JP2017008376A - Fe-BASED ALLOY COMPOSITION, SOFT MAGNETIC POWDER, COMPOSITE MAGNETIC BODY AND MANUFACTURING METHOD OF SOFT MAGNETIC POWDER - Google Patents

Fe-BASED ALLOY COMPOSITION, SOFT MAGNETIC POWDER, COMPOSITE MAGNETIC BODY AND MANUFACTURING METHOD OF SOFT MAGNETIC POWDER Download PDF

Info

Publication number
JP2017008376A
JP2017008376A JP2015125726A JP2015125726A JP2017008376A JP 2017008376 A JP2017008376 A JP 2017008376A JP 2015125726 A JP2015125726 A JP 2015125726A JP 2015125726 A JP2015125726 A JP 2015125726A JP 2017008376 A JP2017008376 A JP 2017008376A
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
magnetic powder
alloy
alloy composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015125726A
Other languages
Japanese (ja)
Other versions
JP6531979B2 (en
Inventor
美紀子 筒井
Mikiko Tsutsui
美紀子 筒井
華子 大▲崎▼
Hanako Osaki
華子 大▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2015125726A priority Critical patent/JP6531979B2/en
Publication of JP2017008376A publication Critical patent/JP2017008376A/en
Application granted granted Critical
Publication of JP6531979B2 publication Critical patent/JP6531979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a soft magnetic powder providing high real number magnetic permeability as well as low imaginary number magnetic permeability to a composite magnetic body by oriented dispersion, an Fe-based alloy composition therefor, a composite magnetic body by oriented dispersing the soft magnetic powder and a manufacturing method of the soft magnetic powder.SOLUTION: An Fe-based alloy composition contains, by mass%, Si:1.5 to 14%, Cr:2 to 6%, Al:0.1 to 4%, P:0.02 to 1% and the balance Fe with inevitable impurities. A soft magnetic powder is a flat alloy powder having an alloy composition of the Fe-based alloy composition and has average of aspect ratio of particle diameter to thickness of 100 or more. A manufacturing method of the soft magnetic powder includes a process of flattening process after obtaining an alloy powder by atomizing alloy molten metal consisting of the Fe-based alloy composition and applying a particle diameter adjusting heat treatment on the same. A composite magnetic body is by oriented dispersion in a matrix material with fixing a flattening direction of the flat alloy powder.SELECTED DRAWING: None

Description

本発明は、軟磁性粉体を配向分散させた複合磁性体に使用される該軟磁性粉体、このためのFe基合金組成物、該磁性シート、及びこの軟磁性粉体の製造方法に関する。   The present invention relates to the soft magnetic powder used in a composite magnetic material in which soft magnetic powder is oriented and dispersed, an Fe-based alloy composition therefor, the magnetic sheet, and a method for producing the soft magnetic powder.

電子部品を高い密度で実装させ電子機器を小型化させるためには、各電子部品から発生する電磁波による干渉が問題となる。このような電子機器内部での電波障害(EMI)を低減させる目的でシート状の複合磁性体が利用されている。かかる複合磁性体からなる磁性シートは扁平な軟磁性粉体を樹脂からなるマトリクス材料中に配向分散させた樹脂シートであり、所望の周波数帯域における虚数透磁率μ”を高くするようにして、この磁気損失を利用して不要な電磁波の輻射を熱に変換して吸収するのである。   In order to mount electronic components at a high density and reduce the size of electronic devices, interference due to electromagnetic waves generated from each electronic component becomes a problem. A sheet-like composite magnetic material is used for the purpose of reducing electromagnetic interference (EMI) inside such an electronic device. A magnetic sheet made of such a composite magnetic material is a resin sheet in which flat soft magnetic powder is oriented and dispersed in a matrix material made of resin, and this imaginary permeability μ ″ in a desired frequency band is increased, It uses magnetic loss to convert unwanted electromagnetic radiation into heat and absorb it.

また、RFIDタグのような無線通信媒体と一体的に設けられ、電波を介しての通信距離を可及的に長くしようとする通信補助用途にも扁平な軟磁性粉体を樹脂中に分散させた同様の磁性シートが利用されている。かかる磁性シートでは、アンテナの受信した電磁波を周辺の金属部材などに到達する前にこれに誘導し、アンテナからの発信をできるだけ損失なく行い得るようにするのである。ここでは、実数透磁率μ’を高くする一方、虚数透磁率μ”を低くするように設計される。   Also, flat soft magnetic powder is dispersed in the resin, which is provided integrally with a wireless communication medium such as an RFID tag, and is used for communication assistance in which the communication distance via radio waves is as long as possible. Similar magnetic sheets are used. In such a magnetic sheet, the electromagnetic wave received by the antenna is guided to the surrounding metal member before reaching the surrounding metal member and the like so that the transmission from the antenna can be performed with as little loss as possible. Here, the real number permeability μ ′ is increased while the imaginary permeability μ ″ is decreased.

ところで、実数透磁率μ’や虚数透磁率μ”からなる透磁率特性は、軟磁性粉体の合金組成やその粉体形状によって変化する。磁性シートの軟磁性粉体としては、例えば、磁気異方性の小さいセンダスト(Fe−9.5Si−5.5Al)などが用いられ得るが、かかる合金は硬く脆いため、扁平な粉体に成形加工することが難しい。   By the way, the magnetic permeability characteristic consisting of the real permeability μ ′ and the imaginary permeability μ ″ varies depending on the alloy composition of the soft magnetic powder and its powder shape. Examples of the soft magnetic powder of the magnetic sheet include magnetic properties. Sendust (Fe-9.5Si-5.5Al) or the like having a low isotropic property can be used, but such an alloy is hard and brittle, so that it is difficult to form it into a flat powder.

例えば、特許文献1では、比較的脆いFe−Si−Al合金において、Pを添加することで機械的粉砕時の粉砕性が向上することを述べている。詳細には、重量%で、Si:4〜12%、Al:3〜8%を含むFe基合金粉末において、Pを0.001〜0.5%添加するとしている。ただし、ここでは、粉体を所定の粒度までアトライターで微粉砕するのに要する時間で粉砕性を評価しており、Pの添加により扁平な粉体に加工し易くなるかまでは定かではない。   For example, Patent Document 1 describes that, in a relatively brittle Fe—Si—Al alloy, the addition of P improves the pulverizability during mechanical pulverization. Specifically, it is supposed that 0.001 to 0.5% of P is added to Fe-based alloy powder containing Si: 4 to 12% and Al: 3 to 8% by weight. However, here, the grindability is evaluated by the time required to finely pulverize the powder to a predetermined particle size with an attritor, and it is not certain whether it becomes easy to process into a flat powder by adding P. .

一般的に、Fe−Si−Al合金では数MHz付近から虚数透磁率μ”を増加させるが、Fe−Si−Cr合金では10MHz以上まで虚数透磁率μ”の増加はほとんどない。そのため、高い周波数帯域での用途に適する。   In general, the Fe-Si-Al alloy increases the imaginary permeability μ ″ from around several MHz, while the Fe—Si—Cr alloy hardly increases the imaginary permeability μ ″ up to 10 MHz or more. Therefore, it is suitable for use in a high frequency band.

例えば、特許文献2では、13.56MHzで用いられるRFIDシステムのアンテナモジュールに用いられる磁性シートとして、Fe−Si−Cr合金にPを添加した合金からなる軟磁性粉体を使用することを開示している。かかる合金でもPを添加することで扁平化加工処理を容易に出来るようになるとしている。また、100mmの通信距離を得るために必要とされる保磁力の確保には、Pの添加量を適切に調節する必要のあることを述べ、Pを0.2〜0.5wt%添加すべきとしている。   For example, Patent Document 2 discloses the use of soft magnetic powder made of an alloy obtained by adding P to an Fe-Si-Cr alloy as a magnetic sheet used for an antenna module of an RFID system used at 13.56 MHz. ing. Even in such an alloy, flattening processing can be easily performed by adding P. In addition, it is stated that it is necessary to appropriately adjust the addition amount of P in order to secure the coercive force necessary for obtaining a communication distance of 100 mm, and 0.2 to 0.5 wt% of P should be added. It is said.

