WO2019078321A1 - Composite magnetic material, magnet containing said material, motor using said magnet, and method for producing said composite magnetic material - Google Patents

Composite magnetic material, magnet containing said material, motor using said magnet, and method for producing said composite magnetic material Download PDF

Info

Publication number
WO2019078321A1
WO2019078321A1 PCT/JP2018/038922 JP2018038922W WO2019078321A1 WO 2019078321 A1 WO2019078321 A1 WO 2019078321A1 JP 2018038922 W JP2018038922 W JP 2018038922W WO 2019078321 A1 WO2019078321 A1 WO 2019078321A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic material
particles
composite magnetic
composite
magnet
Prior art date
Application number
PCT/JP2018/038922
Other languages
French (fr)
Japanese (ja)
Inventor
笹栗 大助
西村 直樹
正宣 大塚
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018196167A external-priority patent/JP2019080055A/en
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2019078321A1 publication Critical patent/WO2019078321A1/en
Priority to US16/847,410 priority Critical patent/US20200243231A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide (Fe2O3)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin

Definitions

  • the present invention relates to a composite magnetic material, a magnet including the material, a motor using the magnet, and a method of manufacturing the composite magnetic material.
  • a magnet using a rare earth element such as neodymium has a high residual magnetic flux density and a high coercive force, and has excellent magnetic properties, and thus has been widely used conventionally.
  • rare earth elements are rare metals and are distributed unevenly on the earth, they are expensive, etc., attempts are being made to manufacture high-performance magnets in which the amount of rare earth elements used is reduced. ing.
  • a nanocomposite magnet having a hard magnetic material with high coercivity and a soft magnetic material with high saturation magnetic flux density is known.
  • a hard magnetic material having a high coercive force and a soft magnetic material having a high saturation magnetic flux density are magnetically coupled by an exchange coupling action, and exhibit excellent magnetic properties.
  • Patent Document 1 a core made of a hard magnetic material containing epsilon iron oxide ( ⁇ -Fe 2 O 3 ), and a shell made of a soft magnetic material containing alpha iron ( ⁇ -Fe), which covers the core, A magnetic particle having a core-shell structure is disclosed. Thereby, the hard magnetic material and the soft magnetic material are magnetically coupled in the magnetic particles to improve the magnetic characteristics.
  • ⁇ -Fe 2 O 3 epsilon iron oxide
  • ⁇ -Fe alpha iron
  • Patent Document 1 describes that the magnetic particles having the core-shell structure described above are densified to form a nanocomposite magnet.
  • voids of about 26% in volume ratio are generated between the particles.
  • Patent Document 1 it was found that the presence of such a large number of voids tends to block the exchange interaction between the magnetic particles. That is, it is difficult to say that Patent Document 1 can realize a nanocomposite magnet with sufficiently enhanced magnetic properties.
  • Patent Document 1 optimization of the particle diameter of the hard magnetic particles and the distance between the hard magnetic particles in the state of the nanocomposite magnet in which the above-described magnetic particles are densified is not sufficiently performed. From this point of view as well, it is difficult to say that Patent Document 1 can realize a nanocomposite magnet with sufficiently enhanced magnetic properties.
  • the residual magnetic flux density and the coercive force are lowered due to the blocking of exchange coupling and the dispersion of the magnetic anisotropy, and sufficient magnet performance is not achieved at present.
  • the present invention has been made in view of the above problems, and provides a composite magnetic material having excellent magnetic properties, a magnet including the material, a motor using the magnet, and a method of manufacturing the composite magnetic material. With the goal.
  • a plurality of hard magnetic particles are dispersed in the form of islands in the soft magnetic phase, and the hard magnetic particles have an average particle diameter of 2 nm or more and 2 adjacent The average distance between the two hard magnetic particles is 100 nm or less.
  • the composite magnetic material according to another aspect of the present invention is characterized in that a plurality of hard magnetic particles are dispersed in the form of islands in the soft magnetic phase, and the soft magnetic phase is a continuous body.
  • a composite magnetic material excellent in magnetic properties can be obtained. Moreover, if the magnetic material is used, it is possible to obtain a magnet which is lightweight and has excellent magnetic characteristics. And, by using such a magnet, it is possible to obtain a lightweight motor with a short start-up time and low power consumption.
  • the schematic diagram which shows the structure of the composite magnetic material in connection with embodiment of this invention The schematic diagram which shows the structure and magnetization state at the time of using a ferrimagnetic body for hard magnetic particle.
  • the schematic diagram which shows the crystal orientation in embodiment of this invention The schematic diagram which shows the crystal orientation in a comparative example.
  • FIG. 6 is a graph showing the relationship between the volume fraction of the hard magnetic particles, the residual magnetic flux density Br, and the coercive force Hc according to the embodiment of the present invention.
  • FIG. 5 shows the relationship between weight and maximum energy product for a conventional magnet including embodiments of the present invention and a comparative example.
  • FIG. 9B is a schematic cross-sectional view of the moving unit (rotor) shown in FIG. 9A viewed from the direction orthogonal to the rotation axis.
  • Typical sectional drawing which shows an example of a structure of the motor which has a moving part (rotor) using the magnet of this invention.
  • FIG. 6 is a view showing time dependency of rotation speeds in Example 1 and Comparative Example 1;
  • FIG. 6 is a diagram showing time dependency of current consumption in Example 1 and Comparative Example 1.
  • the composite magnetic material of the present invention is a composite magnetic material in which a plurality of hard magnetic particles are dispersed in the form of islands in the soft magnetic phase.
  • the hard magnetic particles as one aspect of the present invention have an average particle diameter of 2 nm or more and exist in the soft magnetic phase at an average interparticle distance of 100 nm or less.
  • the definition of the size of the hard magnetic particles and the distance between the islands can be performed, for example, by deriving an optimum value from simulation results.
  • the soft magnetic phase is a continuum. In this composite magnetic material, it is preferable that substantially no nonmagnetic material such as silica or a portion blocking magnetic coupling such as an air gap exists between islands.
  • a plurality of hard magnetic particles are dispersed in the form of islands, and the magnetization easy axis of the hard magnetic particles is also easy to magnetize the soft magnetic phase It is preferred to be oriented with the axis.
  • the fact that it is a continuum means, for example, that the cross section of the composite magnetic material is observed with an electron microscope to suppress nonmagnetic materials, voids and the like, and the soft magnetic phase becomes continuous between at least two adjacent hard magnetic particles. Can be verified by confirming that Here, between two adjacent hard magnetic particles refers to the space between another hard magnetic particle present closest to one hard magnetic particle.
  • the magnet includes a so-called permanent magnet which contains a magnetic material and generates a magnetic field without applying energy from the outside such as a current.
  • the electromagnet is treated as one that generates a magnetic field by applying a current to a coil.
  • the composite magnetic material according to the present embodiment is fine in which two phases of a soft magnetic material phase (soft magnetic phase) and a hard magnetic material phase (hard magnetic particles) are adjacent to each other on the order of nm (nanometer). It has a mixed structure. By having such a fine mixed structure, it is possible to exert an exchange coupling action between the soft magnetic phase and the hard magnetic particles. When the exchange coupling action is acting between the soft magnetic phase and the hard magnetic particles, the magnetization reversal of the soft magnetic phase is suppressed by the magnetization of the exchange-coupled hard magnetic particles when a reverse magnetic field is applied.
  • the magnetization curve behaves as if it were a single-phase magnet as if it were a soft magnetic phase and hard magnetic particles due to the exchange coupling action. Therefore, a magnetization curve having a large saturation magnetic flux density of the soft magnetic phase and a large coercive force of the hard magnetic particles is realized. As a result, a high energy product BHmax can be realized.
  • a magnet which exerts an exchange coupling action between the soft magnetic phase and the hard magnetic phase as described above is known as a nanocomposite magnet or a replacement spring magnet.
  • FIG. 1 is a schematic view showing a structural example of a composite magnetic material according to the present embodiment.
  • the composite magnetic material 1 has a sea-island structure in which a plurality of hard magnetic particles 3 are dispersed like islands in the soft magnetic phase 2.
  • the soft magnetic phase of the composite magnetic material of the present embodiment is characterized in that it is not particulate but continuous. For this reason, a void does not occur in principle in the soft magnetic phase. As a result, there is substantially no part where the exchange coupling force between the soft magnetic phase and the hard magnetic particles is interrupted.
  • the plurality of hard magnetic particles are surrounded by the continuous soft magnetic phase, the exchange coupling between the soft magnetic phase and the hard magnetic particles effectively acts.
  • the exchange coupling force between the hard magnetic particles via the soft magnetic phase also works effectively. Furthermore, since the soft magnetic phase is a continuum, the structure is such that the axis of easy magnetization can be uniformly taken in the same direction. Therefore, the magnetization is easily oriented in one direction. Note that the description of one direction or the same direction indicates that the easy magnetization axis is not separated but is at an angle within a specific range, and all the easy magnetization axes are in the same direction. It is not a thing.
  • the ratio (square ratio) of the residual magnetization to the saturation magnetization in the residual magnetic flux density and the coercivity of the composite magnetic material 1 and the MH loop (M is magnetization, H is an external magnetic field) can be made high.
  • the residual magnetization is magnetization when the magnetic field is zero, and the saturation magnetization is magnetization saturated by applying a sufficient external magnetic field.
  • the squareness ratio can be 0.7 or more.
  • a high maximum energy product BHmax can be obtained when producing a magnet.
  • a void may be generated partially in the soft magnetic phase or between the soft magnetic phase and the hard magnetic particles due to manufacturing variations at the time of production.
  • the air gaps in the composite magnetic material 1 need to be suppressed to such an extent that the performance is not degraded.
  • the volume fraction of voids with respect to the total volume of the composite magnetic material is preferably 20% or less, more preferably 10% or less, and still more preferably 5% or less. In this way, the aforementioned exchange coupling can be achieved sufficiently effectively.
  • the composite magnetic material may partially include a nonmagnetic material that is neither a soft magnetic material nor a hard magnetic material.
  • the content of the nonmagnetic material needs to be suppressed to such an extent that the performance is not degraded.
  • the volume fraction of the nonmagnetic material relative to the total volume of the composite magnetic material is preferably 10% or less, more preferably 5% or less, and still more preferably 2% or less.
  • nonmagnetic materials include alloys containing iron group elements (Fe, Co, Ni) or materials other than oxides, and typically have oxides such as SiO 2, and magnetic properties such as Cu, Si, Al, etc. Metals, organic substances (such as resin materials), etc.
  • FIG. 2 shows how the hard magnetic particles 3a and the hard magnetic particles 3b are exchange-coupled through the soft magnetic phase 2 in the composite magnetic material 1 of the present embodiment.
  • the arrows indicate the respective magnetization directions
  • the hard magnetic particles 3a and the hard magnetic particles 3b indicate the magnetization directions of the difference among the magnetizations directed antiparallel to the ferrimagnetic material.
  • the soft magnetic phase 2 since the soft magnetic phase 2 has the hard magnetic particles 3 with high coercivity around the periphery, the exchange coupling force with the hard magnetic particles increases the magnetic field required for reversal, and the soft magnetic phase and the hard magnetic The particles reverse at the same time in high magnetic fields.
  • FIG. 3A shows the MH loop of the composite magnetic material of this embodiment.
  • FIG. 3B shows the structure and magnetization state of the composite magnetic material of the present embodiment in an external magnetic field of zero magnetic field.
  • the magnetization in the zero magnetic field that is, the remanent magnetization Mr, is such that the magnetization directions of the hard magnetic particles 3 and the soft magnetic phase 2 are aligned in one direction, and show substantially the same value as at saturation, and the squareness ratio is approximately one.
  • the hard magnetic particles of the present embodiment include a hard magnetic material that is a magnetic material having high coercivity. Specifically, it is preferable to include a magnetic material containing a ferrimagnetic substance or an antiferromagnetic substance as a main component. In the present specification, “mainly contained” means containing at least 50% by mass. Although these materials have high coercivity, their magnetization tends to be small. In addition, materials having high magnetocrystalline anisotropy are mentioned as candidates. As the hard magnetic material, a material having a coercive force of 500 Oe or more is preferable, and a material having 1 kOe or more is more preferable.
  • the material which is 5 kOe or more is further preferable, and the material which is 10 kOe or more is particularly preferable.
  • a magnetic material containing at least one element selected from the group consisting of Fe, Co, Mn, and Ni is preferably used, and it is more preferable to use a magnetic material containing Fe.
  • the hard magnetic material preferably contains substantially no rare earth element such as Nd, and the content of the Nd element is preferably 3% by mass or less.
  • iron oxides such as ⁇ -Fe 2 O 3 , ⁇ -Fe 2 O 3 , Fe 3 O 4 , and ferrite magnetic materials are used.
  • ⁇ -Fe 2 O 3 is more desirable because it has a particularly high coercivity at room temperature.
  • part of Fe atoms in ⁇ -Fe 2 O 3 may be substituted with another metal element.
  • part of Fe atoms in ⁇ -Fe 2 O 3 may be substituted by at least one element selected from the group consisting of Co, Ni, Al, and Ga.
  • the ferrite magnetic material is, for example, hexagonal ferrite AFe 12 O 19 .
  • A is an element containing, for example, at least one of Ba, Sr, and Pb. Or spinel ferrite BFe 2 O 4 .
  • B is an element containing, for example, at least one of Mn, Co, Ni, Cu, and Zn.
  • the hard magnetic particles may be a magnetic material whose magnetization is smaller than that of the soft magnetic phase and whose magnetization is zero such as an antiferromagnetic material.
  • the antiferromagnet include NiO, FeMn, MnO, CoO and the like, and NiO having a Neel temperature of room temperature or more is desirable.
  • the total magnetization of the composite magnetic material is the sum of the products of the respective magnetizations of the hard magnetic particles and the soft magnetic phase and the respective volume fractions. Therefore, it is preferable to use a ferrimagnetic material, and when hard magnetic particles having a small magnetization are used, the volume fraction thereof is preferably as small as possible to obtain a sufficient coercive force.
  • the particle diameter of the hard magnetic particles is made large to such an extent that the coercivity does not decrease, and made small to such an extent that the magnetization can be maintained.
  • the average particle diameter of the hard magnetic particles is preferably 2 nm or more, more preferably 5 nm or more, and still more preferably 10 nm or more.
  • the reason for setting the thickness to 5 nm or more is that the coercive force of the hard magnetic particles starts to fall rapidly as the particle diameter decreases from around 5 nm.
  • the reason why the thickness is 2 nm or more is that this is the limit for maintaining the magnetization.
  • the upper limit of the average particle diameter of the hard magnetic particles is not particularly limited, but is preferably 1000 nm or less, more preferably 500 nm or less, still more preferably 300 nm or less, and 200 nm or less Furthermore, it is preferable. In particular, 150 nm or less is preferable.
  • the width of the soft magnetic phase that is, the distance between two adjacent hard magnetic particles is preferably 2 nm or more on average.
  • the soft magnetic material and the hard magnetic material are preferably magnetically coupled by the exchange coupling action. Therefore, assuming that the distance at which the exchange coupling action works from the interface between the island and the sea (hereinafter referred to as "exchange coupling distance") is a, in composite magnetic material 1, the average distance d between two adjacent islands It is preferable that d satisfies d ⁇ 2a. That is, the average distance between two adjacent islands is preferably not more than twice the exchange coupling distance. Specifically, it is preferably 100 nm or less, more preferably 70 nm or less, still more preferably 50 nm or less, and particularly preferably 30 nm or less.
  • the optimum value of the particle diameter of the hard magnetic particles and the interparticle distance of the hard magnetic particles is taken as a parameter of the volume fraction of the hard magnetic particles (hard magnetic particles / (hard magnetic particles and soft magnetic phase)).
  • the figure which plotted is shown. According to FIG. 4, it is desirable to set the particle diameter and interparticle distance of the hard magnetic particles in accordance with the volume fraction of the hard magnetic particles.
  • the average particle diameter and the average interparticle distance of the hard magnetic particles can be obtained from an electron microscope image of a cross section of the composite magnetic material.
  • an electron microscope image (electron micrograph) of the cross section of the composite magnetic material is obtained using a scanning electron microscope (SEM), and the average of the hard magnetic particles is obtained by image processing based on the image.
  • SEM scanning electron microscope
  • the particle size and the average interparticle distance may be measured.
  • the above measurement may be performed for a plurality of fields of view to calculate the average particle diameter and the average interparticle distance, but if a statistically sufficient amount of particles appear in one field of view, the average particle size in one field of view The diameter and the average interparticle distance may be calculated.
  • the requirement that the soft magnetic phase is a continuum may be relaxed to some extent. That is, the present invention can be achieved as long as sufficient exchange coupling action is achieved between the soft magnetic phase and the hard magnetic particles and between two adjacent hard magnetic particles, even if some gaps etc. exist in the soft magnetic phase. In some cases, it is suitable as a composite magnetic material of On the contrary, if the soft magnetic phase is sufficiently continuous, the requirements of the particle diameter and interparticle distance of the hard magnetic particles may be relaxed to some extent. That is, even if the inter-particle distance of the hard magnetic particles is somewhat large, there are cases where it is suitable as the composite magnetic material of the present invention as long as sufficient exchange coupling action is achieved when the portion that blocks exchange coupling is sufficiently small.
  • the soft magnetic material is a material having a larger saturation magnetic flux density (saturation magnetization) than the hard magnetic material.
  • the soft magnetic phase preferably contains a ferromagnet as a main component.
  • the ferromagnet has a large saturation magnetization because there is no part where the magnetization is antiparallel inside the magnetic material.
  • the soft magnetic phase particularly preferably contains ⁇ -Fe as a main component, but is not limited thereto.
  • the soft magnetic material is preferably a material having a magnetization of 50 emu / g or more, more preferably a material having 100 emu / g or more, and still more preferably a material having 150 emu / g or more.
  • the soft magnetic material preferably contains a single metal of Fe or Co, or an alloy or nitride containing Fe or Co, and more preferably contains a single metal of Fe or an FeM alloy.
  • M represents at least one element selected from the group consisting of Co, Ni, Al, Ga, and Si, and the composition ratio of each element in the FeM alloy can be arbitrarily selected.
  • the soft magnetic material more preferably contains ⁇ -Fe ( ⁇ iron), and particularly preferably consists of ⁇ -Fe alone.
  • the soft magnetic material may not necessarily have crystallinity.
  • the single metal of Fe may be iron other than ⁇ -type.
  • Iron (Fe) changes into three forms depending on temperature, ⁇ -Fe ( ⁇ iron), ⁇ -Fe ( ⁇ iron), and ⁇ -Fe ( ⁇ iron).
  • ⁇ -Fe ( ⁇ -iron) exhibits magnetization at room temperature, so ⁇ -Fe ( ⁇ -iron) is preferably used.
  • a magnetic material containing iron nitride as a main component may be used as the soft magnetic material.
  • the soft magnetic material preferably contains substantially no rare earth element such as Nd, and the content of the Nd element is preferably 3% by mass or less.
  • the magnetization easy axis of the hard magnetic particles be oriented in one direction among the plurality of hard magnetic particles.
  • the magnetizations of the hard magnetic particles in the composite magnetic material can be aligned in one direction, and the coercive force of the composite magnetic material as a whole can be further increased.
  • the ratio (square ratio) of the saturation magnetization to the remanent magnetization of the MH loop can be increased, and a magnet using this composite magnetic material can have a high maximum energy product.
  • the magnetization easy axes of the hard magnetic particles be aligned in one direction among the plurality of hard magnetic particles, but they may be aligned to some extent even if they are not completely aligned.
  • the angle between the direction of the magnetization easy axis of the hard magnetic particles and the predetermined one direction is preferably 15 degrees or less for all of the plurality of hard magnetic particles, and is 10 degrees or less Is more preferable, and is more preferably 5 degrees or less.
  • the variation in the direction of the magnetization easy axis of the plurality of hard magnetic particles in the composite magnetic material is preferably within the range of 15 degrees or less.
  • the region in which the magnetization easy axis of the hard magnetic particles is oriented in one direction among the plurality of hard magnetic particles is preferably 70% or more by volume ratio with respect to the entire composite magnetic material.
  • this volume ratio can be acquired from the electron microscope image of the cross section of a composite magnetic material similarly to the measurement of the average particle diameter of hard magnetic particle, and the distance between average particles.
  • the magnetization easy axis of the soft magnetic phase also forms the sea and is oriented in one direction over a wide range surrounding a plurality of hard magnetic particles. It is particularly desirable to be oriented in one direction. Thereby, the magnetization of the soft magnetic material constituting the soft magnetic phase in the composite magnetic material can be aligned in one direction, and the saturation magnetic flux density (saturation magnetization) of the composite magnetic material as a whole can be further increased.
  • the orientation of the magnetization easy axis of the soft magnetic phase is also preferably aligned in one direction as in the case of the hard magnetic particles, but it may be aligned to some extent even if it is not completely aligned.
  • the angle between the direction of the magnetization easy axis of the soft magnetic phase and the predetermined one direction is preferably 15 degrees or less in the soft magnetic phase within the range including the plurality of hard magnetic particles, and 10 degrees It is more preferable that it is the following, and it is more preferable that it is 5 degrees or less.
  • the variation in the direction of the magnetization easy axis of the soft magnetic phase is preferably within the range of 15 degrees or less.
  • the orientation of the magnetization easy axis of the soft magnetic phase is preferably unidirectional in at least the entire soft magnetic phase existing between two adjacent hard magnetic particles.
  • the region in which the magnetization easy axis of the soft magnetic phase is oriented in one direction is preferably 70% or more by volume ratio with respect to the entire composite magnetic material.
  • this volume ratio can be acquired from the electron microscope image of the cross section of a composite magnetic material similarly to the measurement of the average particle diameter of hard magnetic particle, and the distance between average particles.
  • the direction of the magnetization easy axis of the soft magnetic phase is preferably aligned with the direction of the magnetization easy axis of the hard magnetic particles.
  • the magnetization easy axes of the two are preferably aligned in one direction, but as described above, it may be aligned to some extent.
  • the variation in the direction of the magnetization easy axis of the soft magnetic phase and the hard magnetic particles is preferably within the range of 15 degrees or less.
  • the region in which the magnetization easy axis of the soft magnetic phase and the hard magnetic particles is oriented in one direction is more preferably 70% or more by volume ratio with respect to the entire composite magnetic material. In addition, this volume ratio can be acquired from the electron microscope image of the cross section of a composite magnetic material similarly to the measurement of the average particle diameter of hard magnetic particle, and the distance between average particles.
  • FIGS. 5A and 5B schematically show the crystal structure and crystal orientation of at least one of the hard magnetic particles and the soft magnetic phase of the composite magnetic material of the present embodiment.
  • the square shown in FIGS. 5A and 5B shows the crystal structure in the case of using a body-centered cubic lattice of ⁇ -Fe as the soft magnetic phase, and the arrow shows the magnetization direction.
  • the soft magnetic phase can mediate the exchange force exerted from the hard magnetic particles, and it becomes easy for the hard magnetic particles to exchange-bond with each other.
  • FIG. 5B in the case where the crystal orientations are not aligned and are randomly arranged, it is difficult to exchange-bond hard magnetic particles through the soft magnetic phase, which is not suitable.
  • the c axis is the easy magnetization axis. It is desirable that the crystal direction in the c-axis direction be aligned in one direction by applying an external magnetic field or the like at the time of production of the composite magnetic material.
  • ⁇ -Fe When ⁇ -Fe is used as the soft magnetic phase, ⁇ -Fe is a crystal structure of a body-centered cubic lattice, and its easy axis of magnetization is the a-axis, b-axis or c-axis, and these should be aligned in one direction desirable. Furthermore, in order to mediate the exchange force that the soft magnetic phase works from the hard magnetic particles, it is desirable to align the easy magnetization axes of the hard magnetic particles and the soft magnetic phase. Therefore, it is desirable that the c-axis of ⁇ -Fe 2 O 3 and any one of the a-axis, b-axis, and c-axis of ⁇ -Fe be aligned in one direction.
  • Crystal orientation can be confirmed directly by transmission electron microscopy (TEM). Further, as a substitute method of TEM, estimation may be made from squareness ratio etc. obtained in the magnetization loop.
