯中のNiの含有量は、磁気特性、耐食特性の観点から、好ましくは8~93質量%であり、より好ましくは13~78質量%である。高透磁率及び低保磁力を達成する観点からは、溶湯中のNiの含有量は60~92質量%であることが好ましく、70~92質量%がより好ましく、80~90質量%であることがさらに好ましい。更に、直流重畳特性が重視される用途向けに高飽和磁化を達成する観点からは、溶湯中のNiの含有量は40~80質量%であることが好ましく、42~68質量%であることがより好ましい。 From the viewpoint of the magnetic permeability of the obtained alloy powder, the content of B in the molten metal is preferably 0.04 to 1.1% by mass, more preferably 0.04 to 1.0% by mass, and further. , 0.05 to 0.9% by mass, more preferably 0.05 to 0.8% by mass. The content of Fe in the molten metal is preferably 5 to 90% by mass, more preferably 10 to 85% by mass, from the viewpoint of the magnetic properties and mechanical properties of the alloy powder. The content of Ni in the molten metal is preferably 8 to 93% by mass, more preferably 13 to 78% by mass, from the viewpoint of magnetic properties and corrosion resistance. From the viewpoint of achieving high magnetic permeability and low coercive force, the content of Ni in the molten metal is preferably 60 to 92% by mass, more preferably 70 to 92% by mass, and 80 to 90% by mass. Is even more preferable. Further, from the viewpoint of achieving high saturation magnetization for applications in which DC superimposition characteristics are important, the content of Ni in the molten metal is preferably 40 to 80% by mass, preferably 42 to 68% by mass. More preferred.

合金粉末の高透磁率及び低保磁力を達成する観点からは、溶湯中のFeの含有量が6~38質量%でNiの含有量が60~92質量%でBの含有量が0.04~0.11質量%であることが好ましく、溶湯中のFeの含有量が8~18質量%でNiの含有量が80~90質量%でBの含有量が0.05~0.1質量%であることがより好ましい。
もしくは、合金粉末の高透磁率及び低保磁力を達成する観点からは、溶湯中のFeの含有量が6~38質量%であり、Niの含有量が60~92質量%であり、Bの含有量が0.04~0.60質量%であることが好ましい。また、溶湯中のFeの含有量が6~38質量%であり、Niの含有量が60~92質量%であり、Bの含有量が0.04~0.55質量%であることがさらに好ましい。
From the viewpoint of achieving high magnetic permeability and low coercive force of the alloy powder, the Fe content in the molten metal is 6 to 38% by mass, the Ni content is 60 to 92% by mass, and the B content is 0.04. The content of Fe in the molten metal is preferably 8 to 18% by mass, the content of Ni is 80 to 90% by mass, and the content of B is 0.05 to 0.1% by mass. % Is more preferable.
Alternatively, from the viewpoint of achieving high magnetic permeability and low coercive force of the alloy powder, the Fe content in the molten metal is 6 to 38% by mass, the Ni content is 60 to 92% by mass, and B. The content is preferably 0.04 to 0.60% by mass. Further, the Fe content in the molten metal is 6 to 38% by mass, the Ni content is 60 to 92% by mass, and the B content is 0.04 to 0.55% by mass. preferable.

更に、直流重畳特性が重視される用途に合金粉末を使用する場合において、高飽和磁化を達成する観点からは、溶湯中のFeの含有量が18~58質量%でNiの含有量が40~80質量%でBの含有量が0.08~0.6質量%であることが好ましく、溶湯中のFeの含有量が30~57質量%でNiの含有量が42~68質量%でBの含有量が0.1~0.4質量%であることがより好ましい。 Further, when the alloy powder is used in an application in which the DC superimposition characteristic is important, the Fe content in the molten metal is 18 to 58% by mass and the Ni content is 40 to 40 to achieve from the viewpoint of achieving high saturation magnetization. It is preferable that the content of B is 0.08 to 0.6% by mass at 80% by mass, and the content of Fe in the molten metal is 30 to 57% by mass and the content of Ni is 42 to 68% by mass. The content of is more preferably 0.1 to 0.4% by mass.

溶湯中のFe及びNiの含有量の合計は、磁気特性、機械的特性及び耐食特性の観点から、好ましくは96質量%以上であり、より好ましくは97~99.9質量%であり、更に好ましくは98~99.8質量%である。溶湯中のFe、Ni及びBの含有量の合計は、磁気特性、機械的特性及び耐食特性の観点から、好ましくは96.05質量%以上であり、より好ましくは97.05~99.95質量%であり、更に好ましくは98.05~99.85質量%である。 The total content of Fe and Ni in the molten metal is preferably 96% by mass or more, more preferably 97 to 99.9% by mass, still more preferably, from the viewpoint of magnetic properties, mechanical properties and corrosion resistance properties. Is 98-99.8% by mass. The total content of Fe, Ni and B in the molten metal is preferably 96.05% by mass or more, more preferably 97.05 to 99.95% by mass, from the viewpoint of magnetic properties, mechanical properties and corrosion resistance properties. %, More preferably 98.05 to 99.85% by mass.

溶湯調製の際、溶湯への酸素の混入を抑制する観点から、非酸化性ガス(He、ArやNなどの不活性ガス、HやCOなどの還元性ガス)雰囲気下で溶湯を調製することが好ましい。 When preparing the molten metal, from the viewpoint of suppressing the mixing of oxygen into the molten metal, prepare the molten metal in an atmosphere of a non-oxidizing gas (an inert gas such as He, Ar or N 2 or a reducing gas such as H 2 or CO). It is preferable to do so.