特開平10−335126号公報Japanese Patent Laid-Open No. 10-335126 特開2009−88087号公報JP 2009-88087 A

ところで、扁平な軟磁性粉体の粒径を大きく且つ薄くしてアスペクト比を大きくすることで実数透磁率μ’を高くし得る。そこで、Fe−Si−Cr合金にPを添加するがこのとき結晶粒が微細化しやすく、扁平化加工処理において粒径が小さくなってしまい、結果として、実数透磁率μ’を高くできないことがあった。   By the way, the real magnetic permeability μ ′ can be increased by increasing the aspect ratio by increasing the particle diameter of the flat soft magnetic powder. Therefore, P is added to the Fe—Si—Cr alloy. At this time, the crystal grains are easily refined, and the grain size is reduced in the flattening process. As a result, the real permeability μ ′ may not be increased. It was.

本発明はかかる状況に鑑みてなされたものであって、その目的とするところは、配向分散させることで複合磁性体に低い虚数透磁率でありながら高い実数透磁率を与えるような軟磁性粉体、このためのFe基合金組成物、かかる軟磁性粉体を配向分散させた複合磁性体、及びこの軟磁性粉体の製造方法の提供にある。   The present invention has been made in view of such a situation, and an object of the present invention is to provide a soft magnetic powder that provides a high real number permeability while being low in imaginary permeability to a composite magnetic body by orientation dispersion. The present invention provides an Fe-based alloy composition, a composite magnetic material in which such soft magnetic powder is oriented and dispersed, and a method for producing the soft magnetic powder.

本発明者は、Pを添加したFe−Si−Cr合金の扁平化加工処理において、結晶粒及び粒径の微細化を抑制するよう、合金組成を調整し且つ扁平化加工処理前に合金粉体の熱処理を行うことを考慮した。ここでは複合磁性体としての磁気特性を損なわない合金組成であること、及び、粉体を凝集させることなく熱処理できることが必要とされる。   In the flattening process of the Fe-Si-Cr alloy to which P is added, the inventor adjusts the alloy composition so as to suppress the refinement of the crystal grains and the particle diameter, and the alloy powder before the flattening process. The heat treatment was considered. Here, it is necessary to have an alloy composition that does not impair the magnetic properties of the composite magnetic body, and to be able to perform heat treatment without agglomerating the powder.

すなわち、本発明によるFe基合金組成物は、軟磁性を有するFe基合金組成物であって、質量%で、Si:1.5〜14%、Cr:2〜6%、Al:0.1〜4%、P:0.02〜1%、残部Fe及び不可避的不純物からなる合金組成を有することを特徴とする。   That is, the Fe-based alloy composition according to the present invention is an Fe-based alloy composition having soft magnetism, and in terms of mass%, Si: 1.5 to 14%, Cr: 2 to 6%, Al: 0.1 It has the alloy composition which consists of -4%, P: 0.02-1%, remainder Fe and an unavoidable impurity.

かかる発明によれば、合金粉体の扁平化加工処理によって所望の粒径及びアスペクト比を付与できて、低い虚数透磁率でありながら高い実数透磁率を有する複合磁性体を与え得るのである。   According to this invention, a desired particle size and aspect ratio can be imparted by the flattening processing of the alloy powder, and a composite magnetic body having a high real number permeability while having a low imaginary permeability can be obtained.

また、本発明による軟磁性粉体は、質量%で、Si:1.5〜14%、Cr:2〜6%、Al:0.1〜4%、P:0.02〜1%、残部Fe及び不可避的不純物からなる合金組成を有する扁平合金粉であり、厚さに対する粒径のアスペクト比の平均値を100以上としたことを特徴とする。   Moreover, the soft magnetic powder according to the present invention is, in mass%, Si: 1.5 to 14%, Cr: 2 to 6%, Al: 0.1 to 4%, P: 0.02 to 1%, the balance It is a flat alloy powder having an alloy composition composed of Fe and inevitable impurities, and is characterized in that the average value of the aspect ratio of the particle diameter to the thickness is 100 or more.

かかる発明によれば、低い虚数透磁率でありながら高い実数透磁率を有する複合磁性体を与え得るのである。   According to this invention, a composite magnetic body having a high real number permeability while having a low imaginary number permeability can be provided.

また、本発明による複合磁性体は、軟磁性を有する扁平合金粉の扁平化方向を揃えてマトリクス材料中に配向分散させた複合磁性体であって、前記扁平合金粉は、質量%で、Si:1.5〜14%、Cr:2〜6%、Al:0.1〜4%、P:0.02〜1%、残部Fe及び不可避的不純物からなる合金組成を有するとともに、厚さに対する粒径のアスペクト比の平均値を100以上としたことを特徴とする。   Further, the composite magnetic body according to the present invention is a composite magnetic body in which the flattening direction of the flat alloy powder having soft magnetism is aligned and dispersed in the matrix material, and the flat alloy powder is Si in mass%. : 1.5 to 14%, Cr: 2 to 6%, Al: 0.1 to 4%, P: 0.02 to 1%, the alloy composition consisting of the balance Fe and inevitable impurities, and with respect to the thickness The average value of the aspect ratio of the particle size is 100 or more.

かかる発明によれば、低い虚数透磁率でありながら高い実数透磁率を得ることができ、電波を介しての通信距離を可及的に長くしようとする通信補助用途に適するのである。   According to this invention, it is possible to obtain a high real magnetic permeability while having a low imaginary magnetic permeability, and it is suitable for a communication assisting application in which a communication distance via radio waves is to be made as long as possible.

また、本発明による軟磁性粉体の製造方法は、質量%で、Si:1.5〜14%、Cr:2〜6%、Al:0.1〜4%、P:0.02〜1%、残部Fe及び不可避的不純物からなる合金組成を有するFe基合金組成物からなる合金溶湯をアトマイズして合金粉体を得て、粒径調整熱処理を与えた後に扁平化加工処理を施す工程を含むことを特徴とする。   Moreover, the manufacturing method of the soft-magnetic powder by this invention is the mass%, Si: 1.5-14%, Cr: 2-6%, Al: 0.1-4%, P: 0.02-1 %, A molten alloy comprising an Fe-based alloy composition having an alloy composition comprising the balance Fe and inevitable impurities is atomized to obtain an alloy powder, followed by a grain size adjusting heat treatment followed by a flattening process. It is characterized by including.

かかる発明によれば、低い虚数透磁率でありながら高い実数透磁率を有する複合磁性体を与え得るのである。   According to this invention, a composite magnetic body having a high real number permeability while having a low imaginary number permeability can be provided.

上記した発明において、前記粒径調整熱処理は前記合金粉体の結晶粒を成長させつつ粒内に対してその粒界でP濃度を少なくとも高くさせる温度に加熱保持する熱処理であることを特徴としてもよい。かかる発明によれば、扁平化加工処理を容易にし、高い精度で所望の粒径及びアスペクト比を付与できて、低い虚数透磁率でありながら高い実数透磁率を有する複合磁性体を与え得るのである。   In the above-described invention, the grain size adjusting heat treatment may be a heat treatment in which the crystal grains of the alloy powder are grown and heated to a temperature at which the P concentration is increased at least at the grain boundaries in the grains. Good. According to this invention, a flattening process can be facilitated, a desired particle size and aspect ratio can be imparted with high accuracy, and a composite magnetic body having a high real permeability while having a low imaginary permeability can be provided. .

軟磁性粉体を用いた複合磁性体による磁性シートの(a)斜視図及び(b)断面図である。It is the (a) perspective view and (b) sectional view of the magnetic sheet by the composite magnetic body which used soft-magnetic powder. 本発明による軟磁性粉体及び複合磁性体の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the soft magnetic powder and composite magnetic body by this invention. 軟磁性粉体及び磁性シートの特性評価試験の結果を示す図である。It is a figure which shows the result of the characteristic evaluation test of a soft magnetic powder and a magnetic sheet. 軟磁性粉体及び磁性シートの特性評価試験の結果を示す図である。It is a figure which shows the result of the characteristic evaluation test of a soft magnetic powder and a magnetic sheet. 軟磁性粉体及び磁性シートの特性評価試験の結果を示す図である。It is a figure which shows the result of the characteristic evaluation test of a soft magnetic powder and a magnetic sheet. 軟磁性粉体及び磁性シートの特性評価試験の結果を示す図である。It is a figure which shows the result of the characteristic evaluation test of a soft magnetic powder and a magnetic sheet. 軟磁性粉体及び磁性シートの特性評価試験の結果を示す図である。It is a figure which shows the result of the characteristic evaluation test of a soft magnetic powder and a magnetic sheet.