  • TEM transmission electron microscopy
  • the soft magnetic phase and the hard magnetic particles may either be in an amorphous state or in a crystalline state, but are preferably in a crystalline state. Since the soft magnetic phase and the hard magnetic particles are crystals themselves, the saturation magnetization of the composite magnetic material can be increased, and the direction of the magnetization easy axis can be easily aligned. Even when the soft magnetic phase and the hard magnetic particles are in an amorphous state, the magnetization easy axes of the soft magnetic phase and the hard magnetic particles are preferably oriented in one direction.
  • the composite magnetic material of the present invention is a mixture of hard magnetic particles and a soft magnetic phase, but the magnetic properties of the composite magnetic material depend on the mixing ratio of the hard magnetic particles and the soft magnetic phase, and the mixing ratio There is an optimal range for The optimum range was calculated as follows.
  • the anisotropic energy Kt of the composite magnetic material is the anisotropic energy Kh of the hard magnetic particles, the anisotropic energy Ks of the soft magnetic phase, the volume fraction Vh of the hard magnetic particles, the volume fraction Vs of the soft magnetic phase It is represented by following formula (2) using.
  • Hc 2 ⁇ Mt / Kt equation (3)
  • the magnetic flux density B (T) is represented by the following formula (4) using the magnetic field H (A / m) and the magnetization M (A / m).
  • ⁇ o is the permeability of vacuum.
  • B ⁇ o (H + M)
  • B ⁇ o H + I equation (5)
  • FIGS. 6A and 6B are diagrams showing the relationship between the mixing ratio of hard magnetic particles and soft magnetic phase, and the residual magnetic flux density Br and the coercive force Hc of the composite magnetic material and the maximum energy product BHmax in the composite magnetic material according to the present embodiment.
  • the horizontal axis indicates the volume fraction Vh / (Vs + Vh) of the hard magnetic particles, which is the mixing ratio of the hard magnetic material and the soft magnetic phase.
  • Vs represents the volume of the soft magnetic phase
  • Vh represents the volume of the hard magnetic particles.
  • the vertical axis represents the residual magnetic flux density Br and the coercivity Hc
  • FIG. 6B the vertical axis represents the maximum energy product BHmax.
  • FIGS. 6A and 6B are based on the calculation results of the hard magnetic material constituting the hard magnetic particles as ⁇ -Fe 2 O 3 and the soft magnetic material constituting the soft magnetic phase as ⁇ -Fe.
  • the saturation magnetization of the hard magnetic particles is 0.1 T
  • the anisotropy energy is 0.77 MJ / m 3
  • the saturation magnetization of the soft magnetic material is 2.15 T
  • the anisotropy energy is 0.05 MJ / m 3 .
  • FIG. 6A illustrates the dependence of the residual magnetic flux density and the coercive force on the volume fraction of the hard magnetic particles using these values and the equations (1) to (5).
  • FIG. 6B shows the maximum energy product BHmax based on the result of FIG. 6A.
  • the maximum energy product BHmax is a characteristic that indicates the performance of the magnet when the magnet is used as a motor or the like. Magnetization Mt when the external magnetic field is 0, that is, the residual magnetization and Mr, if the coercive force Hc is greater than Mr / 2 is a BHmax ⁇ o Mr 2/4, if the coercive force Hc Mr / 2 less than , BHmax was calculated as ⁇ o MrHc / 2.
  • the maximum energy product BHmax of the composite magnetic material shows a maximum at a predetermined mixing ratio, here 0.4.
  • the volume fraction of the hard magnetic particles is set to 0.2 or more and 0.6 or less, and to set BHmax to 250 kJ / m 3 or more. It is understood that the volume fraction of the hard magnetic particles is preferably 0.3 or more and 0.5 or less.
  • the specific gravity of the bonded magnet manufactured by mixing the magnetic material with the resin is lower than that of the sintered magnet.
  • the specific gravity of a neodymium bonded magnet is about 1/4 to 1/8 of that of a neodymium sintered magnet.
  • the specific gravity of the bonded magnet depends on the selection of the resin material and the molding method.
  • the maximum energy product BHmax of the bonded magnet of the present invention is preferably 21 kJ / m 3 or more, 31 kJ / m 3 or more, and more preferably 42 kJ / m 3 or more.
  • FIG. 6C shows the specific gravity of the composite magnetic material of the present embodiment on the vertical axis, with the volume fraction of hard magnetic particles on the horizontal axis.
  • the maximum energy is the largest when the volume fraction of hard magnetic particles is around 0.4, but the specific gravity of the composite magnetic material at this time is about 6.7 g / cm 3 (
  • the unit of density which is essentially dimensionless, is described with g / cm 3 which is a unit of density).
  • the specific gravity of the NdFeB magnet is about 7.6 g / cm 3
  • the specific gravity of the SmCo magnet is about 8.4 g / cm 3 .
  • the specific gravity of the magnet of the present invention is about 6.7 g / cm 3 when the volume fraction of hard magnetic particles is 0.4 in the representative example, the weight reduction by about 12% as compared with the NdFeB magnet, SmCo It is 20% lighter than a magnet.
  • the specific gravity of the resin is generally lower than that of the magnetic material, so the specific gravity of the bonded magnet is lower than that of a sintered magnet in which the magnetic material is solidified.
  • the specific gravity of the bond magnet is ⁇ b
  • the volume ratio of the magnetic material is Vm
  • the specific gravity of the magnetic material in a sintered state is ⁇ m
  • the specific gravity of the resin is pp
  • b b V m ⁇ m m + (1-V m) ⁇ (b Equation (6)
  • a composite magnetic material of ⁇ m is the invention of 6.7 g / cm 3
  • .rho.p is a resin of 1g / cm 3
  • Vm 0.7 ( volume ratio 7: 3) prepared by mixing with, Bond
  • the specific gravity bb of the magnet is 5 g / cm 3 .
  • the volume fraction of the hard magnetic material is 0.4, but in the case of 0.6, the specific gravity mm of the sintered magnet is 6.1 g / cm 3 .
  • Vm is changed in the range of 0.5 to 0.8 depending on the resin material, the molding method and the use application.
  • the volume fraction Vh of the hard magnetic material is 0.6 and Vm in the equation (6) is 0.5, 0.7, 0.8, the specific gravity of the bonded magnet is 3.6, 4.6, 5 respectively. It will be .1 g / cm 3 .
  • the specific gravity of the bonded magnet is 3.9, 5.0, 5 respectively. It will be .6 g / cm 3 .
  • the volume fraction Vh of the hard magnetic material is 0.2 and Vm of the equation (6) is 0.5, 0.7, 0.8, the specific gravity of the bonded magnet is 4.1, 5.4, 6 respectively It will be .0 g / cm 3 .
  • the typical performance of the magnet is the maximum energy product and specific gravity.
  • the volume ratio of the hard magnetic material is approximately the same as the maximum energy product at 0.3 and 0.5, but the specific gravity is 0.5 Is small.
  • the specific gravity of the bonded magnet of the present invention is desirably 5 g / cm 3 or less.
  • Magnetic powder resin mixture What mixed magnetic powder containing the composite magnetic material of this embodiment with a binder (binder) (hereinafter, referred to as a magnetic powder-resin mixture) can be used when producing a bonded magnet.
  • a binder resin materials such as thermoplastic resin and thermosetting resin, or low melting metals such as Al, Pb, Sn, Zn, Mg, or alloys containing these low melting metals can be used.
  • the thermoplastic resin is made of nylon, polyethylene or EVA (ethylene-vinyl acetate copolymer) and the like, and the thermosetting resin contains epoxy resin, melamine resin, phenol resin and the like.
  • the composite magnetic material according to the present embodiment can be formed into a desired shape to be a nanocomposite magnet.
  • the nanocomposite magnet according to the present embodiment contains the above-described composite magnetic material.
  • the nanocomposite magnet according to the present embodiment may be a sintered magnet or a bonded magnet as described below.
  • Sintered Magnet A sintered magnet can be obtained by forming the composite magnetic material according to the present embodiment into a desired shape, and heat treating the resulting molded body in an inert atmosphere or under vacuum.
  • a sintered magnet can also be obtained by sintering a compact by plasma activated sintering (PAS) or spark plasma sintering (SPS). Also, by molding in a magnetic field, an anisotropic sintered magnet can be obtained.
  • PAS plasma activated sintering
  • SPS spark plasma sintering
  • Bonded magnet The desired magnetization of a molded product obtained by forming the magnetic powder-resin mixture into a desired shape by injection molding, compression molding or extrusion using a molding die in the same manner as known plastic molding etc.
  • a bonded magnet is obtained by magnetizing the pattern.
  • the magnetization pattern may be simultaneously magnetized at the time of molding. Also, by molding the composite magnetic material in a magnetic field, an anisotropic bonded magnet can be obtained.
  • a maximum energy product is 170kJ / m 3 or more, more preferably 200 kJ / m 3 or more, and still more preferably 250 kJ / m 3 or more.
  • the volume fraction of the hard magnetic material is preferably 0.18 or more and 0.60 or less, and more preferably 0.30 or more and 0.50 or less.
  • FIG. 7A is a view showing the relationship between the weight of the magnet and the maximum energy BHE regarding the magnet example according to the present embodiment and the neodymium bonded magnet as the comparative example.
  • the maximum energy BHE is a value defined such that the unit is energy by multiplying the maximum energy product BHmax by the volume of the magnet.
  • neodymium bonded magnets are produced by mixing resin with neodymium magnetic powder at the same weight ratio.
  • the maximum energy product BHmax is 70 kJ / m 3 in any of the magnets.
  • the weight can be reduced by about 12% with respect to the neodymium bonded magnet with the same performance (same BHE).
  • FIG. 7B is a combination of the ferrite sintered magnet and the ferrite bond magnet in the two examples shown in FIG. 7A.
  • Those ferrite sintered magnet maximum energy product BHmax of characteristics of 28kJ / m 3 a ferrite bond magnet is what BHmax of characteristics of 10 kJ / m 3, was used as a representative example of each magnet. From FIG. 7B, according to the present embodiment, it can be understood that the weight can be further reduced with the same performance (the same BHE) as compared to the ferrite magnet.
  • the maximum energy product BHmax is the highest, the coercivity Hc is equal to Mr / 2, and the characteristic of the magnetic material is most effectively utilized for the magnetic characteristic. This state is the case where the maximum energy product BHmax in FIG. 6B is the highest and the volume fraction of the hard magnetic material is around 0.4.
  • the composite magnetic material according to the present embodiment When the composite magnetic material according to the present embodiment is sintered as magnetic powder and used as a magnet, high residual magnetization (residual magnetic flux density) and high coercivity can be obtained without using a rare earth element, and the maximum energy product BHmax is high. You can get a magnet. Furthermore, by using the magnet according to the present embodiment, a motor with low cost and high performance (for example, high torque) can be obtained. Further, as described above, since the weight of the magnet can be reduced while having the same performance as the neodymium bonded magnet, the weight of the motor can be reduced. In addition, in the motor in which the magnet is mounted on the rotating portion, the weight of the rotating portion is reduced, so that there is an advantage that power consumption can be reduced.
  • FIGS. 9A and 9B are diagrams showing an example of a moving part (rotor) provided with a magnet manufactured using the composite magnetic material of the present invention.
  • the moving unit (rotor) 4 is configured such that the magnet 5 and the yoke 6 are connected to a shaft 7 which is a central axis, via a lid 8.
  • FIG. 9A is a view as viewed from the top surface (rotational axis direction)
  • FIG. 9B is a view as viewed from a side surface (direction orthogonal to the rotation axis).
  • FIG. 10 is a view showing an example of a motor using the moving unit (rotor) 4.
  • the motor 9 includes an electromagnet 10 including a coil provided to the cover 11 and a moving unit (rotor) 4.
  • the motor 9 detects the magnetic pole of the magnet 5 by a Hall IC (not shown), and causes the moving unit (rotor) 1 to rotate by causing a current to flow through the electromagnet 10 to generate a magnetic field according to
  • the motor shown in FIG. 10 is a kind of what is called a brushless motor, and has a magnet in its rotating part.
  • the brushless motor in which the rotating part is inside the electromagnet is an inner rotor type brushless motor, and the brushless motor in which the rotating part is outside the electromagnet is an outer rotor type brushless motor.
  • the magnet of the present invention is also applicable to an outer rotor type brushless motor.
  • the magnet of this invention is not limited to a rotor.
  • the moving unit may not be rotated, but may be, for example, moved to the left, right, up and down, or on the circumference.
  • the magnets on the electromagnets may be moved by arranging a plurality of electromagnets in a row and changing the direction of the current of the electromagnets.
  • Second Embodiment 11A to 11C show the time t response of the number of revolutions RPM of the motor. It is a drive sequence which controls the voltage and current of the coil of a motor so that it may become a response like FIG. 11A.
  • the drive sequence is set to a sequencer that drives the motor.
  • the form provided with such a sequencer and a motor is called a motor unit.
  • the rotation speed increases with the start of driving and reaches the specified rotation speed Rp at the rise time (startup time) t1.
  • the state of the rotation speed Rp is maintained for t2 and the rotation speed becomes zero at the fall time t3 and stops. .
  • FIG. 11B is a case where the period t2 of holding the specified rotational speed Rp in FIG. 11A becomes zero and the start and stop are repeated.
  • FIG. 11C shows a case where, in addition to the period t2 for holding the specified rotational speed Rp being zero, after the rotational speed Rp of the forward rotation is reached, reverse rotation is performed to make the rotational speed ⁇ Rp.
  • the ratio of the acceleration rotation period and the fall time in one cycle time is 2t1 / (t2 + 2t1).
  • t2 2t1
  • one cycle time is 1 ⁇ 2.
  • one cycle time (t1 + t3) is 2t1 when t1 and t3 are the same.
  • t1 1/2
  • one cycle time is 1/4.
  • FIG. 11C when one cycle time (2t1 + 2t3) is the same as t1 and t3, when t1 is 1 ⁇ 2, one cycle time is 1 ⁇ 8.
  • the motor of the present invention is driven at a constant speed to rotate at a constant speed for a period of twice or less of a period for accelerating rotation, and further to start rotation to a constant rotation speed.
  • the tact time can be shortened and the effect becomes remarkable.
  • a crusher that crushes the material to be crushed with a bladed blade connected to a motor as a device having a mechanical unit that operates repeatedly in reverse rotation, and changes the rotation direction of the stirring rod when stirring the mixture
  • a stirring device to be carried out an assembly device in which parts are rotated and attached in one direction and then assembled in the reverse direction, and the like, such as a device requiring high torque and short start and reverse time are exemplified.
  • the magnet of the present invention is effective in that the weight of the motor itself can be reduced even when provided in the fixed portion (stator portion) in addition to the moving portion (rotor portion) of the motor.
  • FIG. 13 shows the weight ratio of magnets in the motor and the weight reduction rate of the motor itself.
  • the value R ⁇ ⁇ of Equation 6 is calculated for each of the cases of 10%, 12%, and 14%.
  • these manufacture composite magnetic materials by setting the volume fraction of hard magnetic particles to 0.45, 0.40, 0.35, and the specific gravity of the magnet of the present invention is 6.8 g / cm.
  • the motor weight reduction rate comparing the motor using the neodymium magnet and the motor using the magnet of the present invention is preferably 1% or more, preferably 2% or more, and more preferably 4% or more. Therefore, from FIG. 13, the ratio of the magnet of the present invention in the motor is preferably about 8% or more, preferably about 15% or more, and more preferably about 20% or more.
  • an airplane gear has been utilized as a device equipped with a plurality of motors for rotating a propeller.
  • a typical example is an aeroplane called a drone, which mounts four to eight or more motors in order to rotate a propeller.
  • drone or drone mounts four to eight or more motors in order to rotate a propeller.
  • a motor as light as possible having characteristics (torque, rotational speed, etc.) necessary for propeller rotation for flight is required.
  • the motor of the present invention is effective for this purpose.
  • drone As a configuration example of drone, 4 units of 65g motor, frame of 120g (including propeller), flight controller of 50g, camera of 10g, camera control unit of 30g, battery of 170g, total drone 640g It becomes.
  • the weight reduction rate of the motor is 4%
  • the total weight is about 630 g.
  • the entire drone will be about 10g lighter, so one more camera can be added.
  • drone when using one 65g motor, 8 frames of 120g (including propeller), 50g flight controller, 10g camera, 30g camera control unit, 170g battery, drone It is 900g in total.
  • the weight reduction rate of the motor is 2%
  • the total weight is about 890 g.
  • the entire drone is reduced in weight by about 10g, and another camera can be added.
  • the weight reduction rate of the motor is 4%
  • the total weight is about 880 g.
  • the overall weight of the drone is reduced by about 20g, so two more cameras can be added.
  • FIG. 8A shows an MH loop showing the relationship between the magnetization M and the magnetic field H when the magnet is manufactured to have a core-shell structure as a comparative example.
  • FIG. 8B shows the structure and magnetization state of the magnet material 10 containing the core-shell type magnetic material 11 of the comparative example in a zero magnetic field.
  • the core-shell magnetic material 11 has a core 11 b containing a hard magnetic material and a shell 11 a containing a soft magnetic material.
  • each core-shell structure tends to be randomly oriented in a zero magnetic field, so that the residual magnetization Mr becomes significantly smaller than the saturation magnetization, and the squareness ratio (ratio of residual magnetization to saturation magnetization) is small. Become.
  • Step of Uniformly Dispersing Hard Magnetic Particles in Solution This step is a step of uniformly dispersing hard magnetic particles in the state of a composite magnetic material.
  • the hard magnetic particles are placed in an aqueous solution.
  • glass beads are added and stirred by a planetary bead mill.
  • the particle size distribution is made close to the original particles (primary particles).
  • it is filtered through a filter to remove large particle size and make the particle size uniform.
  • the hard magnetic particles are dispersed in a solution containing ions containing an element to prepare a dispersion.
  • the soft magnetic material in the composite magnetic material contains a transition metal element, and in this step, a solution of ions containing the transition metal element is prepared.
  • the transition metal element is preferably at least one selected from the group consisting of Fe, Co, Mn, and Ni as described above.
  • aqueous solution such as iron chloride (II), iron chloride (III), iron sulfate (III), iron nitrate (III), is used suitably, for example.
  • the ions may be contained in the aqueous solution in which the hard magnetic particles are dispersed in advance in the first step as described above, or the hard magnetic particles may be dispersed in the solution containing the ions as described above. You may
  • step of adding an additive to the dispersion to precipitate particles containing the transition metal element the additive is added to the dispersion to cause the ions to react and transition metal element. Precipitate particles or precipitates contained.
  • the ions are present around the hard magnetic particles in the dispersion so as to surround the hard magnetic particles. . Ions react in this state, and particles or precipitates containing transition metal elements in the ions precipitate, so that particles or precipitates precipitate in a form surrounding the hard magnetic particles.
  • a mixture having a structure in which a plurality of hard magnetic particles are dispersed like islands in a precipitate group containing a transition metal element is obtained.
  • the dispersibility of the hard magnetic particles in the mixture can be enhanced, and the distance between the hard magnetic particles can be adjusted.
  • a reducing agent or a basic solution As the additive, it is preferable to use a reducing agent or a basic solution.
  • a reducing agent as an additive, ions including a transition metal element can be reduced to reduce the valence of the transition metal element and precipitate.
  • the reducing agent it is possible to directly deposit a single metal or alloy containing a transition metal element.
  • NaBH 4 as a reducing agent to a dispersion in a state where hard magnetic particles (such as ⁇ -Fe 2 O 3 ) are dispersed in an aqueous iron (II) chloride solution
  • iron chloride (II) can be added Can be reduced to iron to precipitate ⁇ -Fe fine particles around the hard magnetic particles.
  • the particle size can be changed under the addition conditions of the reducing agent. For example, when the droplet size of the reducing agent to be added is reduced, the region which causes a reduction reaction can be miniaturized, and the ⁇ -Fe particles can be reduced in size.
  • a reducing agent for example, when using an iron (II) chloride solution
  • the particle size can be changed even if the temperature is changed, and by increasing the solution temperature, the size of ⁇ -Fe particles can be increased.
  • the particle size can be reduced.
  • either the reduction of the reducing agent or the increase in the temperature of the iron ion solution may be selected, or both may be selected simultaneously, and the size of the necessary ⁇ -Fe particles may be selected. It can be selected according to
  • the particle size can also be changed by the solvent condition of the solution of the ion containing the transition metal element.
  • the solvent condition of the solution of the ion containing the transition metal element For example, after dissolving iron (II) chloride not in water but in methanol as an organic solvent, the reduction in particle size of ⁇ -Fe particles can be achieved by adding a reducing agent. The reason why such micronization can be achieved is not clear, but it is believed that the micronization can be achieved because the organic solvent has the effect of reducing the surface energy of the ⁇ -Fe particles during precipitation.
  • ⁇ -Fe particles that is, as an organic solvent having good wettability with ⁇ -Fe, for example, methanol, ethanol, 2-propanol, acetone, dimethyl sulfoxide, tetrahydrofuran, ethylene glycol, diethylene glycol Etc.
  • organic solvent having good wettability with ⁇ -Fe for example, methanol, ethanol, 2-propanol, acetone, dimethyl sulfoxide, tetrahydrofuran, ethylene glycol, diethylene glycol Etc.
  • solvents such as acetone and dimethyl sulfoxide are not efficient because they have the property of being partially reduced by the reducing agent.
  • the organic solvent in the solvent of the solution of the transition metal element in the preparation of the composite magnetic material, it is preferable to use the organic solvent as the solvent for dissolving the hard magnetic particles and the solvent for dissolving the reducing agent. It is preferable to carry out dehydration treatment or dissolved oxygen removal treatment in advance.
  • the soft magnetic particles are aggregated to form ⁇ -Fe 2 O 3 particles.
  • the particle size of the soft magnetic particles tends to be large beyond the range where the exchange coupling acts.
  • This method can avoid that.
  • the reduction to iron from a dispersion in which iron is dissolved as ions may be directly performed by a reducing agent, but particles or precipitates are precipitated by adjusting the pH of the dispersion by adding a basic solution as an additive. And then reduce the particles or precipitates.
  • a basic solution typically ammonia water
  • the pH of the dispersion is changed to react the above-mentioned ions with, for example, hydroxide ions, and a precursor containing a transition metal element Can be deposited.
  • a basic solution typically ammonia water
  • adding aqueous ammonia allows iron hydroxide (Fe (OH) 3 etc.), triiron tetraoxide (Fe 3 O 4 ) etc. Can be deposited.
  • ammonia water is added to a dispersion containing an aqueous solution of iron (III) nitrate, and iron hydroxide (Fe (OH) 3 ) is precipitated to surround the hard magnetic particles.
  • iron hydroxide (Fe (OH) 3 ) can be reduced to iron (such as ⁇ -Fe).
  • ammonia water may be added to iron (II) chloride solution to precipitate triiron tetraoxide (Fe 3 O 4 ), which may be reduced to iron by heat treatment in a reducing atmosphere. Note that this heat treatment may also serve as a heat treatment step described later.
  • heat treatment is applied to the powder of the obtained mixture to convert the soft magnetic material into a continuous body.
  • the soft magnetic material obtained by the above-described steps is in the form of particles, or contains voids or the like. Therefore, heat treatment is performed in this step to melt or sinter the particles, and the soft magnetic material is formed into a continuous body to form a sea-like soft magnetic phase.
  • heat treatment may be performed after the mixture is compression molded, or compression molding may be performed after the heat treatment, or heat treatment may be performed during compression molding.
  • the heat treatment is preferably performed under any of an inert gas atmosphere, a reducing atmosphere, and a vacuum, particularly when the soft magnetic material is a material that is easily oxidized such as iron.
  • Plasma activated sintering PAS
  • SPS spark plasma sintering
  • PECS Pulse electric current sintering
  • cemented carbide metal represented by tungsten carbide and graphitic carbon if roughly classified, followability of sintering set temperature due to high electric resistance Graphite carbon is preferable in terms of cost and cost.
  • cemented carbide metal represented by tungsten carbide and graphitic carbon if roughly classified, followability of sintering set temperature due to high electric resistance Graphite carbon is preferable in terms of cost and cost.
  • 10 MPa to 500 MPa is preferable. If the compression molding pressure during sintering is lower than 10 MPa, the contact between the sample and the die set may be insufficient, and the entire compact is not heated by the local energization.
  • the mold may be damaged. More preferably, 20 MPa to 200 MPa is preferable.