<流体の吹き付け(アトマイズ工程)>
調製した溶湯を、例えば炉の出湯ノズルから落下させ、落下する溶湯の流れに流体を吹き付けることで、溶湯を粉砕及び凝固してFe、Ni及びBを含む合金粉末が得られる。
<Fluid spraying (atomization process)>
By dropping the prepared molten metal from, for example, a hot water nozzle of a furnace and blowing a fluid on the flowing molten metal, the molten metal is crushed and solidified to obtain an alloy powder containing Fe, Ni and B.

落下する溶湯の流れに吹き付ける流体としては、水や、溶湯の融点未満の温度のガスが挙げられる。ガスは溶湯に対して不活性である必要がある。微粒子の合金粉末を得る観点から前記流体としては水が好ましい。 Examples of the fluid to be blown on the flowing molten metal include water and a gas having a temperature lower than the melting point of the molten metal. The gas needs to be inert to the molten metal. Water is preferable as the fluid from the viewpoint of obtaining an alloy powder of fine particles.

流体を吹き付ける際の溶湯の温度は、粘度を低くして流体による粉砕力を高めて微細な合金粉末を得る観点と、炉にかかる負担や熱コストの観点から、溶湯の融点より50~800℃高いことが好ましく、100~700℃高いことがより好ましい。 The temperature of the molten metal when spraying the fluid is 50 to 800 ° C. from the melting point of the molten metal from the viewpoint of lowering the viscosity and increasing the crushing force by the fluid to obtain fine alloy powder, and from the viewpoint of the burden on the furnace and the heat cost. It is preferably high, and more preferably 100 to 700 ° C.

流体の吹き付けは、大気雰囲気で行ってもよいが、溶湯及び形成される合金粉末の酸化を抑制するために、非酸化性ガス雰囲気下で行ってもよい。非酸化性ガス雰囲気としては、例えば、He、ArやNなどの不活性ガス、HやCOなどの還元性ガスが挙げられる。酸素量が少なく、高い透磁率の合金粉末を得るためには雰囲気中の酸素濃度を低くすることが好ましく、好ましくはゲッターのようなもので酸素濃度を下げてもよい。流体を吹き付ける際の雰囲気中の酸素濃度としては1ppm以下が好ましく、より好ましくは0.1ppm以下である。 The fluid may be sprayed in an atmospheric atmosphere, but may be performed in a non-oxidizing gas atmosphere in order to suppress the oxidation of the molten metal and the alloy powder formed. Examples of the non-oxidizing gas atmosphere include an inert gas such as He, Ar and N 2 , and a reducing gas such as H 2 and CO. In order to obtain an alloy powder having a small amount of oxygen and a high magnetic permeability, it is preferable to lower the oxygen concentration in the atmosphere, and preferably a getter or the like may be used to lower the oxygen concentration. The oxygen concentration in the atmosphere when the fluid is sprayed is preferably 1 ppm or less, more preferably 0.1 ppm or less.

<その他の工程>
本発明の合金粉末の製造方法の実施の形態においては、以上説明した流体の吹き付けにより得られた合金粉末に対して、以下の任意工程を実施してもよい。
<Other processes>
In the embodiment of the method for producing an alloy powder of the present invention, the following optional steps may be carried out on the alloy powder obtained by spraying the fluid described above.

(固液分離工程)
流体が水などの液体である場合には、合金粉末が液体中に分散したスラリーが得られる。このスラリーを固液分離することにより、合金粉末を回収する。固液分離の手法としては従来公知のものを特に制限なく採用することができ、例えばフィルタープレスなどを用いて前記スラリーを加圧ろ過すればよい。なお回収した合金粉末は水洗などで洗浄してもよい。
(Solid-liquid separation process)
When the fluid is a liquid such as water, a slurry in which the alloy powder is dispersed in the liquid is obtained. The alloy powder is recovered by solid-liquid separation of this slurry. As a method for solid-liquid separation, a conventionally known method can be adopted without particular limitation, and the slurry may be pressure-filtered using, for example, a filter press or the like. The recovered alloy powder may be washed with water or the like.

(乾燥工程)
固液分離工程で得られた合金粉末を乾燥させてもよい。乾燥は室温(25℃)で実施してもよく、乾燥速度向上の観点から高温(40~120℃)で実施してもよい。また乾燥は大気圧下で実施してもよいが、乾燥速度向上の観点から、大気圧に対して-0.05MPa以下の減圧環境で乾燥を実施してもよい。真空環境(-0.095MPa以下)で乾燥を実施してもよい。
(Drying process)
The alloy powder obtained in the solid-liquid separation step may be dried. Drying may be carried out at room temperature (25 ° C.) or at a high temperature (40 to 120 ° C.) from the viewpoint of improving the drying speed. Further, the drying may be carried out under atmospheric pressure, but from the viewpoint of improving the drying speed, drying may be carried out in a reduced pressure environment of −0.05 MPa or less with respect to atmospheric pressure. Drying may be carried out in a vacuum environment (-0.095 MPa or less).

(解砕工程、分級工程)
合金粉末を解砕したり分級したりして、その粒度分布を調整してもよい。
(Crushing process, classification process)
The alloy powder may be crushed or classified to adjust its particle size distribution.