本発明による1つの実施例としての軟磁性粉体、及びこれを配向分散させた複合磁性体について図1を用いて説明する。   A soft magnetic powder according to one embodiment of the present invention and a composite magnetic material obtained by orientation-dispersing the same will be described with reference to FIG.

図1に示すように、複合磁性体である磁性シート10は、塩素化ポリエチレンなどのゴム系樹脂2による薄膜状のゴムシートであって、扁平薄片状の軟磁性粉体1をその主面に沿う方向に配向分散させたシート状の複合磁性体である。すなわち、軟磁性粉体1はその扁平化方向を揃えてマトリクス材料であるゴム系樹脂2中に配向分散されている。磁性シート10は、例えばRFIDタグなどの無線通信媒体と一体的に設けられ、その通信補助に適する。すなわち、磁性シート10は、アンテナの受信した電磁波を周辺の金属部材などに到達する前に磁性シート10内に誘導するとともに、アンテナからの発信をできるだけ損失なく行い得るようにする。   As shown in FIG. 1, a magnetic sheet 10 that is a composite magnetic material is a thin-film rubber sheet made of a rubber-based resin 2 such as chlorinated polyethylene, and has a flat thin piece of soft magnetic powder 1 on its main surface. It is a sheet-like composite magnetic material that is oriented and dispersed in a direction along the direction. That is, the soft magnetic powder 1 is oriented and dispersed in the rubber-based resin 2 that is a matrix material with the flattening direction aligned. The magnetic sheet 10 is provided integrally with a wireless communication medium such as an RFID tag, and is suitable for communication assistance. That is, the magnetic sheet 10 guides the electromagnetic wave received by the antenna into the magnetic sheet 10 before reaching the surrounding metal member and the like, and can perform transmission from the antenna with as little loss as possible.

軟磁性粉体1は、Fe−Si−Cr合金にP及びAlを所定量だけ添加した合金からなり、質量%で、Siを1.5〜14%、Crを2〜6%、Alを0.1〜4%、Pを0.02〜1%含有し、残部Fe及び不可避的不純物からなる合金組成を有する。さらに、不可避的不純物としては、Cを0.04%以下、Mnを0.3%以下、Sを0.01%以下、Nを0.06%以下、Cuを0.05%以下、Moを0.05%以下、Niを0.1%以下に抑制することが好ましい。   The soft magnetic powder 1 is made of an alloy obtained by adding a predetermined amount of P and Al to an Fe—Si—Cr alloy, and is 1.5% to 14% of Si, 2 to 6% of Cr, and 0 of Al in mass%. .1 to 4%, P is contained in an amount of 0.02 to 1%, and the alloy composition is composed of the remaining Fe and inevitable impurities. Further, as unavoidable impurities, C is 0.04% or less, Mn is 0.3% or less, S is 0.01% or less, N is 0.06% or less, Cu is 0.05% or less, Mo is contained. It is preferable to suppress 0.05% or less and Ni to 0.1% or less.

特に、Pの添加により後述する扁平化加工処理を容易にできるようになるが、Pを添加したFe−Si−Cr合金では、扁平化加工処理前の合金粉体において結晶粒が微細化される傾向にあることがわかった。これにより、扁平化加工処理によって得られる軟磁性粉体の粒径が小さくなり、十分な圧延効果を得られずそのアスペクト比が小さくなると考えられる。本実施例では、上記したように、合金にさらにAlを添加するとともに、扁平化加工処理の前に結晶粒を適度に粗大化させる粒径調整熱処理を行っている。Alの添加によって熱処理温度を比較的高くしても合金粉体を凝集させず且つ結晶粒径を大きくできるとともに、他の磁気特性に悪影響を与えることもない。これにより、所定の粒径及びアスペクト比を有する軟磁性粉体1を得ることができ、複合磁性体としての磁性シート10に通信補助用の磁性シートとして必要とされる透磁率特性、すなわち低い虚数透磁率でありながら高い実数透磁率を与えることができるのである。   In particular, the addition of P makes it possible to facilitate the flattening process described later, but in the Fe-Si-Cr alloy to which P is added, the crystal grains are refined in the alloy powder before the flattening process. It turned out that there was a tendency. Thereby, it is considered that the particle diameter of the soft magnetic powder obtained by the flattening process is reduced, and a sufficient rolling effect cannot be obtained and the aspect ratio is reduced. In the present embodiment, as described above, while further adding Al to the alloy, the grain size adjusting heat treatment for appropriately coarsening the crystal grains is performed before the flattening process. Even if the heat treatment temperature is relatively increased by the addition of Al, the alloy powder is not aggregated and the crystal grain size can be increased, and other magnetic characteristics are not adversely affected. Thereby, the soft magnetic powder 1 having a predetermined particle diameter and aspect ratio can be obtained, and the magnetic permeability required for the magnetic sheet for assisting communication in the magnetic sheet 10 as a composite magnetic material, that is, a low imaginary number. Although the magnetic permeability is high, a high real number magnetic permeability can be provided.

次に、本発明による1つの実施例としての軟磁性粉体の製造方法、及び、かかる軟磁性粉体を用いた磁性シートの製造方法について、図2を用いて詳細を説明する。   Next, the manufacturing method of the soft magnetic powder as one embodiment according to the present invention and the manufacturing method of the magnetic sheet using the soft magnetic powder will be described in detail with reference to FIG.

図2に示すように、まず、上記したP及びAlを添加した所定の合金組成のFe−Si−Cr合金の合金溶湯をアトマイズして、合金粉体を得る(粉体化;S1)。ここでは、溶湯をガス噴霧するガスアトマイズ法を用いた。すなわち、ガスアトマイズ装置にて合金溶湯を流下させつつ不活性ガスを吹きつけて、合金溶湯を分断して微細な多数の液滴にしつつ、落下させ、急冷し凝固させて、合金粉体を得る。特に、ここでは平均粒径D50を100μm以上とするようにガス圧力等を調整することで、後述する扁平化加工処理において得られる軟磁性粉体に所望の形状を比較的容易に付与できるのである。なお、水アトマイズ法などの他のアトマイズ法によって合金粉体を得ることもできる。   As shown in FIG. 2, first, the molten alloy of Fe—Si—Cr alloy having a predetermined alloy composition to which P and Al are added is atomized to obtain an alloy powder (powdering; S1). Here, a gas atomizing method of spraying molten metal was used. That is, an inert gas is blown while flowing molten alloy with a gas atomizer, and the molten alloy is divided into fine droplets, dropped, rapidly cooled and solidified to obtain alloy powder. In particular, by adjusting the gas pressure or the like so that the average particle diameter D50 is 100 μm or more, a desired shape can be relatively easily imparted to the soft magnetic powder obtained in the flattening processing described later. . In addition, alloy powder can also be obtained by other atomizing methods such as a water atomizing method.

次に、得られた合金粉体に粒径調整熱処理を施す(S2)。粒径調整熱処理では、ArまたはNによる不活性ガス雰囲気中で900〜1000℃にて加熱、保持し、Pの添加で微細化した噴霧後の合金粉体の結晶粒を適度に粗大化させる。 Next, a particle size adjusting heat treatment is performed on the obtained alloy powder (S2). In the particle size adjustment heat treatment, the crystal grains of the alloy powder after spraying, which is heated and held at 900 to 1000 ° C. in an inert gas atmosphere with Ar or N 2 and refined by addition of P, are appropriately coarsened. .