  • the sintering temperature during compression molding is preferably 60 ° C to 250 ° C, and more preferably selected from 70 ° C to 150 ° C. When the sintering temperature during compression molding is less than 60 ° C., the soft magnetic material is less likely to become a continuous body, and when it is higher than 250 ° C., the magnetic properties of ⁇ -Fe 2 O 3 as a hard magnetic material deteriorate.
  • the "sintering temperature” referred to here is a monitoring temperature by a thermocouple inserted in the mold, and strictly different from the temperature of the sample itself.
  • the temperature rising rate is preferably selected from the range of 10 ° C./minute to 200 ° C./minute, and more preferably selected from the range of 20 ° C./minute to 100 ° C./minute. If the temperature rise rate is less than 10 ° C./min, the time for which ⁇ -Fe 2 O 3 as a hard magnetic material is exposed to high temperature is not preferable because the time is increased, and the temperature rise rate is more than 200 ° C./min If it is fast, soaking of the sample may be insufficient, which may induce sintering temperature unevenness.
  • the holding time at the sintering reaching temperature is difficult to say in general because it is influenced by the sintering temperature and the compression molding pressure, but it is preferably 0 minutes or more and 10 minutes or less, more preferably 0 minutes or more and 3 minutes or less preferable.
  • 0 minutes means that cooling starts immediately upon reaching the sintering temperature without substantially providing a holding time.
  • ⁇ -Fe 2 O 3 When ⁇ -Fe 2 O 3 is used as a hard magnetic material, nanoparticles of iron oxide or iron hydroxide are formed using a chemical process in solution, and the generated nanoparticles are heated in an oxidizing atmosphere.
  • ⁇ -Fe 2 O 3 particles can be synthesized relatively easily.
  • a reverse micelle method or a sol-gel method using iron nitrate hydrate as a starting material can be used.
  • a step of synthesizing the ⁇ -Fe 2 O 3 particles may be added a step of coating the surface of the ⁇ -Fe 2 O 3 particles with silica (SiO 2).
  • Example 1 In Example 1, ⁇ -Fe 2 O 3 particles are dispersed in a solution in which iron chloride (II) hydrate (FeCl 2 .4H 2 O) is dissolved, and a reducing agent NaBH 4 is added to add Fe. By depositing, a composite magnetic material including a sea-island structure in which Fe was in the sea and ⁇ -Fe 2 O 3 particles became islands was produced.
  • iron chloride (II) hydrate FeCl 2 .4H 2 O
  • ⁇ -Fe 2 O 3 particles The hard magnetic material ⁇ -Fe 2 O 3 particles were produced in the following procedure.
  • Two types of micelle solutions (micellar solution (A) and micelle solution (B)) were prepared as follows.
  • TEOS tetraethoxysilane
  • the obtained ⁇ -Fe 2 O 3 particles were dispersed in an aqueous solution.
  • the average particle size is coarsened with a roll mill to 64 nm, further finely divided with a homogenizer to an average particle size of 42 nm, and filtered through a filter to obtain an average particle size of about It was 36 nm.
  • the particle size of ⁇ -Fe in the obtained composite particles was observed with a scanning electron microscope (SEM), the particle size of ⁇ -Fe was 50 nm to 70 nm. The observation was performed with a magnification of 50,000 to 100,000. The magnification is the same in the following examples.
  • Magnetic characterization of composite magnetic materials The magnetic properties (residual magnetization and coercivity) of the composite magnetic material were evaluated. The results are shown in Table 1 below. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
  • Example 2 In Example 2, ammonia water is added to a dispersion in which ⁇ -Fe 2 O 3 particles are dispersed in a solution in which iron nitrate hydrate (Fe (NO 3 ) 3 .9H 2 O) is dissolved, and the pH is determined by It was changed to precipitate Fe (OH) 3 particles. This formed composite particles of Fe (OH) 3 and ⁇ -Fe 2 O 3 particles. Thereafter, Fe (OH) 3 was reduced with hydrogen gas to form Fe, thereby producing a composite magnetic material including a sea-island structure in which Fe is in the sea and ⁇ -Fe 2 O 3 particles are islands.
  • Fe (OH) 3 iron nitrate hydrate
  • Magnetic characterization of composite magnetic materials The magnetic properties (residual magnetization and coercivity) of the obtained composite magnetic material were evaluated using a vibrating sample magnetometer. The results are shown in Table 1. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
  • Example 3 In Example 3, ammonia water is added to a dispersion in which ⁇ -Fe 2 O 3 particles are dispersed in a solution in which iron (II) chloride hydrate (FeCl 2 ⁇ 4H 2 O) is dissolved, and the pH is changed. by by depositing a Fe 3 O 4 particles to form composite particles of Fe 3 O 4 with ⁇ -Fe 2 O 3 particles. Thereafter, Fe 3 O 4 was reduced with hydrogen gas to form Fe, thereby producing a composite magnetic material including a sea-island structure in which Fe was in the sea and ⁇ -Fe 2 O 3 particles became islands.
  • iron (II) chloride hydrate FeCl 2 ⁇ 4H 2 O
  • Precipitate of precursor particles While stirring the dispersion, 75 mL of 28% aqueous ammonia was added to precipitate Fe 3 O 4 as precursor particles, thereby forming composite particles with ⁇ -Fe 2 O 3 particles.
  • the particle diameter of the Fe 3 O 4 particles in the obtained composite particles was observed with a scanning electron microscope (SEM) and found to be particles of 50 nm to 80 nm.
  • Magnetic characterization of composite magnetic materials The magnetic properties (residual magnetization and coercivity) of the obtained composite magnetic material were evaluated using a vibrating sample magnetometer. The results are shown in Table 1. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
  • Example 4 In Example 4, ammonia water is added to a dispersion solution in which ⁇ -Fe 2 O 3 particles are dispersed in a solution in which iron chloride (II) hydrate (FeCl 2 .4H 2 O) is dissolved as in Example 3. The pH was changed by addition to precipitate Fe 3 O 4 particles. This formed composite particles of Fe 3 O 4 and ⁇ -Fe 2 O 3 particles. Thereafter, Fe 3 O 4 was reduced with hydrogen gas to form Fe, thereby producing a composite magnetic material including a sea-island structure in which Fe is an island and ⁇ -Fe 2 O 3 particles are an island. In Example 4, compared with Example 3, the particle size of Fe 3 O 4 particles to be precipitated was made smaller to prepare a magnetic material.
  • iron chloride (II) hydrate FeCl 2 .4H 2 O
  • Precipitate of precursor particles While stirring the dispersion, 75 mL of 28% aqueous ammonia was added to precipitate Fe 3 O 4 as precursor particles, thereby forming composite particles with ⁇ -Fe 2 O 3 particles.
  • the particle diameter of the Fe 3 O 4 particles in the obtained composite particles was observed with a scanning electron microscope (SEM), and it was particles of 10 nm to 30 nm.
  • Magnetic characterization of composite magnetic materials The magnetic properties (residual magnetization and coercivity) of the obtained composite magnetic material were evaluated using a vibrating sample magnetometer. The results are shown in Table 1. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
  • Example 5 A sea-island structure in which ⁇ -Fe is a sea and ⁇ -Fe 2 O 3 particles are an island by the same method as in Example 1 except that an external magnetic field of 20 kOe is applied when producing a molded body in Example 1 Nanocomposite magnetic particle materials were produced.
  • the crystal structure and the crystallographic orientation axis were confirmed by XRD and TEM.
  • the crystal structure of ⁇ -Fe 2 O 3 is a cuboid system (Pna 21), and the lattice constant is 5.1 ⁇ for the a axis and 8. It was 7 angstrom and c axis was 9.4 angstrom.
  • the c axis which is the easy axis of magnetization, had a region of ⁇ 8 degrees or less at 80% or more in volume fraction.
  • the crystal structure of ⁇ -Fe is a body-centered cubic structure, the lattice constant is about 2.9 angstroms, and the a-axis (the b-axis and c-axis are the same as the easy axis) is ⁇ 9% or less However, the volume fraction was over 80%.
  • the angle between the easy axis of ⁇ -Fe 2 O 3 and the easy axis of ⁇ -Fe was about ⁇ 6 degrees or less.
  • the magnetic properties (residual magnetization and coercivity) of the composite magnetic material were evaluated using a vibrating sample magnetometer. The results are shown in Table 1. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
  • Example 6 A composite magnetic material having a diameter of 10 mm was produced in the same manner as in Example 1 except that the pressure was changed from 10 MPa to a pressure of 50 MPa when producing a molded body with a pressure molding machine in Example 1.
  • the porosity of the composite magnetic material was measured and found to be 7% or less.
  • the specific gravity is calculated from the buoyancy received by applying the resin on the surface and dipping in pure water after polishing the surface of the solidified body with emery paper and bubbling (Archimedes) And expressed as a ratio to the theoretical specific gravity.
  • the magnetic properties (residual magnetization and coercivity) of the composite magnetic material were evaluated. The results are shown in Table 1. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
  • Example 7 Similarly to the method described in Example 1, ⁇ -Fe 2 O 3 particles are dispersed in a solution in which iron chloride (II) hydrate (FeCl 2 ⁇ 4H 2 O) is dissolved, and NaBH 4 as a reducing agent is dispersed. Was added to precipitate Fe, thereby producing a composite magnetic material including a sea-island structure in which Fe is in the sea and ⁇ -Fe 2 O 3 particles are islands. However, in order to narrow the distance between islands containing ⁇ -Fe 2 O 3 , the particles were prepared under the condition of reducing the particle size of precipitated Fe. The ⁇ -Fe 2 O 3 particles were produced under the same conditions as in Example 1.
  • Magnetic characterization of composite magnetic materials The magnetic properties (residual magnetization and coercivity) of the composite magnetic material were evaluated. The results are shown in Table 1 below. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
  • Example 8 The present example is the same as the method shown in Example 1 except that the step of preparing the dispersion solution and the step of depositing the Fe particles by reduction are the same as in the method described in Example 1, except that Fe is sea and ⁇ -Fe 2 O 3 particles are islands. A composite magnetic material containing a sea-island structure was produced. However, in order to narrow the distance of the island containing ⁇ -Fe 2 O 3 , it was manufactured under the condition of reducing the particle size of Fe to be reduced. The ⁇ -Fe 2 O 3 particles were produced under the same conditions as in Example 1.
  • the ⁇ -Fe 2 O 3 particles were produced under the same conditions as in Example 1 except that they were dispersed in dehydrated methanol. In this state, since the particle size increases due to aggregation, the average particle size is coarsened with a roll mill to 64 nm, further finely divided with a homogenizer to an average particle size of 42 nm, and filtered through a filter to obtain an average particle size of about It was 36 nm.
  • Magnetic of composite magnetic material The magnetic properties (residual magnetization and coercivity) of the composite magnetic material were evaluated. The results are shown in Table 1 below. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
  • Example 9 Similarly to the method described in Example 1, ⁇ -Fe 2 O 3 particles are dispersed in a solution in which iron chloride (II) hydrate (FeCl 2 ⁇ 4H 2 O) is dissolved, and NaBH 4 as a reducing agent is dispersed. Was added to precipitate Fe, thereby producing a composite magnetic material including a sea-island structure in which Fe is in the sea and ⁇ -Fe 2 O 3 particles are islands. However, in order to narrow the distance of the island containing ⁇ -Fe 2 O 3 , it was manufactured under the condition of reducing the particle size of Fe to be reduced. The ⁇ -Fe 2 O 3 particles were produced under the same conditions as in Example 1. The present embodiment differs from the eighth embodiment in that pulse current sintering is performed in the drying and heat treatment steps.
  • II iron chloride
  • FeCl 2 ⁇ 4H 2 O FeCl 2 ⁇ 4H 2 O
  • the ⁇ -Fe 2 O 3 particles were produced under the same conditions as in Example 1 except that they were dispersed in dehydrated methanol. In this state, since the particle size increases due to aggregation, the average particle size is coarsened with a roll mill to 64 nm, further finely divided with a homogenizer to an average particle size of 42 nm, and filtered through a filter to obtain an average particle size of about It was 36 nm.
  • methanol was evaporated from a methanol slurry containing ⁇ -Fe 2 O 3 particles and ⁇ -Fe particles to obtain a composite magnetic material powder.
  • 0.6 g of the composite magnetic material powder was weighed and filled in a graphite die set with an inner diameter of 10 mm. Then, it was set in a pulse current sintering apparatus (LABOX-650F: manufactured by Sinterland Co., Ltd.) equipped with a pressing mechanism without exposure to the atmosphere.
  • LABOX-650F manufactured by Sinterland Co., Ltd.
  • a compressive pressure of 60 MPa was applied to the composite magnetic material powder, and the powder was immediately unloaded.
  • a compression pressure of 60 MPa was applied again, and while maintaining this pressure, the temperature was raised from room temperature to 90 ° C. at a heating rate of 50 ° C./min, and cooling was performed immediately without holding when reaching 90 ° C. After confirming cooling to room temperature, the pressure was returned to atmospheric pressure, and the die set was taken out.
  • Magnetic characterization of composite magnetic materials The magnetic properties (residual magnetization and coercivity) of the composite magnetic material were evaluated. The results are shown in Table 1 below. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
  • Comparative Example 1 In Comparative Example 1, composite magnetic particles containing ⁇ -Fe particles and ⁇ -Fe 2 O 3 particles are produced by respectively preparing ⁇ -Fe nanoparticles and ⁇ -Fe 2 O 3 particles and mixing them and heat treating them. The material was made.
  • the soft magnetic material ⁇ -Fe nanoparticles were produced by the following procedure. First, 6 g of iron nitrate hydrate (Fe (NO 3 ) 3 .9H 2 O) was weighed and dissolved in 75 mL of pure water to obtain an iron nitrate aqueous solution. While stirring 75 mL of 28% ammonia water, an aqueous iron nitrate solution was added to the ammonia water to precipitate iron hydroxide (Fe (OH) 3 ) as precursor particles. The precipitated iron hydroxide was recovered by filter filtration, thoroughly washed with pure water, and then vacuum dried to obtain iron hydroxide nanoparticles. As a result of measuring the particle size of the obtained iron hydroxide nanoparticles by dynamic light scattering (DLS), the volume-based average particle size was 8 nm.
  • DLS dynamic light scattering
  • the obtained iron hydroxide nanoparticles were put into an alumina crucible, and the iron hydroxide nanoparticles were heat-treated in a reducing atmosphere to obtain ⁇ -Fe nanoparticles.
  • a mixed gas of 2% hydrogen and 98% nitrogen was used as an atmosphere gas in the heat treatment, and the flow rate of the mixed gas was set to 300 sccm.
  • the temperature during the heat treatment was 500 ° C., held at 500 ° C. for 5 hours, and cooled to room temperature.
  • the volume-based average particle size was 25 nm.
  • Magnetic characterization of composite magnetic materials The magnetic properties (residual magnetization and coercivity) of the obtained composite magnetic material were evaluated using a vibrating sample magnetometer. The results are shown in Table 1. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
  • Comparative Example 2 In Comparative Example 2, ⁇ -Fe 2 O 3 particles are produced by the same method as Comparative Example 1, and the produced ⁇ -Fe 2 O 3 particles are subjected to reduction treatment to obtain a core of ⁇ -Fe 2 O 3 and ⁇ A composite magnetic material containing a -Fe shell was prepared.
  • Magnetic characterization of composite magnetic materials The magnetic properties (residual magnetization and coercivity) of the obtained composite magnetic material were evaluated using a vibrating sample magnetometer. The results are shown in Table 1. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
  • Comparative Example 3 the composite magnetic material was manufactured by densifying the ⁇ -Fe 2 O 3 particles and the Fe particles in Comparative Example 1, and the porosity was measured.
  • the ⁇ -Fe 2 O 3 particles having an average particle diameter of 30 nm and the Fe particles having an average particle diameter of 25 nm prepared by the same method as Comparative Example 1 are washed with pure water, and the respective washed particles are contained in an organic acid solution. And both solutions were mixed together. Both particles were made into a nanocomposite by mixing the solution while being irradiated with ultrasonic waves for about 40 minutes.
  • the volume fraction of ⁇ -Fe 2 O 3 particles and Fe particles was set to a ratio of 4: 6, and after ultrasonic mixing, the nanocomposite particles were recovered by a centrifugal separator.
  • the nanocomposite particles were subjected to a pressure of 50 MPa with a compression molding machine to produce a composite magnetic material having a diameter of 10 mm.
  • the porosity of the composite magnetic material was determined in the same manner as in Example 6 to be 25.3%.
  • the magnetic properties (residual magnetization and coercivity) of the obtained composite magnetic material were evaluated using a vibrating sample magnetometer. The results are shown in Table 1. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
  • Comparative Example 4 Moreover, the porosity was 22.4% when the compacting pressure was changed to 300 MPa and a composite magnetic material was manufactured by the same method as Comparative Example 3.
  • the magnetic properties (residual magnetization and coercivity) of the obtained composite magnetic material were evaluated using a vibrating sample magnetometer. The results are shown in Table 1. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
  • Comparative Example 5 Further, in the same manner as in Comparative Example 3, the porosity was 21.5% when the composite magnetic material was manufactured by changing the molding pressure to 550 MPa.
  • the magnetic properties (residual magnetization and coercivity) of the obtained composite magnetic material were evaluated using a vibrating sample magnetometer. The results are shown in Table 1.
  • Comparative Example 6 About the composite magnetic material of Comparative Example 1, when the crystal structure and the crystal orientation axis were confirmed by XRD and TEM in the same manner as in Example 5, the magnetization easy axis was about ⁇ 25 degrees of ⁇ -Fe 2 O 3 and ⁇ -Fe Was about ⁇ 28 degrees. Comparative Example 6 is not shown in Table 1 below.
  • Example 10 In the inner rotor type brushless motor shown in FIGS. 9A and 9B and FIG. 10, motors of different shapes were manufactured.
  • Table 3 shows the outer diameter and thickness of the magnet 5 in FIG. 9A, and the length of the magnet 5 in FIG. 9B.
  • Table 4 shows the thickness (cylindrical thickness) of the yoke 6 in FIG. 9A and the thickness (lid thickness) of the movable portion (rotor) lid 8 in FIG. 9B.
  • Table 5 shows the diameter of the shaft 7 in FIG. 9A and the length of the shaft 7 in FIG. 9B. Further, in Tables 3, 4 and 5, the specific gravity and weight of each part, and the weight occupancy in the entire moving part (rotor) 4 are shown. Table 5 shows the weight of the entire moving part (rotor).
  • FIG. 12A for the case of Example 1 in Tables 3, 4, and 5, the rotational speed w of the motor is the maximum rotational speed wmax, the normalized value w / wmax is the vertical axis, and the time t from the start of rotation Is shown on the horizontal axis.
  • the present invention solid line
  • FIG. 12B is a diagram showing the current consumption of the motor on the vertical axis and the time t from the start of rotation on the horizontal axis in the case of the first embodiment in Tables 3, 4, and 5.
  • the present invention solid line
  • the specific gravity bb of the bonded magnet applied to the present embodiment is 5 g / cm 3 .
  • Table 2 describes the start-up time (the time when the rotational speed w is 98% of the maximum speed wmax) and the energy required for one second.
  • the measurement was performed at a voltage of 10 V, and the energy was determined from the integral value of the current and voltage for one second.
  • the start-up time was 0.12 seconds, and the energy was 4.53 J.
  • Comparative Example 7 As compared with Example 10, the results measured with a motor having the same structure except that the magnet is changed from the magnet of the present invention to a neodymium magnet having the same maximum energy product are shown by broken lines in FIGS. 12A and 12B.
  • the start time was 0.60 seconds, and the energy was 9.41 J. Therefore, it was found that, in the motor using the magnet of the present invention for the moving part (rotor), the start-up time is short and the energy consumption (power consumption) is small.
  • Example 11 As shown in Tables 3, 4 and 5, a motor having the same structure as in Example 10 was produced except that the shape was changed. The startup time was 0.35 seconds.
  • Example 12 As shown in Tables 3, 4 and 5, a motor having the same structure as in Example 10 was produced except that the shape was changed. The startup time was 0.42 seconds.
  • Comparative Example 8 As shown in Tables 3, 4 and 5, a motor having the same structure as in Example 11 was produced except that the magnet of the present invention was changed to a neodymium magnet having the same maximum energy product. The startup time was 0.81 seconds.
  • Comparative Example 9 As shown in Tables 3, 4 and 5, a motor having the same structure as in Example 12 was produced except that the magnet of the present invention was changed to a neodymium magnet having the same maximum energy product. The startup time was 0.76 seconds.
  • the activation time of Example 10 is 20% of the activation time of Comparative Example 7
  • the activation time of Example 11 is 43% of the activation time of Comparative Example 8
  • the activation time of Example 12 is the activation time of Comparative Example 9. It was 55%.
  • the motor of the present invention has a shorter start-up time as compared with the motor of the comparative example, and the effect of shortening the start-up time is high according to the weight occupancy rate in the rotor (rotating portion) .

Abstract

Provided is a composite magnetic material which has excellent magnetic characteristics. A composite magnetic material 1 according to the present invention is configured such that a plurality of hard magnetic particles 3 are dispersed like islands in a soft magnetic phase 2. The hard magnetic particles 3 have an average particle diameter of 2 nm or more, and are present in the soft magnetic phase 2 with an average interparticle distance of 100 nm or less.

Description

複合磁性材料、その材料を含む磁石、その磁石を用いたモータ、およびその複合磁性材料の製造方法Composite magnetic material, magnet including the material, motor using the magnet, and method of manufacturing the composite magnetic material
本発明は、複合磁性材料、その材料を含む磁石、その磁石を用いたモータ、およびその複合磁性材料の製造方法に関する。 The present invention relates to a composite magnetic material, a magnet including the material, a motor using the magnet, and a method of manufacturing the composite magnetic material.
ネオジム等の希土類元素を用いた磁石は、残留磁束密度と保磁力が高く、優れた磁気特性を有するため、従来から広く利用されている。しかし、希土類元素は希少金属であり、地球上に偏在して存在していること、高価であることなどの理由から、希土類元素の使用量を低減させた高性能磁石を作製する試みが行われている。その例として、保磁力が高い硬質磁性材料と、飽和磁束密度が高い軟質磁性材料と、を有するナノコンポジット磁石が知られている。ナノコンポジット磁石においては、保磁力が高い硬質磁性材料と、飽和磁束密度が高い軟質磁性材料と、が交換結合作用によって磁気的に結合しており、優れた磁気特性を示す。 A magnet using a rare earth element such as neodymium has a high residual magnetic flux density and a high coercive force, and has excellent magnetic properties, and thus has been widely used conventionally. However, because rare earth elements are rare metals and are distributed unevenly on the earth, they are expensive, etc., attempts are being made to manufacture high-performance magnets in which the amount of rare earth elements used is reduced. ing. As an example thereof, a nanocomposite magnet having a hard magnetic material with high coercivity and a soft magnetic material with high saturation magnetic flux density is known. In the nanocomposite magnet, a hard magnetic material having a high coercive force and a soft magnetic material having a high saturation magnetic flux density are magnetically coupled by an exchange coupling action, and exhibit excellent magnetic properties.
特許文献1では、イプシロン酸化鉄(ε-Fe)を含む硬質磁性材料からなるコアと、当該コアを被覆する、アルファ鉄(α-Fe)を含む軟質磁性材料からなるシェルと、を有するコアシェル構造の磁性粒子が開示されている。これにより、磁性粒子内で硬質磁性材料と軟質磁性材料とを磁気的に結合させ、磁気特性を向上させている。 In Patent Document 1, a core made of a hard magnetic material containing epsilon iron oxide (ε-Fe 2 O 3 ), and a shell made of a soft magnetic material containing alpha iron (α-Fe), which covers the core, A magnetic particle having a core-shell structure is disclosed. Thereby, the hard magnetic material and the soft magnetic material are magnetically coupled in the magnetic particles to improve the magnetic characteristics.
特開2011-35006号公報JP 2011-35006 A
特許文献1には、上述のコアシェル構造の磁性粒子を緻密化してナノコンポジット磁石を形成することが記載されている。しかしながらこの場合、上述の磁性粒子を最密充填で緻密化した場合であっても、粒子間に、体積比で26%程度の空隙が生じてしまう。本発明者らが検討したところ、このような多くの空隙が存在すると、磁性粒子間で交換相互作用が遮断されやすいことがわかった。すなわち、特許文献1では磁気特性を十分に高めたナノコンポジット磁石を実現できているとは言い難い。 Patent Document 1 describes that the magnetic particles having the core-shell structure described above are densified to form a nanocomposite magnet. However, in this case, even when the above-mentioned magnetic particles are densified by close packing, voids of about 26% in volume ratio are generated between the particles. As a result of examination by the present inventors, it was found that the presence of such a large number of voids tends to block the exchange interaction between the magnetic particles. That is, it is difficult to say that Patent Document 1 can realize a nanocomposite magnet with sufficiently enhanced magnetic properties.