[軟磁性材料]
以上説明した本発明の合金粉末の実施の形態は、上述の通り高い透磁率を示す。このような特性から、本発明の合金粉末の実施の形態は軟磁性材料に好適に適用することができる。合金粉末それ自体を軟磁性材料として使用することもできるし、バインダと混合した軟磁性材料とすることもできる。後者の場合、例えば合金粉末をバインダ(絶縁樹脂及び/又は無機バインダ)と混合し、造粒することで、粒状の複合体粉末(軟磁性材料)を得ることができる。この軟磁性材料における合金粉末の含有量は、良好な磁気特性を達成する観点から、80~99.9質量%であることが好ましい。同様な観点から、バインダの軟磁性材料における含有量は、0.1~20質量%であることが好ましい。
[Soft magnetic material]
The embodiment of the alloy powder of the present invention described above exhibits high magnetic permeability as described above. From such characteristics, the embodiment of the alloy powder of the present invention can be suitably applied to a soft magnetic material. The alloy powder itself can be used as a soft magnetic material, or it can be a soft magnetic material mixed with a binder. In the latter case, for example, an alloy powder is mixed with a binder (insulating resin and / or an inorganic binder) and granulated to obtain a granular composite powder (soft magnetic material). The content of the alloy powder in this soft magnetic material is preferably 80 to 99.9% by mass from the viewpoint of achieving good magnetic properties. From the same viewpoint, the content of the binder in the soft magnetic material is preferably 0.1 to 20% by mass.

前記絶縁樹脂の具体例としては、(メタ)アクリル樹脂、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂が挙げられる。前記無機バインダの具体例としては、シリカバインダー、アルミナバインダーが挙げられる。さらに、軟磁性材料(合金粉末単体の場合と、粉末とバインダの混合物の場合の双方)は必要に応じてワックス、滑剤などのその他の成分を含んでもよい。 Specific examples of the insulating resin include (meth) acrylic resin, silicone resin, epoxy resin, phenol resin, urea resin, and melamine resin. Specific examples of the inorganic binder include a silica binder and an alumina binder. Further, the soft magnetic material (both in the case of a simple substance of alloy powder and in the case of a mixture of powder and binder) may contain other components such as wax and lubricant, if necessary.

<圧粉磁心>
以上説明した軟磁性材料を所定の形状に成型して加熱・加圧することで、本発明の合金粉末の実施の形態を含む圧粉磁心を製造することができる。より具体的には、軟磁性材料を所定形状の金型に入れ、加圧しながら加熱することで圧粉磁心を得る。
<Powder magnetic core>
By molding the soft magnetic material described above into a predetermined shape, heating and pressurizing the material, a powder magnetic core including the embodiment of the alloy powder of the present invention can be produced. More specifically, a powder magnetic core is obtained by placing a soft magnetic material in a mold having a predetermined shape and heating while pressurizing.

以下、実施例及び比較例により、本発明をより詳細に説明する。
[実施例1]
タンディッシュ炉中で、電解鉄(純度:99.95質量%以上、東邦亜鉛株式会社製、アトミロンMP-30-25P)47.5kgと電気ニッケル(純度:99質量%以上、住友金属鉱山株式会社製、電気ニッケルL)50kgとフェロボロン(ボロン割合:20質量%、鉄割合:79質量%、新日本電工株式会社製、S11)1.0kgを窒素雰囲気下において1700℃に加熱して溶解した溶湯を、窒素雰囲気(雰囲気中の酸素濃度をジルコニア式酸素計(第一熱研株式会社製、ECOAZ TB-II F-S)を用いて測定したところ、10-15ppmだった)下においてタンディッシュ炉の底部から落下させながら、水圧200MPa、水量160L/分で高圧水(pH12)を吹き付けて粉砕及び凝固させた。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
[Example 1]
In a tundish furnace, 47.5 kg of electrolytic iron (purity: 99.95 mass% or more, manufactured by Toho Zinc Co., Ltd., Atmilon MP-30-25P) and electric nickel (purity: 99 mass% or more, Sumitomo Metal Mining Co., Ltd.) Made by heating 50 kg of electric nickel L) and 1.0 kg of ferroboron (boron ratio: 20% by mass, iron ratio: 79% by mass, manufactured by Shin Nihon Denko Co., Ltd., S11) to 1700 ° C in a nitrogen atmosphere to dissolve the molten metal. Tandish under a nitrogen atmosphere (the oxygen concentration in the atmosphere was measured using a zirconia type oxygen meter (ECOAZ TB-II F-S manufactured by Daiichi Thermal Research Co., Ltd.) and found to be 10-15 ppm). While dropping from the bottom of the furnace, high-pressure water (pH 12) was sprayed at a water pressure of 200 MPa and a water volume of 160 L / min to pulverize and solidify.

これによりFeNiB合金粉末が水中に分散したスラリーを得て、これをフィルタープレスにかけて固液分離し、得られた固形物を水洗し、真空雰囲気下、80℃で乾燥して、FeNiB合金粉末1を得た。 As a result, a slurry in which FeNiB alloy powder is dispersed in water is obtained, which is subjected to a filter press for solid-liquid separation, and the obtained solid matter is washed with water and dried at 80 ° C. in a vacuum atmosphere to obtain FeNiB alloy powder 1. Obtained.

[実施例2]
電解鉄の使用量を13.5kgに、電気ニッケルの使用量を85.0kgに、フェロボロンの使用量を0.5kgに変更した以外は、実施例1と同様にして、FeNiB合金粉末2を製造した。
[Example 2]
FeNiB alloy powder 2 was produced in the same manner as in Example 1 except that the amount of electrolytic iron used was changed to 13.5 kg, the amount of electric nickel used was changed to 85.0 kg, and the amount of ferroboron used was changed to 0.5 kg. bottom.