さらに、合金粉体を扁平化加工処理する(S3)。すなわち、合金粉体を有機溶媒や粉砕助剤などと共にアトライター装置の容器内に投入し、さらに鋼球などの粉砕媒体を装填する。そして、周面に回転羽根を設けられた攪拌棒を回転させて、容器内を攪拌する。すると、粉砕媒体が合金粉体に衝突し衝撃を与えて、合金粉体を粉砕させながら平たく変形させ扁平化させる。所定の粒度となるまで扁平化させて軟磁性粉体1を得る。ここで得られる軟磁性粉体1の形状としては、後述する複合化において混練や塗工の妨げとならないよう、平均粒径D50を120μm未満とし、さらに磁性シート10に所望の透磁率特性を与えられるよう、アスペクト比の平均値を100より大きくすることが好ましい。また、粒度幅(D90−D10)を150μm以下とすることが好ましい。   Further, the alloy powder is flattened (S3). That is, the alloy powder is put into the container of an attritor apparatus together with an organic solvent and a grinding aid, and a grinding medium such as a steel ball is further loaded. And the inside of a container is stirred by rotating the stirring rod provided with the rotary blade in the surrounding surface. Then, the grinding medium collides with the alloy powder and gives an impact, and the alloy powder is flattened and flattened while being ground. The soft magnetic powder 1 is obtained by flattening to a predetermined particle size. As the shape of the soft magnetic powder 1 obtained here, the average particle diameter D50 is set to less than 120 μm so as not to hinder kneading and coating in the later-described compounding, and the magnetic sheet 10 is given desired permeability characteristics. Therefore, it is preferable that the average value of the aspect ratio is larger than 100. Moreover, it is preferable that a particle size width (D90-D10) shall be 150 micrometers or less.

特に、上記したようにPの添加によって微細化された合金粉体の結晶粒を粒径調整熱処理によって適度に粗大化させたので、全体として結晶粒径のばらつきを均質化できる。さらに、合金粉体は結晶粒界で優先的に粉砕され、扁平化加工処理中に粉砕された合金粉体の粒径を比較的大きくするとともに均質化し得る。そして、得られる軟磁性粉体1の粒径を大きく、アスペクト比を大きくするとともに、粒度幅を比較的小さくし得るのである。但し、後述する複合化のために平均粒径を所定値以下とするが、これについては粒径調整熱処理の保持温度などで調整し得る。   In particular, since the crystal grains of the alloy powder refined by the addition of P as described above are appropriately coarsened by the grain size adjusting heat treatment, variations in crystal grain size can be homogenized as a whole. Furthermore, the alloy powder is pulverized preferentially at the crystal grain boundaries, and the alloy powder pulverized during the flattening process can have a relatively large particle size and can be homogenized. The obtained soft magnetic powder 1 can have a large particle size, a large aspect ratio, and a relatively small particle size range. However, although the average particle size is set to a predetermined value or less for compositing described later, this can be adjusted by the holding temperature of the particle size adjusting heat treatment or the like.

得られた軟磁性粉体1は、必要に応じて焼鈍熱処理される(S4)。例えば、焼鈍熱処理ではN雰囲気下で300〜400℃に加熱し、保持する。 The obtained soft magnetic powder 1 is subjected to annealing heat treatment as required (S4). For example, the annealing heat treatment by heating to 300 to 400 ° C. under N 2, held.

さらに、かかる軟磁性粉体1を複合化する(S5)。複合化において、本例では、軟磁性粉体1をマトリクス材料となる塩素化ポリエチレンなどの熱可塑性樹脂やその他のゴム系樹脂、希釈溶剤及び架橋化材とともにペースト状になるまで混練し、ペースト体を得る。得られたペースト体をドクターブレード法により、所定の厚さとなるように基材上に塗工して分散された軟磁性粉体を配向させつつシート体を形成する。ここでは、ペーストにおける軟磁性粉体1の充填量を43体積%として、0.1mm厚さに塗工した。そして、シート体を乾燥させて、所定の温度で架橋プレスし、磁性シート10を得る。   Further, the soft magnetic powder 1 is compounded (S5). In this embodiment, in this example, the soft magnetic powder 1 is kneaded until it becomes a paste together with a thermoplastic resin such as chlorinated polyethylene as a matrix material, other rubber-based resin, a diluting solvent and a cross-linking material. Get. The obtained paste body is coated on a base material by a doctor blade method to form a sheet body while orienting the dispersed soft magnetic powder. Here, the filling amount of the soft magnetic powder 1 in the paste was 43% by volume, and the paste was applied to a thickness of 0.1 mm. Then, the sheet body is dried and subjected to cross-linking press at a predetermined temperature to obtain the magnetic sheet 10.

以上のようにして軟磁性粉体1を得て、かかる軟磁性粉体を用いた複合磁性体として磁性シート10を得ることができる。上記したように、軟磁性粉体1には所定の粒径及びアスペクト比を付与できるので、これを使用した磁性シート10は通信補助用の複合磁性体として必要とされる透磁率特性を得ることができる。軟磁性粉体1を同様に複合化させてシート状以外の形状の複合磁性体を得ることもできる。   As described above, the soft magnetic powder 1 is obtained, and the magnetic sheet 10 can be obtained as a composite magnetic body using the soft magnetic powder. As described above, since the soft magnetic powder 1 can have a predetermined particle size and aspect ratio, the magnetic sheet 10 using the soft magnetic powder 1 can obtain permeability characteristics required as a composite magnetic body for communication assistance. Can do. Similarly, the soft magnetic powder 1 can be composited to obtain a composite magnetic body having a shape other than the sheet shape.

[特性評価試験1]
上記した製造方法において、図3〜図6に示す各実施例及び比較例に示す合金組成からなる軟磁性粉体を得た上で、磁性シートを作製した。各実施例及び比較例の作製中における扁平化加工処理に要した加工時間を記録した。また、粉体化(S1)後において合金粉体の結晶粒径を測定し、粒径調整熱処理(S2)後において合金粉体の結晶粒径及び凝集の有無を測定及び評価し、扁平化加工処理(S3)後において軟磁性粉体の平均粒径D50、粒度幅(D90−D10)を測定してアスペクト比を算出し、複合化(S5)後において磁性シートの実数透磁率μ’、虚数透磁率μ”及び損失係数tanδ(=μ”/μ’)を測定し算出するとともに耐食性を評価した。
[Characteristic evaluation test 1]
In the manufacturing method described above, after obtaining a soft magnetic powder having the alloy composition shown in each of Examples and Comparative Examples shown in FIGS. The processing time required for the flattening processing during the production of each example and comparative example was recorded. Further, the crystal grain size of the alloy powder is measured after pulverization (S1), and the crystal grain size and the presence / absence of aggregation of the alloy powder are measured and evaluated after the grain size adjustment heat treatment (S2). After the processing (S3), the average particle diameter D50 and the particle size width (D90-D10) of the soft magnetic powder are measured to calculate the aspect ratio. The permeability μ ″ and the loss coefficient tan δ (= μ ″ / μ ′) were measured and calculated, and the corrosion resistance was evaluated.

粒径調整熱処理(S2)の加熱・保持温度については、合金粉体の凝集を防止し得るとともに結晶粒を比較的成長させやすい典型的な温度である1000℃とした。また、例えば図6に示すように、扁平化加工処理(S3)の加工時間、すなわちアトライターの運転時間は、各実施例及び比較例において平均粒径(D50)が最大となるように調整した。   The heating / holding temperature of the grain size adjusting heat treatment (S2) was set to 1000 ° C., which is a typical temperature that can prevent the aggregation of the alloy powder and relatively easily grow the crystal grains. For example, as shown in FIG. 6, the processing time of the flattening processing (S3), that is, the operation time of the attritor was adjusted so that the average particle diameter (D50) was maximized in each of the examples and comparative examples. .

粉体化(S1)後及び粒径調整熱処理(S2)後の合金粉体の結晶粒径については、得られた合金粉体を樹脂に埋め込み切り出した切断面を研磨して、金属顕微鏡にてこの研磨面を観察し線分法によって求めた。   Regarding the crystal grain size of the alloy powder after pulverization (S1) and after the grain size adjustment heat treatment (S2), the cut surface obtained by embedding and cutting out the obtained alloy powder in a resin was polished, and a metal microscope was used. This polished surface was observed and determined by a line segment method.

粒径調整熱処理(S2)後の合金粉体の凝集の有無は、ステンレスバットに1kgの合金粉体を静置し粒径調整熱処理に供して、冷却後の合金粉体を観察し、直径10mm以上の凝集体の有無によって評価した。   The presence or absence of agglomeration of the alloy powder after the particle size adjustment heat treatment (S2) was determined by placing 1 kg of the alloy powder on a stainless steel vat and subjecting it to a particle size adjustment heat treatment. Evaluation was made based on the presence or absence of the above aggregates.