また、特許文献1では、上述の磁性粒子を緻密化したナノコンポジット磁石の状態における、硬質磁性粒子の粒径や硬質磁性粒子間の距離の最適化が十分にはなされてはいない。このことからも、特許文献1では磁気特性を十分に高めたナノコンポジット磁石を実現できているとは言い難い。 Further, in Patent Document 1, optimization of the particle diameter of the hard magnetic particles and the distance between the hard magnetic particles in the state of the nanocomposite magnet in which the above-described magnetic particles are densified is not sufficiently performed. From this point of view as well, it is difficult to say that Patent Document 1 can realize a nanocomposite magnet with sufficiently enhanced magnetic properties.
以上のように、従来のナノコンポジット磁石では、交換結合の遮断と磁気異方性のばらつきによって残留磁束密度と保磁力が低下し、十分な磁石性能が達成されていないのが現状である。 As described above, in the conventional nanocomposite magnet, at present, the residual magnetic flux density and the coercive force are lowered due to the blocking of exchange coupling and the dispersion of the magnetic anisotropy, and sufficient magnet performance is not achieved at present.
本発明は、上記の問題点に鑑みなされたものであり、磁気特性に優れた複合磁性材料、その材料を含む磁石、その磁石を用いたモータ、およびその複合磁性材料の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a composite magnetic material having excellent magnetic properties, a magnet including the material, a motor using the magnet, and a method of manufacturing the composite magnetic material. With the goal.
本発明の一側面としての複合磁性材料は、軟質磁性相中に硬質磁性粒子が島状に複数分散して存在し、前記硬質磁性粒子は、平均粒径が2nm以上であって、隣り合う2つの前記硬質磁性粒子間の平均距離が100nm以下であることを特徴とする。 In the composite magnetic material according to one aspect of the present invention, a plurality of hard magnetic particles are dispersed in the form of islands in the soft magnetic phase, and the hard magnetic particles have an average particle diameter of 2 nm or more and 2 adjacent The average distance between the two hard magnetic particles is 100 nm or less.
また、本発明の別の一側面としての複合磁性材料は、軟質磁性相中に硬質磁性粒子が島状に複数分散して存在し、前記軟質磁性相は連続体であることを特徴とする。 The composite magnetic material according to another aspect of the present invention is characterized in that a plurality of hard magnetic particles are dispersed in the form of islands in the soft magnetic phase, and the soft magnetic phase is a continuous body.
本発明によれば、磁気特性に優れた複合磁性材料を得ることができる。また、その磁性材料を用いれば、軽量で磁気特性に優れた磁石を得ることができる。そして、そのような磁石を用いることにより、起動時間が短く、消費電力が低い、軽量のモータを得ることができる。 According to the present invention, a composite magnetic material excellent in magnetic properties can be obtained. Moreover, if the magnetic material is used, it is possible to obtain a magnet which is lightweight and has excellent magnetic characteristics. And, by using such a magnet, it is possible to obtain a lightweight motor with a short start-up time and low power consumption.
本発明の実施形態に関わる複合磁性材料の構造を示す模式図。The schematic diagram which shows the structure of the composite magnetic material in connection with embodiment of this invention. 硬質磁性粒子にフェリ磁性体を用いた場合の構造と磁化状態を示す模式図。The schematic diagram which shows the structure and magnetization state at the time of using a ferrimagnetic body for hard magnetic particle. 本発明の実施形態に関わる複合磁性材料のMHループを示す図。The figure which shows MH loop of the composite magnetic material in connection with embodiment of this invention. 本発明の実施形態に関わる複合磁性材料の磁化状態を示す図。The figure which shows the magnetization state of the composite magnetic material in connection with embodiment of this invention. 本発明の実施形態に関わる硬質磁性粒子の粒径と粒子間距離の最適値を、硬質磁性粒子の体積分率をパラメーターとして、プロットした図。The figure which plotted the particle size of the hard magnetic particle in connection with embodiment of this invention, and the optimal value of interparticle distance by making the volume fraction of hard magnetic particle a parameter. 本発明の実施形態における結晶方位を示す模式図。The schematic diagram which shows the crystal orientation in embodiment of this invention. 比較例における結晶方位を示す模式図。The schematic diagram which shows the crystal orientation in a comparative example. 本発明の実施形態に関わる硬質磁性粒子の体積分率と残留磁束密度Brおよび保磁力Hcとの関係を示す図。FIG. 6 is a graph showing the relationship between the volume fraction of the hard magnetic particles, the residual magnetic flux density Br, and the coercive force Hc according to the embodiment of the present invention. 本発明の実施形態に関わる硬質磁性粒子の体積分率と最大エネルギー積との関係を示す図。The figure which shows the relationship of the volume fraction of the hard magnetic particle and the maximum energy product which concern on embodiment of this invention. 本発明の実施形態に関わる硬質磁性粒子の体積分率と比重(密度)との関係を示す図。The figure which shows the relationship of the volume fraction and specific gravity (density) of the hard magnetic particle in connection with embodiment of this invention. 本発明の実施形態および比較例の磁石に関して、重量と最大エネルギー積との関係を示す図。The figure which shows the relationship between a weight and the maximum energy product about the magnet of embodiment of this invention, and a comparative example. 本発明の実施形態および比較例を含む従来の磁石に関して、重量と最大エネルギー積との関係を示す図。FIG. 5 shows the relationship between weight and maximum energy product for a conventional magnet including embodiments of the present invention and a comparative example. 比較例に関わる複合磁性材料のMHループを示す図。The figure which shows MH loop of the composite magnetic material in connection with a comparative example. 比較例に関わる複合磁性材料の磁化状態を示す図。The figure which shows the magnetization state of the composite magnetic material in connection with a comparative example. 本発明の磁石を用いた移動部(ロータ)の構成の一例を回転軸方向からみた模式的断面図。Typical sectional drawing which looked at an example of a structure of the moving part (rotor) using the magnet of this invention from the rotating shaft direction. 図9Aに示す移動部(ロータ)を回転軸に直交する方向からみた模式的断面図。FIG. 9B is a schematic cross-sectional view of the moving unit (rotor) shown in FIG. 9A viewed from the direction orthogonal to the rotation axis. 本発明の磁石を用いた移動部(ロータ)を有するモータの構成の一例を示す模式的断面図。Typical sectional drawing which shows an example of a structure of the motor which has a moving part (rotor) using the magnet of this invention. 所定の手順で駆動したときのモータの回転数の時間応答を示す図。The figure which shows the time response of the rotation speed of a motor when it drives by a predetermined | prescribed procedure. 別の手順で駆動したときのモータの回転数の時間応答を示す図。The figure which shows the time response of the rotation speed of a motor when it drives by another procedure. さらに別の手順で駆動したときのモータの回転数の時間応答を示す図。The figure which shows the time response of the rotation speed of a motor when it drives by another procedure. 実施例1および比較例1における回転速度の時間依存性を示す図。FIG. 6 is a view showing time dependency of rotation speeds in Example 1 and Comparative Example 1; 実施例1および比較例1における消費電流の時間依存性を示す図。FIG. 6 is a diagram showing time dependency of current consumption in Example 1 and Comparative Example 1. モータ重量の減少率を磁石重量の割合に対して示す図。The figure which shows the reduction rate of motor weight with respect to the ratio of magnet weight.
本発明の複合磁性材料は、軟質磁性相中に硬質磁性粒子が島状に複数分散して存在する複合磁性材料である。本発明の一側面としての硬質磁性粒子は、平均粒径が2nm以上であって、軟質磁性相中に100nm以下の平均粒子間距離で存在している。硬質磁性粒子のサイズや島と島との間の距離の規定は、例えば、シミュレーション結果から最適値を導き出すことで行うことができる。また、本発明の別の一側面による複合磁性材料では、軟質磁性相が連続体である。この複合磁性材料では、島と島との間にシリカなどの非磁性体や空隙などの磁気的な結合を遮断する部分が実質的に存在しないことが好ましい。また、磁化容易軸のばらつきが抑制された連続体となった軟質磁性相中に、硬質磁性粒子が島状に複数分散して存在し、硬質磁性粒子の磁化容易軸も軟質磁性相の磁化容易軸と配向していることが好ましい。連続体であることは、例えば、複合磁性材料の断面を電子顕微鏡で観察して、非磁性体や空隙などが抑制され、少なくとも、隣り合う2つの硬質磁性粒子間で軟質磁性相が連続となっていることを確認することで検証できる。なお、隣り合う2つの硬質磁性粒子間とは、1つの硬質磁性粒子に着目したときに、最も近くに存在する別の硬質磁性粒子との間のことを指す。 The composite magnetic material of the present invention is a composite magnetic material in which a plurality of hard magnetic particles are dispersed in the form of islands in the soft magnetic phase. The hard magnetic particles as one aspect of the present invention have an average particle diameter of 2 nm or more and exist in the soft magnetic phase at an average interparticle distance of 100 nm or less. The definition of the size of the hard magnetic particles and the distance between the islands can be performed, for example, by deriving an optimum value from simulation results. In the composite magnetic material according to another aspect of the present invention, the soft magnetic phase is a continuum. In this composite magnetic material, it is preferable that substantially no nonmagnetic material such as silica or a portion blocking magnetic coupling such as an air gap exists between islands. Also, in the soft magnetic phase in which the variation of the magnetization easy axis has been suppressed, a plurality of hard magnetic particles are dispersed in the form of islands, and the magnetization easy axis of the hard magnetic particles is also easy to magnetize the soft magnetic phase It is preferred to be oriented with the axis. The fact that it is a continuum means, for example, that the cross section of the composite magnetic material is observed with an electron microscope to suppress nonmagnetic materials, voids and the like, and the soft magnetic phase becomes continuous between at least two adjacent hard magnetic particles. Can be verified by confirming that Here, between two adjacent hard magnetic particles refers to the space between another hard magnetic particle present closest to one hard magnetic particle.
以下、図面を用いて本発明の実施形態を説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施形態に対して適宜変更、改良等がなされたものも本発明の範囲に含まれる。
 なお、本願明細書において、磁石は、磁性材料を含むもので電流など外部からエネルギーを与えることなく磁場を発生する、いわゆる永久磁石を含む。一方で、本願明細書において、電磁石は、コイルに電流を流すことによって磁場を発生させるもの含むものとして扱う。
Hereinafter, embodiments of the present invention will be described using the drawings. The present invention is not limited to the following embodiments, and various modifications, improvements, etc. can be made to the following embodiments based on the ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. What was done is also included in the scope of the present invention.
In the present specification, the magnet includes a so-called permanent magnet which contains a magnetic material and generates a magnetic field without applying energy from the outside such as a current. On the other hand, in the present specification, the electromagnet is treated as one that generates a magnetic field by applying a current to a coil.
(第1の実施形態)
(複合磁性材料の構造)
本実施形態に係る複合磁性材料は、軟質磁性材料の相(軟質磁性相)と硬質磁性材料の相(硬質磁性粒子)の2つの相がnm(ナノメートル)オーダーで隣接して存在する微細な混合構造を有する。このような微細な混合構造を有することで、軟質磁性相と硬質磁性粒子との間に交換結合作用を働かせることができる。軟質磁性相と硬質磁性粒子との間に交換結合作用が働いていると、反転磁場を与えたときに、交換結合している硬質磁性粒子の磁化によって軟質磁性相の磁化反転が抑制される。このとき、磁化曲線は、交換結合作用により軟質磁性相と硬質磁性粒子とがあたかも単相磁石であるかのように振る舞う。そのため、軟質磁性相の大きな飽和磁束密度と硬質磁性粒子の大きな保磁力とを併せ持つ磁化曲線が実現されるようになる。その結果、高いエネルギー積BHmaxを実現することができる。なお、このように軟質磁性相と硬質磁性相との間に交換結合作用を働かせた磁石は、ナノコンポジット磁石や交換スプリング磁石として知られている。
First Embodiment
(Structure of composite magnetic material)
The composite magnetic material according to the present embodiment is fine in which two phases of a soft magnetic material phase (soft magnetic phase) and a hard magnetic material phase (hard magnetic particles) are adjacent to each other on the order of nm (nanometer). It has a mixed structure. By having such a fine mixed structure, it is possible to exert an exchange coupling action between the soft magnetic phase and the hard magnetic particles. When the exchange coupling action is acting between the soft magnetic phase and the hard magnetic particles, the magnetization reversal of the soft magnetic phase is suppressed by the magnetization of the exchange-coupled hard magnetic particles when a reverse magnetic field is applied. At this time, the magnetization curve behaves as if it were a single-phase magnet as if it were a soft magnetic phase and hard magnetic particles due to the exchange coupling action. Therefore, a magnetization curve having a large saturation magnetic flux density of the soft magnetic phase and a large coercive force of the hard magnetic particles is realized. As a result, a high energy product BHmax can be realized. A magnet which exerts an exchange coupling action between the soft magnetic phase and the hard magnetic phase as described above is known as a nanocomposite magnet or a replacement spring magnet.
図1は、本実施形態に係る複合磁性材料の構造例を示す模式図である。複合磁性材料1は、軟質磁性相2に、硬質磁性粒子3が島状に複数分散する海島構造を有する。本実施形態の複合磁性材料の軟質磁性相は、粒子状ではなく連続体であることが特徴である。このため、軟質磁性相中に空隙が原理的に生じない。その結果、軟質磁性相と硬質磁性粒子間の交換結合力が遮断される部分が実質的に無い。また、複数の硬質磁性粒子を、連続体である軟質磁性相が取り囲む構成となっているため、軟質磁性相と硬質磁性粒子間の交換結合が有効に作用する。軟質磁性相を介した硬質磁性粒子間の交換結合力も有効に作用する。さらに、軟質磁性相は連続体であるため、磁化容易軸が一様に同一方向を取ることが可能な構造となっている。このため、磁化が一方向に配向しやすい。なお、一方向もしくは同一方向との記載は、磁化容易軸がばらばらでは無く、ある特定の範囲内の角度にあるという状態を示すものであり、全ての磁化容易軸が完全に同じ方向にあるということではない。 FIG. 1 is a schematic view showing a structural example of a composite magnetic material according to the present embodiment. The composite magnetic material 1 has a sea-island structure in which a plurality of hard magnetic particles 3 are dispersed like islands in the soft magnetic phase 2. The soft magnetic phase of the composite magnetic material of the present embodiment is characterized in that it is not particulate but continuous. For this reason, a void does not occur in principle in the soft magnetic phase. As a result, there is substantially no part where the exchange coupling force between the soft magnetic phase and the hard magnetic particles is interrupted. In addition, since the plurality of hard magnetic particles are surrounded by the continuous soft magnetic phase, the exchange coupling between the soft magnetic phase and the hard magnetic particles effectively acts. The exchange coupling force between the hard magnetic particles via the soft magnetic phase also works effectively. Furthermore, since the soft magnetic phase is a continuum, the structure is such that the axis of easy magnetization can be uniformly taken in the same direction. Therefore, the magnetization is easily oriented in one direction. Note that the description of one direction or the same direction indicates that the easy magnetization axis is not separated but is at an angle within a specific range, and all the easy magnetization axes are in the same direction. It is not a thing.
したがって、複合磁性材料1の残留磁束密度と保磁力及びMHループ(Mは磁化、Hは外部磁界)における残留磁化と飽和磁化の比(角形比)を高い値にすることができる。ここで、残留磁化は磁場がゼロの時の磁化、飽和磁化は十分な外部磁場を印加して飽和した磁化である。例えば、角形比を0.7以上にすることができる。こうして、磁石を作製した場合に高い最大エネルギー積BHmaxを得ることができる。 Therefore, the ratio (square ratio) of the residual magnetization to the saturation magnetization in the residual magnetic flux density and the coercivity of the composite magnetic material 1 and the MH loop (M is magnetization, H is an external magnetic field) can be made high. Here, the residual magnetization is magnetization when the magnetic field is zero, and the saturation magnetization is magnetization saturated by applying a sufficient external magnetic field. For example, the squareness ratio can be 0.7 or more. Thus, a high maximum energy product BHmax can be obtained when producing a magnet.
なお、作製時の製造ばらつきで、軟質磁性相中あるいは軟質磁性相と硬質磁性粒子との間に部分的に空隙が生じる場合もある。しかし、この複合磁性材料1中の空隙は、性能を劣化させない程度に抑える必要がある。具体的には、複合磁性材料の全体の体積に対する空隙の体積分率は20%以下であることが好ましく、10%以下であることがより好ましく、5%以下とすることがさらに好ましい。こうすれば上述の交換結合が十分有効に達成できることになる。 In addition, a void may be generated partially in the soft magnetic phase or between the soft magnetic phase and the hard magnetic particles due to manufacturing variations at the time of production. However, the air gaps in the composite magnetic material 1 need to be suppressed to such an extent that the performance is not degraded. Specifically, the volume fraction of voids with respect to the total volume of the composite magnetic material is preferably 20% or less, more preferably 10% or less, and still more preferably 5% or less. In this way, the aforementioned exchange coupling can be achieved sufficiently effectively.
また、複合磁性材料中に、軟質磁性材料でも硬質磁性材料でもない非磁性体が部分的に含まれる場合もある。しかしこの場合、非磁性体の含有量は、性能を劣化させない程度に抑える必要がある。具体的には、複合磁性材料の全体の体積に対する非磁性体の体積分率は10%以下であることが好ましく、5%以下であることがより好ましく、2%以下であることがさらに好ましい。非磁性体としては、鉄族元素(Fe、Co、Ni)を含む合金または酸化物以外の材料が挙げられ、典型的にはSiOなどの酸化物、Cu、Si、Alなどの磁性を有しない金属、有機物(樹脂材料など)などが挙げられる。 In addition, the composite magnetic material may partially include a nonmagnetic material that is neither a soft magnetic material nor a hard magnetic material. However, in this case, the content of the nonmagnetic material needs to be suppressed to such an extent that the performance is not degraded. Specifically, the volume fraction of the nonmagnetic material relative to the total volume of the composite magnetic material is preferably 10% or less, more preferably 5% or less, and still more preferably 2% or less. Examples of nonmagnetic materials include alloys containing iron group elements (Fe, Co, Ni) or materials other than oxides, and typically have oxides such as SiO 2, and magnetic properties such as Cu, Si, Al, etc. Metals, organic substances (such as resin materials), etc.
以上では、連続体の軟質磁性相を海とし、硬質磁性材料を粒子形状の島とした海島構造の例を説明したが、硬質磁性材料を海とし、軟質磁性材料を粒子形状とした島とした海島構造でも良い。 In the above, an example of a sea-island structure in which the soft magnetic phase of the continuum is the sea and the hard magnetic material is the island of particle shape has been described, but the hard magnetic material is the sea and the soft magnetic material is the island in particle shape It may be a sea-island structure.
(交換結合)
図2は、本実施形態の複合磁性材料1において、軟質磁性相2を介して硬質磁性粒子3aと硬質磁性粒子3bが交換結合している様子を示したものである。矢印は各々の磁化方向を示しており、硬質磁性粒子3aと硬質磁性粒子3bは、フェリ磁性体の反平行に向いた磁化のうち、その差分の磁化方向を示している。図2で示すように、軟質磁性相2は周囲に高い保磁力を持つ硬質磁性粒子3があるため、硬質磁性粒子との交換結合力により反転に要する磁界が高くなり、軟質磁性相と硬質磁性粒子とは同時に高い磁界で反転する。 
(Exchange coupling)
FIG. 2 shows how the hard magnetic particles 3a and the hard magnetic particles 3b are exchange-coupled through the soft magnetic phase 2 in the composite magnetic material 1 of the present embodiment. The arrows indicate the respective magnetization directions, and the hard magnetic particles 3a and the hard magnetic particles 3b indicate the magnetization directions of the difference among the magnetizations directed antiparallel to the ferrimagnetic material. As shown in FIG. 2, since the soft magnetic phase 2 has the hard magnetic particles 3 with high coercivity around the periphery, the exchange coupling force with the hard magnetic particles increases the magnetic field required for reversal, and the soft magnetic phase and the hard magnetic The particles reverse at the same time in high magnetic fields.
図3Aは、本実施形態の複合磁性材料のMHループを示したものである。図3Bは、ゼロ磁場の外部磁界における本実施形態の複合磁性材料の構造と磁化状態を示したものである。ゼロ磁場における磁化、すなわち残留磁化Mrは、硬質磁性粒子3と軟質磁性相2との磁化方向が一方向に揃っており、飽和時とほぼ同じ値を示し、角形比はほぼ1となる。 FIG. 3A shows the MH loop of the composite magnetic material of this embodiment. FIG. 3B shows the structure and magnetization state of the composite magnetic material of the present embodiment in an external magnetic field of zero magnetic field. The magnetization in the zero magnetic field, that is, the remanent magnetization Mr, is such that the magnetization directions of the hard magnetic particles 3 and the soft magnetic phase 2 are aligned in one direction, and show substantially the same value as at saturation, and the squareness ratio is approximately one.
(硬質磁性粒子)
本実施形態の硬質磁性粒子は、高い保磁力を有する磁性材料である硬質磁性材料を含む。具体的には、フェリ磁性体または反強磁性体を主成分とする磁性材料を含むことが好ましい。本明細書において、「主成分とする」とは質量比率で50%以上含むことを意味する。これらの材料は、保磁力は高いものの、磁化が小さい傾向にある。また、結晶磁気異方性が高い材料が候補として挙げられる。硬質磁性材料としては、保磁力が500Oe以上である材料が好ましく、1kOe以上である材料がより好ましい。また、5kOe以上である材料がさらに好ましく、10kOe以上である材料が特に好ましい。硬質磁性材料としては、Fe、Co、Mn、Niからなる群から選択される少なくとも1つの元素を含む磁性材料を用いることが好ましく、Feを含む磁性材料を用いることがより好ましい。なお、硬質磁性材料は、Ndなどの希土類元素を実質的に含まないことが好ましく、Nd元素の含有量は3質量%以下であることが好ましい。
(Hard magnetic particles)
The hard magnetic particles of the present embodiment include a hard magnetic material that is a magnetic material having high coercivity. Specifically, it is preferable to include a magnetic material containing a ferrimagnetic substance or an antiferromagnetic substance as a main component. In the present specification, “mainly contained” means containing at least 50% by mass. Although these materials have high coercivity, their magnetization tends to be small. In addition, materials having high magnetocrystalline anisotropy are mentioned as candidates. As the hard magnetic material, a material having a coercive force of 500 Oe or more is preferable, and a material having 1 kOe or more is more preferable. Moreover, the material which is 5 kOe or more is further preferable, and the material which is 10 kOe or more is particularly preferable. As the hard magnetic material, a magnetic material containing at least one element selected from the group consisting of Fe, Co, Mn, and Ni is preferably used, and it is more preferable to use a magnetic material containing Fe. The hard magnetic material preferably contains substantially no rare earth element such as Nd, and the content of the Nd element is preferably 3% by mass or less.
例えば、フェリ磁性体としては、ε-Fe、γ-Fe、Fe、フェライト磁性材料等の酸化鉄を用いる。酸化鉄の中では、ε-Feが、室温で特に高い保磁力を有しているためより望ましい。なお、ε-Fe中のFe原子の一部は他の金属元素で置換されていても良い。特に、ε-Fe中のFe原子の一部は、Co、Ni、Al、Gaからなる群から選択される少なくとも1つの元素で置換されていても良い。フェライト磁性材料は、例えば、六方晶フェライトAFe1219である。ここで、Aは、例えばBa、Sr、Pbの少なくとも1つを含む元素である。または、スピネルフェライトBFeである。ここで、Bは、例えばMn、Co、Ni、Cu、Znの少なくとも1つを含む元素である。 For example, as the ferrimagnetic material, iron oxides such as ε-Fe 2 O 3 , γ-Fe 2 O 3 , Fe 3 O 4 , and ferrite magnetic materials are used. Among iron oxides, ε-Fe 2 O 3 is more desirable because it has a particularly high coercivity at room temperature. Note that part of Fe atoms in ε-Fe 2 O 3 may be substituted with another metal element. In particular, part of Fe atoms in ε-Fe 2 O 3 may be substituted by at least one element selected from the group consisting of Co, Ni, Al, and Ga. The ferrite magnetic material is, for example, hexagonal ferrite AFe 12 O 19 . Here, A is an element containing, for example, at least one of Ba, Sr, and Pb. Or spinel ferrite BFe 2 O 4 . Here, B is an element containing, for example, at least one of Mn, Co, Ni, Cu, and Zn.