[実施例3]
電解鉄の使用量を62.5kgに、電気ニッケルの使用量を36.0kgに、フェロボロンの使用量を0.5kgに変更した以外は、実施例1と同様にして、FeNiB合金粉末3を製造した。
[Example 3]
FeNiB alloy powder 3 was produced in the same manner as in Example 1 except that the amount of electrolytic iron used was changed to 62.5 kg, the amount of electric nickel used was changed to 36.0 kg, and the amount of ferroboron used was changed to 0.5 kg. bottom.

[実施例4]
電解鉄の使用量を48.5kgに、電気ニッケルの使用量を50kgに、フェロボロンの使用量を0.5kgに変更した以外は、実施例1と同様にして、FeNiB合金粉末4を製造した。
[Example 4]
FeNiB alloy powder 4 was produced in the same manner as in Example 1 except that the amount of electrolytic iron used was changed to 48.5 kg, the amount of electric nickel used was changed to 50 kg, and the amount of ferroboron used was changed to 0.5 kg.

[実施例5]
電解鉄の使用量を46.0kgに、電気ニッケルの使用量を50.0kgに、フェロボロンの使用量を5kgに変更した以外は、実施例1と同様にして、FeNiB合金粉末5を製造した。
[Example 5]
FeNiB alloy powder 5 was produced in the same manner as in Example 1 except that the amount of electrolytic iron used was changed to 46.0 kg, the amount of electric nickel used was changed to 50.0 kg, and the amount of ferroboron used was changed to 5 kg.

[実施例6]
電解鉄の使用量を17.0kgに、電気ニッケルの使用量を79.0kgに、フェロボロンの使用量を2kgに、水圧150MPaに変更した以外は、実施例1と同様にして、FeNiB合金粉末6を製造した。
[Example 6]
FeNiB alloy powder 6 in the same manner as in Example 1 except that the amount of electrolytic iron used was changed to 17.0 kg, the amount of electric nickel used was changed to 79.0 kg, the amount of ferroboron used was changed to 2 kg, and the water pressure was changed to 150 MPa. Manufactured.

[比較例1]
電解鉄の使用量を50.0kgに、電気ニッケルの使用量を50.0kgに変更し、フェロボロンを使用しなかった以外は、実施例1と同様にして、FeNi合金粉末7を製造した。
[Comparative Example 1]
The FeNi alloy powder 7 was produced in the same manner as in Example 1 except that the amount of electrolytic iron used was changed to 50.0 kg, the amount of electric nickel used was changed to 50.0 kg, and ferroboron was not used.

[比較例2]
電解鉄の使用量を48.5kgに、電気ニッケルの使用量を50.0kgに、フェロボロンの使用量を11kgに変更した以外は、実施例1と同様にして、FeNiB合金粉末8を製造した。
[Comparative Example 2]
FeNiB alloy powder 8 was produced in the same manner as in Example 1 except that the amount of electrolytic iron used was changed to 48.5 kg, the amount of electric nickel used was changed to 50.0 kg, and the amount of ferroboron used was changed to 11 kg.

以上により得られたFeNiB合金粉末1~8及びFeNi合金粉末及びについて、BET比表面積、タップ密度、組成(酸素量及び炭素量を含む)、粒度分布、球形度、磁気特性及び圧縮密度変化の測定を行った。具体的には以下の通りである。 Measurement of BET specific surface area, tap density, composition (including oxygen content and carbon content), particle size distribution, sphericity, magnetic properties and compression density changes of FeNiB alloy powders 1 to 8 and FeNi alloy powders obtained as described above. Was done. Specifically, it is as follows.

[BET比表面積]
BET比表面積は、BET比表面積測定器(株式会社マウンテック製のMacsorb)を使用して、測定器内に105℃で20分間窒素ガスを流して試料表面の付着物を除去した後、窒素とヘリウムの混合ガス(N:30体積%、He:70体積%)を流しながら、BET1点法により測定した。
[BET specific surface area]
For the BET specific surface area, a BET specific surface area measuring instrument (Macsorb manufactured by Mountech Co., Ltd.) was used to flow nitrogen gas into the measuring instrument at 105 ° C. for 20 minutes to remove deposits on the sample surface, and then nitrogen and helium. The measurement was carried out by the BET 1-point method while flowing a mixed gas (N 2 : 30% by volume, He: 70% by volume).

[タップ密度]
タップ密度(TAP)は、特開2007-263860号公報に記載された方法と同様に、試料粉末を内径6mm×高さ11.9mmの有底円筒形のダイに容積の80%まで充填して試料粉末層を形成し、この試料粉末層の上面に0.160N/mの圧力を均一に加え、この圧力で試料粉末がこれ以上密に充填されなくなるまで前記試料粉末層を圧縮した後、試料粉末層の高さを測定し、この試料粉末層の高さの測定値と、充填された試料粉末の重量とから、試料粉末の密度を求め、これを試料粉末のタップ密度とした。
[Tap Density]
The tap density (TAP) is the same as the method described in JP-A-2007-263860, in which the sample powder is filled in a bottomed cylindrical die having an inner diameter of 6 mm and a height of 11.9 mm up to 80% of the volume. A sample powder layer is formed, a pressure of 0.160 N / m 2 is uniformly applied to the upper surface of the sample powder layer, and the sample powder layer is compressed with this pressure until the sample powder is no longer densely packed. The height of the sample powder layer was measured, and the density of the sample powder was obtained from the measured value of the height of the sample powder layer and the weight of the filled sample powder, and this was defined as the tap density of the sample powder.

[組成]
試料粉末の組成の測定は、以下の通り行った。
[composition]
The composition of the sample powder was measured as follows.

(Ni)
誘導結合プラズマ(ICP)発光分光分析装置(アジレント・テクノロジー株式会社製の720 ICP-OES)によって分析した。
(Ni)
Analysis was performed by an inductively coupled plasma (ICP) emission spectrophotometer (720 ICP-OES manufactured by Agilent Technologies, Inc.).