扁平化加工処理(S3)後の軟磁性粉体の平均粒径D50及び粒度幅(D90−D10)はそれぞれレーザー回折式粒度分布測定装置を用いて測定した。なお平均粒径D50は、粒径分布を小径側から累積した体積を全体の50%とする粒径であり、粒度幅(D90−D10)は平均粒径D90及びD10(それぞれ小径側からの累積体積を90%及び10%とする粒径)の差である。ここで、平均粒径D50の目標値は、120μm未満とし、粒度幅の目標値は150μm未満とした。   The average particle diameter D50 and the particle size width (D90-D10) of the soft magnetic powder after the flattening treatment (S3) were measured using a laser diffraction particle size distribution analyzer. The average particle size D50 is a particle size in which the volume obtained by accumulating the particle size distribution from the small diameter side is 50% of the whole, and the particle size width (D90-D10) is the average particle size D90 and D10 (accumulated from the small diameter side, respectively). The difference in particle size is 90% and 10% in volume. Here, the target value of the average particle diameter D50 was less than 120 μm, and the target value of the particle size width was less than 150 μm.

また、アスペクト比の平均値は次のようにして算出した。すなわち、軟磁性粉体1を樹脂に埋め込んで研磨し、研磨面を光学顕微鏡で観察し、軟磁性粉体の任意の100個の粒子について最大厚みtmax及び最小厚みtminの平均をとって、粒子厚みtとする。さらに、100個の粒子についての粒子厚みtの平均値taveにより平均粒径D50を除してアスペクト比(の平均値)とした。つまり、アスペクト比は平均粒径D50/粒子厚みの平均値taveで算出される。ここで、アスペクト比の目標値は100よりも大きいこととする。 The average aspect ratio was calculated as follows. That is, the soft magnetic powder 1 is embedded in a resin and polished, the polished surface is observed with an optical microscope, and an average of the maximum thickness t max and the minimum thickness t min is taken for any 100 particles of the soft magnetic powder. , and particle thickness t a. Furthermore, the aspect ratio by dividing the average particle diameter D50 (average value of) the average value t ave of grain thickness t a of 100 particles. That is, the aspect ratio is calculated by the average particle diameter D50 / the average value t ave of the particle thickness. Here, it is assumed that the target value of the aspect ratio is larger than 100.

複合化(S5)後の磁性シートの実数透磁率μ’及び虚数透磁率μ”は、以下のようにして測定した。すなわち、作製した磁性シートを外径10mm×内径6mmのリング形状に打ち抜き、測定周波数を13.56MHzとしてインピーダンス特性を市販のネットワーク・アナライザーを用いて測定し、実数透磁率μ’及び虚数透磁率μ”を算出した。損失係数tanδはμ”/μ’にて算出した。ここで、実数透磁率μ’の目標値は60以上とする。また、実用上の観点から、損失係数tanδの目標値は、0.10以下とする。   The real magnetic permeability μ ′ and imaginary magnetic permeability μ ″ of the magnetic sheet after compounding (S5) were measured as follows. That is, the produced magnetic sheet was punched into a ring shape having an outer diameter of 10 mm × an inner diameter of 6 mm. The impedance characteristics were measured using a commercially available network analyzer at a measurement frequency of 13.56 MHz, and real magnetic permeability μ ′ and imaginary magnetic permeability μ ″ were calculated. The loss coefficient tan δ was calculated by μ ″ / μ ′. Here, the target value of the real permeability μ ′ is set to 60 or more. From a practical viewpoint, the target value of the loss coefficient tan δ is 0.10. The following.

磁性シートの耐食性は、高温高湿試験によって評価した。すなわち、85℃で相対湿度85%の雰囲気下に暴露し、250hr経過後に目視で観察して変色の有無にて評価した。   The corrosion resistance of the magnetic sheet was evaluated by a high temperature and high humidity test. That is, it was exposed to an atmosphere of 85% relative humidity at 85 ° C., and was visually observed after 250 hours to evaluate whether or not there was discoloration.

図3に示すように、本特性評価試験においては、まず、Siの含有量による影響を評価した。すなわち、実施例1〜9、比較例1及び2において、Siの含有量を0〜16質量%の間で振り分けた。各実施例及び比較例において、Crを2質量%、Alを0.5質量%、Pを0.5質量%含有している。その結果、Siの含有量を0質量%とした比較例1では実数透磁率μ’が28と目標値を大きく下回った。また、Siの含有量を多くするにつれて扁平化加工処理後の軟磁性粉体の平均粒径D50及びアスペクト比はともに小さくなる傾向にあり、Siの含有量を16質量%とした比較例2ではアスペクト比が目標値を下回った。Siの含有量の増加に伴い、合金粉体は延性を低下させ、すなわち脆化するものと考えられる。Siの含有量を1.5〜14質量%とした実施例1〜9は全ての目標値を満たした。すなわちSiの含有量には最適な範囲があり、1.5〜14質量%の範囲内である。   As shown in FIG. 3, in this characteristic evaluation test, first, the influence of the Si content was evaluated. That is, in Examples 1-9 and Comparative Examples 1 and 2, the Si content was distributed between 0 and 16% by mass. In each Example and Comparative Example, Cr is contained by 2% by mass, Al is contained by 0.5% by mass, and P is contained by 0.5% by mass. As a result, in Comparative Example 1 in which the Si content was 0 mass%, the real magnetic permeability μ ′ was 28, which was significantly lower than the target value. Further, as the Si content is increased, both the average particle diameter D50 and the aspect ratio of the soft magnetic powder after the flattening treatment tend to decrease. In Comparative Example 2 in which the Si content is 16% by mass, The aspect ratio has fallen below the target value. As the Si content increases, the alloy powder is considered to decrease ductility, that is, become brittle. Examples 1 to 9 in which the Si content was 1.5 to 14% by mass satisfied all target values. That is, the Si content has an optimum range, and is in the range of 1.5 to 14% by mass.

図4に示すように、さらに、Crの含有量による影響を評価した。すなわち、実施例6、10及び11、比較例3及び4において、Crの含有量を0〜8質量%の間で振り分けた。各実施例及び比較例において、Siを8質量%、Alを0.5質量%、Pを0.5質量%含有している。Crの含有量を多くするにつれて扁平化加工処理後の軟磁性粉体の平均粒径D50及びアスペクト比はともに大きくなる傾向にあった。Crの添加により合金粉体の靭性を上昇させたものと考えられる。また、Crの含有量を0質量%とした比較例3、及び、同8質量%とした比較例4は共に実数透磁率μ’が目標値を下回るとともに損失係数tanδが目標値を超えてしまった。Crの含有量を2〜6質量%とした実施例6、10及び11は全ての目標値を満たした。すなわちCrの含有量には最適な範囲があり、2〜6質量%の範囲内である。   As shown in FIG. 4, the influence of the Cr content was further evaluated. That is, in Examples 6, 10 and 11, and Comparative Examples 3 and 4, the Cr content was distributed between 0 and 8 mass%. In each Example and Comparative Example, Si is contained by 8% by mass, Al by 0.5% by mass, and P by 0.5% by mass. As the Cr content was increased, both the average particle diameter D50 and the aspect ratio of the soft magnetic powder after the flattening treatment tended to increase. It is thought that the toughness of the alloy powder was increased by the addition of Cr. In Comparative Example 3 in which the Cr content was 0% by mass and Comparative Example 4 in which the Cr content was 8% by mass, the real permeability μ ′ was lower than the target value and the loss coefficient tan δ exceeded the target value. It was. Examples 6, 10 and 11 in which the Cr content was 2 to 6% by mass satisfied all target values. That is, the Cr content has an optimum range, and is in the range of 2 to 6% by mass.