硬質磁性粒子は、その磁化が軟質磁性相の磁化より小さく、反強磁性体など、磁化が0の磁性材料でも良い。反強磁性体としては、NiO、FeMn、MnO、CoOなどがあげられるが、室温以上のネール温度を持つNiOが望ましい。ただし、複合磁性材料の全体の磁化は、硬質磁性粒子と軟質磁性相との各々の磁化と各々の体積分率の積の合算となる。そのため、フェリ磁性体を用いるのが良く、磁化が小さい硬質磁性粒子を用いた場合は、その体積分率は十分な保磁力が得られる程度まで、少ないほうが良い。 The hard magnetic particles may be a magnetic material whose magnetization is smaller than that of the soft magnetic phase and whose magnetization is zero such as an antiferromagnetic material. Examples of the antiferromagnet include NiO, FeMn, MnO, CoO and the like, and NiO having a Neel temperature of room temperature or more is desirable. However, the total magnetization of the composite magnetic material is the sum of the products of the respective magnetizations of the hard magnetic particles and the soft magnetic phase and the respective volume fractions. Therefore, it is preferable to use a ferrimagnetic material, and when hard magnetic particles having a small magnetization are used, the volume fraction thereof is preferably as small as possible to obtain a sufficient coercive force.
(硬質磁性粒子の粒径と粒子間距離)
硬質磁性粒子の粒径は、保磁力が低下しない程度に大きく、また磁化を保つことができる程度に小さくする。具体的には硬質磁性粒子の平均粒径は、2nm以上とすることが好ましく、5nm以上とすることがより好ましく、10nm以上とすることがさらに好ましい。5nm以上とする理由は、硬質磁性粒子の保磁力が、粒径が5nm辺りから小さくなるにつれ急激に下がり始めるからである。2nm以上とする理由は、この辺りが磁化を保つ限界であるからである。なお、硬質磁性粒子の平均粒径の上限は特に限定はされないが、1000nm以下であることが好ましく、500nm以下であることがより好ましく、300nm以下であることがさらに好ましく、200nm以下であることがなお好ましい。特に、150nm以下であることが好ましい。
(Size and distance of hard magnetic particles)
The particle diameter of the hard magnetic particles is made large to such an extent that the coercivity does not decrease, and made small to such an extent that the magnetization can be maintained. Specifically, the average particle diameter of the hard magnetic particles is preferably 2 nm or more, more preferably 5 nm or more, and still more preferably 10 nm or more. The reason for setting the thickness to 5 nm or more is that the coercive force of the hard magnetic particles starts to fall rapidly as the particle diameter decreases from around 5 nm. The reason why the thickness is 2 nm or more is that this is the limit for maintaining the magnetization. The upper limit of the average particle diameter of the hard magnetic particles is not particularly limited, but is preferably 1000 nm or less, more preferably 500 nm or less, still more preferably 300 nm or less, and 200 nm or less Furthermore, it is preferable. In particular, 150 nm or less is preferable.
軟質磁性相の幅、すなわち、隣り合う2つの硬質磁性粒子の粒子間距離は平均で2nm以上であることが望ましい。軟質磁性材料と硬質磁性材料とは、交換結合作用によって磁気的に結合していることが好ましい。そのため、島と海との間の界面から交換結合作用が働く距離(以下、「交換結合距離」と称する)をaとすると、複合磁性材料1において、隣り合う2つの島の間の平均距離dは、d≦2aを満たすことが好ましい。すなわち、隣り合う2つの島の間の平均距離は、交換結合距離の2倍以下であることが好ましい。具体的には、100nm以下であることが好ましく、70nm以下であることがより好ましく、50nm以下であることがさらに好ましく、30nm以下であることが特に好ましい。 The width of the soft magnetic phase, that is, the distance between two adjacent hard magnetic particles is preferably 2 nm or more on average. The soft magnetic material and the hard magnetic material are preferably magnetically coupled by the exchange coupling action. Therefore, assuming that the distance at which the exchange coupling action works from the interface between the island and the sea (hereinafter referred to as "exchange coupling distance") is a, in composite magnetic material 1, the average distance d between two adjacent islands It is preferable that d satisfies d ≦ 2a. That is, the average distance between two adjacent islands is preferably not more than twice the exchange coupling distance. Specifically, it is preferably 100 nm or less, more preferably 70 nm or less, still more preferably 50 nm or less, and particularly preferably 30 nm or less.
図4に、硬質磁性粒子の粒径と硬質磁性粒子の粒子間距離との最適値を、硬質磁性粒子の体積分率(硬質磁性粒子/(硬質磁性粒子と軟質磁性相))をパラメーターとして、プロットした図を示す。図4に従い、硬質磁性粒子の体積分率に応じて、硬質磁性粒子の粒径と粒子間距離を設定することが望ましい。 In FIG. 4, the optimum value of the particle diameter of the hard magnetic particles and the interparticle distance of the hard magnetic particles is taken as a parameter of the volume fraction of the hard magnetic particles (hard magnetic particles / (hard magnetic particles and soft magnetic phase)). The figure which plotted is shown. According to FIG. 4, it is desirable to set the particle diameter and interparticle distance of the hard magnetic particles in accordance with the volume fraction of the hard magnetic particles.
硬質磁性粒子の平均粒径や平均粒子間距離は、複合磁性材料の断面の電子顕微鏡画像から取得することができる。具体的には、例えば、走査型電子顕微鏡(SEM)を用いて複合磁性材料の断面の電子顕微鏡画像(電子顕微鏡写真)を取得し、その画像をもとに画像処理によって、硬質磁性粒子の平均粒径や平均粒子間距離を測定すればよい。なおこの場合、1つの電子顕微鏡画像中に少なくとも10個、好ましくは数十~数百個の硬質磁性粒子が存在するように倍率を調整して電子顕微鏡画像を取得することが好ましい。複数視野について上記測定を行って平均粒径および平均粒子間距離を算出してもよいが、1つの視野内に統計的に十分な量の粒子が写っていれば、1つの視野内で平均粒径および平均粒子間距離を算出してもよい。  The average particle diameter and the average interparticle distance of the hard magnetic particles can be obtained from an electron microscope image of a cross section of the composite magnetic material. Specifically, for example, an electron microscope image (electron micrograph) of the cross section of the composite magnetic material is obtained using a scanning electron microscope (SEM), and the average of the hard magnetic particles is obtained by image processing based on the image. The particle size and the average interparticle distance may be measured. In this case, it is preferable to obtain an electron microscope image by adjusting the magnification so that at least 10, preferably several tens to several hundreds of hard magnetic particles are present in one electron microscope image. The above measurement may be performed for a plurality of fields of view to calculate the average particle diameter and the average interparticle distance, but if a statistically sufficient amount of particles appear in one field of view, the average particle size in one field of view The diameter and the average interparticle distance may be calculated.
なお、上述のように硬質磁性粒子の粒径や粒子間距離が好ましい条件を満たしているなら、軟質磁性相が連続体であることの要件は多少緩和されることもある。つまり、軟質磁性相中に多少空隙などが存在していても、軟質磁性相と硬質磁性粒子間、および隣り合う2つの硬質磁性粒子間に十分な交換結合作用が達成されていれば、本発明の複合磁性材料として適する場合もある。逆に、軟質磁性相が十分に連続体となっていれば、硬質磁性粒子の粒径や粒子間距離の要件が多少緩和されることもある。つまり、硬質磁性粒子の粒子間距離が多少大きくても、交換結合を遮断する部分が十分に少なく、十分な交換結合作用が達成されていれば、本発明の複合磁性材料として適する場合もある。 As described above, if the particle diameter and interparticle distance of the hard magnetic particles satisfy the preferable conditions, the requirement that the soft magnetic phase is a continuum may be relaxed to some extent. That is, the present invention can be achieved as long as sufficient exchange coupling action is achieved between the soft magnetic phase and the hard magnetic particles and between two adjacent hard magnetic particles, even if some gaps etc. exist in the soft magnetic phase. In some cases, it is suitable as a composite magnetic material of On the contrary, if the soft magnetic phase is sufficiently continuous, the requirements of the particle diameter and interparticle distance of the hard magnetic particles may be relaxed to some extent. That is, even if the inter-particle distance of the hard magnetic particles is somewhat large, there are cases where it is suitable as the composite magnetic material of the present invention as long as sufficient exchange coupling action is achieved when the portion that blocks exchange coupling is sufficiently small.
(軟質磁性相)
軟質磁性材料は、硬質磁性材料よりも飽和磁束密度(飽和磁化)が大きな材料である。軟質磁性相は、フェロ磁性体を主成分として含むことが好ましい。フェロ磁性体は、磁性材料内部で磁化が反平行になった部分が無いため、大きな飽和磁化を有するためである。軟質磁性相はα-Feを主成分として含むことが特に好ましいが、これに限定はされない。軟質磁性材料としては、磁化が50emu/g以上である材料が好ましく、100emu/g以上である材料がより好ましく、150emu/g以上である材料がさらに好ましい。 
(Soft magnetic phase)
The soft magnetic material is a material having a larger saturation magnetic flux density (saturation magnetization) than the hard magnetic material. The soft magnetic phase preferably contains a ferromagnet as a main component. The ferromagnet has a large saturation magnetization because there is no part where the magnetization is antiparallel inside the magnetic material. The soft magnetic phase particularly preferably contains α-Fe as a main component, but is not limited thereto. The soft magnetic material is preferably a material having a magnetization of 50 emu / g or more, more preferably a material having 100 emu / g or more, and still more preferably a material having 150 emu / g or more.
具体的には、軟質磁性材料は、FeまたはCoの単金属、あるいはFeまたはCoを含む、合金または窒化物を含むことが好ましく、Feの単金属またはFeM合金を含むことがより好ましい。ここで、Mは、Co、Ni、Al、Ga、Siからなる群から選択される少なくとも1つの元素を表し、FeM合金中の各元素の組成比は任意に選択することができる。中でも、軟質磁性材料は、α-Fe(α鉄)を含むことがより好ましく、α-Fe単体からなることが特に好ましい。なお、軟質磁性材料は、必ずしも結晶性を有していなくても良い。また、Feの単金属は、α型以外の鉄でも良い。鉄(Fe)は、温度により、α-Fe(α鉄)、γ-Fe(γ鉄)、δ-Fe(δ鉄)の3つの形態に変化する。このうちα-Fe(α鉄)は、室温で磁化を示すため、α-Fe(α鉄)を用いるのが良い。また、窒化鉄は大きな磁化を有するため、軟質磁性材料として、窒化鉄を主成分とする磁性材料を用いても良い。なお、軟質磁性材料は、Ndなどの希土類元素を実質的に含まないことが好ましく、Nd元素の含有量は3質量%以下であることが好ましい。 Specifically, the soft magnetic material preferably contains a single metal of Fe or Co, or an alloy or nitride containing Fe or Co, and more preferably contains a single metal of Fe or an FeM alloy. Here, M represents at least one element selected from the group consisting of Co, Ni, Al, Ga, and Si, and the composition ratio of each element in the FeM alloy can be arbitrarily selected. Among them, the soft magnetic material more preferably contains α-Fe (α iron), and particularly preferably consists of α-Fe alone. The soft magnetic material may not necessarily have crystallinity. The single metal of Fe may be iron other than α-type. Iron (Fe) changes into three forms depending on temperature, α-Fe (α iron), γ-Fe (γ iron), and δ-Fe (δ iron). Among them, α-Fe (α-iron) exhibits magnetization at room temperature, so α-Fe (α-iron) is preferably used. Further, since iron nitride has a large magnetization, a magnetic material containing iron nitride as a main component may be used as the soft magnetic material. The soft magnetic material preferably contains substantially no rare earth element such as Nd, and the content of the Nd element is preferably 3% by mass or less.
(結晶配向性)
本実施形態の複合磁性材料において、硬質磁性粒子の磁化容易軸は複数の硬質磁性粒子間で一方向に配向していることが望ましい。これにより、複合磁性材料中の硬質磁性粒子の磁化を一方向に揃えることができ、複合磁性材料全体としての保磁力をより大きくすることができる。これにより、MHループの飽和磁化と残留磁化の比(角形比)を高くすることができ、この複合磁性材料を用いた磁石は、高い最大エネルギー積を有することができる。硬質磁性粒子の磁化容易軸は複数の硬質磁性粒子間で一方向に揃っていることが望ましいが、完全に揃っていなくとも、ある程度揃っていれば良い。具体的には、硬質磁性粒子の磁化容易軸の方向と所定の一方向とがなす角が、複数の硬質磁性粒子のそれぞれについて、いずれも15度以下であることが好ましく、10度以下であることがより好ましく、5度以下であることがさらに好ましい。換言すれば、複合磁性材料中の複数の硬質磁性粒子の磁化容易軸の方向のばらつきが、15度以下の範囲内におさまっていることが好ましい。また、硬質磁性粒子の磁化容易軸が複数の硬質磁性粒子間で一方向に配向している領域は、複合磁性材料全体に対して、体積比率で70%以上含まれていることが好ましい。なお、この体積比率は、硬質磁性粒子の平均粒径や平均粒子間距離の測定と同様に、複合磁性材料の断面の電子顕微鏡画像から取得することができる。
(Crystal orientation)
In the composite magnetic material of the present embodiment, it is desirable that the magnetization easy axis of the hard magnetic particles be oriented in one direction among the plurality of hard magnetic particles. Thereby, the magnetizations of the hard magnetic particles in the composite magnetic material can be aligned in one direction, and the coercive force of the composite magnetic material as a whole can be further increased. As a result, the ratio (square ratio) of the saturation magnetization to the remanent magnetization of the MH loop can be increased, and a magnet using this composite magnetic material can have a high maximum energy product. It is desirable that the magnetization easy axes of the hard magnetic particles be aligned in one direction among the plurality of hard magnetic particles, but they may be aligned to some extent even if they are not completely aligned. Specifically, the angle between the direction of the magnetization easy axis of the hard magnetic particles and the predetermined one direction is preferably 15 degrees or less for all of the plurality of hard magnetic particles, and is 10 degrees or less Is more preferable, and is more preferably 5 degrees or less. In other words, the variation in the direction of the magnetization easy axis of the plurality of hard magnetic particles in the composite magnetic material is preferably within the range of 15 degrees or less. The region in which the magnetization easy axis of the hard magnetic particles is oriented in one direction among the plurality of hard magnetic particles is preferably 70% or more by volume ratio with respect to the entire composite magnetic material. In addition, this volume ratio can be acquired from the electron microscope image of the cross section of a composite magnetic material similarly to the measurement of the average particle diameter of hard magnetic particle, and the distance between average particles.
また、本実施形態の複合磁性材料において、軟質磁性相の磁化容易軸も、海を形成し、複数の硬質磁性粒子を取り囲む広範囲にわたって一方向に配向していることが望ましく、複合磁性材料全体にわたって一方向に配向していることが特に望ましい。これにより、複合磁性材料中の軟質磁性相を構成する軟質磁性材料の磁化を一方向に揃えることができ、複合磁性材料全体としての飽和磁束密度(飽和磁化)をより大きくすることができる。 Moreover, in the composite magnetic material of the present embodiment, it is desirable that the magnetization easy axis of the soft magnetic phase also forms the sea and is oriented in one direction over a wide range surrounding a plurality of hard magnetic particles. It is particularly desirable to be oriented in one direction. Thereby, the magnetization of the soft magnetic material constituting the soft magnetic phase in the composite magnetic material can be aligned in one direction, and the saturation magnetic flux density (saturation magnetization) of the composite magnetic material as a whole can be further increased.
なお、軟質磁性相の磁化容易軸の配向性についても硬質磁性粒子の場合と同様に、一方向に揃っていることが望ましいが、完全に揃っていなくとも、ある程度揃っていれば良い。具体的には、軟質磁性相の磁化容易軸の方向と所定の一方向とがなす角が、複数の硬質磁性粒子を含む範囲内の軟質磁性相において15度以下であることが好ましく、10度以下であることがより好ましく、5度以下であることがさらに好ましい。換言すれば、軟質磁性相の磁化容易軸の方向のばらつきが、15度以下の範囲内におさまっていることが好ましい。なお、軟質磁性相の磁化容易軸の配向は、少なくとも、隣り合う2つの硬質磁性粒子間に存在する軟質磁性相全体において一方向に配向していることが好ましい。また、軟質磁性相の磁化容易軸が一方向に配向している領域は、複合磁性材料全体に対して、体積比率で70%以上含まれていることが好ましい。なお、この体積比率は、硬質磁性粒子の平均粒径や平均粒子間距離の測定と同様に、複合磁性材料の断面の電子顕微鏡画像から取得することができる。 The orientation of the magnetization easy axis of the soft magnetic phase is also preferably aligned in one direction as in the case of the hard magnetic particles, but it may be aligned to some extent even if it is not completely aligned. Specifically, the angle between the direction of the magnetization easy axis of the soft magnetic phase and the predetermined one direction is preferably 15 degrees or less in the soft magnetic phase within the range including the plurality of hard magnetic particles, and 10 degrees It is more preferable that it is the following, and it is more preferable that it is 5 degrees or less. In other words, the variation in the direction of the magnetization easy axis of the soft magnetic phase is preferably within the range of 15 degrees or less. The orientation of the magnetization easy axis of the soft magnetic phase is preferably unidirectional in at least the entire soft magnetic phase existing between two adjacent hard magnetic particles. The region in which the magnetization easy axis of the soft magnetic phase is oriented in one direction is preferably 70% or more by volume ratio with respect to the entire composite magnetic material. In addition, this volume ratio can be acquired from the electron microscope image of the cross section of a composite magnetic material similarly to the measurement of the average particle diameter of hard magnetic particle, and the distance between average particles.
また、本実施形態の複合磁性材料において、軟質磁性相の磁化容易軸の方向は、硬質磁性粒子の磁化容易軸の方向と揃っていることが好ましい。なお、両者の磁化容易軸は一方向に揃っていることが望ましいが、上述のように、ある程度揃っていれば良い。具体的には、軟質磁性相および硬質磁性粒子の磁化容易軸の方向のばらつきは、15度以下の範囲内におさまっていることが好ましい。また、軟質磁性相および硬質磁性粒子の磁化容易軸が一方向に配向している領域は、複合磁性材料全体に対して、体積比率で70%以上含まれていることがより好ましい。なお、この体積比率は、硬質磁性粒子の平均粒径や平均粒子間距離の測定と同様に、複合磁性材料の断面の電子顕微鏡画像から取得することができる。 In the composite magnetic material of the present embodiment, the direction of the magnetization easy axis of the soft magnetic phase is preferably aligned with the direction of the magnetization easy axis of the hard magnetic particles. The magnetization easy axes of the two are preferably aligned in one direction, but as described above, it may be aligned to some extent. Specifically, the variation in the direction of the magnetization easy axis of the soft magnetic phase and the hard magnetic particles is preferably within the range of 15 degrees or less. Further, the region in which the magnetization easy axis of the soft magnetic phase and the hard magnetic particles is oriented in one direction is more preferably 70% or more by volume ratio with respect to the entire composite magnetic material. In addition, this volume ratio can be acquired from the electron microscope image of the cross section of a composite magnetic material similarly to the measurement of the average particle diameter of hard magnetic particle, and the distance between average particles.
図5A及び5Bは、本実施形態の複合磁性材料の硬質磁性粒子または軟質磁性相の少なくとも一方の結晶構造と結晶方位を模式的に示したものである。ここでは、図5A及び5Bに記載した四角形は、軟質磁性相としてα-Feの体心立方格子を用いた場合の結晶構造を示し、矢印は磁化方向を示している。図5Aに示したように、結晶方位が揃っていることによって、軟質磁性相が硬質磁性粒子から働く交換力を媒介でき、硬質磁性粒子同士が交換結合することも容易になる。一方、図5Bに示したように、結晶方位は揃っておらず、ランダムに並んでいる場合には、軟質磁性相を介して硬質磁性粒子が交換結合することが困難であり、適さない。 FIGS. 5A and 5B schematically show the crystal structure and crystal orientation of at least one of the hard magnetic particles and the soft magnetic phase of the composite magnetic material of the present embodiment. Here, the square shown in FIGS. 5A and 5B shows the crystal structure in the case of using a body-centered cubic lattice of α-Fe as the soft magnetic phase, and the arrow shows the magnetization direction. As shown in FIG. 5A, when the crystal orientations are aligned, the soft magnetic phase can mediate the exchange force exerted from the hard magnetic particles, and it becomes easy for the hard magnetic particles to exchange-bond with each other. On the other hand, as shown in FIG. 5B, in the case where the crystal orientations are not aligned and are randomly arranged, it is difficult to exchange-bond hard magnetic particles through the soft magnetic phase, which is not suitable.
硬質磁性粒子として、ε-Feを用いる場合の結晶構造の一例を以下に示す。ε-Feは、直方晶系(Pna21)の結晶構造を有しており、格子定数は、おおよそ、a=5.1オングストローム、b=8.7オングストローム、c=9.4オングストロームである。この直方晶構造において、c軸が磁化容易軸となる。c軸方向の結晶方向を、複合磁性材料の作製時に外部磁場を印加するなどにより、一方向に揃えることが望ましい。軟質磁性相として、α-Feを用いる場合、α-Feは体心立方格子の結晶構造で、その磁化容易軸は、a軸もしくはb軸もしくはc軸であり、これらを一方向に揃えることが望ましい。さらに、軟質磁性相が硬質磁性粒子から働く交換力を媒介するためには、硬質磁性粒子と軟質磁性相の磁化容易軸を揃えることが望ましい。このため、ε-Feのc軸と、α-Feのa軸、b軸、c軸のいずれかと、が一方向に揃っていることが望ましい。 An example of the crystal structure in the case of using ε-Fe 2 O 3 as hard magnetic particles is shown below. ε-Fe 2 O 3 has a crystal structure of a cuboidal system (Pna 21), and the lattice constant is approximately a = 5.1 angstroms, b = 8.7 angstroms, c = 9.4 angstroms is there. In this rectangular crystal structure, the c axis is the easy magnetization axis. It is desirable that the crystal direction in the c-axis direction be aligned in one direction by applying an external magnetic field or the like at the time of production of the composite magnetic material. When α-Fe is used as the soft magnetic phase, α-Fe is a crystal structure of a body-centered cubic lattice, and its easy axis of magnetization is the a-axis, b-axis or c-axis, and these should be aligned in one direction desirable. Furthermore, in order to mediate the exchange force that the soft magnetic phase works from the hard magnetic particles, it is desirable to align the easy magnetization axes of the hard magnetic particles and the soft magnetic phase. Therefore, it is desirable that the c-axis of ε-Fe 2 O 3 and any one of the a-axis, b-axis, and c-axis of α-Fe be aligned in one direction.
結晶配向性は透過電子顕微鏡(TEM)で直接確認することができる。またTEMの代用方法として、磁化ループで得られる角形比等から推定しても良い。 Crystal orientation can be confirmed directly by transmission electron microscopy (TEM). Further, as a substitute method of TEM, estimation may be made from squareness ratio etc. obtained in the magnetization loop.
なお、軟質磁性相と硬質磁性粒子は、いずれもアモルファス状態であっても結晶状態であっても良いが、結晶状態であることが好ましい。軟質磁性相および硬質磁性粒子が結晶自体であることにより、複合磁性材料の飽和磁化を大きくすることができ、磁化容易軸の方向を合わせやすくなる。軟質磁性相および硬質磁性粒子がアモルファス状態である場合であっても、軟質磁性相と硬質磁性粒子との磁化容易軸は一方向に配向していることが好ましい。 The soft magnetic phase and the hard magnetic particles may either be in an amorphous state or in a crystalline state, but are preferably in a crystalline state. Since the soft magnetic phase and the hard magnetic particles are crystals themselves, the saturation magnetization of the composite magnetic material can be increased, and the direction of the magnetization easy axis can be easily aligned. Even when the soft magnetic phase and the hard magnetic particles are in an amorphous state, the magnetization easy axes of the soft magnetic phase and the hard magnetic particles are preferably oriented in one direction.