(B)
誘導結合プラズマ(ICP)発光分光分析装置(株式会社日立ハイテクサイエンス製のSPS3520V)によって分析した。
(B)
Analysis was performed by an inductively coupled plasma (ICP) emission spectroscopic analyzer (SPS3520V manufactured by Hitachi High-Tech Science Co., Ltd.).

(酸素量)
酸素量は、酸素・窒素・水素分析装置(株式会社堀場製作所製のEMGA-920)により測定した。
(Amount of oxygen)
The amount of oxygen was measured by an oxygen / nitrogen / hydrogen analyzer (EMGA-920 manufactured by HORIBA, Ltd.).

(炭素量)
炭素量は、炭素・硫黄分析装置(株式会社堀場製作所製のEMIA-920V2)により測定した。
(Carbon content)
The amount of carbon was measured by a carbon / sulfur analyzer (EMIA-920V2 manufactured by HORIBA, Ltd.).

[粒度分布]
粒度分布については、レーザー回折式粒度分布測定装置(SYMPATEC社製のへロス粒度分布測定装置(HELOS&RODOS(気流式の分散モジュール)))を使用して、窒素ガスを使用して分散圧5barで体積基準の粒度分布を求めた。
[Particle size distribution]
For the particle size distribution, use a laser diffraction type particle size distribution measuring device (SIMPATEC's Heros particle size distribution measuring device (HELOS & RODOS (air flow type dispersion module))), and use nitrogen gas to measure the volume at a dispersion pressure of 5 bar. The standard particle size distribution was obtained.

[球形度]
得られた試料粉末とエポキシ樹脂と硬化剤を混合し、真空脱泡した。真空脱泡した混合物を試料台に乗せ、120℃で硬化させた。硬化したサンプルをクロスセクションポリッシャー(IB-19530CP、日本電子製)を用いて研磨することで、粒子断面の試料を作成した。得られた粒子断面をFE-SEM(JSM-7200F、日本電子製)を用いて、1視野内に10~20粒子が撮影されるように10,000倍の拡大画像を撮影した。画像解析式粒度分布測定ソフトウェア(Mac-View、マウンテック株式会社)を用いて、撮影した複数の画像について、粒子形状の全体が撮影され、他の粒子とくっついていない、長径が試料粉末のD50に対して±1μmの範囲内の大きさの粒子を計1000個選択した。粒子の選択には点ツールを用いた。選択した各粒子の面積及び周囲長を前記ソフトウェアにより求め、これらより各粒子の円形度係数を求め、その平均値を球形度とした。なお円形度係数は、以下の式により求められる。
[Sphericity]
The obtained sample powder, epoxy resin and curing agent were mixed and vacuum defoamed. The vacuum defoamed mixture was placed on a sample table and cured at 120 ° C. The cured sample was polished using a cross section polisher (IB-19530CP, manufactured by JEOL Ltd.) to prepare a sample having a particle cross section. The obtained particle cross section was photographed by FE-SEM (JSM-7200F, manufactured by JEOL Ltd.) at a magnification of 10,000 times so that 10 to 20 particles were photographed in one field of view. Using image analysis type particle size distribution measurement software (Mac-View, Mountech Co., Ltd.), the entire particle shape of multiple images taken is taken, and the major axis is D50 of the sample powder, which is not attached to other particles. On the other hand, a total of 1000 particles having a size within the range of ± 1 μm were selected. A point tool was used to select the particles. The area and perimeter of each selected particle were obtained by the software, the circularity coefficient of each particle was obtained from these, and the average value was taken as the sphericity. The circularity coefficient is calculated by the following formula.

円形度係数=4×π×S/L
S:粒子の面積 L:粒子の周囲長
Circularity coefficient = 4 × π × S / L 2
S: Particle area L: Perimeter of the particle

[磁気特性(透磁率、保磁力、及び飽和磁化)の測定]
試料粉末とビスフェノールF型エポキシ樹脂(株式会社テスク製;一液性エポキシ樹脂B-1106)を97:3の質量割合で秤量し、真空撹拌・脱泡ミキサー(EME社製;V-mini300)を用いてこれらを混練し、供試粉末がエポキシ樹脂中に分散したペーストとした。このペーストをホットプレート上で30℃、2hr乾燥させて試料粉末と樹脂の複合体としたのち、粉末状に解粒して、複合体粉末とした。この複合体粉末0.2gをドーナッツ状の容器内に入れて、ハンドプレス機により9800N(1Ton)の荷重をかけることにより、外径7mm、内径3mm、厚み1.48mmのトロイダル形状の成形体を得た。この成形体について、RFインピーダンス/マテリアル・アナライザ(アジレント・テクノロジー社製;E4991A)とテストフィクスチャ(アジレント・テクノロジー社製;16454A)を用い、10MHzにおける複素比透磁率の実数部μ’を測定した。また、前記トロイダル形状の成形体の重量(g)を測定し、これと、成形体の内径(mm)、外径(mm)及び厚み(mm)から、成形体の密度を算出した。
[Measurement of magnetic properties (permeability, coercive force, and saturation magnetization)]
Weigh the sample powder and bisphenol F type epoxy resin (manufactured by Tesk Co., Ltd .; one-component epoxy resin B-1106) at a mass ratio of 97: 3, and use a vacuum stirring / defoaming mixer (manufactured by EME; V-mini300). These were kneaded using the paste to obtain a paste in which the test powder was dispersed in the epoxy resin. This paste was dried on a hot plate at 30 ° C. for 2 hours to form a complex of a sample powder and a resin, and then granulated into a powder to obtain a complex powder. 0.2 g of this complex powder is placed in a donut-shaped container, and a load of 9800 N (1 Ton) is applied by a hand press to obtain a toroidal molded body having an outer diameter of 7 mm, an inner diameter of 3 mm, and a thickness of 1.48 mm. Obtained. For this molded product, the real part μ'of the complex relative permeability at 10 MHz was measured using an RF impedance / material analyzer (manufactured by Agilent Technologies; E4991A) and a test fixture (manufactured by Agilent Technologies; 16454A). .. Further, the weight (g) of the toroidal-shaped molded body was measured, and the density of the molded body was calculated from this and the inner diameter (mm), outer diameter (mm) and thickness (mm) of the molded body.