図5に示すように、さらに、Alの含有量による影響を評価した。すなわち、実施例6、12〜18、比較例5及び6において、Alの含有量を0〜5質量%の間で振り分けた。各実施例及び比較例において、Siを8質量%、Crを2質量%、Pを0.5質量%含有している。その結果、Alを添加しなかった比較例5において合金粉体は粒径調整熱処理後に凝集を生じた。他の実施例及び比較例においてAlの含有により凝集を抑制し得たのは、合金粉体の表面にAlの酸化皮膜を形成したためと考えられる。また、比較例5の耐食性の評価も不良(×)であり、Alを含有する他の実施例及び比較例においては良好(○)であったことから、Alの含有は磁性シートの耐食性の向上に寄与すると言える。他方、Alの含有量を5質量%とした比較例6においては、他の実施例と比べて軟磁性粉体の平均粒径D50及びアスペクト比が小さく、アスペクト比の目標値を下回った。Alの含有量が4質量%を越えると、合金粉体の延性を低下させてしまうと考えられる。Alの含有量を0.1〜4質量%とした実施例6、12〜18は全ての目標値を満たした。すなわち、Alの含有量には最適な範囲があり、0.1〜4質量%の範囲内である。   As shown in FIG. 5, the influence of the Al content was further evaluated. That is, in Examples 6, 12 to 18, and Comparative Examples 5 and 6, the content of Al was distributed between 0 to 5% by mass. In each of Examples and Comparative Examples, Si is contained by 8% by mass, Cr is contained by 2% by mass, and P is contained by 0.5% by mass. As a result, in Comparative Example 5 in which Al was not added, the alloy powder agglomerated after the particle size adjusting heat treatment. In other examples and comparative examples, the reason why aggregation was suppressed by the inclusion of Al is considered to be because an Al oxide film was formed on the surface of the alloy powder. In addition, the evaluation of the corrosion resistance of Comparative Example 5 was also poor (x), and in other examples and comparative examples containing Al, it was good (◯), so the inclusion of Al improved the corrosion resistance of the magnetic sheet. It can be said that it contributes to. On the other hand, in Comparative Example 6 in which the Al content was 5% by mass, the average particle diameter D50 and the aspect ratio of the soft magnetic powder were small compared to the other examples, which was lower than the target value of the aspect ratio. If the Al content exceeds 4% by mass, it is considered that the ductility of the alloy powder is lowered. Examples 6 and 12 to 18 in which the Al content was 0.1 to 4% by mass satisfied all target values. That is, there is an optimal range for the Al content, which is in the range of 0.1 to 4% by mass.

図6に示すように、さらに、Pの含有量による影響を評価した。すなわち、実施例6、19〜26、比較例7〜9において、Pの含有量を0〜1.5質量%の間で振り分けた。各実施例及び比較例において、Siを8質量%、Crを2質量%、Alを0.5質量%含有している。その結果、Pの含有量を多くするにつれて粉体化後(噴霧後)及び粒径調整熱処理後(HT後)の合金粉体の結晶粒径が小さくなる傾向にあった。また、Pの含有量を多くするにつれて、すなわち粒径調整熱処理後の合金粉体の結晶粒径を小さくするにつれて、扁平化加工処理後の軟磁性粉体の平均粒径D50も小さくなる傾向にあった。なお、扁平化加工処理の加工時間については、軟磁性粉体の平均粒径(D50)を最大とするように調整したものである。Pを添加しなかった比較例7においては噴霧後の結晶粒径が比較的大きく軟磁性粉体の粒径及び粒度幅が共に目標値を越えてしまった。Pの含有量を0.01質量%とした比較例8においても、噴霧後の結晶粒径が比較的大きく軟磁性粉体の粒径が目標値を越えてしまった。比較例7及び8では、ともに塗工を行うことが困難であるため磁性シートを作製しなかった。また、Pの含有量を1.5質量%とした比較例9においては、実数透磁率μ’が目標値を下回った。Pの含有量を0.02〜1質量%とした実施例6、19〜26は全ての目標値を満たした。すなわち、Pの含有量には最適な範囲があり、0.02〜1質量%の範囲内である。   As shown in FIG. 6, the influence by the P content was further evaluated. That is, in Examples 6, 19 to 26, and Comparative Examples 7 to 9, the P content was distributed between 0 to 1.5 mass%. In each Example and Comparative Example, Si is contained by 8% by mass, Cr by 2% by mass, and Al by 0.5% by mass. As a result, the crystal grain size of the alloy powder after pulverization (after spraying) and after the grain size adjusting heat treatment (after HT) tended to decrease as the P content increased. In addition, as the P content is increased, that is, as the crystal grain size of the alloy powder after the grain size adjusting heat treatment is reduced, the average grain size D50 of the soft magnetic powder after the flattening process tends to be reduced. there were. The processing time for the flattening processing is adjusted so as to maximize the average particle diameter (D50) of the soft magnetic powder. In Comparative Example 7 in which P was not added, the crystal grain size after spraying was relatively large, and both the particle size and the particle size width of the soft magnetic powder exceeded the target values. Also in Comparative Example 8 in which the P content was 0.01% by mass, the crystal grain size after spraying was relatively large, and the particle size of the soft magnetic powder exceeded the target value. In Comparative Examples 7 and 8, since it was difficult to perform coating, a magnetic sheet was not produced. Further, in Comparative Example 9 in which the P content was 1.5 mass%, the real permeability μ ′ was lower than the target value. Examples 6 and 19 to 26 in which the P content was 0.02 to 1% by mass satisfied all target values. That is, there is an optimum range for the content of P, which is in the range of 0.02 to 1% by mass.

上記したようにPの含有によって粉体化後の合金粉体はその結晶粒を小さくするが、粒径調整熱処理により結晶粒径を調整し得る。特に、所定量のAlを含有することで、上記した結晶粒を成長させやすい典型的な温度である1000℃においても合金粉体の凝集を防止して粒径調整熱処理を行うことができる。なお、粒径調整熱処理によってPは結晶粒界に濃化しており、合金粉体は扁平化加工処理において結晶粒界で破断されやすい。また、扁平化加工処理による軟磁性粉体の粒径は、熱履歴によって均質化し得る粒径調整熱処理後の結晶粒の大きさに依存する。そのため、軟磁性粉体の粒径も均質化し得て磁性シートの透磁率特性も均質化し得るのである。   As described above, the alloy powder after pulverization reduces the crystal grains by the inclusion of P, but the crystal grain size can be adjusted by a grain size adjusting heat treatment. In particular, by containing a predetermined amount of Al, it is possible to perform the grain size adjusting heat treatment while preventing aggregation of the alloy powder even at a typical temperature of 1000 ° C. at which the above-described crystal grains are easily grown. Note that P is concentrated at the crystal grain boundary by the grain size adjusting heat treatment, and the alloy powder is easily broken at the crystal grain boundary in the flattening process. Further, the particle size of the soft magnetic powder by the flattening processing depends on the size of the crystal grains after the particle size adjusting heat treatment that can be homogenized by the thermal history. Therefore, the particle diameter of the soft magnetic powder can be homogenized, and the magnetic permeability characteristics of the magnetic sheet can be homogenized.

以上のように、軟磁性粉体を与えるためのFe基合金組成物として必要とされる合金組成が示された。なお、不可避的不純物については、上記した軟磁性粉体の磁気特性及び耐食性を損なわない範囲として、質量%で、Cを0.04%以下、Mnを0.3%以下、Sを0.01%以下、Nを0.06%以下、Cuを0.05%以下、Moを0.05%以下、Niを0.1%以下に抑制されることが好ましい。   As described above, an alloy composition required as an Fe-based alloy composition for giving a soft magnetic powder was shown. As for the unavoidable impurities, the mass percentage, C is 0.04% or less, Mn is 0.3% or less, and S is 0.01, as long as the magnetic properties and corrosion resistance of the soft magnetic powder are not impaired. %, N is 0.06% or less, Cu is 0.05% or less, Mo is 0.05% or less, and Ni is preferably 0.1% or less.

[特性評価試験2]
上記したような合金組成のFe基合金組成物から軟磁性粉体及び磁性シートを得るための製造方法のうち、特に、粒径調整熱処理(S2)の加熱・保持温度による影響を評価するため、図7に示す各温度についての特性評価試験を行った。
[Characteristic evaluation test 2]
Among the manufacturing methods for obtaining a soft magnetic powder and a magnetic sheet from an Fe-based alloy composition having the above-described alloy composition, in particular, in order to evaluate the influence of the heating / holding temperature of the particle size adjustment heat treatment (S2), A characteristic evaluation test for each temperature shown in FIG. 7 was performed.

