WO2021241466A1 - Soft magnetic powder, method for producing soft magnetic powder, soft magnetic material, powder magnetic core, and method for producing powder magnetic core - Google Patents

Soft magnetic powder, method for producing soft magnetic powder, soft magnetic material, powder magnetic core, and method for producing powder magnetic core Download PDF

Info

Publication number
WO2021241466A1
WO2021241466A1 PCT/JP2021/019492 JP2021019492W WO2021241466A1 WO 2021241466 A1 WO2021241466 A1 WO 2021241466A1 JP 2021019492 W JP2021019492 W JP 2021019492W WO 2021241466 A1 WO2021241466 A1 WO 2021241466A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft magnetic
magnetic powder
ppm
powder
content
Prior art date
Application number
PCT/JP2021/019492
Other languages
French (fr)
Japanese (ja)
Inventor
岳志 河内
悠介 飯田
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to KR1020227029049A priority Critical patent/KR20220129623A/en
Priority to CN202180034894.4A priority patent/CN115605303A/en
Publication of WO2021241466A1 publication Critical patent/WO2021241466A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a soft magnetic powder, a method for producing a soft magnetic powder, a soft magnetic material, a powder magnetic core, and a method for producing a powder magnetic core.
  • a magnetic component having a dust core such as an inductor, is attached to the electronic device.
  • the frequency is increased in order to improve the performance and the size, and along with this, the dust core constituting the magnetic component is also required to cope with the frequency.
  • the dust core is generally manufactured by compounding soft magnetic powder with a binder such as resin as necessary and then compression molding.
  • a binder such as resin as necessary and then compression molding.
  • an AC magnetic flux is passed through this dust core, some energy is lost and heat is generated, which poses a problem in electronic devices.
  • Such a loss is divided into a hysteresis loss and an eddy current loss, and in particular, in order to reduce the hysteresis loss, a soft magnetic powder capable of providing a dust core having a high magnetic permeability is required.
  • the soft magnetic powder capable of forming a powder magnetic core having a high magnetic permeability may be expressed as "a soft magnetic powder having a high magnetic permeability".
  • Patent Document 1 a soft magnetic powder capable of producing a powder magnetic core having a high magnetic permeability, a powder magnetic core having a high magnetic permeability manufactured by using the soft magnetic powder, and high-performance magnetism having the powder magnetic core.
  • the subject is to provide an element.
  • Fe, Si and Mn are contained, Fe is the main component, the content of Si is 1 wt% or more and 8 wt% or less, and the content of Mn is more than 0.2 wt% and 1 wt% or less.
  • Patent Document 1 describes a soft magnetic powder that satisfies all of the requirements.
  • the amount of oxidation over time can be used as one index of deterioration over time. This is because when the powder (which constitutes the dust core) is oxidized, it generally adversely affects the magnetic properties such as magnetic permeability.
  • a soft magnetic powder composed of an Fe alloy containing 0.1 to 15% by mass of Si and containing 1 ppm or more and less than 1000 ppm of an alkali metal and / or an alkaline earth metal.
  • the cumulative 50% particle size (D50) based on the volume measured by the laser diffraction type particle size distribution measuring device of this soft magnetic powder is 0.1 to 15 ⁇ m.
  • the soft magnetic powder preferably contains 84 to 99.7% by mass of Fe, preferably 0.2 to 10% by mass of Si, and contains 10 to 800 ppm of an alkali metal and / or an alkaline earth metal. preferable.
  • the soft magnetic powder further contains Cr, and the Cr content is 0.1 to 8% by mass. Further, it is preferable that the total content of Fe, Si and Cr in the powder is 97.8% by mass or more.
  • the Mn content of the soft magnetic powder is preferably 1000 ppm or less, more preferably 800 ppm or less, and further preferably 15 to 400 ppm.
  • the soft magnetic powder of the present invention is a soft magnetic powder composed of an Fe alloy containing 0.1 to 15% by mass of Si and 1 to 950 ppm of Na.
  • the method for producing a soft magnetic powder of the present invention comprises a step 1 of heating and melting an Fe raw material and a Si raw material to prepare a molten metal containing Fe and Si and having a Si content of 0.1 to 15% by mass.
  • Step 2 to obtain a soft magnetic powder composed of an Fe alloy containing Si by spraying a fluid onto the molten metal while dropping the molten metal to crush and solidify the molten metal.
  • It has a step 3 of adding an alkali metal source and / or an alkaline earth metal source to the soft magnetic powder so that the soft magnetic powder contains an alkali metal and / or an alkaline earth metal at 1 ppm or more and less than 1000 ppm.
  • the Mn content in the molten metal is preferably 1000 ppm or less.
  • a molten metal containing Fe, Si and Cr is prepared as the molten metal, and the Cr content in the molten metal is 0.1 to 8% by mass. Is preferable.
  • step 3 an alkali metal source and / or an alkaline earth metal source is added to the soft magnetic powder so that the soft magnetic powder contains 10 to 800 ppm of an alkali metal and / or an alkaline earth metal. preferable.
  • Step 2 Water was used as the fluid in the step 2, and in the step, a slurry in which the soft magnetic powder and water were mixed was obtained.
  • step 3 it is preferable to add the alkali metal source and / or the alkaline earth metal source to the slurry.
  • the alkali metal and / or alkaline earth metal source is an alkali metal, and is sodium hydroxide or potassium hydroxide.
  • electrolytic iron having a Mn content of 100 ppm or less as the Fe raw material.
  • the method for producing a soft magnetic powder of the present invention heats and melts an Fe raw material and a Si raw material to prepare a molten metal containing Fe and Si and having a Si content of 0.1 to 15% by mass.
  • Step 1 and Step 2 to obtain a soft magnetic powder composed of an Fe alloy containing Si by spraying a fluid onto the molten metal while dropping the molten metal to crush and solidify the molten metal. It has a step 3 of adding a Na source to the soft magnetic powder so that the soft magnetic powder contains 1 to 950 ppm of Na.
  • the soft magnetic material of the present invention includes, for example, the above-mentioned soft magnetic powder and a binder.
  • the dust core of the present invention includes the above-mentioned soft magnetic powder. This dust core can be produced, for example, by molding the above-mentioned soft magnetic powder or the above-mentioned soft magnetic material into a predetermined shape and heating the obtained molded product.
  • a soft magnetic powder having excellent magnetic permeability and oxidation resistance which is composed of an alloy containing Fe and Si, and a method for producing such a soft magnetic powder.
  • the embodiment of the soft magnetic powder of the present invention is composed of an Fe (iron) alloy containing Si (silicon).
  • the soft magnetic powder contains Si in the range of 0.1 to 15% by mass, and preferably contains Fe as a main component.
  • Fe is an element that contributes to the magnetic and mechanical properties of the soft magnetic powder.
  • Si is an element that enhances magnetic properties such as magnetic permeability of soft magnetic powder.
  • the "main component" of Fe means the element having the highest content among the elements constituting the soft magnetic powder.
  • the content of Fe in the soft magnetic powder is preferably 84 to 99.7% by mass, more preferably 88 to 98.2% by mass, from the viewpoint of magnetic properties and mechanical properties.
  • the Si content in the soft magnetic powder is within the above range from the viewpoint of improving magnetic properties such as magnetic permeability without impairing the magnetic properties and mechanical properties due to Fe.
  • the Si content is preferably 0.2 to 10% by mass (preferably 0.2% by mass or more and less than 10% by mass), and more preferably 1.2 to 8% by mass.
  • the total content of Fe and Si in the soft magnetic powder is preferably 90% by mass or more, more preferably 92% by mass or more (usually, from the viewpoint of suppressing deterioration of magnetic properties due to the inclusion of impurities). 99.8% by mass or less).
  • the embodiment of the soft magnetic powder of the present invention preferably contains Cr (chromium) from the viewpoint of lowering the oxygen content of the powder, enhancing magnetic properties such as saturation magnetization, and enhancing the oxidation resistance of the powder. ..
  • the Cr content of this soft magnetic powder is preferably 0.1 to 8% by mass, more preferably 0.5 to 7% by mass.
  • the total content of Fe, Si and Cr in this soft magnetic powder is preferably 97.8% by mass or more (usually 99.8% by mass or less).
  • the embodiment of the soft magnetic powder of the present invention contains 1 ppm or more and less than 1000 ppm of an alkali metal and / or an alkaline earth metal.
  • the soft magnetic powder is excellent in magnetic permeability and also in oxidation resistance.
  • the oxidation resistance can be evaluated by an accelerated test in which the powder is stored for a certain period of time under high temperature and high humidity.
  • the content of the alkali metal and / or alkaline earth metal when the soft magnetic powder contains a plurality of types of alkali metals and / or alkaline earth metals (for example, when Na and K are contained), these contents are It means that the total is 1 ppm or more and less than 1000 ppm.
  • the content of the alkali metal and / or the alkaline earth metal in the soft magnetic powder is preferably 1 to 950 ppm, more preferably 10 to 950 ppm, as a specific range. It is 800 ppm, more preferably 15 to 500 ppm, and particularly preferably 50 to 200 ppm.
  • the alkali metal and / or alkaline earth metal is assumed to be present on the particle surface of the soft magnetic powder, for example, when the soft magnetic powder is produced by the embodiment of the method for producing the soft magnetic powder of the present invention described later. Conceivable.
  • Na (sodium) and K (potassium) are preferable, and Na is particularly preferable, from the viewpoint of magnetic permeability and oxidation resistance of the soft magnetic powder.
  • the soft magnetic powder of the present embodiment may contain other elements as long as the effects of the present invention are exhibited.
  • Examples are Pd (palladium), Co (cobalt), Mo (molybdenum), Zr (zirconium), C (carbon), N (nitrogen), O (oxygen), P (phosphorus), Cl (chlorine), Mn (manganese), Ni (nickel), Cu (copper), S (sulfur), As (arsenic), B (boron), Sn (tin), Ti (titanium), V (vanadium), Al (aluminum) Can be mentioned.
  • the content excluding oxygen is preferably 1% by mass or less in total, and more preferably 10 to 5000 ppm.
  • the soft magnetic powder of the present embodiment can be produced, for example, by the embodiment of the method for producing a soft magnetic powder of the present invention, which will be described later. In such a case, the amount of each element mentioned above is small. Excellent magnetic properties, etc.
  • the content of Mn contained as an impurity in the Fe raw material and Si raw material, which are the raw materials for producing the soft magnetic powder of the present invention is the magnetic permeability of the embodiment of the soft magnetic powder of the present invention. From the viewpoint of oxidation resistance, less is preferable. In order to reduce the Mn content to 0, a manufacturing raw material having a reduced Mn as much as possible may be used, but it is very difficult in terms of cost. Considering the balance between cost and characteristics (permeability, etc.), the allowable content of Mn in the soft magnetic powder is preferably 1000 ppm or less, more preferably 800 ppm or less, and further preferably 0. It is 1 to 800 ppm, more preferably 10 to 500 ppm, particularly preferably 15 to 400 ppm, and most preferably 50 to 300 ppm.
  • the oxygen content is preferably 2.0% by mass or less from the viewpoint of magnetic permeability (the oxygen content is usually 0.05% by mass or more). From the same viewpoint, the oxygen content is more preferably 0.1 to 1.5% by mass. Since the oxygen content increases as the particle size of the powder decreases, the oxygen content (O) and the laser diffraction type particle size distribution measuring device for the soft magnetic powder are used to correct the fluctuation of the oxygen content due to the particle size. It is desirable to adopt the product (O ⁇ D 50 (mass% ⁇ ⁇ m)) with the cumulative 50% particle size (D 50) based on the measured volume.
  • the product (O ⁇ D 50 (mass% ⁇ ⁇ m)) is preferably 12 (mass% ⁇ ⁇ m) or less, preferably 0.40 to 8.50, from the viewpoint of obtaining good saturation magnetization of the soft magnetic powder. It is more preferably (% by mass ⁇ ⁇ m).
  • Cumulative 50% particle diameter on a volume basis as measured by a laser diffraction type particle size distribution measuring apparatus of the embodiment of the soft magnetic powder of the present invention (D 50) is not particularly limited, from the viewpoint that corresponds to the size of electronic equipment , 0.1 to 15 ⁇ m, more preferably 0.5 to 10 ⁇ m.
  • the specific surface area (BET specific surface area) measured by the BET one-point method according to the embodiment of the soft magnetic powder of the present invention is from the viewpoint of suppressing the generation of oxides on the particle surface of the powder and exhibiting good magnetic properties. preferably 0.15 ⁇ 3.00m 2 / g, more preferably 0.20 ⁇ 2.50m 2 / g.
  • the tap density of the embodiment of the soft magnetic powder of the present invention is preferably 2.0 to 7.5 g / cm 3 from the viewpoint of increasing the packing density of the powder and exhibiting good magnetic properties, and more preferably. It is 2.8 to 6.5 g / cm 3 .
  • the shape of the embodiment of the soft magnetic powder of the present invention is not particularly limited, and may be spherical or substantially spherical, and may be granular, flaky (flake-shaped), or distorted shape (indeterminate form). good. More preferably, it is a powder having a high degree of sphericity.
  • the embodiment of the soft magnetic powder of the present invention described above can be produced by the embodiment of the method for producing a soft magnetic powder of the present invention.
  • This production method includes a molten metal preparation step 1, an atomizing step 2, and an alkali metal source and / or an alkaline earth metal source addition step 3.