(体積分率と特性)
本発明の複合磁性材料は、硬質磁性粒子と軟質磁性相を混合させてなるものであるが、複合磁性材料の磁気特性は硬質磁性粒子と軟質磁性相の混合割合に依存しており、混合割合には最適範囲が存在する。その最適範囲を以下のように算出した。
(Volume fraction and characteristics)
The composite magnetic material of the present invention is a mixture of hard magnetic particles and a soft magnetic phase, but the magnetic properties of the composite magnetic material depend on the mixing ratio of the hard magnetic particles and the soft magnetic phase, and the mixing ratio There is an optimal range for The optimum range was calculated as follows.
まず、複合磁性材料の磁化Mtは、硬質磁性粒子の磁化Mh、軟質磁性相の磁化Ms、硬質磁性粒子の体積分率Vh、軟質磁性相の体積分率Vsを用いて、下記式(1)で表される。
Mt=Vh・Mh+Vs・Ms     式(1)
また、複合磁性材料の異方性エネルギーKtは、硬質磁性粒子の異方性エネルギーKh、軟質磁性相の異方性エネルギーKs、硬質磁性粒子の体積分率Vh、軟質磁性相の体積分率Vsを用いて、下記式(2)で表される。
Kt=Vh・Kh+Vs・Ks     式(2)
さらに、複合磁性材料の保磁力Hcは、下記式(3)で表される。
Hc=2・Mt/Kt     式(3)
SI単位系では、磁束密度B(T)は、磁界H(A/m)、磁化M(A/m)を用いて下記式(4)で表される。ここで、下記式(4)において、μoは真空の透磁率である。B=μo(H+M)     式(4) 
式(4)において、I=μoMと置き換えれば、下記式(5)が得られ、Iは磁束密度と同じ単位(T)になる。
B=μoH+I     式(5)
First, using the magnetization Mh of the composite magnetic material, the magnetization Mh of the hard magnetic particles, the magnetization Ms of the soft magnetic phase, the volume fraction Vh of the hard magnetic particles, and the volume fraction Vs of the soft magnetic phase, Is represented by
Mt = Vh · Mh + Vs · Ms Formula (1)
Further, the anisotropic energy Kt of the composite magnetic material is the anisotropic energy Kh of the hard magnetic particles, the anisotropic energy Ks of the soft magnetic phase, the volume fraction Vh of the hard magnetic particles, the volume fraction Vs of the soft magnetic phase It is represented by following formula (2) using.
Kt = Vh · Kh + Vs · Ks Formula (2)
Furthermore, the coercive force Hc of the composite magnetic material is expressed by the following formula (3).
Hc = 2 · Mt / Kt equation (3)
In the SI unit system, the magnetic flux density B (T) is represented by the following formula (4) using the magnetic field H (A / m) and the magnetization M (A / m). Here, in the following formula (4), μ o is the permeability of vacuum. B = μ o (H + M) Formula (4)
Substituting I = μ o M in the equation (4), the following equation (5) is obtained, and I becomes the same unit (T) as the magnetic flux density.
B = μ o H + I equation (5)
図6A及び6Bは、本実施形態の複合磁性材料において、硬質磁性粒子と軟質磁性相の混合割合と、複合磁性材料の残留磁束密度Brおよび保磁力Hcならびに最大エネルギー積BHmaxとの関係を示す図である。図6Aおよび図6Bにおいて、横軸は硬質磁性材料と軟質磁性相の混合割合である、硬質磁性粒子の体積分率Vh/(Vs+Vh)を示している。ここで、Vsは軟質磁性相の体積、Vhは硬質磁性粒子の体積を表す。図6Aにおいて、縦軸は残留磁束密度Brと保磁力Hcを示しており、図6Bにおいて、縦軸は最大エネルギー積BHmaxを示している。 6A and 6B are diagrams showing the relationship between the mixing ratio of hard magnetic particles and soft magnetic phase, and the residual magnetic flux density Br and the coercive force Hc of the composite magnetic material and the maximum energy product BHmax in the composite magnetic material according to the present embodiment. It is. 6A and 6B, the horizontal axis indicates the volume fraction Vh / (Vs + Vh) of the hard magnetic particles, which is the mixing ratio of the hard magnetic material and the soft magnetic phase. Here, Vs represents the volume of the soft magnetic phase, and Vh represents the volume of the hard magnetic particles. In FIG. 6A, the vertical axis represents the residual magnetic flux density Br and the coercivity Hc, and in FIG. 6B, the vertical axis represents the maximum energy product BHmax.
図6A及び6Bは、硬質磁性粒子を構成する硬質磁性材料をε-Fe、軟質磁性相を構成する軟質磁性材料をα-Feとして計算した結果に基づいている。ここでは、硬質磁性粒子の飽和磁化を0.1T、異方性エネルギーを0.77MJ/m、軟質磁性材料の飽和磁化を2.15T、異方性エネルギーを0.05MJ/mとして、計算を行った。これらの値と、式(1)~式(5)を用いて、残留磁束密度と保磁力の硬質磁性粒子の体積分率に対する依存性を図示したものが、図6Aである。また、図6Bは、図6Aの結果をもとに、最大エネルギー積BHmaxを示したものである。 FIGS. 6A and 6B are based on the calculation results of the hard magnetic material constituting the hard magnetic particles as ε-Fe 2 O 3 and the soft magnetic material constituting the soft magnetic phase as α-Fe. Here, the saturation magnetization of the hard magnetic particles is 0.1 T, the anisotropy energy is 0.77 MJ / m 3 , the saturation magnetization of the soft magnetic material is 2.15 T, and the anisotropy energy is 0.05 MJ / m 3 . I did the calculation. FIG. 6A illustrates the dependence of the residual magnetic flux density and the coercive force on the volume fraction of the hard magnetic particles using these values and the equations (1) to (5). Further, FIG. 6B shows the maximum energy product BHmax based on the result of FIG. 6A.
最大エネルギー積BHmaxは、モータ等で磁石を用いる場合に、その磁石性能を示す特性である。外部磁界が0の時の磁化Mt、すなわち残留磁化をMrとすると、保磁力HcがMr/2より大きい場合は、BHmaxをμoMr2/4、保磁力HcがMr/2より小さい場合は、BHmaxをμoMrHc/2として算出した。 The maximum energy product BHmax is a characteristic that indicates the performance of the magnet when the magnet is used as a motor or the like. Magnetization Mt when the external magnetic field is 0, that is, the residual magnetization and Mr, if the coercive force Hc is greater than Mr / 2 is a BHmax μ o Mr 2/4, if the coercive force Hc Mr / 2 less than , BHmax was calculated as μ o MrHc / 2.
図6Bから、硬質磁性粒子と軟質磁性相の混合割合を変えていくと、複合磁性材料の最大エネルギー積BHmaxは、所定の混合割合において、ここでは0.4のときに極大を示すことがわかった。図6Bの場合、BHmaxを170kJ/m以上とするためには、上記硬質磁性粒子の体積分率を0.2以上0.6以下とし、BHmaxを250kJ/m以上とするためには、上記硬質磁性粒子の体積分率を0.3以上0.5以下とすることが好ましいことがわかる。 It can be understood from FIG. 6B that when the mixing ratio of the hard magnetic particles and the soft magnetic phase is changed, the maximum energy product BHmax of the composite magnetic material shows a maximum at a predetermined mixing ratio, here 0.4. The In the case of FIG. 6B, in order to set BHmax to 170 kJ / m 3 or more, the volume fraction of the hard magnetic particles is set to 0.2 or more and 0.6 or less, and to set BHmax to 250 kJ / m 3 or more. It is understood that the volume fraction of the hard magnetic particles is preferably 0.3 or more and 0.5 or less.
尚、以上は複合磁性材料を焼結して作製した焼結磁石の場合であるが、磁性材料を樹脂と混合して作製したボンド磁石の比重は、焼結磁石よりも低くなる。例えばネオジムボンド磁石の比重は、ネオジム焼結磁石の1/4~1/8程度になる。ボンド磁石の比重は、樹脂材料の選択や成型方法に依存する。本発明の焼結磁石のBHmaxが170kJ/mになるように調整した複合磁性材料を用いる時、ボンド磁石では、比重が1/4、1/6、1/8に減少すると、それぞれBHmaxは43、28、21kJ/mとなる。本発明の焼結磁石のBHmaxが250kJ/mの場合では、ボンド磁石では、比重が1/4、1/6、1/8に減少すると、それぞれBHmaxは63、42、31kJ/mとなる。このため、本発明のボンド磁石の最大エネルギー積BHmaxは、21kJ/m以上で、31kJ/m以上が良く、さらには42kJ/m以上が望ましい。 The above is the case of a sintered magnet manufactured by sintering the composite magnetic material, but the specific gravity of the bonded magnet manufactured by mixing the magnetic material with the resin is lower than that of the sintered magnet. For example, the specific gravity of a neodymium bonded magnet is about 1/4 to 1/8 of that of a neodymium sintered magnet. The specific gravity of the bonded magnet depends on the selection of the resin material and the molding method. When using the composite magnetic material adjusted so that the BHmax of the sintered magnet of the present invention is 170 kJ / m 3 , in the bonded magnet, when the specific gravity decreases to 1/4, 1/6, and 1/8, the BHmax is respectively 43, 28, 21 kJ / m 3 . If BHmax of the sintered magnet of the present invention is 250 kJ / m 3, in the bonded magnet, the specific gravity is reduced to 1 / 4,1 / 6,1 / 8, respectively BHmax the 63,42,31kJ / m 3 Become. Therefore, the maximum energy product BHmax of the bonded magnet of the present invention is preferably 21 kJ / m 3 or more, 31 kJ / m 3 or more, and more preferably 42 kJ / m 3 or more.
図6Cは、図6A及び6Bと同様に、硬質磁性粒子の体積分率を横軸にして、縦軸に本実施形態の複合磁性材料の比重を示したものである。  本実施形態の複合磁性材料では、硬質磁性粒子の体積分率が0.4付近で、最大エネルギーは最も大きくなるが、このときの複合磁性材料の比重は約6.7g/cmである(以下、便宜上、本来無次元である比重の数値に、密度の単位であるg/cmを付けて記載する)。 NdFeB磁石の比重は、約7.6g/cm、SmCo磁石の比重は約8.4g/cmである。本発明の磁石は、代表例で硬質磁性粒子の体積分率が0.4の場合、比重は約6.7g/cmであるため、NdFeB磁石と比較して約12%の軽量化、SmCo磁石と比較すると20%の軽量化となる。 Similar to FIGS. 6A and 6B, FIG. 6C shows the specific gravity of the composite magnetic material of the present embodiment on the vertical axis, with the volume fraction of hard magnetic particles on the horizontal axis. In the composite magnetic material of the present embodiment, the maximum energy is the largest when the volume fraction of hard magnetic particles is around 0.4, but the specific gravity of the composite magnetic material at this time is about 6.7 g / cm 3 ( Hereinafter, for the sake of convenience, the unit of density, which is essentially dimensionless, is described with g / cm 3 which is a unit of density). The specific gravity of the NdFeB magnet is about 7.6 g / cm 3 , and the specific gravity of the SmCo magnet is about 8.4 g / cm 3 . Since the specific gravity of the magnet of the present invention is about 6.7 g / cm 3 when the volume fraction of hard magnetic particles is 0.4 in the representative example, the weight reduction by about 12% as compared with the NdFeB magnet, SmCo It is 20% lighter than a magnet.
磁性材料を樹脂と混合してボンド磁石を作製する場合は、一般的に樹脂の比重は、磁性材の比重よりも低いため、ボンド磁石の比重は磁性材料を固めた焼結磁石よりも低くなる。大まかには、ボンド磁石の比重をρb、磁性材料の体積比率をVm、焼結した状態の磁性材料の比重をρm、樹脂の比重をρpとすると式(6)となる。
ρb=Vm×ρm+(1-Vm)×ρb            式(6)
例えば、ρmが6.7g/cmの本発明の複合磁性材料と、ρpが1g/cmの樹脂を、Vm=0.7(体積比7:3)で混合して作製した場合、ボンド磁石の比重ρbは、5g/cmとなる。
When a magnetic material is mixed with a resin to produce a bonded magnet, the specific gravity of the resin is generally lower than that of the magnetic material, so the specific gravity of the bonded magnet is lower than that of a sintered magnet in which the magnetic material is solidified. . Roughly speaking, when the specific gravity of the bond magnet is ρb, the volume ratio of the magnetic material is Vm, the specific gravity of the magnetic material in a sintered state is ρm, and the specific gravity of the resin is pp, equation (6) is obtained.
b b = V m × m m + (1-V m) × (b Equation (6)
For example, a composite magnetic material of ρm is the invention of 6.7 g / cm 3, .rho.p is a resin of 1g / cm 3, Vm = 0.7 ( volume ratio 7: 3) prepared by mixing with, Bond The specific gravity bb of the magnet is 5 g / cm 3 .
以上は、硬質磁性材料の体積分率が0.4の場合であるが、0.6の場合は、焼結磁石の比重ρmは6.1g/cmとなる。ボンド磁石を作製する場合、樹脂材料や成型方法および使用用途によって、Vmを0.5~0.8の範囲で変更する。硬質磁性材料の体積分率Vhが0.6で式(6)のVmが0.5、0.7,0.8の場合、ボンド磁石の比重はそれぞれ、3.6、4.6、5.1g/cmとなる。硬質磁性材料の体積分率Vhが0.4で式(6)のVmが0.5、0.7,0.8の場合、ボンド磁石の比重はそれぞれ、3.9、5.0、5.6g/cmとなる。硬質磁性材料の体積分率Vhが0.2で式(6)のVmが0.5、0.7,0.8の場合、ボンド磁石の比重はそれぞれ、4.1、5.4、6.0g/cmとなる。磁石の代表的な性能は、最大エネルギー積と比重であり、図6Bの例で硬質磁性材料の体積割合は、0.3と0.5でほぼ同じ最大エネルギー積だが比重は0.5の方が小さい。
以上の点を鑑み、本発明のボンド磁石の比重は、5g/cm以下が望ましい。
The above is the case where the volume fraction of the hard magnetic material is 0.4, but in the case of 0.6, the specific gravity mm of the sintered magnet is 6.1 g / cm 3 . When producing a bonded magnet, Vm is changed in the range of 0.5 to 0.8 depending on the resin material, the molding method and the use application. When the volume fraction Vh of the hard magnetic material is 0.6 and Vm in the equation (6) is 0.5, 0.7, 0.8, the specific gravity of the bonded magnet is 3.6, 4.6, 5 respectively. It will be .1 g / cm 3 . When the volume fraction Vh of the hard magnetic material is 0.4 and Vm in the equation (6) is 0.5, 0.7, 0.8, the specific gravity of the bonded magnet is 3.9, 5.0, 5 respectively. It will be .6 g / cm 3 . When the volume fraction Vh of the hard magnetic material is 0.2 and Vm of the equation (6) is 0.5, 0.7, 0.8, the specific gravity of the bonded magnet is 4.1, 5.4, 6 respectively It will be .0 g / cm 3 . The typical performance of the magnet is the maximum energy product and specific gravity. In the example of FIG. 6B, the volume ratio of the hard magnetic material is approximately the same as the maximum energy product at 0.3 and 0.5, but the specific gravity is 0.5 Is small.
In view of the above points, the specific gravity of the bonded magnet of the present invention is desirably 5 g / cm 3 or less.
(磁性粉樹脂混合材)
本実施形態の複合磁性材料を含む磁性粉を結合剤(バインダ)と混合した物(以下、磁性粉樹脂混合材と称する)は、ボンド磁石を作製する際に用いることができる。結合剤としては、熱可塑性樹脂、熱硬化性樹脂等の樹脂材料、またはAl、Pb、Sn、Zn、Mg等の低融点金属、もしくはこれらの低融点金属を含む合金、等を用いることができる。熱可塑性樹脂は、ナイロンやポリエチレンあるいはEVA(エチレン-酢酸ビニル共重合体)などからなり、熱硬化性樹脂は、エポキシ樹脂やメラミン樹脂、フェノール樹脂などを含む。これらの磁性粉樹脂混合材はペレット状になっており、成形機によって磁石を作成できるようになっている。
(Magnetic powder resin mixture)
What mixed magnetic powder containing the composite magnetic material of this embodiment with a binder (binder) (hereinafter, referred to as a magnetic powder-resin mixture) can be used when producing a bonded magnet. As the binder, resin materials such as thermoplastic resin and thermosetting resin, or low melting metals such as Al, Pb, Sn, Zn, Mg, or alloys containing these low melting metals can be used. . The thermoplastic resin is made of nylon, polyethylene or EVA (ethylene-vinyl acetate copolymer) and the like, and the thermosetting resin contains epoxy resin, melamine resin, phenol resin and the like. These magnetic powder-resin mixtures are in the form of pellets, and a magnet can be made by a molding machine.
(磁石)
本実施形態に係る複合磁性材料は、所望の形状に成形してナノコンポジット磁石とすることができる。本実施形態に係るナノコンポジット磁石は、上述の複合磁性材料を含有している。本実施形態に係るナノコンポジット磁石は、下記に示すように、焼結磁石であっても良いしボンド磁石であっても良い。
(magnet)
The composite magnetic material according to the present embodiment can be formed into a desired shape to be a nanocomposite magnet. The nanocomposite magnet according to the present embodiment contains the above-described composite magnetic material. The nanocomposite magnet according to the present embodiment may be a sintered magnet or a bonded magnet as described below.
[1]焼結磁石
本実施形態に係る複合磁性材料を所望の形状に成形し、得られた成形体を不活性雰囲気下または真空下で熱処理することで、焼結磁石が得られる。また、プラズマ活性化焼結(PAS:Plasma Activated Sintering)、または放電プラズマ焼結(SPS:Spark Plasma Sintering)で成形体を焼結することによっても、焼結磁石を得ることができる。また、磁場中で成形することで、異方性焼結磁石が得られる。
[1] Sintered Magnet A sintered magnet can be obtained by forming the composite magnetic material according to the present embodiment into a desired shape, and heat treating the resulting molded body in an inert atmosphere or under vacuum. A sintered magnet can also be obtained by sintering a compact by plasma activated sintering (PAS) or spark plasma sintering (SPS). Also, by molding in a magnetic field, an anisotropic sintered magnet can be obtained.
[2]ボンド磁石
前記磁性粉樹脂混合材を、周知のプラスチック成形等と同様に、成形金型を用いて射出成形、圧縮成形あるいは押し出し成形により所望の形状に成形した成形品を、所望の磁化パターンに着磁してボンド磁石が得られる。なお、前記磁化パターンを成形時に同時着磁しても良い。また、複合磁性材料を磁場中で成形することで、異方性ボンド磁石が得られる。
[2] Bonded magnet The desired magnetization of a molded product obtained by forming the magnetic powder-resin mixture into a desired shape by injection molding, compression molding or extrusion using a molding die in the same manner as known plastic molding etc. A bonded magnet is obtained by magnetizing the pattern. The magnetization pattern may be simultaneously magnetized at the time of molding. Also, by molding the composite magnetic material in a magnetic field, an anisotropic bonded magnet can be obtained.
(磁石特性)
磁石用として磁性材料を用いる場合、最大エネルギー積が170kJ/m以上であることが好ましく、200kJ/m以上であることがより好ましく、250kJ/m以上であることがさらに好ましい。図6Bから、本実施形態においては、硬質磁性材料の体積分率が、0.18以上0.60以下であることが好ましく、0.30以上0.50以下であることがより好ましい。
(Magnetic characteristics)
When using a magnetic material for the magnet, preferably a maximum energy product is 170kJ / m 3 or more, more preferably 200 kJ / m 3 or more, and still more preferably 250 kJ / m 3 or more. From FIG. 6B, in the present embodiment, the volume fraction of the hard magnetic material is preferably 0.18 or more and 0.60 or less, and more preferably 0.30 or more and 0.50 or less.
(磁石の軽量化)
図7Aは、本実施形態に係る磁石例と、比較例としてのネオジムボンド磁石に関して、磁石の重量と最大エネルギーBHEの関係を示した図である。最大エネルギーBHEは、最大エネルギー積BHmaxに磁石の体積をかけて、単位がエネルギーとなるように定義した値である。本実施形態に係る複合磁性材料に、体積比で、複合磁性材料:樹脂=7:3(重量比で94:6)となるように、樹脂を混入して成形し、本実施形態に係る磁石を作製する。また、ネオジムボンド磁石も、ネオジム磁性粉に同じ重量比で樹脂を混入して成形し作製する。なお、比較のために、いずれの磁石においても最大エネルギー積BHmaxは、70kJ/mとする。図7Aより分かるように、本実施形態によれば、同じ性能(同じBHE)でネオジムボンド磁石に対して12%程度軽量化できる。
(Magnet weight reduction)
FIG. 7A is a view showing the relationship between the weight of the magnet and the maximum energy BHE regarding the magnet example according to the present embodiment and the neodymium bonded magnet as the comparative example. The maximum energy BHE is a value defined such that the unit is energy by multiplying the maximum energy product BHmax by the volume of the magnet. The magnet according to the present embodiment is formed by mixing the resin into the composite magnetic material according to the present embodiment so that the volume ratio is composite magnetic material: resin = 7: 3 (weight ratio 94: 6). Make Also, neodymium bonded magnets are produced by mixing resin with neodymium magnetic powder at the same weight ratio. For comparison, the maximum energy product BHmax is 70 kJ / m 3 in any of the magnets. As can be seen from FIG. 7A, according to the present embodiment, the weight can be reduced by about 12% with respect to the neodymium bonded magnet with the same performance (same BHE).
図7Bは、図7Aに示した2例に、フェライト焼結磁石とフェライトボンド磁石を合わせて掲載したものである。フェライト焼結磁石は最大エネルギー積BHmaxが28kJ/mの特性のもの、フェライトボンド磁石はBHmaxが10kJ/mの特性のものを、各磁石の代表例として用いた。図7Bより、本実施形態によれば、フェライト系磁石と比較すると、同じ性能(同じBHE)でさらに軽量化できることが分かる。  FIG. 7B is a combination of the ferrite sintered magnet and the ferrite bond magnet in the two examples shown in FIG. 7A. Those ferrite sintered magnet maximum energy product BHmax of characteristics of 28kJ / m 3, a ferrite bond magnet is what BHmax of characteristics of 10 kJ / m 3, was used as a representative example of each magnet. From FIG. 7B, according to the present embodiment, it can be understood that the weight can be further reduced with the same performance (the same BHE) as compared to the ferrite magnet.
(モータ)
モータに磁石を採用する場合、モータに適した磁石の形状においてパーミアンス直線を考慮して最大エネルギー積を求める必要がある。磁石形状を考慮せず最も高い最大エネルギー積が得られる場合として、形状は細長い磁石になるものがある。最大エネルギー積BHmaxが最も高い場合は、保磁力HcがMr/2と等しい場合であり、最も有効に磁性材料の特性を磁石特性に生かせる。この状態は、図6Bの最大エネルギー積BHmaxが最も高く硬質磁性材料の体積分率が0.4付近の場合である。
(motor)
When a magnet is employed for the motor, it is necessary to determine the maximum energy product in consideration of the permeance straight line in the magnet shape suitable for the motor. In some cases where the highest maximum energy product can be obtained without considering the magnet shape, the shape may be an elongated magnet. When the maximum energy product BHmax is the highest, the coercivity Hc is equal to Mr / 2, and the characteristic of the magnetic material is most effectively utilized for the magnetic characteristic. This state is the case where the maximum energy product BHmax in FIG. 6B is the highest and the volume fraction of the hard magnetic material is around 0.4.
本実施形態による複合磁性材料を磁性粉として焼結し磁石として用いると、希土類元素を使用せずとも高い残留磁化(残留磁束密度)と高い保磁力を得ることができ、最大エネルギー積BHmaxが高い磁石を得ることができる。さらに本実施形態による磁石を用いることで、低価格で高い性能(例えば高トルク)のモータを得ることができる。また、前述のように、ネオジムボンド磁石と同等の性能を有しながら、磁石が軽量化できるため、モータが軽量化できる。また、回転部分に上記磁石を搭載したモータでは、回転部の重量が軽くなるため、消費電力が少なくできる等のメリットがある。 When the composite magnetic material according to the present embodiment is sintered as magnetic powder and used as a magnet, high residual magnetization (residual magnetic flux density) and high coercivity can be obtained without using a rare earth element, and the maximum energy product BHmax is high. You can get a magnet. Furthermore, by using the magnet according to the present embodiment, a motor with low cost and high performance (for example, high torque) can be obtained. Further, as described above, since the weight of the magnet can be reduced while having the same performance as the neodymium bonded magnet, the weight of the motor can be reduced. In addition, in the motor in which the magnet is mounted on the rotating portion, the weight of the rotating portion is reduced, so that there is an advantage that power consumption can be reduced.