比較例10においてはFeを90質量%、Siを8質量%、Crを2質量%としてAl及びPを添加しない合金組成とし、他の実施例及び比較例においては上記した実施例6と同じ合金組成(図3〜6参照)として、軟磁性粉体を得た。上記した特性評価試験1と同様に、粉体化(S1)後において合金粉体の結晶粒径を測定し、粒径調整熱処理(S2)後において合金粉体の結晶粒径及び凝集の有無を測定及び評価し、扁平化加工処理(S3)後において軟磁性粉体の平均粒径D50を測定してアスペクト比を算出した。   In Comparative Example 10, the alloy composition is 90% by mass of Fe, 8% by mass of Si, 2% by mass of Cr, and Al and P are not added. In other examples and comparative examples, the same alloy as in Example 6 described above is used. As a composition (see FIGS. 3 to 6), a soft magnetic powder was obtained. Similar to the characteristic evaluation test 1 described above, the crystal grain size of the alloy powder is measured after pulverization (S1), and the crystal grain size of the alloy powder and the presence or absence of agglomeration after the grain size adjustment heat treatment (S2) are determined. Measurement and evaluation, and after the flattening processing (S3), the average particle diameter D50 of the soft magnetic powder was measured to calculate the aspect ratio.

上記したように、粒径調整熱処理の保持温度による影響を評価した。すなわち、図7に示すように、実施例6、27及び28、比較例11〜16において、粒径調整熱処理(S2)の加熱・保持温度を0℃(粒径調整熱処理を行っていない。)〜1000℃の間で振り分けた。その結果、0〜850℃の比較例11〜16まで粉体化後(噴霧後)の結晶粒径に対する粒径調整熱処理後(HT後)の結晶粒径に有意な変化がなく、得られた軟磁性粉体のアスペクト比も目標値を下回った。実施例27、28、6の900℃、950℃、1000℃であれば、HT後の結晶粒径を比較的大きくでき、軟磁性粉体のアスペクト比も目標値を満たした。特に1000℃であれば実施例中、これらを最も大きくできることが判った。すなわち、粒径調整熱処理の保持温度の好ましい範囲は900〜1000℃である。   As described above, the influence of the holding temperature of the particle size adjusting heat treatment was evaluated. That is, as shown in FIG. 7, in Examples 6, 27 and 28 and Comparative Examples 11 to 16, the heating / holding temperature of the particle size adjusting heat treatment (S2) is 0 ° C. (no particle size adjusting heat treatment is performed). Sorted between ~ 1000 ° C. As a result, there was no significant change in the crystal grain size after the grain size adjustment heat treatment (after HT) with respect to the crystal grain size after pulverization (after spraying) up to Comparative Examples 11 to 16 at 0 to 850 ° C. The aspect ratio of the soft magnetic powder was also below the target value. If Examples 27, 28 and 6 were 900 ° C., 950 ° C., and 1000 ° C., the crystal grain size after HT could be made relatively large, and the aspect ratio of the soft magnetic powder also met the target value. In particular, it was found that these could be maximized in the examples at 1000 ° C. That is, the preferable range of the holding temperature of the particle size adjusting heat treatment is 900 to 1000 ° C.

ここで比較例10では、合金組成にAl及びPを含んでおらず、噴霧後の結晶粒径が他の実施例及び比較例に比べて大きくなり、粒径調整熱処理の保持温度を1000℃とすると凝集が発生した。この結果は、特性評価試験1において説明したP又はAlを添加しなかった場合の結果(比較例7、比較例5)と合致する。   Here, in Comparative Example 10, the alloy composition does not contain Al and P, the crystal grain size after spraying becomes larger than that of the other Examples and Comparative Examples, and the holding temperature of the grain size adjusting heat treatment is 1000 ° C. Aggregation then occurred. This result agrees with the results (Comparative Example 7 and Comparative Example 5) when P or Al described in the characteristic evaluation test 1 is not added.

ここまで本発明による代表的実施例及びこれに基づく改変例について説明したが、本発明は必ずしもこれに限定されるものではない。当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるだろう。   So far, representative examples and modifications based thereon have been described, but the present invention is not necessarily limited thereto. Those skilled in the art will recognize a variety of alternative embodiments and modifications without departing from the spirit of the invention or the scope of the appended claims.

1 軟磁性粉体
10 磁性シート
1 Soft magnetic powder 10 Magnetic sheet

Claims (5)

軟磁性を有するFe基合金組成物であって、質量%で、Si:1.5〜14%、Cr:2〜6%、Al:0.1〜4%、P:0.02〜1%、残部Fe及び不可避的不純物からなる合金組成を有することを特徴とするFe基合金組成物。   Fe-based alloy composition having soft magnetism, in mass%, Si: 1.5-14%, Cr: 2-6%, Al: 0.1-4%, P: 0.02-1% And an Fe-based alloy composition comprising an alloy composition comprising the balance Fe and inevitable impurities. 質量%で、Si:1.5〜14%、Cr:2〜6%、Al:0.1〜4%、P:0.02〜1%、残部Fe及び不可避的不純物からなる合金組成を有する扁平合金粉であり、厚さに対する粒径のアスペクト比の平均値を100以上としたことを特徴とする軟磁性粉体。   It has an alloy composition consisting of Si: 1.5 to 14%, Cr: 2 to 6%, Al: 0.1 to 4%, P: 0.02 to 1%, the balance Fe and inevitable impurities. A soft magnetic powder which is a flat alloy powder and has an average aspect ratio of particle diameter to thickness of 100 or more. 軟磁性を有する扁平合金粉の扁平化方向を揃えてマトリクス材料中に配向分散させた複合磁性体であって、
前記扁平合金粉は、質量%で、Si:1.5〜14%、Cr:2〜6%、Al:0.1〜4%、P:0.02〜1%、残部Fe及び不可避的不純物からなる合金組成を有するとともに、厚さに対する粒径のアスペクト比の平均値を100以上としたことを特徴とする複合磁性体。
A composite magnetic material in which the flattening direction of a flat alloy powder having soft magnetism is aligned and dispersed in a matrix material,
The flat alloy powder is, by mass, Si: 1.5 to 14%, Cr: 2 to 6%, Al: 0.1 to 4%, P: 0.02 to 1%, the balance Fe and inevitable impurities A composite magnetic body characterized in that the average value of the aspect ratio of the particle diameter to the thickness is 100 or more.
質量%で、Si:1.5〜14%、Cr:2〜6%、Al:0.1〜4%、P:0.02〜1%、残部Fe及び不可避的不純物からなる合金組成を有するFe基合金組成物からなる合金溶湯をアトマイズして合金粉体を得て、粒径調整熱処理を与えた後に扁平化加工処理を施す工程を含むことを特徴とする軟磁性粉体の製造方法。   It has an alloy composition consisting of Si: 1.5 to 14%, Cr: 2 to 6%, Al: 0.1 to 4%, P: 0.02 to 1%, the balance Fe and inevitable impurities. A method for producing a soft magnetic powder, comprising the steps of: obtaining an alloy powder by atomizing a molten alloy comprising an Fe-based alloy composition; 前記粒径調整熱処理は前記合金粉体の結晶粒を成長させつつ粒内に対してその粒界でP濃度を少なくとも高くさせる温度に加熱保持する熱処理であることを特徴とする請求項4記載の軟磁性粉体の製造方法。   The grain size adjusting heat treatment is a heat treatment in which the crystal grains of the alloy powder are grown and heated and held at a temperature at which the P concentration is increased at least at the grain boundaries in the grains. Method for producing soft magnetic powder.
JP2015125726A 2015-06-23 2015-06-23 Fe-based alloy composition, soft magnetic powder, composite magnetic body, and method of producing soft magnetic powder Active JP6531979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015125726A JP6531979B2 (en) 2015-06-23 2015-06-23 Fe-based alloy composition, soft magnetic powder, composite magnetic body, and method of producing soft magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015125726A JP6531979B2 (en) 2015-06-23 2015-06-23 Fe-based alloy composition, soft magnetic powder, composite magnetic body, and method of producing soft magnetic powder