  • this manufacturing method will be described.
  • the molten metal preparation step In the molten metal preparation step, the Fe raw material and the Si raw material are heated and melted to prepare the molten metal. At this time, the amount of Si raw material used is adjusted so that the content of Si in the molten metal is 0.1 to 15% by mass. The content of each element in the molten metal shall be calculated from the amount of the raw material charged (multiplied by the ratio and purity of each element in the raw material).
  • the content of Si in the molten metal is preferably 0.2 to 10% by mass (preferably 0.2% by mass or more and less than 10% by mass), and more preferably 1.2 to 8% by mass. Further, the total content of Fe and Si in the molten metal is preferably 90% by mass or more, more preferably 92% by mass or more (usually 99.8% by mass or less).
  • Fe raw materials include pure iron and electrolytic iron
  • Si raw materials include silicon metal and semiconductor scrap.
  • the content of Mn in the powder is preferably 1000 ppm or less, more preferably 800 ppm or less, still more preferably 0.1 to 800 ppm, still more preferably, from the viewpoint of magnetic permeability and oxidation resistance of the soft magnetic powder. It is preferably 10 to 500 ppm, particularly preferably 15 to 400 ppm, most preferably 50 to 300 ppm, and for that purpose, the Mn content in the molten metal is preferably 1000 ppm or less, more preferably 800 ppm or less, still more preferably.
  • the type and amount of the raw material for preparing the molten metal are adjusted so as to be 0.1 to 800 ppm, more preferably 10 to 500 ppm, particularly preferably 15 to 400 ppm, and most preferably 50 to 300 ppm.
  • the Fe raw material electrolytic iron having high purity and low content of Mn as an impurity is used.
  • the Fe content of the electrolytic iron is preferably 99.90% by mass or more (usually 99.999% by mass or less), and the Mn content is 100 ppm or less, preferably 50 ppm or less, more preferably 25 ppm or less, still more preferably. It is 10 ppm or less, particularly preferably 5 ppm or less, and most preferably 3 ppm or less (usually 0.001 ppm or more).
  • measures may be taken to reduce the Mn content by refining technology.
  • the Cr raw material is further heated and melted in addition to the Fe raw material and the Si raw material in the main molten metal preparation step 1.
  • Cr raw materials include ferrochrome and electrolytic metal chromium.
  • the Cr content in the molten metal should be 0.1 to 8% by mass from the viewpoint of lowering the oxygen content of the soft magnetic powder, enhancing magnetic properties such as saturation magnetization, and enhancing the oxidation resistance of the powder. Is preferable, and 0.5 to 7% by mass is more preferable.
  • the total content of Fe, Si and Cr in the molten metal is preferably 97.8% by mass or more (usually 99.8% by mass or less).
  • a Cr raw material having a low Mn content may be used, or a Cr raw material (not having a low Mn content) may be refined by refining technology. You may take measures to reduce the content of.
  • a fluid is sprayed onto the molten metal while dropping the molten metal prepared in the molten metal preparation step 1, and the molten metal is crushed and solidified to be composed of an Fe alloy containing Si (optionally further containing Cr).
  • a soft magnetic powder examples include gas, water and frames. From the viewpoint of producing a soft magnetic powder having a high degree of sphericity, gas is preferable as a fluid, and from the viewpoint of producing a soft magnetic powder having a small particle size in good yield, water is preferable as a fluid.
  • the atomizing step 2 is carried out to obtain a slurry in which the soft magnetic powder and water are mixed.
  • Alkali metal source and / or alkaline earth metal source addition step 3 In the alkali metal source and / or alkaline earth metal source addition step 3, the alkali metal source and / or the alkaline earth metal source is added to the soft magnetic powder obtained in the atomizing step 2.
  • the amount of the alkali metal source and / or the alkaline earth metal source added may accelerate the progress of corrosion in the final product from the viewpoint of magnetic permeability and oxidation resistance, and if the amount added is too large, it is a soft magnetic powder.
  • the content of the alkali metal and / or alkaline earth metal in the metal is 1 ppm or more and less than 1000 ppm. This addition amount can be experimentally determined according to the embodiment of the alkali metal source and / or alkaline earth metal source addition step 3.
  • the amount of the alkali metal source and / or the alkaline earth metal source added is preferably 1 to 1 to the content of the alkali metal and / or the alkaline earth metal in the soft magnetic powder.
  • the amount is 950 ppm, more preferably 10 to 800 ppm, still more preferably 15 to 500 ppm, and particularly preferably 50 to 200 ppm.
  • alkali metal sources and / or alkaline earth metal sources include sodium hydroxide, sodium hydrogen carbonate (Na source), and potassium hydroxide (K source).
  • sodium hydroxide and potassium hydroxide are preferable, and sodium hydroxide is more preferable, because constituent elements other than alkali metal and / or alkaline earth metal are less likely to be involved in the soft magnetic powder as impurities.
  • the method of adding the alkali metal source and / or the alkaline earth metal source to the soft magnetic powder is not particularly limited, but in a wet manner so that the alkali metal and / or the alkaline earth metal adheres evenly to the constituent particles of the powder. Addition is preferred.
  • a slurry in which soft magnetic powder and water are mixed can be obtained.
  • An alkali metal source and / or an alkaline earth metal source is added to the slurry, and the slurry is stirred. do.
  • a dry soft magnetic powder is obtained in the atomizing step 2 by using a gas as a fluid
  • the alkali metal and / or the alkaline earth metal source water and the powder are mixed and stirred.
  • An alkali metal and / or an alkaline earth metal source may be dissolved in water to form an aqueous solution, and the powder may be mixed and stirred.
  • the soft magnetic powder obtained in the dry state in the alkali metal source and / or the alkaline earth metal source addition step 3 and the powder obtained by the above-mentioned solid-liquid separation are further washed with water and then dried, if necessary. May be good.
  • the soft magnetic powder may be crushed or classified by sieving or wind power classification as necessary to adjust the particle size (particle size distribution).
  • the soft magnetic powder produced according to the embodiment of the method for producing a soft magnetic powder of the present invention described above may be heat-treated.
  • the heat treatment is carried out at a temperature of about 400 to 1100 ° C. in a reducing atmosphere such as a hydrogen atmosphere or an inert atmosphere such as a nitrogen atmosphere. This makes it possible to remove the residual stress and strain of the soft magnetic powder while preventing oxidation of the soft magnetic powder, and improve the magnetic properties.
  • the heat treatment may be carried out before or after the particle size adjusting process such as the above-mentioned crushing.
  • the embodiment of the soft magnetic powder of the present invention described above is excellent in magnetic permeability and oxidation resistance as described above.
  • the embodiment of the soft magnetic powder of the present invention can be suitably applied to the soft magnetic material.
  • the soft magnetic powder itself can be used as a soft magnetic material, or can be a soft magnetic material mixed with a binder.
  • a soft magnetic powder is mixed with a binder (insulating resin and / or an inorganic binder) and granulated to obtain a granular composite powder (soft magnetic material).
  • the content of the soft magnetic powder in this soft magnetic material is preferably 80 to 99.9% by mass from the viewpoint of achieving good magnetic properties. From the same viewpoint, the content of the binder in the soft magnetic material is preferably 0.1 to 20% by mass.
  • the insulating resin include (meth) acrylic resin, silicone resin, epoxy resin, phenol resin, urea resin, and melamine resin.
  • Specific examples of the inorganic binder include a silica binder and an alumina binder.
  • the soft magnetic material (both in the case of a soft magnetic powder alone and in the case of a mixture of powder and binder) may contain other components such as wax and lubricant, if necessary.
  • a dust core including the embodiment of the soft magnetic powder of the present invention can be produced. More specifically, a powder magnetic core is obtained by placing a soft magnetic material in a mold having a predetermined shape, pressurizing the material, and heating the material.
  • Example 1 In a tundish furnace, 26.9 kg of electrolytic iron (purity: about 99.99% by mass. Mn content: 1 ppm), silicon metal (purity: 99% by mass or more, Mn content: 770 ppm) 1.1 kg and ferrochrome ( Fe content: 31.3% by mass. Cr content: 66.8% by mass. Mn content: 3600ppm) 2.0 kg is heated and dissolved at 1700 ° C. in a nitrogen atmosphere to dissolve the molten metal in a nitrogen atmosphere (oxygen concentration).
  • high-pressure water pH 6
  • pH 6 high-pressure water
  • a 25% by mass NaOH aqueous solution was added to the obtained slurry (containing 30 kg of the soft magnetic powder) at a ratio of 3 kg to 100 kg of the soft magnetic powder, and the mixture was stirred and mixed. Then, the slurry was separated into solid and liquid, and the solid was dried in vacuum at 40 ° C. for 30 hours to obtain FeSiCr alloy powder 1.
  • the composition (amount of Fe, Si, Cr, O, Mn and alkali metal and alkaline earth metal), particle size distribution, magnetic properties and oxidation resistance were determined. rice field. The results are shown in Table 2 below. Further, the raw materials for producing the powder and the amount of the NaOH aqueous solution added are summarized in Table 1 below.
  • composition The composition of FeSiCr alloy powder 1 was measured as follows. Si was analyzed by the gravimetric method as follows. First, hydrochloric acid and perchloric acid were added to the sample (FeSiCr alloy powder 1) and decomposed by heating, and the sample (FeSiCr alloy powder 1) was heated until white smoke of perchloric acid was generated. Continued heating to dry. After allowing to cool, water and hydrochloric acid were added and heated to dissolve soluble salts. Subsequently, the insoluble residue was filtered using a filter paper, and the residue was transferred to a crucible together with the filter paper, dried and incinerated. After allowing to cool, the crucible was weighed together.
  • the contents of Cr, Mn and alkaline earth metals were determined by quantitative analysis using an inductively coupled plasma (ICP) emission spectrometer (SPS3520V manufactured by Hitachi High-Tech Science Co., Ltd.).
  • the content of the alkali metal was determined by quantitative analysis using an atomic absorption spectrophotometer (Hitachi High-Tech Science, ZA3300 type frame dedicated machine).
  • the oxygen content was measured with an oxygen / nitrogen / hydrogen analyzer (EMGA-920 manufactured by HORIBA, Ltd.).
  • particle size distribution For the particle size distribution, use a laser diffraction type particle size distribution measuring device (SIMPATEC's Heros particle size distribution measuring device (HELOS & RODOS (air flow type dispersion module)) to obtain a volume-based particle size distribution at a dispersion pressure of 5 bar. rice field.
  • SIMPATEC's Heros particle size distribution measuring device HELOS & RODOS (air flow type dispersion module)
  • the packing density was obtained by dividing the weight of the FeSiCr alloy powder 1 (97% of the weight of the composite powder) in the obtained toroidal-shaped molded body by the volume measured for the molded body.
  • the packing density was 5.4 g / cm 3 .
  • Example 2 FeSiCr alloy powder according to Example 2 in the same manner as in Example 1 except that pure iron (purity: about 99.94% by mass, Mn content: 200 ppm) was used instead of electrolytic iron in Example 1. 2 was manufactured. The FeSiCr alloy powder 2 was evaluated in the same manner as in Example 1. The results are shown in Table 2 below.
  • Example 3 the FeSiCr alloy powder 3 was produced by the same method as in Example 2 except that the amount of the 25 mass% NaOH aqueous solution added to the slurry was changed to 240 g with respect to 100 kg of the soft magnetic powder.
  • the FeSiCr alloy powder 3 was evaluated in the same manner as in Example 1. The results are shown in Table 2 below.
  • Example 4 the FeSiCr alloy powder 4 was produced by the same method as in Example 2 except that the amount of the 25 mass% NaOH aqueous solution added to the slurry was changed to 36 kg in proportion to 100 kg of the soft magnetic powder.
  • the FeSiCr alloy powder 4 was evaluated in the same manner as in Example 1. The results are shown in Table 2 below.
  • Example 1 The FeSiCr alloy powder 5 was produced in the same manner as in Example 2 except that the 25% by mass NaOH aqueous solution was not added to the slurry in Example 2. The FeSiCr alloy powder 5 was evaluated in the same manner as in Example 1. The results are shown in Table 2 below. In the evaluation of oxidation resistance, the FeSiCr alloy powder 5 changed its color from gray to reddish brown.
  • Example 2 the FeSiCr alloy powder 6 was produced by the same method as in Example 2 except that the amount of the 25 mass% NaOH aqueous solution added to the slurry was changed to 90 kg in proportion to 100 kg of the soft magnetic powder.
  • the FeSiCr alloy powder 6 was evaluated in the same manner as in Example 1. The results are shown in Table 2 below. In the evaluation of oxidation resistance, the FeSiCr alloy powder 6 changed its color from gray to reddish brown.
  • the FeSiCr alloy powders 1 to 4 of Examples 1 to 4 containing a predetermined amount of an alkali metal and / or an alkaline earth metal (Na) show an excellent magnetic permeability of 15.5 or more, and are stored to evaluate oxidation resistance. No discoloration was observed in the test, and the increase in oxygen content was smaller than that in the comparative example.
  • the FeSiCr alloy powders 1 and 2 of Examples 1 and 2 in which the amount of the alkali metal and / or the alkaline earth metal is 90 ppm are particularly excellent in oxidation resistance (the amount of increase in the oxygen content is small), and among these, Mn
  • the FeSiCr alloy powder of Example 1 having the lowest content had particularly excellent magnetic permeability and also had the highest oxidation resistance.