また、高感度型振動試料型磁力計(東英工業株式会社製:VSM-P7-15型)を用い、印加磁界(10kOe)、M測定レンジ(50emu)、ステップビット100bit、時定数0.03sec、ウエイトタイム0.1secで試料粉末の磁気特性を測定した。B-H曲線により、飽和磁化σs及び保磁力Hcを求めた。なお、処理定数はメーカー指定に従った。具体的には下記の通りである。 In addition, using a high-sensitivity vibration sample magnetometer (manufactured by Toei Kogyo Co., Ltd .: VSM-P7-15 type), applied magnetic field (10 kOe), M measurement range (50 emu), step bit 100 bits, time constant 0.03 sec. , The magnetic properties of the sample powder were measured with a weight time of 0.1 sec. The saturation magnetization σs and the coercive force Hc were obtained from the BH curve. The processing constants were specified by the manufacturer. Specifically, it is as follows.

交点検出:最小二乗法 M平均点数 0 H平均点数 0
Ms Width:8 Mr Width:8 Hc Width:8 SFD Width:8 S.Star Width:8
サンプリング時間(秒):90
2点補正 P1(Oe):1000
2点補正 P2(Oe):4500
Intersection detection: least squares method M average score 0 H average score 0
Ms With: 8 Mr With: 8 Hc With: 8 SFD With: 8 S.M. Star Width: 8
Sampling time (seconds): 90
2-point correction P1 (Oe): 1000
2-point correction P2 (Oe): 4500

[圧縮密度変化(圧粉体密度差)の測定]
圧縮密度変化は、以下のようにして測定した。6.0gの試料粉末を粉体抵抗測定システム(三菱化学アナリテック株式会社製のMCP-PD51型)の測定容器(容器の内径:20mm)内に詰めた後に加圧を開始して、4kN、20kNの荷重がかかった時点の横断面がφ20mmの円形形状の圧粉体の密度を測定した。これらの結果から、荷重4kN及び20kNの時の圧粉体密度の差を求めた。
圧粉体密度差(g/cc)=20kN時の圧粉体密度(g/cc)-4kN時の圧粉体密度(g/cc)
[Measurement of change in compression density (difference in powder density)]
The change in compression density was measured as follows. After packing 6.0 g of sample powder in the measuring container (inner diameter of the container: 20 mm) of the powder resistance measurement system (MCP-PD51 type manufactured by Mitsubishi Chemical Analytech Co., Ltd.), pressurization was started and 4 kN, The density of a circular green compact having a cross section of φ20 mm at the time when a load of 20 kN was applied was measured. From these results, the difference in the powder compact density at the load of 4 kN and 20 kN was obtained.
Powder density difference (g / cc) = Powder density at 20 kN (g / cc)-Cushion density at -4 kN (g / cc)

比較例及び実施例の合金粉末の製造における、溶湯原料中のFe,Ni及びBの各々の質量割合を下記表1に、製造された合金粉末の上記の評価結果を下記2及び3にまとめる。組成及び球形度については表2及び3の両方に示す。 The mass ratios of Fe, Ni, and B in the molten metal raw materials in the production of the alloy powders of Comparative Examples and Examples are summarized in Table 1 below, and the evaluation results of the produced alloy powders are summarized in 2 and 3 below. The composition and sphericity are shown in both Tables 2 and 3.

Figure 2022068108000001
Figure 2022068108000001

Figure 2022068108000002
Figure 2022068108000002

Figure 2022068108000003
Figure 2022068108000003

表3に示すように、所定量のBを含む実施例1~6のFeNiB合金粉末は、球形度が0.80以上となるのに対して、Bを含まない比較例1のFeNi合金粉末は球形度が0.78と0.80未満となることが確認された。また、実施例1~6のFeNiB合金粉末によれば、圧縮密度変化(圧粉体密度差)が0.51g/cc~0.77g/ccであって、0.25g/ccの比較例1と比較して、合金粉末をより圧縮できることが確認された(なお、圧粉体において合金粉末の粒子の実質的な変形は観察されなかった)。実際、実施例1~6のFeNiB合金粉末では、圧粉体を形成したときに、その密度を6.0g/cm~6.5g/cmとすることができ、比較例1の5.9g/cmよりも高くできることが確認された。そして、Bを所定量含み、球形度が0.80以上である実施例1~6のFeNiB合金粉末によれば、Bを含まず、球形度が0.80未満である比較例1のFeNi合金粉末と比べて、成形体の密度を高くでき、優れた透磁率μ’を実現できることが確認された。 As shown in Table 3, the FeNiB alloy powders of Examples 1 to 6 containing a predetermined amount of B have a sphericity of 0.80 or more, whereas the FeNi alloy powder of Comparative Example 1 containing no B has a sphericity of 0.80 or more. It was confirmed that the sphericity was 0.78 and less than 0.80. Further, according to the FeNiB alloy powders of Examples 1 to 6, the compression density change (compact density difference) is 0.51 g / cc to 0.77 g / cc, and Comparative Example 1 of 0.25 g / cc. It was confirmed that the alloy powder could be compressed more than the above (note that no substantial deformation of the particles of the alloy powder was observed in the green compact). In fact, in the FeNiB alloy powders of Examples 1 to 6, when the green compact is formed, the density can be set to 6.0 g / cm 3 to 6.5 g / cm 3 , and 5. It was confirmed that it can be higher than 9 g / cm 3 . According to the FeNiB alloy powders of Examples 1 to 6 containing a predetermined amount of B and having a sphericity of 0.80 or more, the FeNi alloy of Comparative Example 1 containing no B and having a sphericity of less than 0.80. It was confirmed that the density of the molded product can be increased and the excellent magnetic permeability μ'can be realized as compared with the powder.