Publications (2)

Publication Number Publication Date
JP2017008376A true JP2017008376A (en) 2017-01-12
JP6531979B2 JP6531979B2 (en) 2019-06-19

Family

ID=57763322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015125726A Active JP6531979B2 (en) 2015-06-23 2015-06-23 Fe-based alloy composition, soft magnetic powder, composite magnetic body, and method of producing soft magnetic powder

Country Status (1)

Country Link
JP (1) JP6531979B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108425074A (en) * 2018-03-21 2018-08-21 深圳顺络电子股份有限公司 A kind of magnetically soft alloy material and preparation method thereof
WO2019078321A1 (en) * 2017-10-20 2019-04-25 キヤノン株式会社 Composite magnetic material, magnet containing said material, motor using said magnet, and method for producing said composite magnetic material
JP2020111826A (en) * 2019-01-07 2020-07-27 新東工業株式会社 Iron-based soft magnetic alloy powder
WO2020188940A1 (en) * 2019-03-19 2020-09-24 Dowaエレクトロニクス株式会社 Soft magnetic powder, soft magnetic powder heat processing method, soft magnetic material, pressed powder magnetic core, and pressed powder magnetic core production method
CN112638562A (en) * 2018-10-30 2021-04-09 同和电子科技有限公司 Soft magnetic powder, method for heat treatment of soft magnetic powder, soft magnetic material, dust core, and method for producing dust core
TWI832984B (en) 2019-03-19 2024-02-21 日商同和電子科技股份有限公司(Dowaエレクトロニクス株式会社) Soft magnetic powder, method for heat treatment of soft magnetic powder, soft magnetic material, dust core and method for producing dust core

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272352A (en) * 1985-05-28 1986-12-02 Nippon Steel Corp High-hardness soft-magnetic steel sheet having superior rust resistance
JP2001032052A (en) * 1999-07-22 2001-02-06 Kawasaki Steel Corp Fe-Cr-Sx ALLOY EXCELLENT IN HIGH FREQUENCY CORE LOSS CHARACTERISTIC
JP2002080948A (en) * 2000-06-19 2002-03-22 Nkk Corp Nonoriented silicon steel sheet having excellent blanking workability
JP2009266960A (en) * 2008-04-23 2009-11-12 Tdk Corp Flat soft magnetic material, and manufacturing method thereof
JP2010196123A (en) * 2009-02-26 2010-09-09 Daido Steel Co Ltd Method for producing flattened soft magnetic powder, flattened soft magnetic powder and electromagnetic wave absorber
CN104036901A (en) * 2014-05-28 2014-09-10 浙江大学 High-permeability low-loss metal soft-magnetism composite material and preparing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272352A (en) * 1985-05-28 1986-12-02 Nippon Steel Corp High-hardness soft-magnetic steel sheet having superior rust resistance
JP2001032052A (en) * 1999-07-22 2001-02-06 Kawasaki Steel Corp Fe-Cr-Sx ALLOY EXCELLENT IN HIGH FREQUENCY CORE LOSS CHARACTERISTIC
JP2002080948A (en) * 2000-06-19 2002-03-22 Nkk Corp Nonoriented silicon steel sheet having excellent blanking workability
JP2009266960A (en) * 2008-04-23 2009-11-12 Tdk Corp Flat soft magnetic material, and manufacturing method thereof
JP2010196123A (en) * 2009-02-26 2010-09-09 Daido Steel Co Ltd Method for producing flattened soft magnetic powder, flattened soft magnetic powder and electromagnetic wave absorber
CN104036901A (en) * 2014-05-28 2014-09-10 浙江大学 High-permeability low-loss metal soft-magnetism composite material and preparing method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019078321A1 (en) * 2017-10-20 2019-04-25 キヤノン株式会社 Composite magnetic material, magnet containing said material, motor using said magnet, and method for producing said composite magnetic material
CN108425074A (en) * 2018-03-21 2018-08-21 深圳顺络电子股份有限公司 A kind of magnetically soft alloy material and preparation method thereof
CN112638562A (en) * 2018-10-30 2021-04-09 同和电子科技有限公司 Soft magnetic powder, method for heat treatment of soft magnetic powder, soft magnetic material, dust core, and method for producing dust core
TWI815988B (en) * 2018-10-30 2023-09-21 日商同和電子科技股份有限公司 Soft magnetic powder, method for heat treatment of soft magnetic powder, soft magnetic material, dust core and method for producing dust core
CN112638562B (en) * 2018-10-30 2023-09-08 同和电子科技有限公司 Soft magnetic powder, heat treatment method for soft magnetic powder, soft magnetic material, dust core, and method for producing dust core
JP7247874B2 (en) 2019-01-07 2023-03-29 新東工業株式会社 Iron-based soft magnetic alloy powder
JP2020111826A (en) * 2019-01-07 2020-07-27 新東工業株式会社 Iron-based soft magnetic alloy powder
TWI821495B (en) * 2019-01-07 2023-11-11 日商新東工業股份有限公司 Iron-based soft magnetic alloy powder
WO2020188940A1 (en) * 2019-03-19 2020-09-24 Dowaエレクトロニクス株式会社 Soft magnetic powder, soft magnetic powder heat processing method, soft magnetic material, pressed powder magnetic core, and pressed powder magnetic core production method
JP7221100B2 (en) 2019-03-19 2023-02-13 Dowaエレクトロニクス株式会社 Soft magnetic powder, soft magnetic material and dust core
CN113518674B (en) * 2019-03-19 2023-09-08 同和电子科技有限公司 Soft magnetic powder, heat treatment method for soft magnetic powder, soft magnetic material, dust core, and method for producing dust core
CN113518674A (en) * 2019-03-19 2021-10-19 同和电子科技有限公司 Soft magnetic powder, method for heat treatment of soft magnetic powder, soft magnetic material, dust core, and method for producing dust core
JP2020152947A (en) * 2019-03-19 2020-09-24 Dowaエレクトロニクス株式会社 Soft-magnetic powder, heat-treatment method for soft-magnetic powder, soft-magnetic material, powder magnetic core, and manufacturing method for powder magnetic core
TWI832984B (en) 2019-03-19 2024-02-21 日商同和電子科技股份有限公司(Dowaエレクトロニクス株式会社) Soft magnetic powder, method for heat treatment of soft magnetic powder, soft magnetic material, dust core and method for producing dust core

Also Published As

Publication number Publication date
JP6531979B2 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
JP6531979B2 (en) Fe-based alloy composition, soft magnetic powder, composite magnetic body, and method of producing soft magnetic powder
JP5617173B2 (en) Method for producing flat soft magnetic powder and electromagnetic wave absorber
US10804014B2 (en) Flat soft magnetic powder and production method therefor
JP6788328B2 (en) Flat soft magnetic powder and its manufacturing method
KR102339361B1 (en) Soft-magnetic flat powder and process for producing same
US20190351482A1 (en) Magnetic Flaky Powder and Magnetic Sheet Containing the Same
JP6442236B2 (en) Soft magnetic flat powder and method for producing the same
JP6722548B2 (en) Soft magnetic flat powder, magnetic sheet and method for producing the same
JP2010272608A (en) Flat soft magnetic powder and magnetic body
TWI778112B (en) Fe-BASED ALLOY, CRYSTALLINE Fe-BASED ALLOY ATOMIZED POWDER, AND MAGNETIC CORE
JP2018085438A (en) Magnetic powder arranged for high frequency use and magnetic resin composition including the same
JP6955685B2 (en) Soft magnetic metal powder and its manufacturing method
JP4342956B2 (en) Method for producing soft magnetic alloy powder, soft magnetic alloy powder, soft magnetic alloy powder compact and radio wave absorber
US11081267B2 (en) Flat powder for high frequency applications and magnetic sheet
JP6882905B2 (en) Soft magnetic flat powder
WO2018143472A1 (en) Soft magnetic flat powder
JP2017112173A (en) Magnetic sheet
JP6738502B2 (en) Method for producing soft magnetic flat powder
JP2020057817A (en) Manufacturing method of soft magnetic flat powder
JP2019023346A (en) Soft magnetic flat powder and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190509

R150 Certificate of patent or registration of utility model

Ref document number: 6531979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150