Abstract

A soft magnetic powder composed of an Fe alloy including 0.1-15 mass% of Si and at least 1 ppm to less than 1,000 ppm of an alkali metal and/or an alkaline earth metal.

Description

軟磁性粉末、軟磁性粉末の製造方法、軟磁性材料、圧粉磁心及び圧粉磁心の製造方法Soft magnetic powder, manufacturing method of soft magnetic powder, soft magnetic material, powder magnetic core and powder magnetic core manufacturing method
 本発明は、軟磁性粉末、軟磁性粉末の製造方法、軟磁性材料、圧粉磁心及び圧粉磁心の製造方法に関する。 The present invention relates to a soft magnetic powder, a method for producing a soft magnetic powder, a soft magnetic material, a powder magnetic core, and a method for producing a powder magnetic core.
 電子機器には、例えばインダクタなどの、圧粉磁心を有する磁性部品が取り付けられている。電子機器では、高性能化及び小型化のために高周波化が図られており、それに伴って磁性部品を構成する圧粉磁心にも高周波化への対応が求められている。 A magnetic component having a dust core, such as an inductor, is attached to the electronic device. In electronic devices, the frequency is increased in order to improve the performance and the size, and along with this, the dust core constituting the magnetic component is also required to cope with the frequency.
 圧粉磁心は一般的に、軟磁性粉末を必要に応じて樹脂などの結合材と複合化したうえ圧縮成型することで製造されている。この圧粉磁心に交流磁束を流すと一部のエネルギーが失われ、発熱するので電子機器において問題となる。このような損失はヒステリシス損失と渦電流損失に分けられ、特にヒステリシス損失を低減するためには、透磁率が高い圧粉磁心を提供可能な軟磁性粉末が求められる。以降、透磁率の高い圧粉磁心を形成できる軟磁性粉末を、「透磁率の高い軟磁性粉末」のように表現することがある。 The dust core is generally manufactured by compounding soft magnetic powder with a binder such as resin as necessary and then compression molding. When an AC magnetic flux is passed through this dust core, some energy is lost and heat is generated, which poses a problem in electronic devices. Such a loss is divided into a hysteresis loss and an eddy current loss, and in particular, in order to reduce the hysteresis loss, a soft magnetic powder capable of providing a dust core having a high magnetic permeability is required. Hereinafter, the soft magnetic powder capable of forming a powder magnetic core having a high magnetic permeability may be expressed as "a soft magnetic powder having a high magnetic permeability".
 軟磁性粉末としては、高い透磁率を得られることから、Siを含むFeSi合金粉末が提案されている(例えば、特許文献1を参照)。 As the soft magnetic powder, a FeSi alloy powder containing Si has been proposed because a high magnetic permeability can be obtained (see, for example, Patent Document 1).
 特許文献1では、高透磁率の圧粉磁心を製造可能な軟磁性粉末、この軟磁性粉末を用いて製造された高透磁率の圧粉磁心、及びこの圧粉磁心を備えた高性能の磁性素子を提供することを課題としている。この課題を解決すべく、Fe、Si及びMnを含んでおり、Feが主成分、Siの含有率が1wt%以上8wt%以下、Mnの含有率が0.2wt%超1wt%以下という条件を全て満たす軟磁性粉末が特許文献1に記載されている。 In Patent Document 1, a soft magnetic powder capable of producing a powder magnetic core having a high magnetic permeability, a powder magnetic core having a high magnetic permeability manufactured by using the soft magnetic powder, and high-performance magnetism having the powder magnetic core. The subject is to provide an element. In order to solve this problem, Fe, Si and Mn are contained, Fe is the main component, the content of Si is 1 wt% or more and 8 wt% or less, and the content of Mn is more than 0.2 wt% and 1 wt% or less. Patent Document 1 describes a soft magnetic powder that satisfies all of the requirements.
 また、圧粉磁心が経時劣化しにくいことも重要である。なお経時での酸化量(耐酸化性)を経時劣化の一つの指標とすることができる。(圧粉磁心を構成する)粉末が酸化すると一般的に透磁率等の磁気特性に悪影響するからである。 It is also important that the dust core does not easily deteriorate over time. The amount of oxidation over time (oxidation resistance) can be used as one index of deterioration over time. This is because when the powder (which constitutes the dust core) is oxidized, it generally adversely affects the magnetic properties such as magnetic permeability.
特開2008-255384号公報Japanese Unexamined Patent Publication No. 2008-255384
 本発明は、Fe及びSiを含む合金で構成される軟磁性粉末であって、透磁率及び耐酸化性に優れる軟磁性粉末、及びそのような軟磁性粉末を製造する方法を提供することを課題とする。 It is an object of the present invention to provide a soft magnetic powder composed of an alloy containing Fe and Si, which is excellent in magnetic permeability and oxidation resistance, and a method for producing such a soft magnetic powder. And.
 本発明者らは上記課題を解決するために鋭意検討した結果、アルカリ金属及び/又はアルカリ土類金属を所定量含有する軟磁性粉末が、透磁率及び耐酸化性に優れることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have found that a soft magnetic powder containing a predetermined amount of an alkali metal and / or an alkaline earth metal is excellent in magnetic permeability and oxidation resistance, and the present invention has been made. Has been completed.
 すなわち本発明は、以下の通りである。
 Siを0.1~15質量%含み、アルカリ金属及び/又はアルカリ土類金属を1ppm以上1000ppm未満含むFe合金で構成される軟磁性粉末。
That is, the present invention is as follows.
A soft magnetic powder composed of an Fe alloy containing 0.1 to 15% by mass of Si and containing 1 ppm or more and less than 1000 ppm of an alkali metal and / or an alkaline earth metal.
 この軟磁性粉末のレーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50)が0.1~15μmであるのが好ましい。 It is preferable that the cumulative 50% particle size (D50) based on the volume measured by the laser diffraction type particle size distribution measuring device of this soft magnetic powder is 0.1 to 15 μm.
 前記軟磁性粉末は、Feを84~99.7質量%含むのが好ましく、Siを0.2~10質量%含むのが好ましく、アルカリ金属及び/又はアルカリ土類金属を10~800ppm含むのが好ましい。 The soft magnetic powder preferably contains 84 to 99.7% by mass of Fe, preferably 0.2 to 10% by mass of Si, and contains 10 to 800 ppm of an alkali metal and / or an alkaline earth metal. preferable.
 前記軟磁性粉末が、更にCrを含み、前記Crの含有量が0.1~8質量%であるのが好ましい。また当該粉末において、Fe、Si及びCrの含有量の合計が97.8質量%以上であるのが好ましい。 It is preferable that the soft magnetic powder further contains Cr, and the Cr content is 0.1 to 8% by mass. Further, it is preferable that the total content of Fe, Si and Cr in the powder is 97.8% by mass or more.
 前記軟磁性粉末のMnの含有量が1000ppm以下であるのが好ましく、より好ましくは800ppm以下であり、更に好ましくは15~400ppmである。 The Mn content of the soft magnetic powder is preferably 1000 ppm or less, more preferably 800 ppm or less, and further preferably 15 to 400 ppm.
 好ましい一態様として、本発明の軟磁性粉末は、Siを0.1~15質量%含み、Naを1~950ppm含むFe合金で構成される軟磁性粉末である。 As a preferred embodiment, the soft magnetic powder of the present invention is a soft magnetic powder composed of an Fe alloy containing 0.1 to 15% by mass of Si and 1 to 950 ppm of Na.
 本発明の軟磁性粉末の製造方法は、Fe原料及びSi原料を加熱溶融して、Fe及びSiを含み、Siの含有量が0.1~15質量%である溶湯を調製する工程1と、
 該溶湯を落下させながら該溶湯に流体を吹き付けて、溶湯を粉砕・凝固させることにより、Siを含むFe合金で構成される軟磁性粉末を得る工程2と、
 該軟磁性粉末にアルカリ金属源及び/又はアルカリ土類金属源を添加して、前記軟磁性粉末がアルカリ金属及び/又はアルカリ土類金属を1ppm以上1000ppm未満含むようにする工程3とを有する。
The method for producing a soft magnetic powder of the present invention comprises a step 1 of heating and melting an Fe raw material and a Si raw material to prepare a molten metal containing Fe and Si and having a Si content of 0.1 to 15% by mass.
Step 2 to obtain a soft magnetic powder composed of an Fe alloy containing Si by spraying a fluid onto the molten metal while dropping the molten metal to crush and solidify the molten metal.
It has a step 3 of adding an alkali metal source and / or an alkaline earth metal source to the soft magnetic powder so that the soft magnetic powder contains an alkali metal and / or an alkaline earth metal at 1 ppm or more and less than 1000 ppm.
 前記溶湯中のMnの含有量が1000ppm以下であるのが好ましい。 The Mn content in the molten metal is preferably 1000 ppm or less.
 前記Fe原料及びSi原料に加えて更にCr原料を加熱溶融することで、前記溶湯としてFe、Si及びCrを含む溶湯を調製し、該溶湯中のCrの含有量が0.1~8質量%であるのが好ましい。 By further heating and melting the Cr raw material in addition to the Fe raw material and the Si raw material, a molten metal containing Fe, Si and Cr is prepared as the molten metal, and the Cr content in the molten metal is 0.1 to 8% by mass. Is preferable.
 前記工程3において、前記軟磁性粉末にアルカリ金属源及び/又はアルカリ土類金属源を添加して、前記軟磁性粉末がアルカリ金属及び/又はアルカリ土類金属を10~800ppm含むようにするのが好ましい。 In step 3, an alkali metal source and / or an alkaline earth metal source is added to the soft magnetic powder so that the soft magnetic powder contains 10 to 800 ppm of an alkali metal and / or an alkaline earth metal. preferable.
 前記工程2において流体として水を使用し、当該工程において前記軟磁性粉末と水とが混合したスラリーを得て、
 前記工程3において、前記スラリーに前記アルカリ金属源及び/又はアルカリ土類金属源を添加するのが好ましい。
Water was used as the fluid in the step 2, and in the step, a slurry in which the soft magnetic powder and water were mixed was obtained.
In the step 3, it is preferable to add the alkali metal source and / or the alkaline earth metal source to the slurry.
 前記アルカリ金属及び/又はアルカリ土類金属源が、特にアルカリ金属であって、水酸化ナトリウムもしくは水酸化カリウムであるのが好ましい。 It is preferable that the alkali metal and / or alkaline earth metal source is an alkali metal, and is sodium hydroxide or potassium hydroxide.
 前記Fe原料として、Mnの含有量が100ppm以下の電解鉄を使用するのが好ましい。 It is preferable to use electrolytic iron having a Mn content of 100 ppm or less as the Fe raw material.
 好ましい一態様において、本発明の軟磁性粉末の製造方法は、Fe原料及びSi原料を加熱溶融して、Fe及びSiを含み、Siの含有量が0.1~15質量%である溶湯を調製する工程1と、
 該溶湯を落下させながら該溶湯に流体を吹き付けて、溶湯を粉砕・凝固させることにより、Siを含むFe合金で構成される軟磁性粉末を得る工程2と、
 該軟磁性粉末にNa源を添加して、前記軟磁性粉末がNaを1~950ppm含むようにする工程3とを有する。
In a preferred embodiment, the method for producing a soft magnetic powder of the present invention heats and melts an Fe raw material and a Si raw material to prepare a molten metal containing Fe and Si and having a Si content of 0.1 to 15% by mass. Step 1 and
Step 2 to obtain a soft magnetic powder composed of an Fe alloy containing Si by spraying a fluid onto the molten metal while dropping the molten metal to crush and solidify the molten metal.
It has a step 3 of adding a Na source to the soft magnetic powder so that the soft magnetic powder contains 1 to 950 ppm of Na.
 本発明の軟磁性材料は、例えば上記の軟磁性粉末とバインダとを含む。本発明の圧粉磁心は、上記の軟磁性粉末を含む。この圧粉磁心は、例えば上記の軟磁性粉末、又は前記の軟磁性材料を所定の形状に成型し、得られた成型物を加熱することで、製造することができる。 The soft magnetic material of the present invention includes, for example, the above-mentioned soft magnetic powder and a binder. The dust core of the present invention includes the above-mentioned soft magnetic powder. This dust core can be produced, for example, by molding the above-mentioned soft magnetic powder or the above-mentioned soft magnetic material into a predetermined shape and heating the obtained molded product.
 本発明によれば、Fe及びSiを含む合金で構成される、透磁率及び耐酸化性に優れる軟磁性粉末、及びそのような軟磁性粉末の製造方法が提供される。 According to the present invention, there is provided a soft magnetic powder having excellent magnetic permeability and oxidation resistance, which is composed of an alloy containing Fe and Si, and a method for producing such a soft magnetic powder.
 以下、本発明の軟磁性粉末及びその製造方法の実施の形態を説明する。 Hereinafter, embodiments of the soft magnetic powder of the present invention and the method for producing the same will be described.
<軟磁性粉末>
 本発明の軟磁性粉末の実施の形態は、Si(ケイ素)を含むFe(鉄)合金で構成される。
<Soft magnetic powder>
The embodiment of the soft magnetic powder of the present invention is composed of an Fe (iron) alloy containing Si (silicon).
(合金組成)
 前記軟磁性粉末は、Siを0.1~15質量%の範囲で含み、好ましくは主成分としてFeを含む。Feは軟磁性粉末の磁気特性や機械的特性に寄与する元素である。Siは軟磁性粉末の透磁率などの磁気特性を高める元素である。Feについての前記「主成分」とは、軟磁性粉末を構成する元素の中で最も含有量の高いものを示す。軟磁性粉末におけるFeの含有量は、磁気特性や機械的特性の観点から、好ましくは84~99.7質量%であり、より好ましくは88~98.2質量%である。軟磁性粉末におけるSiの含有量は、Feによる磁気特性や機械的特性を損なうことなく、透磁率などの磁気特性を向上させる観点から上記の範囲とされる。この観点から、Siの含有量は好ましくは0.2~10質量%(好適には0.2質量%以上且つ10質量%未満)であり、より好ましくは1.2~8質量%である。また、軟磁性粉末におけるFe及びSiの含有量の合計は、不純物の含有による磁気特性の悪化を抑制する観点から、好ましくは90質量%以上であり、より好ましくは92質量%以上である(通常99.8質量%以下である)。
(Alloy composition)
The soft magnetic powder contains Si in the range of 0.1 to 15% by mass, and preferably contains Fe as a main component. Fe is an element that contributes to the magnetic and mechanical properties of the soft magnetic powder. Si is an element that enhances magnetic properties such as magnetic permeability of soft magnetic powder. The "main component" of Fe means the element having the highest content among the elements constituting the soft magnetic powder. The content of Fe in the soft magnetic powder is preferably 84 to 99.7% by mass, more preferably 88 to 98.2% by mass, from the viewpoint of magnetic properties and mechanical properties. The Si content in the soft magnetic powder is within the above range from the viewpoint of improving magnetic properties such as magnetic permeability without impairing the magnetic properties and mechanical properties due to Fe. From this viewpoint, the Si content is preferably 0.2 to 10% by mass (preferably 0.2% by mass or more and less than 10% by mass), and more preferably 1.2 to 8% by mass. Further, the total content of Fe and Si in the soft magnetic powder is preferably 90% by mass or more, more preferably 92% by mass or more (usually, from the viewpoint of suppressing deterioration of magnetic properties due to the inclusion of impurities). 99.8% by mass or less).