一方、Bの含有量が1.7質量%であって、1.5質量%を超える比較例2では、Bを含むため、球形度を0.80以上にできるものの、Bが過剰量となることで、実施例1~6と比較して合金粉末の透磁率が低くなることが確認された。つまり、磁気特性について、高透磁率、高飽和磁化および低保磁力を実現できないことが確認された。 On the other hand, in Comparative Example 2 in which the content of B is 1.7% by mass and exceeds 1.5% by mass, since B is contained, the sphericality can be 0.80 or more, but B is an excessive amount. As a result, it was confirmed that the magnetic permeability of the alloy powder was lower than that of Examples 1 to 6. That is, it was confirmed that high magnetic permeability, high saturation magnetization and low coercive force could not be realized for the magnetic characteristics.

また、Ni量が87質量%でB量が0.07質量%である実施例2のFeNiB合金粉末2は、所定量のBと比較的多くのNiを含むことで、他の実施例のFeNiB合金粉末に比べて、磁気特性のうち保磁力をより低く、かつ透磁率をより高くできることが確認された。また、実施例1などのFeNiB合金粉末は、所定量のBと比較的少ないNiを含むことで、実施例2のFeNiB合金粉末2と比べて、磁気特性のうち特に飽和磁化をより高くできることが確認された。つまり、Bを所定の含有量としつつ、FeとNiの比率を適宜変更することで、所望の磁気特性を得られることが確認された。 Further, the FeNiB alloy powder 2 of Example 2 having an amount of Ni of 87% by mass and an amount of B of 0.07% by mass contains a predetermined amount of B and a relatively large amount of Ni, so that FeNiB of another example is contained. It was confirmed that the coercive force of the magnetic properties can be lower and the magnetic permeability can be higher than that of the alloy powder. Further, since the FeNiB alloy powder of Example 1 and the like contains a predetermined amount of B and a relatively small amount of Ni, the saturation magnetization of the magnetic properties can be made higher than that of the FeNiB alloy powder 2 of Example 2. confirmed. That is, it was confirmed that the desired magnetic characteristics can be obtained by appropriately changing the ratio of Fe and Ni while setting B to a predetermined content.

Claims (16)

FeとNiとBを含む合金粉末であって、Bの含有量が0.04~1.5質量%であり、球形度が0.80以上である、合金粉末。 An alloy powder containing Fe, Ni, and B, having a B content of 0.04 to 1.5% by mass and a sphericity of 0.80 or more. Bの含有量が0.04~1.0質量%である、請求項1に記載の合金粉末。 The alloy powder according to claim 1, wherein the content of B is 0.04 to 1.0% by mass. レーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50)が0.1~15μmである、請求項1又は2に記載の合金粉末。 The alloy powder according to claim 1 or 2, wherein the cumulative 50% particle diameter (D50) on a volume basis measured by a laser diffraction type particle size distribution measuring device is 0.1 to 15 μm. Bの含有量が0.05~0.8質量%である、請求項1~3のいずれかに記載の合金粉末。 The alloy powder according to any one of claims 1 to 3, wherein the content of B is 0.05 to 0.8% by mass. Fe及びNiの含有量の合計が96質量%以上である、請求項1~4のいずれかに記載の合金粉末。 The alloy powder according to any one of claims 1 to 4, wherein the total content of Fe and Ni is 96% by mass or more. FeとNiとBの含有量の合計が96.05質量%以上である、請求項1~5のいずれかに記載の合金粉末。 The alloy powder according to any one of claims 1 to 5, wherein the total content of Fe, Ni and B is 96.05% by mass or more. Feの含有量が18~58質量%であり、Niの含有量が40~80質量%であり、Bの含有量が0.13~0.6質量%である、請求項1~6のいずれかに記載の合金粉末。 Any of claims 1 to 6, wherein the Fe content is 18 to 58% by mass, the Ni content is 40 to 80% by mass, and the B content is 0.13 to 0.6% by mass. The alloy powder described in Crab. Feの含有量が6~38質量%であり、Niの含有量が60~92質量%であり、Bの含有量が0.04~0.30質量%である、請求項1~6のいずれかに記載の合金粉末。 Any of claims 1 to 6, wherein the Fe content is 6 to 38% by mass, the Ni content is 60 to 92% by mass, and the B content is 0.04 to 0.30% by mass. The alloy powder described in Crab. Feの含有量が6~38質量%であり、Niの含有量が60~92質量%であり、Bの含有量が0.04~0.11質量%である、請求項1~6のいずれかに記載の合金粉末。 Any of claims 1 to 6, wherein the Fe content is 6 to 38% by mass, the Ni content is 60 to 92% by mass, and the B content is 0.04 to 0.11% by mass. The alloy powder described in Crab. FeとNiとBとを含む溶湯であって、当該溶湯中のBの含有量が0.04~1.7質量%である溶湯を調製し、
この溶湯を落下させながら、落下する溶湯の流れに流体を吹き付けることで溶湯を粉砕及び凝固させて合金粉末を得る、合金粉末の製造方法。
A molten metal containing Fe, Ni, and B, wherein the content of B in the molten metal is 0.04 to 1.7% by mass is prepared.
A method for producing an alloy powder, which obtains an alloy powder by crushing and solidifying the molten metal by spraying a fluid on the flow of the falling molten metal while dropping the molten metal.
前記溶湯中のBの含有量が0.04~1.0質量%である、
請求項10に記載の合金粉末の製造方法。
The content of B in the molten metal is 0.04 to 1.0% by mass.
The method for producing an alloy powder according to claim 10.
前記溶湯中のBの含有量が0.05~0.8質量%である、請求項10に記載の合金粉末の製造方法。 The method for producing an alloy powder according to claim 10, wherein the content of B in the molten metal is 0.05 to 0.8% by mass. 前記溶湯中のFe、Ni及びBの含有量の合計が96.05質量%以上である、請求項10~12のいずれかに記載の合金粉末の製造方法。 The method for producing an alloy powder according to any one of claims 10 to 12, wherein the total content of Fe, Ni and B in the molten metal is 96.05% by mass or more. 請求項1~8のいずれかに記載の合金粉末とバインダとを含む、軟磁性材料。 A soft magnetic material containing the alloy powder according to any one of claims 1 to 8 and a binder. 請求項1~8のいずれかに記載の合金粉末を含む圧粉磁心。 A powder magnetic core containing the alloy powder according to any one of claims 1 to 8. 請求項1~8のいずれかに記載の合金粉末、または請求項14に記載の軟磁性材料を所定の形状に成型し、得られた成型物を加熱して圧粉磁心を得る、圧粉磁心の製造方法。
A dust core obtained by molding the alloy powder according to any one of claims 1 to 8 or the soft magnetic material according to claim 14 into a predetermined shape and heating the obtained molded product to obtain a powder magnetic core. Manufacturing method.
JP2021164273A 2020-10-21 2021-10-05 Alloy powder, manufacturing method for alloy powder, soft magnetic material, dust core and manufacturing method for dust core Pending JP2022068108A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020176858 2020-10-21
JP2020176858 2020-10-21