図9A及び9Bは、本発明の複合磁性材料を用いて作製した磁石を設けた移動部(ロータ)の例を示した図である。移動部(ロータ)4は、中心軸であるシャフト7に、磁石5とヨーク6が、蓋8を介して、接続した構成である。図9Aは、上面(回転軸方向)から見た図で、図9Bは、側面(回転軸に直交する方向)から見た図である。図10は、移動部(ロータ)4を用いたモータの例を示した図である。モータ9は、カバー11に設けられたコイルを含む電磁石10と、移動部(ロータ)4を含む。モータ9は、図示していないホールICによって磁石5の磁極を検出し、その結果に応じて、電磁石10に電流を流して磁界を発生させることで、移動部(ロータ)1を回転させる。 FIGS. 9A and 9B are diagrams showing an example of a moving part (rotor) provided with a magnet manufactured using the composite magnetic material of the present invention. The moving unit (rotor) 4 is configured such that the magnet 5 and the yoke 6 are connected to a shaft 7 which is a central axis, via a lid 8. FIG. 9A is a view as viewed from the top surface (rotational axis direction), and FIG. 9B is a view as viewed from a side surface (direction orthogonal to the rotation axis). FIG. 10 is a view showing an example of a motor using the moving unit (rotor) 4. The motor 9 includes an electromagnet 10 including a coil provided to the cover 11 and a moving unit (rotor) 4. The motor 9 detects the magnetic pole of the magnet 5 by a Hall IC (not shown), and causes the moving unit (rotor) 1 to rotate by causing a current to flow through the electromagnet 10 to generate a magnetic field according to the result.
図10に示すモータはブラシレスモータと呼ばれるものの一種であり、回転部に磁石を有する。回転部が電磁石の内側にあるブラシレスモータは、インナーロータ型ブラシレスモータ、回転部が電磁石の外側にあるブラシレスモータは、アウターロータ型ブラシレスモータである。本発明の磁石は、アウターロータ型ブラシレスモータでも適用可能である。 The motor shown in FIG. 10 is a kind of what is called a brushless motor, and has a magnet in its rotating part. The brushless motor in which the rotating part is inside the electromagnet is an inner rotor type brushless motor, and the brushless motor in which the rotating part is outside the electromagnet is an outer rotor type brushless motor. The magnet of the present invention is also applicable to an outer rotor type brushless motor.
また本明細書中で、移動部としてモータの一部分であるロータを磁石の応用例として記述しているが、本発明の磁石はロータに限定しない。軽量化による加速回転させる期間の短縮や消費電力の低減の目的においては、移動部が回転するものではなく、例えば左右もしくは上下もしくは円周上に移動するようなものでも良い。例えば、複数の電磁石を一列に並べて、電磁石の電流の向きを変えることで、電磁石上の磁石を移動させるものであってもよい。 Moreover, although the rotor which is a part of motor as a moving part is described in this specification as an application example of a magnet, the magnet of this invention is not limited to a rotor. For the purpose of shortening the acceleration rotation period and reducing the power consumption due to the weight reduction, the moving unit may not be rotated, but may be, for example, moved to the left, right, up and down, or on the circumference. For example, the magnets on the electromagnets may be moved by arranging a plurality of electromagnets in a row and changing the direction of the current of the electromagnets.
(第2の実施形態)
図11A乃至11Cは、モータの回転数RPMの時間t応答を示した図である。図11Aのような応答になるように、モータのコイルの電圧・電流を制御する駆動シーケンスである。かかる駆動シーケンスは、かかるモータを駆動するシーケンサに設定される。かかるシーケンサとモータとを備えた形態をモータユニットと称する。駆動開始とともに回転数が増加し、立ち上り時間(起動時間)t1で規定回転数Rpになり、回転数Rpの状態をt2の時間持続して、立下り時間t3で回転数ゼロになって停止する。モータが回転を開始してから停止するまで(t1+t2+t3)、もしくは一定の回転数を持続するまで(t1+t2)の時間のうち、立ち上り時間t1もしくは立下り時間t3、または立ち上り時間t1および立下り時間t3の割合が小さいことが、モータの使用時間と比較して、起動や停止にかかる時間が短くなって望ましい。
Second Embodiment
11A to 11C show the time t response of the number of revolutions RPM of the motor. It is a drive sequence which controls the voltage and current of the coil of a motor so that it may become a response like FIG. 11A. The drive sequence is set to a sequencer that drives the motor. The form provided with such a sequencer and a motor is called a motor unit. The rotation speed increases with the start of driving and reaches the specified rotation speed Rp at the rise time (startup time) t1. The state of the rotation speed Rp is maintained for t2 and the rotation speed becomes zero at the fall time t3 and stops. . The rise time t1 or fall time t3, or rise time t1 and fall time t3 of the time from when the motor starts rotation until it stops (t1 + t2 + t3), or until the constant rotation speed is sustained (t1 + t2) It is desirable that the ratio of is small because the time taken to start and stop is short compared to the use time of the motor.
図11Bは、図11Aの規定回転数Rpを保持する期間t2がゼロとなって、起動と停止を繰り返す場合である。また、図11Cは、規定回転数Rpを保持する期間t2がゼロにするのに加えて、正回転の回転数Rpに到達したのちに、逆回転させて回転数-Rpにする場合である。図11Bや図11Cの場合は、立ち上り時間t1もしくは立下り時間t3、または立ち上り時間t1および立下り時間t3が小さいことが望まれる。 FIG. 11B is a case where the period t2 of holding the specified rotational speed Rp in FIG. 11A becomes zero and the start and stop are repeated. Further, FIG. 11C shows a case where, in addition to the period t2 for holding the specified rotational speed Rp being zero, after the rotational speed Rp of the forward rotation is reached, reverse rotation is performed to make the rotational speed −Rp. In the case of FIGS. 11B and 11C, it is desirable that the rising time t1 or the falling time t3, or the rising time t1 and the falling time t3 be short.
例えば図11Aで1サイクル時間(t1+t2+t3)での加速回転させる期間と立下り時間の割合は、t1とt3が同じ場合、2t1/(t2+2t1)となる。例えばt2=2t1の場合、t1が1/2になると、1サイクル時間は、1/2になる。図11Bで1サイクル時間(t1+t3)は、t1とt3が同じ場合には、2t1になる。例えば、t1が1/2になると、1サイクル時間は、1/4になる。図11Cで1サイクル時間(2t1+2t3)は、t1とt3が同じ場合、t1が1/2になると、1サイクル時間は、1/8になる。 For example, in FIG. 11A, when t1 and t3 are the same, the ratio of the acceleration rotation period and the fall time in one cycle time (t1 + t2 + t3) is 2t1 / (t2 + 2t1). For example, in the case of t2 = 2t1, when t1 is 1⁄2, one cycle time is 1⁄2. In FIG. 11B, one cycle time (t1 + t3) is 2t1 when t1 and t3 are the same. For example, when t1 is 1/2, one cycle time is 1/4. In FIG. 11C, when one cycle time (2t1 + 2t3) is the same as t1 and t3, when t1 is 1⁄2, one cycle time is 1⁄8.
このように本発明のモータを用いる場合、本発明のモータは、定速で回転させる駆動では定速で回転させる期間が加速回転させる期間の2倍以下、さらには回転を開始し一定回転数になったのち直ちに停止する場合、さらには正転と逆転を繰り返す場合に、タクトタイムを短くでき効果が顕著になる。 As described above, when using the motor of the present invention, the motor of the present invention is driven at a constant speed to rotate at a constant speed for a period of twice or less of a period for accelerating rotation, and further to start rotation to a constant rotation speed. In the case of stopping immediately after it has become, and further, in the case of repeating normal rotation and reverse rotation, the tact time can be shortened and the effect becomes remarkable.
図11Cのように、正逆回転を繰り返して動作する機械部を有する製造装置を使用する場合、所定の時間で既定の回転数に達する回数が多ければ、製造工程のタクトタイムが短くなり、生産性を向上することができる。よって、本発明の軽量磁石を移動部(ロータ)に用いたモータが有用である。正逆回転を繰り返して動作する機械部を有する装置として、モータに接続された羽根付刃で被破砕物を砕く操作を行う粉砕機、混合物の撹拌を行う際に撹拌棒の回転方向を変えて行う撹拌装置、部品を一方向に回転させて取り付けたのち逆方向に回転させて組立を行う組立装置、など高いトルクと短い起動および反転の時間が要求される装置が例として挙げられる。 As shown in FIG. 11C, in the case of using a manufacturing apparatus having a mechanical unit that operates repeatedly in forward and reverse rotations, if the number of rotations reaches a predetermined number of times in a predetermined time, the tact time of the manufacturing process becomes short and production It is possible to improve the quality. Therefore, a motor using the lightweight magnet of the present invention for the moving part (rotor) is useful. A crusher that crushes the material to be crushed with a bladed blade connected to a motor as a device having a mechanical unit that operates repeatedly in reverse rotation, and changes the rotation direction of the stirring rod when stirring the mixture For example, a stirring device to be carried out, an assembly device in which parts are rotated and attached in one direction and then assembled in the reverse direction, and the like, such as a device requiring high torque and short start and reverse time are exemplified.
(第3の実施形態)
本発明の磁石は、モータの移動部(ロータ部)の他、固定部(ステータ部)に設けた場合でも、モータ自体の重量が低減できる点で効果がある。
Third Embodiment
The magnet of the present invention is effective in that the weight of the motor itself can be reduced even when provided in the fixed portion (stator portion) in addition to the moving portion (rotor portion) of the motor.
図13は、モータにおける磁石の重量割合とモータ自体の重量減少率を示したものである。図中の3つの線は、比較例であるネオジム磁石と本発明の磁石との比重の比率Rρ(%)を、式(6)
Rρ=(1-本発明の磁石の比重/ネオジム磁石の比重)×100  式(6)
を用いて軽量化の割合として算出し、式6の値Rρが10%,12%、14%の各場合について示したものである。これらは、図6Cの例に示すように硬質磁性粒子の体積分率を0.45、0.40、0.35として複合磁性材料を作製し、本発明の磁石の比重を6.8g/cm、6.7g/cm、6.6g/cmとしたものである。尚算出ではネオジム磁石の比重として7.6g/cmを用いた。ネオジム磁石を使用したモータと本発明の磁石を用いたモータとを比較したモータ重量減少率は、1%以上が良く、2%以上が望ましく、4%以上がさらに望ましい。よって図13から、モータ内の本発明の磁石の割合は、約8%以上が良く、約15%以上が望ましく、約20%程度以上がさらに望ましい。
FIG. 13 shows the weight ratio of magnets in the motor and the weight reduction rate of the motor itself. The three lines in the figure show the ratio Rρ (%) of the specific gravity of the neodymium magnet of the comparative example to the magnet of the present invention, and the equation (6)
Rρ = (1-specific gravity of magnet of the present invention / specific gravity of neodymium magnet) × 100 Formula (6)
The value R 割 合 of Equation 6 is calculated for each of the cases of 10%, 12%, and 14%. As shown in the example of FIG. 6C, these manufacture composite magnetic materials by setting the volume fraction of hard magnetic particles to 0.45, 0.40, 0.35, and the specific gravity of the magnet of the present invention is 6.8 g / cm. 3 , 6.7 g / cm 3 and 6.6 g / cm 3 . In the calculation, 7.6 g / cm 3 was used as the specific gravity of the neodymium magnet. The motor weight reduction rate comparing the motor using the neodymium magnet and the motor using the magnet of the present invention is preferably 1% or more, preferably 2% or more, and more preferably 4% or more. Therefore, from FIG. 13, the ratio of the magnet of the present invention in the motor is preferably about 8% or more, preferably about 15% or more, and more preferably about 20% or more.
近年、プロペラを回転するため複数のモータを搭載した装置として飛行機器が活用されている。その代表例として、ドローンと呼ばれる飛行機器があるが、これは、プロペラを回転するために、4個から8個、もしくはそれ以上の個数の、モータを搭載している。ドローンまたはドローンの使い方として、なるべく小型で軽量であること、なるべくカメラやバッテリーなどの付属部品を増やして機能を向上したい、なるべく重いものを運搬したい、などの要求がある。このため、飛行するためのプロペラ回転に必要な特性(トルクや回転数など)を有し、かつ、できるだけ軽量なモータが求められる。本発明のモータはこの目的に効果的である。 In recent years, an airplane gear has been utilized as a device equipped with a plurality of motors for rotating a propeller. A typical example is an aeroplane called a drone, which mounts four to eight or more motors in order to rotate a propeller. There is a demand for using drone or drone as small and light as possible, to improve accessories by adding accessories such as cameras and batteries as much as possible, and to carry as heavy a thing as possible. For this reason, a motor as light as possible having characteristics (torque, rotational speed, etc.) necessary for propeller rotation for flight is required. The motor of the present invention is effective for this purpose.
ドローンの構成例として、1個65gのモータを4個、120gのフレーム(プロペラ含む)、50gの飛行コントローラ、10gのカメラ、30gのカメラ制御ユニット、170gのバッテリーを用いた場合、ドローン全体で640gとなる。ここでモータの重量減少率が4%の場合、全体の重量が約630gとなる。ドローン全体が約10g軽量化されるため、カメラをもう1台追加することができる。 As a configuration example of drone, 4 units of 65g motor, frame of 120g (including propeller), flight controller of 50g, camera of 10g, camera control unit of 30g, battery of 170g, total drone 640g It becomes. Here, when the weight reduction rate of the motor is 4%, the total weight is about 630 g. The entire drone will be about 10g lighter, so one more camera can be added.
また別のドローンの構成例として、1個65gのモータを8個、120gのフレーム(プロペラ含む)、50gの飛行コントローラ、10gのカメラ、30gのカメラ制御ユニット、170gのバッテリーを用いた場合、ドローン全体で900gとなる。ここでモータの重量減少率が2%の場合、全体の重量が約890gとなる。ドローン全体が約10g軽量化され、カメラをもう1台追加することができる。またモータの重量減少率が4%の場合、全体の重量が約880gとなる。ドローン全体が約20g軽量化されるため、カメラをもう2台追加することが出来る。 As another configuration example of drone, when using one 65g motor, 8 frames of 120g (including propeller), 50g flight controller, 10g camera, 30g camera control unit, 170g battery, drone It is 900g in total. Here, when the weight reduction rate of the motor is 2%, the total weight is about 890 g. The entire drone is reduced in weight by about 10g, and another camera can be added. When the weight reduction rate of the motor is 4%, the total weight is about 880 g. The overall weight of the drone is reduced by about 20g, so two more cameras can be added.
上記実施形態に対する幾つかの比較例を説明する。
(比較例:硬質磁性粒子の粒径と粒子間距離/空隙率)
上記特許文献1に記載の技術では、ε-Fe粒子を還元処理することで、その周囲にFeを含むシェルを形成して、上述のコアシェル構造を有する磁性粒子を得ている。この方法では、得られた複数の磁性粒子を緻密化してナノコンポジット磁石を形成しても、ε-Fe粒子間の距離は、還元処理前のε-Fe粒子の粒径以上にすることができず、硬質磁性粒子の粒径と硬質磁性粒子間の距離を制御することが困難である。また、粒子状の物質を緻密化しても、球状の粒子を接触した場合、その接触面積はゼロに近く交換力は極めて小さい。粒子の集合体である粉体を圧縮すれば、粒子間に接触面ができ空隙率が低下することが知られているが、粒径が数百nm以下のナノ粒子においては、粒径が小さくなると紛体のかさ密度は低くなり、圧縮しても空隙率を小さくすることが困難である。したがって、特許文献1に記載のコアシェル粒子を緻密化しても、本実施形態のように、連続体の軟質磁性相中に硬質磁性粒子が複数分散した構造は得られず、多数の空隙が残ってしまう。
Several comparative examples of the above embodiment will be described.
(Comparative example: particle size and distance between particles of hard magnetic particles / porosity)
In the technology described in Patent Document 1, the ε-Fe 2 O 3 particles are subjected to reduction treatment to form a shell containing Fe around them, thereby obtaining magnetic particles having the above-mentioned core-shell structure. In this method, it is formed a nanocomposite magnet by densifying the plurality of magnetic particles obtained, the distance between the ε-Fe 2 O 3 particles, the particle size reduction treatment before the ε-Fe 2 O 3 particles However, it is difficult to control the particle size of the hard magnetic particles and the distance between the hard magnetic particles. In addition, even if the particulate matter is densified, when contacting spherical particles, the contact area is close to zero and the exchange force is extremely small. It is known that if the powder, which is an aggregate of particles, is compressed, the contact surface is formed between the particles and the porosity is reduced, but in the case of nanoparticles having a particle diameter of several hundred nm or less, the particle diameter is small. Then, the bulk density of the powder becomes low, and it is difficult to reduce the porosity even if compressed. Therefore, even if the core-shell particles described in Patent Document 1 are densified, a structure in which a plurality of hard magnetic particles are dispersed in the soft magnetic phase of the continuous body can not be obtained as in the present embodiment. I will.
(比較例:MHループ)
図8Aは、比較例としてコアシェル構造で磁石を作製した場合の磁化Mと磁場Hの関係を示すMHループを示したものである。また図8Bは、ゼロ磁場における比較例のコアシェル型磁性材料11を含む磁石材料10の構造と磁化状態を示したものである。ここで、コアシェル型磁性材料11は、硬質磁性材料を含むコア11bと、軟質磁性材料を含むシェル11aと、を有している。この比較例においては、各コアシェル構造の磁化の向きがゼロ磁場においてランダムに配向しやすくなるため、残留磁化Mrは飽和磁化よりも著しく小さくなり、角形比(残留磁化と飽和磁化の比)は小さくなる。
(Comparative example: MH loop)
FIG. 8A shows an MH loop showing the relationship between the magnetization M and the magnetic field H when the magnet is manufactured to have a core-shell structure as a comparative example. Moreover, FIG. 8B shows the structure and magnetization state of the magnet material 10 containing the core-shell type magnetic material 11 of the comparative example in a zero magnetic field. Here, the core-shell magnetic material 11 has a core 11 b containing a hard magnetic material and a shell 11 a containing a soft magnetic material. In this comparative example, the direction of magnetization of each core-shell structure tends to be randomly oriented in a zero magnetic field, so that the residual magnetization Mr becomes significantly smaller than the saturation magnetization, and the squareness ratio (ratio of residual magnetization to saturation magnetization) is small. Become.
(複合磁性材料の製造方法)
次に、本実施形態に係る複合磁性材料の製造方法の工程について説明する。
[1]硬質磁性粒子を溶液中で均一分散する工程
本工程は、硬質磁性粒子を複合磁性材料の状態で均一に分散させるための工程である。まず硬質磁性粒子を水溶液中に入れる。硬質磁性粒子が凝集して粒径が大きくなるのを防ぐため、ガラスビーズを入れて遊星ビーズミルで撹拌する。これにより凝集状態を無くし元の粒子(一次粒子)に近い粒子径分布にする。さらに、フィルターでろ過して、大きな粒径を取り除き粒径を均一化する。
(Method of manufacturing composite magnetic material)
Next, steps of a method of manufacturing the composite magnetic material according to the present embodiment will be described.
[1] Step of Uniformly Dispersing Hard Magnetic Particles in Solution This step is a step of uniformly dispersing hard magnetic particles in the state of a composite magnetic material. First, the hard magnetic particles are placed in an aqueous solution. In order to prevent aggregation of the hard magnetic particles and increase in particle size, glass beads are added and stirred by a planetary bead mill. As a result, the aggregation state is eliminated, and the particle size distribution is made close to the original particles (primary particles). Furthermore, it is filtered through a filter to remove large particle size and make the particle size uniform.
[2]遷移金属元素(軟質磁性材料に含まれる少なくとも1種の遷移金属元素)を含むイオンを含有する溶液中に、硬質磁性材粒子を分散させて分散液を得る工程
本工程は、遷移金属元素を含むイオンを含有する溶液中に、硬質磁性粒子を分散させて得られる分散液を調製する。本実施形態では複合磁性材料中の軟質磁性材料は遷移金属元素を含んでおり、本工程では、その遷移金属元素を含むイオンの溶液を用意する。遷移金属元素としては、上述のとおり、Fe、Co、Mn、Niからなる群から選択される少なくとも1つであることが好ましい。当該溶液としては、上記遷移金属元素がFeの場合には、例えば、塩化鉄(II)や塩化鉄(III)、硫酸鉄(III)、硝酸鉄(III)などの水溶液が好適に用いられる。
[2] A process of dispersing hard magnetic material particles in a solution containing ions containing a transition metal element (at least one transition metal element contained in a soft magnetic material) to obtain a dispersion liquid The hard magnetic particles are dispersed in a solution containing ions containing an element to prepare a dispersion. In the present embodiment, the soft magnetic material in the composite magnetic material contains a transition metal element, and in this step, a solution of ions containing the transition metal element is prepared. The transition metal element is preferably at least one selected from the group consisting of Fe, Co, Mn, and Ni as described above. As said solution, when the said transition metal element is Fe, aqueous solution, such as iron chloride (II), iron chloride (III), iron sulfate (III), iron nitrate (III), is used suitably, for example.
本工程では、上記溶液に硬質磁性粒子を分散させて分散液を得る。このとき、上述のように第1の工程で予め硬質磁性粒子を分散させた水溶液中に上記イオンを含有させても良いし、上述のイオンを含む溶液中に硬質磁性粒子を上述のように分散させても良い。 In this step, hard magnetic particles are dispersed in the above solution to obtain a dispersion. At this time, the ions may be contained in the aqueous solution in which the hard magnetic particles are dispersed in advance in the first step as described above, or the hard magnetic particles may be dispersed in the solution containing the ions as described above. You may
[3]分散液に添加剤を添加して、遷移金属元素を含有する粒子を析出させる工程
本工程では、上記分散液に添加剤を添加することで、上記イオンを反応させ、遷移金属元素を含有する粒子または析出物を析出させる。上記工程[2]において、分散液中には硬質磁性粒子が分散されているため、分散液中において、硬質磁性粒子の周りには、硬質磁性粒子を取り囲むように、上記イオンが存在している。この状態でイオンが反応し、イオン中の遷移金属元素を含む粒子または析出物が析出するため、硬質磁性粒子を囲む形で粒子または析出物が析出する。これにより、遷移金属元素を含む析出物群中に、硬質磁性粒子が島状に複数分散した構造を有する混合物が得られる。このとき、工程[2]で硬質磁性粒子を十分に分散させておくことで、当該混合物中における硬質磁性粒子の分散性を高めることができ、硬質磁性粒子間の距離を調整するともできる。
[3] The step of adding an additive to the dispersion to precipitate particles containing the transition metal element In this step, the additive is added to the dispersion to cause the ions to react and transition metal element. Precipitate particles or precipitates contained. In the above step [2], since the hard magnetic particles are dispersed in the dispersion, the ions are present around the hard magnetic particles in the dispersion so as to surround the hard magnetic particles. . Ions react in this state, and particles or precipitates containing transition metal elements in the ions precipitate, so that particles or precipitates precipitate in a form surrounding the hard magnetic particles. Thus, a mixture having a structure in which a plurality of hard magnetic particles are dispersed like islands in a precipitate group containing a transition metal element is obtained. At this time, by sufficiently dispersing the hard magnetic particles in the step [2], the dispersibility of the hard magnetic particles in the mixture can be enhanced, and the distance between the hard magnetic particles can be adjusted.