 本発明の軟磁性粉末の実施の形態は、粉末の酸素含有量を低くして飽和磁化等の磁気特性を高め、また粉末の耐酸化性を高める観点から、Cr(クロム)を含むことが好ましい。この軟磁性粉末において、前記の観点から、Crの含有量は0.1~8質量%であることが好ましく、0.5~7質量%であることがより好ましい。 The embodiment of the soft magnetic powder of the present invention preferably contains Cr (chromium) from the viewpoint of lowering the oxygen content of the powder, enhancing magnetic properties such as saturation magnetization, and enhancing the oxidation resistance of the powder. .. From the above viewpoint, the Cr content of this soft magnetic powder is preferably 0.1 to 8% by mass, more preferably 0.5 to 7% by mass.
 またこの軟磁性粉末におけるFe、Si及びCrの含有量の合計は、好ましくは97.8質量%以上である(通常99.8質量%以下である)。この構成を採用することにより、軟磁性粉末が結晶質となり、そのため非晶質合金粉末よりも軟らかくなり、軟磁性粉末を使用して圧粉磁心を製造する際に、粉末の充填密度が高まり、高い透磁率を実現できる。 Further, the total content of Fe, Si and Cr in this soft magnetic powder is preferably 97.8% by mass or more (usually 99.8% by mass or less). By adopting this configuration, the soft magnetic powder becomes crystalline and therefore softer than the amorphous alloy powder, and when the powder magnetic core is manufactured using the soft magnetic powder, the packing density of the powder is increased. High magnetic permeability can be achieved.
 本発明の軟磁性粉末の実施の形態は、アルカリ金属及び/又はアルカリ土類金属を1ppm以上1000ppm未満含む。このような微量のアルカリ金属及び/又はアルカリ土類金属を含むことにより、前記軟磁性粉末は、透磁率に優れるとともに、耐酸化性にも優れる。耐酸化性は、高温高湿下で一定期間粉末を保存する加速試験により評価することができる。 The embodiment of the soft magnetic powder of the present invention contains 1 ppm or more and less than 1000 ppm of an alkali metal and / or an alkaline earth metal. By containing such a trace amount of alkali metal and / or alkaline earth metal, the soft magnetic powder is excellent in magnetic permeability and also in oxidation resistance. The oxidation resistance can be evaluated by an accelerated test in which the powder is stored for a certain period of time under high temperature and high humidity.
 前記アルカリ金属及び/又はアルカリ土類金属の含有量について、軟磁性粉末が複数種類のアルカリ金属及び/又はアルカリ土類金属を含む場合(例えばNa及びKを含む場合)は、これらの含有量が合計で1ppm以上1000ppm未満ということである。軟磁性粉末中のアルカリ金属及び/又はアルカリ土類金属の含有量は、軟磁性粉末の耐酸化性の観点から、具体的な範囲としては、好ましくは1~950ppmであり、より好ましくは10~800ppmであり、更に好ましくは15~500ppmであり、特に好ましくは50~200ppmである。アルカリ金属及び/又はアルカリ土類金属は、例えば軟磁性粉末を後述する本発明の軟磁性粉末の製造方法の実施の形態により製造した場合は、軟磁性粉末の粒子表面に存在しているものと考えられる。 Regarding the content of the alkali metal and / or alkaline earth metal, when the soft magnetic powder contains a plurality of types of alkali metals and / or alkaline earth metals (for example, when Na and K are contained), these contents are It means that the total is 1 ppm or more and less than 1000 ppm. From the viewpoint of the oxidation resistance of the soft magnetic powder, the content of the alkali metal and / or the alkaline earth metal in the soft magnetic powder is preferably 1 to 950 ppm, more preferably 10 to 950 ppm, as a specific range. It is 800 ppm, more preferably 15 to 500 ppm, and particularly preferably 50 to 200 ppm. The alkali metal and / or alkaline earth metal is assumed to be present on the particle surface of the soft magnetic powder, for example, when the soft magnetic powder is produced by the embodiment of the method for producing the soft magnetic powder of the present invention described later. Conceivable.
 前記アルカリ金属及び/又はアルカリ土類金属としては、軟磁性粉末の透磁率及び耐酸化性の観点から、Na(ナトリウム)及びK(カリウム)が好ましく、Naが特に好ましい。 As the alkali metal and / or alkaline earth metal, Na (sodium) and K (potassium) are preferable, and Na is particularly preferable, from the viewpoint of magnetic permeability and oxidation resistance of the soft magnetic powder.
 なお、本実施形態の軟磁性粉末は、以上のFe、Si、Cr並びにアルカリ金属及び/又はアルカリ土類金属以外に、本発明の効果を奏する範囲でその他の元素を含んでもよい。その例としては、Pd(パラジウム)、Co(コバルト)、Mo(モリブデン)、Zr(ジルコニウム)、C(炭素)、N(窒素)、O(酸素)、P(リン)、Cl(塩素)、Mn(マンガン)、Ni(ニッケル)、Cu(銅)、S(硫黄)、As(砒素)、B(硼素)、Sn(スズ)、Ti(チタン)、V(バナジウム)、Al(アルミニウム)が挙げられる。これらのうち酸素を除いたものの含有量は、合計で好ましくは1質量%以下であり、より好ましくは10~5000ppmである。なお本実施形態の軟磁性粉末は、例えば後述する本発明の軟磁性粉末の製造方法の実施の形態により製造することができ、このような場合には、以上挙げた各元素の量が少なく、磁気特性等に優れる。 In addition to the above Fe, Si, Cr, and alkali metals and / or alkaline earth metals, the soft magnetic powder of the present embodiment may contain other elements as long as the effects of the present invention are exhibited. Examples are Pd (palladium), Co (cobalt), Mo (molybdenum), Zr (zirconium), C (carbon), N (nitrogen), O (oxygen), P (phosphorus), Cl (chlorine), Mn (manganese), Ni (nickel), Cu (copper), S (sulfur), As (arsenic), B (boron), Sn (tin), Ti (titanium), V (vanadium), Al (aluminum) Can be mentioned. Of these, the content excluding oxygen is preferably 1% by mass or less in total, and more preferably 10 to 5000 ppm. The soft magnetic powder of the present embodiment can be produced, for example, by the embodiment of the method for producing a soft magnetic powder of the present invention, which will be described later. In such a case, the amount of each element mentioned above is small. Excellent magnetic properties, etc.
 これらのうち、本発明の軟磁性粉末の製造原料であるFe原料やSi原料などの不純物として含まれるMnの軟磁性粉末における含有量は、本発明の軟磁性粉末の実施の形態の透磁率や耐酸化性の観点から、少ないことが好ましい。Mn含有量を0にするには、可能な限りMnが低減された製造原料を使用すればよいが、コストの点で非常に困難である。コストと特性(透磁率等)面でのバランスを考慮すれば許容される軟磁性粉末中のMnの含有量は1000ppm以下であることが好ましく、より好ましくは800ppm以下であり、更に好ましくは0.1~800ppmであり、更により好ましくは10~500ppmであり、特に好ましくは15~400ppmであり、最も好ましくは50~300ppmである。 Of these, the content of Mn contained as an impurity in the Fe raw material and Si raw material, which are the raw materials for producing the soft magnetic powder of the present invention, is the magnetic permeability of the embodiment of the soft magnetic powder of the present invention. From the viewpoint of oxidation resistance, less is preferable. In order to reduce the Mn content to 0, a manufacturing raw material having a reduced Mn as much as possible may be used, but it is very difficult in terms of cost. Considering the balance between cost and characteristics (permeability, etc.), the allowable content of Mn in the soft magnetic powder is preferably 1000 ppm or less, more preferably 800 ppm or less, and further preferably 0. It is 1 to 800 ppm, more preferably 10 to 500 ppm, particularly preferably 15 to 400 ppm, and most preferably 50 to 300 ppm.
 本発明の軟磁性粉末の実施の形態において、酸素の含有量は、透磁率の観点から2.0質量%以下であることが好ましい(酸素含有量は通常0.05質量%以上である)。同様な観点から、酸素含有量は0.1~1.5質量%であることがより好ましい。なお、酸素含有量は粉末の粒子径が小さくなるほど大きくなるので、粒子径による酸素含有量の変動を補正すべく、酸素含有量(O)と、軟磁性粉末のレーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50)との積(O×D50(質量%・μm))を採用することが望ましい。前記積(O×D50(質量%・μm))は、軟磁性粉末の良好な飽和磁化を得る観点から、12(質量%・μm)以下であることが好ましく、0.40~8.50(質量%・μm)であることがより好ましい。 In the embodiment of the soft magnetic powder of the present invention, the oxygen content is preferably 2.0% by mass or less from the viewpoint of magnetic permeability (the oxygen content is usually 0.05% by mass or more). From the same viewpoint, the oxygen content is more preferably 0.1 to 1.5% by mass. Since the oxygen content increases as the particle size of the powder decreases, the oxygen content (O) and the laser diffraction type particle size distribution measuring device for the soft magnetic powder are used to correct the fluctuation of the oxygen content due to the particle size. It is desirable to adopt the product (O × D 50 (mass% · μm)) with the cumulative 50% particle size (D 50) based on the measured volume. The product (O × D 50 (mass% · μm)) is preferably 12 (mass% · μm) or less, preferably 0.40 to 8.50, from the viewpoint of obtaining good saturation magnetization of the soft magnetic powder. It is more preferably (% by mass · μm).
(平均粒子径(D50))
 本発明の軟磁性粉末の実施の形態のレーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50)は特に限定されないが、電子機器の小型化に対応する観点からは、0.1~15μmであることが好ましく、0.5~10μmであることがより好ましい。
(Average particle size (D 50 ))
Cumulative 50% particle diameter on a volume basis as measured by a laser diffraction type particle size distribution measuring apparatus of the embodiment of the soft magnetic powder of the present invention (D 50) is not particularly limited, from the viewpoint that corresponds to the size of electronic equipment , 0.1 to 15 μm, more preferably 0.5 to 10 μm.
(BET比表面積)
 本発明の軟磁性粉末の実施の形態のBET1点法により測定した比表面積(BET比表面積)は、粉末の粒子表面への酸化物の発生を抑制して良好な磁気特性を発揮する観点から、好ましくは0.15~3.00m/gであり、より好ましくは0.20~2.50m/gである。
(BET specific surface area)
The specific surface area (BET specific surface area) measured by the BET one-point method according to the embodiment of the soft magnetic powder of the present invention is from the viewpoint of suppressing the generation of oxides on the particle surface of the powder and exhibiting good magnetic properties. preferably 0.15 ~ 3.00m 2 / g, more preferably 0.20 ~ 2.50m 2 / g.
(タップ密度)
 本発明の軟磁性粉末の実施の形態のタップ密度は、粉末の充填密度を高めて良好な磁気特性を発揮する観点から、好ましくは2.0~7.5g/cmであり、より好ましくは2.8~6.5g/cmである。
(Tap density)
The tap density of the embodiment of the soft magnetic powder of the present invention is preferably 2.0 to 7.5 g / cm 3 from the viewpoint of increasing the packing density of the powder and exhibiting good magnetic properties, and more preferably. It is 2.8 to 6.5 g / cm 3 .
(形状)
 本発明の軟磁性粉末の実施の形態の形状は、特に限定されず、球状や略球状であってもよく、粒状や薄片状(フレーク状)、あるいは歪な形状(不定形)であってもよい。より好ましくは球形度の高い粉末である。
(shape)
The shape of the embodiment of the soft magnetic powder of the present invention is not particularly limited, and may be spherical or substantially spherical, and may be granular, flaky (flake-shaped), or distorted shape (indeterminate form). good. More preferably, it is a powder having a high degree of sphericity.
<軟磁性粉末の製造方法>
 以上説明した本発明の軟磁性粉末の実施の形態は、本発明の軟磁性粉末の製造方法の実施の形態により製造することができる。この製造方法は、溶湯調製工程1と、アトマイズ工程2と、アルカリ金属源及び/又はアルカリ土類金属源添加工程3とを有する。以下、この製造方法について説明する。
<Manufacturing method of soft magnetic powder>
The embodiment of the soft magnetic powder of the present invention described above can be produced by the embodiment of the method for producing a soft magnetic powder of the present invention. This production method includes a molten metal preparation step 1, an atomizing step 2, and an alkali metal source and / or an alkaline earth metal source addition step 3. Hereinafter, this manufacturing method will be described.
(溶湯調製工程1)
 溶湯調製工程では、Fe原料とSi原料を加熱溶融して溶湯を調製する。この際溶湯中のSiの含有量が0.1~15質量%になるように、Si原料の使用量を調整する。なお溶湯中の各元素の含有量は、その原料の仕込み量(に原料中の各元素の割合や純度をかけたもの)から計算するものとする。
(Melted metal preparation step 1)
In the molten metal preparation step, the Fe raw material and the Si raw material are heated and melted to prepare the molten metal. At this time, the amount of Si raw material used is adjusted so that the content of Si in the molten metal is 0.1 to 15% by mass. The content of each element in the molten metal shall be calculated from the amount of the raw material charged (multiplied by the ratio and purity of each element in the raw material).
 溶湯中のSiの含有量は、好ましくは0.2~10質量%(好適には0.2質量%以上且つ10質量%未満)、より好ましくは1.2~8質量%である。更に、溶湯中のFe及びSiの含有量の合計は、好ましくは90質量%以上であり、より好ましくは92質量%以上である(通常99.8質量%以下である)。なおFe原料の例としては純鉄及び電解鉄が挙げられ、Si原料としてはシリコンメタルや半導体スクラップが挙げられる。 The content of Si in the molten metal is preferably 0.2 to 10% by mass (preferably 0.2% by mass or more and less than 10% by mass), and more preferably 1.2 to 8% by mass. Further, the total content of Fe and Si in the molten metal is preferably 90% by mass or more, more preferably 92% by mass or more (usually 99.8% by mass or less). Examples of Fe raw materials include pure iron and electrolytic iron, and examples of Si raw materials include silicon metal and semiconductor scrap.
 また上述の通り、軟磁性粉末の透磁率及び耐酸化性の観点から粉末中のMnの含有量は好ましくは1000ppm以下、より好ましくは800ppm以下であり、更に好ましくは0.1~800ppm、更により好ましくは10~500ppm、特に好ましくは15~400ppm、最も好ましくは50~300ppmであるが、そのためには、前記溶湯中のMnの含有量が好ましくは1000ppm以下、より好ましくは800ppm以下、更に好ましくは0.1~800ppm、更により好ましくは10~500ppm、特に好ましくは15~400ppm、最も好ましくは50~300ppmとなるように、溶湯の調製原料の種類や使用量を調整する。 Further, as described above, the content of Mn in the powder is preferably 1000 ppm or less, more preferably 800 ppm or less, still more preferably 0.1 to 800 ppm, still more preferably, from the viewpoint of magnetic permeability and oxidation resistance of the soft magnetic powder. It is preferably 10 to 500 ppm, particularly preferably 15 to 400 ppm, most preferably 50 to 300 ppm, and for that purpose, the Mn content in the molten metal is preferably 1000 ppm or less, more preferably 800 ppm or less, still more preferably. The type and amount of the raw material for preparing the molten metal are adjusted so as to be 0.1 to 800 ppm, more preferably 10 to 500 ppm, particularly preferably 15 to 400 ppm, and most preferably 50 to 300 ppm.