Publications (1)

Publication Number Publication Date
JP2022068108A true JP2022068108A (en) 2022-05-09

Family

ID=81456141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021164273A Pending JP2022068108A (en) 2020-10-21 2021-10-05 Alloy powder, manufacturing method for alloy powder, soft magnetic material, dust core and manufacturing method for dust core

Country Status (1)

Country Link
JP (1) JP2022068108A (en)

Similar Documents

Publication Publication Date Title
JP6490259B2 (en) Method for producing Fe powder or alloy powder containing Fe
JP6851448B2 (en) Heat treatment method for soft magnetic powder
JP6459154B2 (en) Magnetic powder and manufacturing method thereof, magnetic core and manufacturing method thereof, and coil component
KR102012959B1 (en) Powder made of iron-based metallic glass
JP2010209409A (en) Method for producing amorphous soft magnetic alloy powder, amorphous soft magnetic alloy powder, and formed body using the same
WO2008093430A1 (en) High-compressibility iron powder, iron powder comprising the same for dust core, and dust core
JP2007092162A (en) Highly compressive iron powder, iron powder for dust core using the same and dust core
JP5439888B2 (en) Composite magnetic material and method for producing the same
JP2018186212A (en) Soft magnetic powder, method for manufacturing the same, soft magnetic material, and method for manufacturing powder-compact magnetic core
JP2018178254A (en) Fe-Ni-BASED ALLOY POWDER AND MANUFACTURING METHOD THEREFOR
WO2013140762A1 (en) Composite magnetic material and method for manufacturing same
JP2022068108A (en) Alloy powder, manufacturing method for alloy powder, soft magnetic material, dust core and manufacturing method for dust core
JP2019218611A (en) Method for producing phosphoric acid-surface treated soft magnetic powder, and phosphoric acid-surface treated soft magnetic powder
WO2019045100A1 (en) Soft magnetic powder, method for producing fe powder or alloy powder containing fe, soft magnetic material, and method for producing dust core
JP2022111641A (en) Amorphous alloy soft magnetic powder, powder magnetic core, magnetic element and electronic apparatus
JPS5854185B2 (en) Powder for high permeability sintered iron-nickel alloys
CN113518674B (en) Soft magnetic powder, heat treatment method for soft magnetic powder, soft magnetic material, dust core, and method for producing dust core
JPH11329821A (en) Dust core and manufacture thereof
CN111618292B (en) Iron-based metallic glass alloy powder
WO2020090849A1 (en) Soft magnetic powder, soft magnetic powder heat treatment method, soft magnetic material, dust core, and dust core manufacturing method
WO2022172543A1 (en) Soft-magnetic flat powder
WO2021241466A1 (en) Soft magnetic powder, method for producing soft magnetic powder, soft magnetic material, powder magnetic core, and method for producing powder magnetic core
JP2004014614A (en) METHOD FOR PRODUCING Fe-Si BASED SOFT MAGNETISM SINTERED ALLOY HAVING HIGH DENSITY AND HIGH PERMEABILITY
CN117120180A (en) Soft magnetic powder and magnetic core
JP2023133693A (en) Soft-magnetic powder, magnetic powder core, magnetic element and electronic appliance