 例えば、Fe原料としては純度が高く不純物としてのMnの含有量が低い電解鉄を使用する。電解鉄のFeの含有量は好ましくは99.90質量%以上(通常99.999質量%以下)であり、Mnの含有量は100ppm以下、好ましくは50ppm以下、より好ましくは25ppm以下、更に好ましくは10ppm以下、特に好ましくは5ppm以下、最も好ましくは3ppm以下である(通常0.001ppm以上である)。Si原料についても同様にMnの含有量の少ないものを使用することが好ましい。また、(Mnの含有量が少なくない)Fe原料及びSi原料について、精錬技術によりMnの含有量を低下させる措置を講じてもよい。 For example, as the Fe raw material, electrolytic iron having high purity and low content of Mn as an impurity is used. The Fe content of the electrolytic iron is preferably 99.90% by mass or more (usually 99.999% by mass or less), and the Mn content is 100 ppm or less, preferably 50 ppm or less, more preferably 25 ppm or less, still more preferably. It is 10 ppm or less, particularly preferably 5 ppm or less, and most preferably 3 ppm or less (usually 0.001 ppm or more). Similarly, it is preferable to use a Si raw material having a low Mn content. Further, with respect to the Fe raw material (the Mn content is not small) and the Si raw material, measures may be taken to reduce the Mn content by refining technology.
 また、軟磁性粉末が更にCrを含むように設定する場合、本溶湯調製工程1において、Fe原料及びSi原料に加えて更にCr原料を加熱溶融する。Cr原料の例としては、フェロクロムや電解金属クロムが挙げられる。溶湯中のCrの含有量は、軟磁性粉末の酸素含有量を低くして飽和磁化等の磁気特性を高め、また粉末の耐酸化性を高める観点から、0.1~8質量%であることが好ましく、0.5~7質量%であることがより好ましい。また溶湯中のFe、Si及びCrの含有量の合計は、好ましくは97.8質量%以上である(通常99.8質量%以下である)。更に、Mnの含有量の低い軟磁性粉末を製造しようとする場合は、Mnの含有量の低いCr原料を使用したり、(Mnの含有量が少なくない)Cr原料に対して精錬技術によりMnの含有量を低下させる措置を講じてもよい。 Further, when the soft magnetic powder is set to further contain Cr, the Cr raw material is further heated and melted in addition to the Fe raw material and the Si raw material in the main molten metal preparation step 1. Examples of Cr raw materials include ferrochrome and electrolytic metal chromium. The Cr content in the molten metal should be 0.1 to 8% by mass from the viewpoint of lowering the oxygen content of the soft magnetic powder, enhancing magnetic properties such as saturation magnetization, and enhancing the oxidation resistance of the powder. Is preferable, and 0.5 to 7% by mass is more preferable. The total content of Fe, Si and Cr in the molten metal is preferably 97.8% by mass or more (usually 99.8% by mass or less). Further, when trying to produce a soft magnetic powder having a low Mn content, a Cr raw material having a low Mn content may be used, or a Cr raw material (not having a low Mn content) may be refined by refining technology. You may take measures to reduce the content of.
(アトマイズ工程2)
 アトマイズ工程2では、溶湯調製工程1で調製した溶湯を落下させながら該溶湯に流体を吹き付けて、溶湯を粉砕・凝固させることにより、Siを含む(任意に更にCrを含む)Fe合金で構成される軟磁性粉末を得る。前記流体の例としては、ガス、水及びフレームが挙げられる。球形度の高い軟磁性粉末を製造する観点からは、流体としてガスが好ましく、粒子径の小さい軟磁性粉末を収率よく製造する観点からは、流体として水が好ましい。流体として水を使用した場合は、アトマイズ工程2の実施により、軟磁性粉末と水とが混合したスラリーが得られる。
(Atomizing process 2)
In the atomizing step 2, a fluid is sprayed onto the molten metal while dropping the molten metal prepared in the molten metal preparation step 1, and the molten metal is crushed and solidified to be composed of an Fe alloy containing Si (optionally further containing Cr). To obtain a soft magnetic powder. Examples of such fluids include gas, water and frames. From the viewpoint of producing a soft magnetic powder having a high degree of sphericity, gas is preferable as a fluid, and from the viewpoint of producing a soft magnetic powder having a small particle size in good yield, water is preferable as a fluid. When water is used as the fluid, the atomizing step 2 is carried out to obtain a slurry in which the soft magnetic powder and water are mixed.
(アルカリ金属源及び/又はアルカリ土類金属源添加工程3)
 アルカリ金属源及び/又はアルカリ土類金属源添加工程3では、アトマイズ工程2で得られた軟磁性粉末にアルカリ金属源及び/又はアルカリ土類金属源を添加する。アルカリ金属源及び/又はアルカリ土類金属源の添加量は、透磁率及び耐酸化性の観点や、添加量が多すぎると最終製品における腐食の進行を促進するおそれがあることから、軟磁性粉末中のアルカリ金属及び/又はアルカリ土類金属の含有量が1ppm以上1000ppm未満となる量である。この添加量はアルカリ金属源及び/又はアルカリ土類金属源添加工程3の実施形態に応じて、実験的に求めることができる。
(Alkali metal source and / or alkaline earth metal source addition step 3)
In the alkali metal source and / or alkaline earth metal source addition step 3, the alkali metal source and / or the alkaline earth metal source is added to the soft magnetic powder obtained in the atomizing step 2. The amount of the alkali metal source and / or the alkaline earth metal source added may accelerate the progress of corrosion in the final product from the viewpoint of magnetic permeability and oxidation resistance, and if the amount added is too large, it is a soft magnetic powder. The content of the alkali metal and / or alkaline earth metal in the metal is 1 ppm or more and less than 1000 ppm. This addition amount can be experimentally determined according to the embodiment of the alkali metal source and / or alkaline earth metal source addition step 3.
 軟磁性粉末の耐酸化性の観点から、アルカリ金属源及び/又はアルカリ土類金属源の添加量は、好ましくは前記軟磁性粉末中のアルカリ金属及び/又はアルカリ土類金属の含有量が1~950ppmとなる量であり、より好ましくは10~800ppmとなる量であり、更に好ましくは15~500ppmとなる量であり、特に好ましくは50~200ppmとなる量である。 From the viewpoint of the oxidation resistance of the soft magnetic powder, the amount of the alkali metal source and / or the alkaline earth metal source added is preferably 1 to 1 to the content of the alkali metal and / or the alkaline earth metal in the soft magnetic powder. The amount is 950 ppm, more preferably 10 to 800 ppm, still more preferably 15 to 500 ppm, and particularly preferably 50 to 200 ppm.
 アルカリ金属源及び/又はアルカリ土類金属源の例としては、水酸化ナトリウムや炭酸水素ナトリウム(Na源)、水酸化カリウム(K源)が挙げられる。これらの中でも、アルカリ金属及び/又はアルカリ土類金属以外の構成元素が不純物として軟磁性粉末中に巻き込まれにくいことから、水酸化ナトリウム及び水酸化カリウムが好ましく、水酸化ナトリウムがより好ましい。 Examples of alkali metal sources and / or alkaline earth metal sources include sodium hydroxide, sodium hydrogen carbonate (Na source), and potassium hydroxide (K source). Among these, sodium hydroxide and potassium hydroxide are preferable, and sodium hydroxide is more preferable, because constituent elements other than alkali metal and / or alkaline earth metal are less likely to be involved in the soft magnetic powder as impurities.
 アルカリ金属源及び/又はアルカリ土類金属源の軟磁性粉末への添加方法は特に限定されないが、粉末の構成粒子に均等にアルカリ金属及び/又はアルカリ土類金属が付着するように、湿式での添加が好ましい。例えば、アトマイズ工程2で流体として水を使用した場合には軟磁性粉末と水とが混合したスラリーが得られるが、これにアルカリ金属源及び/又はアルカリ土類金属源を添加し、スラリーを撹拌する。また例えば、流体としてガスを使用するなどし、アトマイズ工程2で乾燥状態の軟磁性粉末が得られた場合には、アルカリ金属及び/又はアルカリ土類金属源、水及び粉末を混合・撹拌する。アルカリ金属及び/又はアルカリ土類金属源を水に溶解して水溶液とし、これと粉末を混合・撹拌してもよい。 The method of adding the alkali metal source and / or the alkaline earth metal source to the soft magnetic powder is not particularly limited, but in a wet manner so that the alkali metal and / or the alkaline earth metal adheres evenly to the constituent particles of the powder. Addition is preferred. For example, when water is used as a fluid in the atomizing step 2, a slurry in which soft magnetic powder and water are mixed can be obtained. An alkali metal source and / or an alkaline earth metal source is added to the slurry, and the slurry is stirred. do. Further, for example, when a dry soft magnetic powder is obtained in the atomizing step 2 by using a gas as a fluid, the alkali metal and / or the alkaline earth metal source, water and the powder are mixed and stirred. An alkali metal and / or an alkaline earth metal source may be dissolved in water to form an aqueous solution, and the powder may be mixed and stirred.
(その他の工程(固液分離工程、乾燥工程、解砕工程等))
 アトマイズ工程2で流体として水を使用した場合や、アルカリ金属源及び/又はアルカリ土類金属源添加工程3で湿式でアルカリ金属源及び/又はアルカリ土類金属源を添加したなどの場合で、(アルカリ金属及び/又はアルカリ土類金属を含有する)軟磁性粉末が水と混合したスラリーの形態で得られた場合には、これを固液分離することにより、固形分として軟磁性粉末を回収する。アルカリ金属源及び/又はアルカリ土類金属源添加工程3で乾燥状態で得られた軟磁性粉末や、前記の固液分離で得られた粉末は更に、必要に応じて水洗した後、乾燥させてもよい。
(Other processes (solid-liquid separation process, drying process, crushing process, etc.))
When water is used as the fluid in the atomizing step 2, or when the alkali metal source and / or the alkaline earth metal source is wetly added in the alkali metal source and / or the alkaline earth metal source addition step 3, the (alkaline metal source and / or the alkaline earth metal source is added. When the soft magnetic powder (containing an alkali metal and / or an alkaline earth metal) is obtained in the form of a slurry mixed with water, the soft magnetic powder is recovered as a solid content by solid-liquid separation. .. The soft magnetic powder obtained in the dry state in the alkali metal source and / or the alkaline earth metal source addition step 3 and the powder obtained by the above-mentioned solid-liquid separation are further washed with water and then dried, if necessary. May be good.
 更に軟磁性粉末に対しては、必要に応じて、解砕したり、篩分けや風力分級などの分級を行い、粒子径(粒度分布)を調整してもよい。 Further, the soft magnetic powder may be crushed or classified by sieving or wind power classification as necessary to adjust the particle size (particle size distribution).
 また、以上説明した本発明の軟磁性粉末の製造方法の実施の形態により製造された軟磁性粉末に対しては、熱処理を施してもよい。熱処理は、例えば水素雰囲気などの還元性雰囲気又は窒素雰囲気などの不活性雰囲気中で400~1100℃程度の温度で実施される。これにより、軟磁性粉末の酸化を防止しつつ、粉末の残留応力や歪みを取り、磁気特性を向上させることができる。また熱処理は、上記の解砕等の粒子径調整プロセスの前に実施しても後に実施してもよい。 Further, the soft magnetic powder produced according to the embodiment of the method for producing a soft magnetic powder of the present invention described above may be heat-treated. The heat treatment is carried out at a temperature of about 400 to 1100 ° C. in a reducing atmosphere such as a hydrogen atmosphere or an inert atmosphere such as a nitrogen atmosphere. This makes it possible to remove the residual stress and strain of the soft magnetic powder while preventing oxidation of the soft magnetic powder, and improve the magnetic properties. Further, the heat treatment may be carried out before or after the particle size adjusting process such as the above-mentioned crushing.
<軟磁性材料>
 以上説明した本発明の軟磁性粉末の実施の形態は、上述の通り透磁率及び耐酸化性に優れている。
<Soft magnetic material>
The embodiment of the soft magnetic powder of the present invention described above is excellent in magnetic permeability and oxidation resistance as described above.
 このような特性から、本発明の軟磁性粉末の実施の形態は軟磁性材料に好適に適用することができる。軟磁性粉末それ自体を軟磁性材料として使用することもできるし、バインダと混合した軟磁性材料とすることもできる。後者の場合、例えば軟磁性粉末をバインダ(絶縁樹脂及び/又は無機バインダ)と混合し、造粒することで、粒状の複合体粉末(軟磁性材料)を得ることができる。この軟磁性材料における軟磁性粉末の含有量は、良好な磁気特性を達成する観点から、80~99.9質量%であることが好ましい。同様な観点から、バインダの軟磁性材料における含有量は、0.1~20質量%であることが好ましい。 From such characteristics, the embodiment of the soft magnetic powder of the present invention can be suitably applied to the soft magnetic material. The soft magnetic powder itself can be used as a soft magnetic material, or can be a soft magnetic material mixed with a binder. In the latter case, for example, a soft magnetic powder is mixed with a binder (insulating resin and / or an inorganic binder) and granulated to obtain a granular composite powder (soft magnetic material). The content of the soft magnetic powder in this soft magnetic material is preferably 80 to 99.9% by mass from the viewpoint of achieving good magnetic properties. From the same viewpoint, the content of the binder in the soft magnetic material is preferably 0.1 to 20% by mass.
 前記絶縁樹脂の具体例としては、(メタ)アクリル樹脂、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂が挙げられる。前記無機バインダの具体例としては、シリカバインダー、アルミナバインダーが挙げられる。更に、軟磁性材料(軟磁性粉末単体の場合と、粉末とバインダの混合物の場合の双方)は必要に応じてワックス、滑剤などのその他の成分を含んでもよい。 Specific examples of the insulating resin include (meth) acrylic resin, silicone resin, epoxy resin, phenol resin, urea resin, and melamine resin. Specific examples of the inorganic binder include a silica binder and an alumina binder. Further, the soft magnetic material (both in the case of a soft magnetic powder alone and in the case of a mixture of powder and binder) may contain other components such as wax and lubricant, if necessary.
<圧粉磁心>
 以上説明した軟磁性材料を所定の形状に成型し、得られた成型物を加熱することで、本発明の軟磁性粉末の実施の形態を含む圧粉磁心を製造することができる。より具体的には、軟磁性材料を所定形状の金型に入れ、加圧し加熱することで圧粉磁心を得る。
<Powder magnetic core>
By molding the soft magnetic material described above into a predetermined shape and heating the obtained molded product, a dust core including the embodiment of the soft magnetic powder of the present invention can be produced. More specifically, a powder magnetic core is obtained by placing a soft magnetic material in a mold having a predetermined shape, pressurizing the material, and heating the material.
 以下、実施例により本発明をより詳細に説明するが、本発明はこれらにより何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
[実施例1]
 タンディッシュ炉中で、電解鉄(純度:約99.99質量%。Mn含有量:1ppm)26.9kgとシリコンメタル(純度:99質量%以上。Mn含有量:770ppm)1.1kgとフェロクロム(Fe含有量:31.3質量%。Cr含有量:66.8質量%。Mn含有量:3600ppm)2.0kgとを窒素雰囲気下において1700℃に加熱溶解した溶湯を、窒素雰囲気下(酸素濃度0.001ppm以下)においてタンディッシュ炉の底部から落下させながら、水圧150MPa、水量160L/分で高圧水(pH6)を吹き付けて粉砕・凝固させ、軟磁性粉末を含むスラリーを得た。
[Example 1]
In a tundish furnace, 26.9 kg of electrolytic iron (purity: about 99.99% by mass. Mn content: 1 ppm), silicon metal (purity: 99% by mass or more, Mn content: 770 ppm) 1.1 kg and ferrochrome ( Fe content: 31.3% by mass. Cr content: 66.8% by mass. Mn content: 3600ppm) 2.0 kg is heated and dissolved at 1700 ° C. in a nitrogen atmosphere to dissolve the molten metal in a nitrogen atmosphere (oxygen concentration). While dropping from the bottom of the tundish furnace at 0.001 ppm or less), high-pressure water (pH 6) was sprayed at a water pressure of 150 MPa and a water volume of 160 L / min to pulverize and solidify to obtain a slurry containing a soft magnetic powder.
 得られたスラリー(前記軟磁性粉末を30kg含有)に対して、軟磁性粉末100kgに対して3kgの割合で25質量%NaOH水溶液を添加し、撹拌混合した。その後、スラリーを固液分離し、固形物を真空中、40℃、30時間の条件で乾燥して、FeSiCr合金粉末1を得た。 A 25% by mass NaOH aqueous solution was added to the obtained slurry (containing 30 kg of the soft magnetic powder) at a ratio of 3 kg to 100 kg of the soft magnetic powder, and the mixture was stirred and mixed. Then, the slurry was separated into solid and liquid, and the solid was dried in vacuum at 40 ° C. for 30 hours to obtain FeSiCr alloy powder 1.
 なお、後述する比較例1で得られたFeSiCr合金5のアルカリ金属及びアルカリ土類金属の含有量の測定結果と、実施例1及び2で得られたFeSiCr合金粉末1及び2のアルカリ金属及びアルカリ土類金属の含有量が同じであることから、電解鉄及び実施例2等で使用する純鉄、シリコンメタル及びフェロクロムは、実質的にアルカリ金属及びアルカリ土類金属のいずれも含有していないと考えられる。 It should be noted that the measurement results of the alkali metal and alkaline earth metal contents of the FeSiCr alloy 5 obtained in Comparative Example 1 described later and the alkali metals and alkalis of the FeSiCr alloy powders 1 and 2 obtained in Examples 1 and 2 were obtained. Since the content of the earth metal is the same, the electrolytic iron and the pure iron, silicon metal and ferrochrome used in Example 2 and the like are said to contain substantially neither alkali metal nor alkaline earth metal. Conceivable.
 このようにして得られた略球状のFeSiCr合金粉末1について、組成(Fe、Si、Cr、O、Mn並びにアルカリ金属及びアルカリ土類金属の量)、粒度分布、磁気特性及び耐酸化性を求めた。結果は後記の表2に示している。また当該粉末の製造原料及びNaOH水溶液の添加量について、後記表1にまとめている。 For the substantially spherical FeSiCr alloy powder 1 thus obtained, the composition (amount of Fe, Si, Cr, O, Mn and alkali metal and alkaline earth metal), particle size distribution, magnetic properties and oxidation resistance were determined. rice field. The results are shown in Table 2 below. Further, the raw materials for producing the powder and the amount of the NaOH aqueous solution added are summarized in Table 1 below.
[組成]
 FeSiCr合金粉末1の組成の測定は、以下の通り行った。
 Siは、重量法により、以下のように分析を行った。まず、試料(FeSiCr合金粉末1)に塩酸と過塩素酸を加えて加熱分解し、過塩素酸の白煙が発生するまで加熱した。引き続き加熱して乾固させた。放冷後、水と塩酸を加えて加温して可溶性塩類を溶解させた。続いて、不溶解残渣を、ろ紙を用いてろ過し、残渣をろ紙ごとるつぼに移し、乾燥、灰化させた。放冷後、るつぼごと秤量した。少量の硫酸とフッ化水素酸を加え、加熱して乾固させた後、強熱した。放冷後、るつぼごと秤量した。そして、1回目の秤量値から2回目の秤量値を差し引き、重量差をSiOとして計算してSi量を求めた。
[composition]
The composition of FeSiCr alloy powder 1 was measured as follows.
Si was analyzed by the gravimetric method as follows. First, hydrochloric acid and perchloric acid were added to the sample (FeSiCr alloy powder 1) and decomposed by heating, and the sample (FeSiCr alloy powder 1) was heated until white smoke of perchloric acid was generated. Continued heating to dry. After allowing to cool, water and hydrochloric acid were added and heated to dissolve soluble salts. Subsequently, the insoluble residue was filtered using a filter paper, and the residue was transferred to a crucible together with the filter paper, dried and incinerated. After allowing to cool, the crucible was weighed together. A small amount of sulfuric acid and hydrofluoric acid were added, and the mixture was heated to dryness and then ignited. After allowing to cool, the crucible was weighed together. Then, the second weighing value was subtracted from the first weighing value, and the weight difference was calculated as SiO 2 to obtain the Si amount.
 Cr、Mn、アルカリ土類金属の含有量は、誘導結合プラズマ(ICP)発光分析装置(株式会社日立ハイテクサイエンス製のSPS3520V)を用いて、定量分析を行うことで求めた。
 アルカリ金属の含有量は、原子吸光光度計(日立ハイテクサイエンス、ZA3300形フレーム専用機)により定量分析を行うことで求めた。
The contents of Cr, Mn and alkaline earth metals were determined by quantitative analysis using an inductively coupled plasma (ICP) emission spectrometer (SPS3520V manufactured by Hitachi High-Tech Science Co., Ltd.).
The content of the alkali metal was determined by quantitative analysis using an atomic absorption spectrophotometer (Hitachi High-Tech Science, ZA3300 type frame dedicated machine).
 酸素含有量は、酸素・窒素・水素分析装置(株式会社堀場製作所製のEMGA-920)により測定した。 The oxygen content was measured with an oxygen / nitrogen / hydrogen analyzer (EMGA-920 manufactured by HORIBA, Ltd.).
[粒度分布]
 粒度分布については、レーザー回折式粒度分布測定装置(SYMPATEC社製のへロス粒度分布測定装置(HELOS&RODOS(気流式の分散モジュール)))を使用して、分散圧5barで体積基準の粒度分布を求めた。
[Particle size distribution]
For the particle size distribution, use a laser diffraction type particle size distribution measuring device (SIMPATEC's Heros particle size distribution measuring device (HELOS & RODOS (air flow type dispersion module))) to obtain a volume-based particle size distribution at a dispersion pressure of 5 bar. rice field.
[磁気特性(透磁率μ’)の測定]
 FeSiCr合金粉末1とビスフェノールF型エポキシ樹脂(株式会社テスク製;一液性エポキシ樹脂B-1106)を97:3の質量割合で秤量し、真空撹拌・脱泡ミキサー(EME社製;V-mini300)を用いてこれらを混練し、供試粉末がエポキシ樹脂中に分散したペーストとした。このペーストをホットプレート上で30℃、2hr乾燥させて合金粉末と樹脂の複合体としたのち、粉末状に解粒して、複合体粉末とした。この複合体粉末0.2gをトロイダル形状の容器内に入れて、ハンドプレス機により9800N(1Ton)の荷重をかけることにより、外径7mm、内径3mmのトロイダル形状の成型体を得た。この成型体について、RFインピーダンス/マテリアル・アナライザ(アジレント・テクノロジー社製;E4991A)とテストフィクスチャ(アジレント・テクノロジー社製;16454A)を用い、10MHzにおける複素比透磁率の実数部μ’を測定した。なお、得られたトロイダル形状の成型体中のFeSiCr合金粉末1の重量(複合体粉末の重量の97%)に対して、成型体について計測した体積で割った値を充填密度として求めたところ、充填密度は5.4g/cmだった。
[Measurement of magnetic properties (permeability μ')]
FeSiCr alloy powder 1 and bisphenol F type epoxy resin (manufactured by TISC Co., Ltd .; one-component epoxy resin B-1106) are weighed at a mass ratio of 97: 3, and vacuum stirring / defoaming mixer (manufactured by EME; V-mini300). ) Was kneaded to obtain a paste in which the test powder was dispersed in the epoxy resin. This paste was dried on a hot plate at 30 ° C. for 2 hours to form a composite of an alloy powder and a resin, and then granulated into a powder to obtain a composite powder. 0.2 g of this complex powder was placed in a toroidal-shaped container, and a load of 9800 N (1 Ton) was applied by a hand press to obtain a toroidal-shaped molded body having an outer diameter of 7 mm and an inner diameter of 3 mm. For this molded body, the real part μ'of the complex relative permeability at 10 MHz was measured using an RF impedance / material analyzer (manufactured by Agilent Technologies; E4991A) and a test fixture (manufactured by Agilent Technologies; 16454A). .. The packing density was obtained by dividing the weight of the FeSiCr alloy powder 1 (97% of the weight of the composite powder) in the obtained toroidal-shaped molded body by the volume measured for the molded body. The packing density was 5.4 g / cm 3 .
[耐酸化性の評価]
 FeSiCr合金粉末1(灰色)30gをアルミカップに入れ、85℃、85%RH環境下で3日間保管する試験を行い、変色がない場合を〇、変色があった場合を×として評価した。また、保管試験後のFeSiCr合金粉末1を乳鉢で解粒して均一に混合した後、FeSiCr合金粉末1の酸素含有量を求めることで、保管試験による酸素含有量の増加量を求めた。なお保管試験後の合金粉末の酸素含有量は、酸素・窒素・水素分析装置(株式会社堀場製作所製のEMGA-920)により測定した。
[Evaluation of oxidation resistance]
A test was conducted in which 30 g of FeSiCr alloy powder 1 (gray) was placed in an aluminum cup and stored at 85 ° C. in an 85% RH environment for 3 days. Further, after the FeSiCr alloy powder 1 after the storage test was granulated in a mortar and mixed uniformly, the oxygen content of the FeSiCr alloy powder 1 was determined to determine the amount of increase in the oxygen content by the storage test. The oxygen content of the alloy powder after the storage test was measured by an oxygen / nitrogen / hydrogen analyzer (EMGA-920 manufactured by HORIBA, Ltd.).
[実施例2]
 実施例1において電解鉄の代わりに純鉄(純度:約99.94質量%、Mn含有量:200ppm)を使用した以外は、実施例1と同様の方法で、実施例2に係るFeSiCr合金粉末2を製造した。このFeSiCr合金粉末2について、実施例1と同様にして評価を行った。結果は後記表2に示している。
[Example 2]
FeSiCr alloy powder according to Example 2 in the same manner as in Example 1 except that pure iron (purity: about 99.94% by mass, Mn content: 200 ppm) was used instead of electrolytic iron in Example 1. 2 was manufactured. The FeSiCr alloy powder 2 was evaluated in the same manner as in Example 1. The results are shown in Table 2 below.
[実施例3]
 実施例2において、スラリーに添加する25質量%NaOH水溶液の量を、軟磁性粉末100kgに対する割合で240gに変更した以外は、実施例2と同様の方法で、FeSiCr合金粉末3を製造した。このFeSiCr合金粉末3について、実施例1と同様にして評価を行った。結果は後記表2に示している。
[Example 3]
In Example 2, the FeSiCr alloy powder 3 was produced by the same method as in Example 2 except that the amount of the 25 mass% NaOH aqueous solution added to the slurry was changed to 240 g with respect to 100 kg of the soft magnetic powder. The FeSiCr alloy powder 3 was evaluated in the same manner as in Example 1. The results are shown in Table 2 below.
[実施例4]
 実施例2において、スラリーに添加する25質量%NaOH水溶液の量を、軟磁性粉末100kgに対する割合で36kgに変更した以外は、実施例2と同様の方法で、FeSiCr合金粉末4を製造した。このFeSiCr合金粉末4について、実施例1と同様にして評価を行った。結果は後記表2に示している。
[Example 4]
In Example 2, the FeSiCr alloy powder 4 was produced by the same method as in Example 2 except that the amount of the 25 mass% NaOH aqueous solution added to the slurry was changed to 36 kg in proportion to 100 kg of the soft magnetic powder. The FeSiCr alloy powder 4 was evaluated in the same manner as in Example 1. The results are shown in Table 2 below.
[比較例1]
 実施例2において、スラリーに25質量%NaOH水溶液を添加しなかったこと以外は、実施例2と同様の方法で、FeSiCr合金粉末5を製造した。このFeSiCr合金粉末5について、実施例1と同様にして評価を行った。結果は後記表2に示している。なお耐酸化性の評価において、FeSiCr合金粉末5は灰色から赤褐色に変色した。
[Comparative Example 1]
The FeSiCr alloy powder 5 was produced in the same manner as in Example 2 except that the 25% by mass NaOH aqueous solution was not added to the slurry in Example 2. The FeSiCr alloy powder 5 was evaluated in the same manner as in Example 1. The results are shown in Table 2 below. In the evaluation of oxidation resistance, the FeSiCr alloy powder 5 changed its color from gray to reddish brown.
[比較例2]
 実施例2において、スラリーに添加する25質量%NaOH水溶液の量を、軟磁性粉末100kgに対する割合で90kgに変更した以外は、実施例2と同様の方法で、FeSiCr合金粉末6を製造した。このFeSiCr合金粉末6について、実施例1と同様にして評価を行った。結果は後記表2に示している。なお耐酸化性の評価において、FeSiCr合金粉末6は灰色から赤褐色に変色した。
[Comparative Example 2]
In Example 2, the FeSiCr alloy powder 6 was produced by the same method as in Example 2 except that the amount of the 25 mass% NaOH aqueous solution added to the slurry was changed to 90 kg in proportion to 100 kg of the soft magnetic powder. The FeSiCr alloy powder 6 was evaluated in the same manner as in Example 1. The results are shown in Table 2 below. In the evaluation of oxidation resistance, the FeSiCr alloy powder 6 changed its color from gray to reddish brown.
 以上の実施例1~4並びに比較例1及び2について、原料種類及び仕込み量並びにNaOH水溶液の添加量を下記表1に示し、製造されたFeSiCr合金粉末の組成、粒度分布、磁気特性及び耐酸化性を下記表2に示す。なお表2において、例えば「アルカリ金属・アルカリ土類金属」の列において実施例1が「Na:90」とあるのは、Naが90ppm検出され、その他のアルカリ金属・アルカリ土類金属は検出されなかった、という意味である。以降の実施例・比較例についても同様であり、比較例1の「-」とは、いずれのアルカリ金属・アルカリ土類金属も検出されなかった、ということである。 For Examples 1 to 4 and Comparative Examples 1 and 2 above, the types of raw materials, the amount charged, and the amount of the NaOH aqueous solution added are shown in Table 1 below, and the composition, particle size distribution, magnetic properties, and oxidation resistance of the produced FeSiCr alloy powder are shown. The sexes are shown in Table 2 below. In Table 2, for example, in the column of "alkali metal / alkaline earth metal", in Example 1 "Na: 90", 90 ppm of Na is detected, and other alkali metals / alkaline earth metals are detected. It means that it wasn't. The same applies to the following Examples and Comparative Examples, and the “−” in Comparative Example 1 means that neither an alkali metal nor an alkaline earth metal was detected.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 アルカリ金属及び/又はアルカリ土類金属(Na)を所定量含む実施例1~4のFeSiCr合金粉末1~4は、15.5以上の優れた透磁率を示すとともに、耐酸化性を評価する保管試験において変色せず、また酸素含有量の増加量も比較例に比べて少なかった。 The FeSiCr alloy powders 1 to 4 of Examples 1 to 4 containing a predetermined amount of an alkali metal and / or an alkaline earth metal (Na) show an excellent magnetic permeability of 15.5 or more, and are stored to evaluate oxidation resistance. No discoloration was observed in the test, and the increase in oxygen content was smaller than that in the comparative example.
 アルカリ金属及び/又はアルカリ土類金属の量が90ppmである実施例1及び2のFeSiCr合金粉末1及び2は特に耐酸化性に優れ(酸素含有量の増加量が少ない)、これらの中でもMnの含有量が最も少ない実施例1のFeSiCr合金粉末は、透磁率に特に優れるとともに、耐酸化性も最も優れていた。 The FeSiCr alloy powders 1 and 2 of Examples 1 and 2 in which the amount of the alkali metal and / or the alkaline earth metal is 90 ppm are particularly excellent in oxidation resistance (the amount of increase in the oxygen content is small), and among these, Mn The FeSiCr alloy powder of Example 1 having the lowest content had particularly excellent magnetic permeability and also had the highest oxidation resistance.

Claims (22)

  1.  Siを0.1~15質量%含み、アルカリ金属及び/又はアルカリ土類金属を1ppm以上1000ppm未満含むFe合金で構成される軟磁性粉末。 A soft magnetic powder composed of an Fe alloy containing 0.1 to 15% by mass of Si and containing an alkali metal and / or an alkaline earth metal of 1 ppm or more and less than 1000 ppm.
  2.  レーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50)が0.1~15μmである、請求項1に記載の軟磁性粉末。 The soft magnetic powder according to claim 1, wherein the cumulative 50% particle size (D50) on a volume basis measured by a laser diffraction type particle size distribution measuring device is 0.1 to 15 μm.
  3.  Feを84~99.7質量%含む、請求項1又は2に記載の軟磁性粉末。 The soft magnetic powder according to claim 1 or 2, which contains 84 to 99.7% by mass of Fe.
  4.  Siを0.2~10質量%含む、請求項1~3のいずれかに記載の軟磁性粉末。 The soft magnetic powder according to any one of claims 1 to 3, which contains 0.2 to 10% by mass of Si.
  5.  アルカリ金属及び/又はアルカリ土類金属を10~800ppm含む、請求項1~4のいずれかに記載の軟磁性粉末。 The soft magnetic powder according to any one of claims 1 to 4, which contains 10 to 800 ppm of an alkali metal and / or an alkaline earth metal.
  6.  前記軟磁性粉末が、更にCrを含み、前記Crの含有量が0.1~8質量%である、請求項1~5のいずれかに記載の軟磁性粉末。 The soft magnetic powder according to any one of claims 1 to 5, wherein the soft magnetic powder further contains Cr, and the Cr content is 0.1 to 8% by mass.
  7.  Fe、Si及びCrの含有量の合計が97.8質量%以上である、請求項6に記載の軟磁性粉末。 The soft magnetic powder according to claim 6, wherein the total content of Fe, Si and Cr is 97.8% by mass or more.
  8.  Mnの含有量が1000ppm以下である、請求項1~7のいずれかに記載の軟磁性粉末。 The soft magnetic powder according to any one of claims 1 to 7, wherein the Mn content is 1000 ppm or less.
  9.  Mnの含有量が800ppm以下である、請求項1~8のいずれかに記載の軟磁性粉末。 The soft magnetic powder according to any one of claims 1 to 8, wherein the Mn content is 800 ppm or less.
  10.  Mnの含有量が15~400ppmである、請求項1~9のいずれかに記載の軟磁性粉末。 The soft magnetic powder according to any one of claims 1 to 9, wherein the Mn content is 15 to 400 ppm.
  11.  Siを0.1~15質量%含み、Naを1~950ppm含むFe合金で構成される軟磁性粉末。 A soft magnetic powder composed of an Fe alloy containing 0.1 to 15% by mass of Si and 1 to 950 ppm of Na.
  12.  Fe原料及びSi原料を加熱溶融して、Fe及びSiを含み、Siの含有量が0.1~15質量%である溶湯を調製する工程1と、
     該溶湯を落下させながら該溶湯に流体を吹き付けて、溶湯を粉砕・凝固させることにより、Siを含むFe合金で構成される軟磁性粉末を得る工程2と、
     該軟磁性粉末にアルカリ金属源及び/又はアルカリ土類金属源を添加して、前記軟磁性粉末がアルカリ金属及び/又はアルカリ土類金属を1ppm以上1000ppm未満含むようにする工程3とを有する、軟磁性粉末の製造方法。
    Step 1 of preparing a molten metal containing Fe and Si and having a Si content of 0.1 to 15% by mass by heating and melting the Fe raw material and the Si raw material.
    Step 2 to obtain a soft magnetic powder composed of an Fe alloy containing Si by spraying a fluid onto the molten metal while dropping the molten metal to crush and solidify the molten metal.
    It has a step 3 of adding an alkali metal source and / or an alkaline earth metal source to the soft magnetic powder so that the soft magnetic powder contains 1 ppm or more and less than 1000 ppm of the alkali metal and / or the alkaline earth metal. A method for producing soft magnetic powder.
  13.  前記溶湯中のMnの含有量が1000ppm以下である、請求項12に記載の軟磁性粉末の製造方法。 The method for producing a soft magnetic powder according to claim 12, wherein the Mn content in the molten metal is 1000 ppm or less.
  14.  前記Fe原料及びSi原料に加えて更にCr原料を加熱溶融することで、前記溶湯としてFe、Si及びCrを含む溶湯を調製し、該溶湯中のCrの含有量が0.1~8質量%である、請求項12又は13に記載の軟磁性粉末の製造方法。 By further heating and melting the Cr raw material in addition to the Fe raw material and the Si raw material, a molten metal containing Fe, Si and Cr is prepared as the molten metal, and the Cr content in the molten metal is 0.1 to 8% by mass. The method for producing a soft magnetic powder according to claim 12 or 13.
  15.  前記工程3において、前記軟磁性粉末にアルカリ金属源及び/又はアルカリ土類金属源を添加して、前記軟磁性粉末がアルカリ金属及び/又はアルカリ土類金属を10~800ppm含むようにする、請求項12~14のいずれかに記載の軟磁性粉末の製造方法。 In step 3, an alkali metal source and / or an alkaline earth metal source is added to the soft magnetic powder so that the soft magnetic powder contains 10 to 800 ppm of an alkali metal and / or an alkaline earth metal. Item 6. The method for producing a soft magnetic powder according to any one of Items 12 to 14.
  16.  前記工程2において流体として水を使用し、当該工程において前記軟磁性粉末と水とが混合したスラリーを得て、
     前記工程3において、前記スラリーに前記アルカリ金属源及び/又はアルカリ土類金属源を添加する、請求項12~15のいずれかに記載の軟磁性粉末の製造方法。
    Water was used as the fluid in the step 2, and in the step, a slurry in which the soft magnetic powder and water were mixed was obtained.
    The method for producing a soft magnetic powder according to any one of claims 12 to 15, wherein in the step 3, the alkali metal source and / or the alkaline earth metal source is added to the slurry.
  17.  前記アルカリ金属源及び/又はアルカリ土類金属源が水酸化ナトリウムもしくは水酸化カリウムである、請求項12~16のいずれかに記載の軟磁性粉末の製造方法。 The method for producing a soft magnetic powder according to any one of claims 12 to 16, wherein the alkali metal source and / or the alkaline earth metal source is sodium hydroxide or potassium hydroxide.
  18.  前記Fe原料として、Mnの含有量が100ppm以下の電解鉄を使用する、請求項12~17のいずれかに記載の軟磁性粉末の製造方法。 The method for producing a soft magnetic powder according to any one of claims 12 to 17, wherein an electrolytic iron having a Mn content of 100 ppm or less is used as the Fe raw material.
  19.  Fe原料及びSi原料を加熱溶融して、Fe及びSiを含み、Siの含有量が0.1~15質量%である溶湯を調製する工程1と、
     該溶湯を落下させながら該溶湯に流体を吹き付けて、溶湯を粉砕・凝固させることにより、Siを含むFe合金で構成される軟磁性粉末を得る工程2と、
     該軟磁性粉末にNa源を添加して、前記軟磁性粉末がNaを1~950ppm含むようにする工程3とを有する、軟磁性粉末の製造方法。
    Step 1 of preparing a molten metal containing Fe and Si and having a Si content of 0.1 to 15% by mass by heating and melting the Fe raw material and the Si raw material.
    Step 2 to obtain a soft magnetic powder composed of an Fe alloy containing Si by spraying a fluid onto the molten metal while dropping the molten metal to crush and solidify the molten metal.
    A method for producing a soft magnetic powder, which comprises a step 3 of adding a Na source to the soft magnetic powder so that the soft magnetic powder contains 1 to 950 ppm of Na.
  20.  請求項1~11のいずれかに記載の軟磁性粉末又は請求項12~19のいずれかに記載の製造方法により製造された軟磁性粉末とバインダとを含む、軟磁性材料。 A soft magnetic material containing the soft magnetic powder according to any one of claims 1 to 11 or the soft magnetic powder produced by the production method according to any one of claims 12 to 19 and a binder.
  21.  請求項1~11のいずれかに記載の軟磁性粉末又は請求項12~19のいずれかに記載の製造方法により製造された軟磁性粉末を含む、圧粉磁心。 A dust core containing the soft magnetic powder according to any one of claims 1 to 11 or the soft magnetic powder produced by the production method according to any one of claims 12 to 19.
  22.  請求項1~11のいずれかに記載の軟磁性粉末、又は、請求項20に記載の軟磁性材料を所定の形状に成型し、得られた成型物を加熱して圧粉磁心を得る、圧粉磁心の製造方法。 The soft magnetic powder according to any one of claims 1 to 11 or the soft magnetic material according to claim 20 is molded into a predetermined shape, and the obtained molded product is heated to obtain a dust core. Manufacturing method of powder magnetic core.
PCT/JP2021/019492 2020-05-27 2021-05-24 Soft magnetic powder, method for producing soft magnetic powder, soft magnetic material, powder magnetic core, and method for producing powder magnetic core WO2021241466A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227029049A KR20220129623A (en) 2020-05-27 2021-05-24 Soft magnetic powder, manufacturing method of soft magnetic powder, soft magnetic material, powder core and manufacturing method of powder core
CN202180034894.4A CN115605303A (en) 2020-05-27 2021-05-24 Soft magnetic powder, method for producing soft magnetic powder, soft magnetic material, dust core, and method for producing dust core

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020091917 2020-05-27
JP2020-091917 2020-05-27

Publications (1)

Publication Number Publication Date
WO2021241466A1 true WO2021241466A1 (en) 2021-12-02

Family

ID=78744924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019492 WO2021241466A1 (en) 2020-05-27 2021-05-24 Soft magnetic powder, method for producing soft magnetic powder, soft magnetic material, powder magnetic core, and method for producing powder magnetic core

Country Status (5)

Country Link
JP (1) JP2021188131A (en)
KR (1) KR20220129623A (en)
CN (1) CN115605303A (en)
TW (1) TW202206619A (en)
WO (1) WO2021241466A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057153A1 (en) * 2010-10-26 2012-05-03 住友電気工業株式会社 Soft magnetic powder, powder granules, dust core, electromagnetic component, and method for manufacturing dust core
JP2019218611A (en) * 2018-06-20 2019-12-26 Dowaエレクトロニクス株式会社 Method for producing phosphoric acid-surface treated soft magnetic powder, and phosphoric acid-surface treated soft magnetic powder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5841705B2 (en) 2007-04-02 2016-01-13 セイコーエプソン株式会社 Atomized soft magnetic powder, dust core and magnetic element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057153A1 (en) * 2010-10-26 2012-05-03 住友電気工業株式会社 Soft magnetic powder, powder granules, dust core, electromagnetic component, and method for manufacturing dust core
JP2019218611A (en) * 2018-06-20 2019-12-26 Dowaエレクトロニクス株式会社 Method for producing phosphoric acid-surface treated soft magnetic powder, and phosphoric acid-surface treated soft magnetic powder

Also Published As

Publication number Publication date
JP2021188131A (en) 2021-12-13
KR20220129623A (en) 2022-09-23
TW202206619A (en) 2022-02-16
CN115605303A (en) 2023-01-13

Similar Documents

Publication Publication Date Title
JP6851448B2 (en) Heat treatment method for soft magnetic powder
KR102428560B1 (en) Method for producing soft magnetic powder, Fe powder or alloy powder containing Fe, soft magnetic material, and method for producing powder core
US20070092434A1 (en) Production of high-purity niobium monoxide and capacitor production therefrom
JP2009235556A (en) Copper powder for conductive pastes, and conductive paste
JP2010013730A (en) Copper powder for conductive paste, and conductive paste
EP3842168A1 (en) Magnetic core powder, magnetic core and coil parts using same, and method for manufacturing magnetic core powder
CN112530655A (en) Low-power-consumption soft magnetic alloy material and preparation method and application thereof
JP2018186212A (en) Soft magnetic powder, method for manufacturing the same, soft magnetic material, and method for manufacturing powder-compact magnetic core
CN102982956B (en) High magnetic permeability and low loss metal soft magnetic material powder and preparation method thereof
JP2018178254A (en) Fe-Ni-BASED ALLOY POWDER AND MANUFACTURING METHOD THEREFOR
KR20190056314A (en) Soft magnetic metal powder, method for producing the same, and soft magnetic metal dust core
WO2021241466A1 (en) Soft magnetic powder, method for producing soft magnetic powder, soft magnetic material, powder magnetic core, and method for producing powder magnetic core
TW555610B (en) Phosphorus-containing iron powder and its preparation process
JP2019218611A (en) Method for producing phosphoric acid-surface treated soft magnetic powder, and phosphoric acid-surface treated soft magnetic powder
WO2019045100A1 (en) Soft magnetic powder, method for producing fe powder or alloy powder containing fe, soft magnetic material, and method for producing dust core
TWI832984B (en) Soft magnetic powder, method for heat treatment of soft magnetic powder, soft magnetic material, dust core and method for producing dust core
WO2020090849A1 (en) Soft magnetic powder, soft magnetic powder heat treatment method, soft magnetic material, dust core, and dust core manufacturing method
JP2022068108A (en) Alloy powder, manufacturing method for alloy powder, soft magnetic material, dust core and manufacturing method for dust core
JP2023081771A (en) Lamination-molding metal powder mixed with oxide nano-particle and lamination-molded body
KR20120021704A (en) Copper powder for conductive paste and conductive paste

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812001

Country of ref document: EP

Kind code of ref document: A1