添加剤としては、還元剤や塩基性溶液を用いることが好ましい。添加剤として還元剤を用いることで、遷移金属元素を含むイオンを還元して、遷移金属元素の価数を減らして析出させることができる。還元剤を適切に選べば、遷移金属元素を含む単金属や合金を直接析出させることができる。例えば塩化鉄(II)水溶液中に硬質磁性粒子(ε-Feなど)が分散した状態の分散液に、添加剤として還元剤であるNaBHを添加することで、塩化鉄(II)を鉄にまで還元して、硬質磁性粒子の周りにα-Feの微粒子を析出させることができる。 As the additive, it is preferable to use a reducing agent or a basic solution. By using a reducing agent as an additive, ions including a transition metal element can be reduced to reduce the valence of the transition metal element and precipitate. By properly selecting the reducing agent, it is possible to directly deposit a single metal or alloy containing a transition metal element. For example, by adding NaBH 4 as a reducing agent to a dispersion in a state where hard magnetic particles (such as ε-Fe 2 O 3 ) are dispersed in an aqueous iron (II) chloride solution, iron chloride (II) can be added Can be reduced to iron to precipitate α-Fe fine particles around the hard magnetic particles.
なお、α-Fe微粒子の析出において、還元剤の添加条件で粒子サイズを変化させることができる。例えば、添加する還元剤の液滴サイズを小さくすると還元反応を起こす領域を微小化することができ、α-Fe粒子を小粒径化することができる。また、還元剤を添加する際に、例えば塩化鉄(II)溶液を用いる場合、その温度を変えても粒子サイズを変化させることができ、溶液温度を高くすることでα-Fe粒子のサイズを小粒径化することができる。複合磁性材料の作製においては、還元剤の小液滴化、鉄イオン溶液の高温化のいずれかを選択しても良いし、両方を同時に選択しても良く、必要なα-Fe粒子のサイズに合わせて選択することができる。 In the precipitation of α-Fe fine particles, the particle size can be changed under the addition conditions of the reducing agent. For example, when the droplet size of the reducing agent to be added is reduced, the region which causes a reduction reaction can be miniaturized, and the α-Fe particles can be reduced in size. In addition, when adding a reducing agent, for example, when using an iron (II) chloride solution, the particle size can be changed even if the temperature is changed, and by increasing the solution temperature, the size of α-Fe particles can be increased. The particle size can be reduced. In the preparation of the composite magnetic material, either the reduction of the reducing agent or the increase in the temperature of the iron ion solution may be selected, or both may be selected simultaneously, and the size of the necessary α-Fe particles may be selected. It can be selected according to
また、α-Fe微粒子の析出において、遷移金属元素を含むイオンの溶液の溶媒条件によっても粒子サイズを変化させることができる。例えば、塩化鉄(II)を水ではなく、有機溶媒のメタノールに溶解させた後、還元剤を添加することでα-Fe粒子を小粒径化することができる。このような小粒形化をできる理由は定かではないが析出時のα-Fe粒子の表面エネルギーを低下させる効果が有機溶媒にあるために、小粒形化できると考えている。α-Fe粒子の表面エネルギーを低下させる効果がある、つまりはα-Feと濡れ性の良好な有機溶媒としては例えば、メタノール、エタノール、2-プロパノール、アセトン、ジメチルスルホキシド、テトラヒドロフラン、エチレングリコール、ジエチレングリコールなどが挙げられる。これらの溶媒を一種類選択してもよいし、必要に応じて混合して使用しても良い。ただし、アセトン、ジメチルスルホキシドといった溶媒は還元剤により一部が還元される性質を持っているので効率的ではない。複合磁性材料の作製においては、遷移金属元素を含むイオンの溶液の溶媒に有機溶媒を使用する場合は、硬質磁性粒子を分散させる分散溶媒と還元剤を溶解させる溶媒も有機溶媒を使う方が好ましく、事前に脱水処理や溶存酸素除去処理をしておく方が好ましい。 In addition, in the precipitation of α-Fe fine particles, the particle size can also be changed by the solvent condition of the solution of the ion containing the transition metal element. For example, after dissolving iron (II) chloride not in water but in methanol as an organic solvent, the reduction in particle size of α-Fe particles can be achieved by adding a reducing agent. The reason why such micronization can be achieved is not clear, but it is believed that the micronization can be achieved because the organic solvent has the effect of reducing the surface energy of the α-Fe particles during precipitation. It has the effect of reducing the surface energy of α-Fe particles, that is, as an organic solvent having good wettability with α-Fe, for example, methanol, ethanol, 2-propanol, acetone, dimethyl sulfoxide, tetrahydrofuran, ethylene glycol, diethylene glycol Etc. One of these solvents may be selected, or may be mixed and used as needed. However, solvents such as acetone and dimethyl sulfoxide are not efficient because they have the property of being partially reduced by the reducing agent. In the case of using an organic solvent in the solvent of the solution of the transition metal element in the preparation of the composite magnetic material, it is preferable to use the organic solvent as the solvent for dissolving the hard magnetic particles and the solvent for dissolving the reducing agent. It is preferable to carry out dehydration treatment or dissolved oxygen removal treatment in advance.
α-Fe粒子などの軟質磁性粒子とε-Fe粒子などの硬質磁性粒子とを混合して調製する場合には、軟質磁性粒子同士が凝集して、ε-Fe粒子の交換結合が作用する範囲を超えて軟質磁性粒子の粒径が大きくなりやすい。しかし、本方法ではそれを避けることができる。鉄をイオンとして溶解した分散液から鉄への還元は、還元剤により直接行っても良いが、添加剤として塩基性溶液を添加して分散液のpHを調整することで粒子または析出物を析出させ、その後その粒子または析出物を還元することで行っても良い。 In the case of mixing and preparing soft magnetic particles such as α-Fe particles and hard magnetic particles such as ε-Fe 2 O 3 particles, the soft magnetic particles are aggregated to form ε-Fe 2 O 3 particles. The particle size of the soft magnetic particles tends to be large beyond the range where the exchange coupling acts. However, this method can avoid that. The reduction to iron from a dispersion in which iron is dissolved as ions may be directly performed by a reducing agent, but particles or precipitates are precipitated by adjusting the pH of the dispersion by adding a basic solution as an additive. And then reduce the particles or precipitates.
すなわち、添加剤として塩基性溶液、典型的にはアンモニア水を用いることで、分散液のpHを変化させて、上記イオンと例えば水酸化物イオンとを反応させて、遷移金属元素を含む前駆体を析出させることができる。例えば、遷移金属元素を含むイオンがFe2+やFe3+の場合には、アンモニア水を添加することで、水酸化鉄(Fe(OH)など)や四酸化三鉄(Fe)などを析出させることができる。  That is, by using a basic solution, typically ammonia water, as an additive, the pH of the dispersion is changed to react the above-mentioned ions with, for example, hydroxide ions, and a precursor containing a transition metal element Can be deposited. For example, when the ion containing a transition metal element is Fe 2+ or Fe 3+ , adding aqueous ammonia allows iron hydroxide (Fe (OH) 3 etc.), triiron tetraoxide (Fe 3 O 4 ) etc. Can be deposited.
例えば、硝酸鉄(III)水溶液を含む分散液中にアンモニア水を添加し、水酸化鉄(Fe(OH))を硬質磁性粒子の周りを取り囲むように析出させる。その後、還元雰囲気中で熱処理することによって、水酸化鉄(Fe(OH))を鉄(α-Feなど)に還元することができる。同様に、塩化鉄(II)溶液中にアンモニア水を入れ、四酸化三鉄(Fe)を析出させて、還元雰囲気中の熱処理により鉄に還元しても良い。なお、この熱処理は、後述の熱処理工程を兼ねていても良い。 For example, ammonia water is added to a dispersion containing an aqueous solution of iron (III) nitrate, and iron hydroxide (Fe (OH) 3 ) is precipitated to surround the hard magnetic particles. After that, by heat treatment in a reducing atmosphere, iron hydroxide (Fe (OH) 3 ) can be reduced to iron (such as α-Fe). Similarly, ammonia water may be added to iron (II) chloride solution to precipitate triiron tetraoxide (Fe 3 O 4 ), which may be reduced to iron by heat treatment in a reducing atmosphere. Note that this heat treatment may also serve as a heat treatment step described later.
[4]乾燥・熱処理工程
複数の硬質磁性粒子の周囲に軟質磁性材料の海部分を形成したのち、水溶液を直ちにエタノールで置換する。これは鉄などの軟質磁性材料の酸化を防ぐためである。こののち、乾燥させてエタノールを除去する。
[4] Drying and Heat Treatment Step After forming the sea portion of the soft magnetic material around a plurality of hard magnetic particles, the aqueous solution is immediately replaced with ethanol. This is to prevent the oxidation of soft magnetic materials such as iron. After this, it is dried to remove ethanol.
本工程では、得られた混合物の粉体に熱処理を加えて、軟質磁性材料を連続体に変化させる。具体的には、上述の工程までで得られた軟質磁性材料は、粒子状であったり、あるいは、ボイド等を含んでいたりする。そこで、本工程において熱処理を行い、粒子同士を溶融または焼結させ、軟質磁性材料を連続体として、海状の軟質磁性相を形成する。このとき、上記混合物を圧縮成形してから熱処理を行っても良いし、熱処理後に圧縮成形を行っても良いし、圧縮成形中に熱処理しても良い。熱処理は、特に軟質磁性材料が鉄などの酸化されやすい材料の場合、不活性ガス雰囲気下、還元雰囲気下、真空下のいずれかで行うことが好ましい。 In this step, heat treatment is applied to the powder of the obtained mixture to convert the soft magnetic material into a continuous body. Specifically, the soft magnetic material obtained by the above-described steps is in the form of particles, or contains voids or the like. Therefore, heat treatment is performed in this step to melt or sinter the particles, and the soft magnetic material is formed into a continuous body to form a sea-like soft magnetic phase. At this time, heat treatment may be performed after the mixture is compression molded, or compression molding may be performed after the heat treatment, or heat treatment may be performed during compression molding. The heat treatment is preferably performed under any of an inert gas atmosphere, a reducing atmosphere, and a vacuum, particularly when the soft magnetic material is a material that is easily oxidized such as iron.
また、硬質磁性材料がε-Feなど、高熱で磁気特性が劣化してしまう材料の場合、プラズマ活性化焼結(PAS:Plasma Activated Sintering)、または放電プラズマ焼結(SPS:Spark Plasma Sintering)、通電プラズマ焼結(PECS:Pulse electric current sintering)等、で成形体を焼結するのが好ましい。プラズマ活性化焼結や放電プラズマ焼結では圧縮成形中に熱処理を行う焼結方法の一つである。その際に使用する圧縮成形用金型の材質種類には大別するとタングステンカーバイドに代表される超硬合金製とグラファイトカーボン製があるが、電気抵抗が高いことに伴う焼結設定温度の追従性とコストの点からグラファイトカーボン製が好ましい。焼結する際の圧縮成形圧の好ましい範囲の最大値や最小値は使用する装置の仕様、金型の仕様に影響されるために一概にいうのは難しいが、10MPaから500MPaが好ましい。焼結中の圧縮成形圧を10MPaよりも低くしてしまうと、サンプルとダイセットの接触が不十分になることがあり、局所的に通電することで成形体全体が加熱されない。また、500MPaよりも高くすると金型が破損する恐れがある。より好ましくは20MPaから200MPaが好ましい。また、圧縮成形中の焼結温度は60℃から250℃が好ましく、70℃から150℃の間から選択されることがより好ましい。圧縮成形中の焼結温度が60℃未満であると、軟質磁性材料が連続体になりがたく、250℃より高いと硬質磁性材料としてのε-Feの磁気特性が劣化する。ここでいう「焼結温度」とは金型に挿入された熱電対によるモニター温度であり、サンプル自身の温度とは厳密には異なっている。次に、昇温速度は10℃/分から200℃/分までの範囲から選択されることが好ましく、20℃/分から100℃/分の間から選択されることがより好ましい。昇温速度が10℃/分未満であると硬質磁性材料としてのε-Feが高温に曝される時間が長時間化するために好ましくなく、昇温速度が200℃/分よりも速いとサンプルの均熱が不十分になって、焼結温度ムラを誘発する可能性がある。また、焼結到達温度における保持時間は、焼結温度・圧縮成形圧に影響されるため一概にいうのは難しいが、0分以上10分以下が好ましく、より好ましくは0分以上3分以下が好ましい。ここで、「0分」というのは実質的に保持時間を設けることなく、焼結到達温度に達し次第、即座に冷却開始することを意味する。 Also, in the case of hard magnetic materials such as ε-Fe 2 O 3 or the like, in which the magnetic properties deteriorate due to high heat, plasma activated sintering (PAS) or spark plasma sintering (SPS: Spark Plasma) It is preferable to sinter the shaped body by Sintering, PECS (Pulse electric current sintering) or the like. Plasma activation sintering and discharge plasma sintering are one of sintering methods in which heat treatment is performed during compression molding. There are two types of materials for compression molding molds used at that time: cemented carbide metal represented by tungsten carbide and graphitic carbon, if roughly classified, followability of sintering set temperature due to high electric resistance Graphite carbon is preferable in terms of cost and cost. Although the maximum value and the minimum value of the preferable range of the compression molding pressure at the time of sintering are difficult to say in general because they are influenced by the specifications of the apparatus used and the specifications of the mold, 10 MPa to 500 MPa is preferable. If the compression molding pressure during sintering is lower than 10 MPa, the contact between the sample and the die set may be insufficient, and the entire compact is not heated by the local energization. If the pressure is higher than 500 MPa, the mold may be damaged. More preferably, 20 MPa to 200 MPa is preferable. Also, the sintering temperature during compression molding is preferably 60 ° C to 250 ° C, and more preferably selected from 70 ° C to 150 ° C. When the sintering temperature during compression molding is less than 60 ° C., the soft magnetic material is less likely to become a continuous body, and when it is higher than 250 ° C., the magnetic properties of ε-Fe 2 O 3 as a hard magnetic material deteriorate. The "sintering temperature" referred to here is a monitoring temperature by a thermocouple inserted in the mold, and strictly different from the temperature of the sample itself. Next, the temperature rising rate is preferably selected from the range of 10 ° C./minute to 200 ° C./minute, and more preferably selected from the range of 20 ° C./minute to 100 ° C./minute. If the temperature rise rate is less than 10 ° C./min, the time for which ε-Fe 2 O 3 as a hard magnetic material is exposed to high temperature is not preferable because the time is increased, and the temperature rise rate is more than 200 ° C./min If it is fast, soaking of the sample may be insufficient, which may induce sintering temperature unevenness. In addition, the holding time at the sintering reaching temperature is difficult to say in general because it is influenced by the sintering temperature and the compression molding pressure, but it is preferably 0 minutes or more and 10 minutes or less, more preferably 0 minutes or more and 3 minutes or less preferable. Here, "0 minutes" means that cooling starts immediately upon reaching the sintering temperature without substantially providing a holding time.
硬質磁性材料としてε-Feを用いる場合は、溶液中での化学的プロセスを用いて酸化鉄や水酸化鉄のナノ粒子を生成し、生成したナノ粒子を酸化雰囲気で加熱することで比較的容易にε-Fe粒子を合成することができる。溶液中での化学的プロセスとしては、例えば、硝酸鉄水和物を出発原料とした逆ミセル法やゾルゲル法等を用いることができる。なお、ε-Fe粒子を合成する工程においては、ε-Fe粒子の表面をシリカ(SiO)で被覆する工程を加えても良い。 When ε-Fe 2 O 3 is used as a hard magnetic material, nanoparticles of iron oxide or iron hydroxide are formed using a chemical process in solution, and the generated nanoparticles are heated in an oxidizing atmosphere. Ε-Fe 2 O 3 particles can be synthesized relatively easily. As a chemical process in a solution, for example, a reverse micelle method or a sol-gel method using iron nitrate hydrate as a starting material can be used. In the step of synthesizing the ε-Fe 2 O 3 particles may be added a step of coating the surface of the ε-Fe 2 O 3 particles with silica (SiO 2).
以下、実施例を用いて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、以下に使用される「%」は、特に示さない限りすべて質量基準である。 EXAMPLES Hereinafter, the present invention will be described in more detail using examples, but the present invention is not limited to the following examples. In addition, unless otherwise indicated, "%" used below is a mass reference | standard.
[実施例1]
実施例1では、塩化鉄(II)水和物(FeCl・4HO)を溶解した溶解液にε-Fe粒子を分散し、還元剤であるNaBHを添加してFeを析出することで、Feが海でε-Fe粒子が島となった海島構造を含む複合磁性材料を作製した。 
Example 1
In Example 1, ε-Fe 2 O 3 particles are dispersed in a solution in which iron chloride (II) hydrate (FeCl 2 .4H 2 O) is dissolved, and a reducing agent NaBH 4 is added to add Fe. By depositing, a composite magnetic material including a sea-island structure in which Fe was in the sea and ε-Fe 2 O 3 particles became islands was produced.
(ε-Fe粒子の作製)
硬質磁性材料であるε-Fe粒子を、以下の手順で作製した。(1)まず、2種類のミセル溶液(ミセル溶液(A)およびミセル溶液(B))を、以下のように調製した。
(Preparation of ε-Fe 2 O 3 particles)
The hard magnetic material ε-Fe 2 O 3 particles were produced in the following procedure. (1) First, two types of micelle solutions (micellar solution (A) and micelle solution (B)) were prepared as follows.
(1-1)反応容器に、純水30mL、n-オクタン92mL、および1-ブタノール19mLを入れて混合した。そこに、硝酸鉄水和物(Fe(NO・9HO)を6g添加し、撹拌しながら十分に溶解させた。次に、界面活性剤としての臭化セチルトリメチルアンモニウムを、(純水のモル数)/(界面活性剤のモル数)で表されるモル比が30となるような量で添加し、撹拌により溶解させた。これにより、ミセル溶液(A)を得た。 (1-1) In a reaction vessel, 30 mL of pure water, 92 mL of n-octane and 19 mL of 1-butanol were added and mixed. Thereto, 6 g of iron nitrate hydrate (Fe (NO 3 ) 3 .9H 2 O) was added and sufficiently dissolved with stirring. Next, cetyltrimethylammonium bromide as a surfactant is added in an amount such that the molar ratio represented by (the number of moles of pure water) / (the number of moles of the surfactant) is 30, and stirring is performed. It was dissolved. Thus, a micelle solution (A) was obtained.
(1-2)別の反応容器に、28%アンモニア水10mLを純水20mLに混ぜて撹拌し、その後、さらにn-オクタン92mLと1-ブタノール19mLを加え、よく撹拌した。その溶液に、界面活性剤として臭化セチルトリメチルアンモニウムを、((純水+アンモニア水中の水分)のモル数)/(界面活性剤のモル数)で表されるモル比が30となるような量で添加し、撹拌により溶解させた。これにより、ミセル溶液(B)を得た。 (1-2) In a separate reaction vessel, 10 mL of 28% aqueous ammonia was mixed with 20 mL of pure water and stirred, and then 92 mL of n-octane and 19 mL of 1-butanol were further added and stirred well. In the solution, cetyltrimethylammonium bromide as a surfactant is used, and the molar ratio represented by (number of moles of ((pure water + water in ammonia)) / (number of moles of surfactant) is 30. The amount was added and dissolved by stirring. Thus, a micelle solution (B) was obtained.
(2)ミセル溶液(A)をよく撹拌しながら、ミセル溶液(A)に対してミセル溶液(B)を滴下した。滴下が完了した後は、継続して30分間撹拌した。 (2) The micelle solution (B) was dropped to the micelle solution (A) while well stirring the micelle solution (A). After the addition was completed, stirring was continued for 30 minutes.
(3)得られた混合液を撹拌しながら、該混合液にテトラエトキシシラン(TEOS)7.5mLを加え、そのまま1日の間撹拌を継続した。この工程で、混合液中の鉄含有粒子の表面にシリカ層を形成した。 (3) While stirring the obtained mixture, 7.5 mL of tetraethoxysilane (TEOS) was added to the mixture, and the stirring was continued for 1 day. In this step, a silica layer was formed on the surface of the iron-containing particles in the mixed solution.
(4)得られた溶液を遠心分離機にセットして、4500rpmの回転数で30分間遠心分離処理し、沈殿物を回収した。回収された沈殿物をエタノールで複数回洗浄した。 (4) The obtained solution was set in a centrifuge and centrifuged for 30 minutes at a rotational speed of 4500 rpm to collect a precipitate. The collected precipitate was washed several times with ethanol.
(5)得られた沈殿物を乾燥させた後に、大気雰囲気の焼成炉内に入れ、1150℃で4時間加熱処理を行った。 (5) After drying the obtained precipitate, it was put in a baking furnace of an air atmosphere and heat-treated at 1150 ° C. for 4 hours.
(6)加熱処理後の粉末を濃度2mol/LのNaOH水溶液中に分散させ、24時間撹拌して、粒子表面のシリカ層を除去した。その後、ろ過・水洗・乾燥して、ε-Fe粒子を得た。また、得られたε-Fe粒子の結晶構造をX線回折(XRD)によって分析した結果、ε-Feの回折ピークが確認され、それ以外の結晶構造に由来する回折ピークは確認されなかった。 (6) The heat-treated powder was dispersed in a 2 mol / L aqueous NaOH solution and stirred for 24 hours to remove the silica layer on the particle surface. Thereafter, the resultant was filtered, washed with water and dried to obtain ε-Fe 2 O 3 particles. Moreover, as a result of analyzing the crystal structure of the obtained ε-Fe 2 O 3 particles by X-ray diffraction (XRD), a diffraction peak of ε-Fe 2 O 3 is confirmed, and diffraction peaks derived from other crystal structures Was not confirmed.
得られたε-Fe粒子を水溶液中に分散させた。この状態では、凝集によって粒径が大きくなるため、ロールミルで粗砕し平均粒径を64nmとし、さらにホモジナイザーで微砕して平均粒径42nmとし、さらにフィルターでろ過して、平均粒径を約36nmにした。 The obtained ε-Fe 2 O 3 particles were dispersed in an aqueous solution. In this state, since the particle size increases due to aggregation, the average particle size is coarsened with a roll mill to 64 nm, further finely divided with a homogenizer to an average particle size of 42 nm, and filtered through a filter to obtain an average particle size of about It was 36 nm.
(分散溶液の作製)
塩化鉄(II)水和物(FeCl・4HO)を3g秤量し、純水75mLに溶解させて、塩化鉄水溶液を得た。次に、ε-Fe粒子0.36gを秤量し塩化鉄水溶液に添加し、超音波分散機で十分に分散させた分散液を作製した。
(Preparation of dispersed solution)
3 g of iron (II) chloride hydrate (FeCl 2 .4H 2 O) was weighed and dissolved in 75 mL of pure water to obtain an aqueous iron chloride solution. Next, 0.36 g of ε-Fe 2 O 3 particles were weighed, added to an aqueous iron chloride solution, and a dispersion liquid sufficiently dispersed by an ultrasonic dispersion machine was prepared.
(還元処理によるFeの析出)
還元剤であるテトラヒドロホウ酸ナトリウム(NaBH)を2g秤量し、純水20mLに溶解させた還元剤溶液を準備した。次に、上記分散液を撹拌しながら、還元剤溶液を添加した。これにより塩化鉄(II)を還元し、複数のε-Fe粒子を含む形でα-Feを析出した。なお、NaBHは、スプレー装置で数100μLの霧状にして添加し粒径をなるべく小さくなるようにした。得られた複合粒子中のα-Feの粒径を走査型電子顕微鏡(SEM)で観察すると、α-Feの粒径は50nm~70nmであった。なお、SEMの倍率は5万倍~10万倍として観察を行った。以下の実施例においても倍率は同様である。
(Fe precipitation by reduction treatment)
2 g of sodium tetrahydroborate (NaBH 4 ), which is a reducing agent, was weighed, and a reducing agent solution dissolved in 20 mL of pure water was prepared. Next, the reducing agent solution was added while stirring the dispersion. As a result, iron (II) chloride was reduced, and α-Fe was precipitated in a form containing a plurality of ε-Fe 2 O 3 particles. NaBH 4 was added in the form of a mist of several hundred μL with a spray device to make the particle size as small as possible. When the particle size of α-Fe in the obtained composite particles was observed with a scanning electron microscope (SEM), the particle size of α-Fe was 50 nm to 70 nm. The observation was performed with a magnification of 50,000 to 100,000. The magnification is the same in the following examples.
(乾燥・熱処理工程)
α-Feとε-Fe粒子を含む水溶液中の水をエタノールで置換して乾燥処理後に、α-Feとε-Fe粒子の複合粒子1gを、10MPaの加圧成形機で加工し、成形体を作製した。次に、得られた成形体を電気炉にセットし、加熱処理を行った。1次焼成として雰囲気ガスは窒素ガスを用い、ガスの流量は300sccmとした。加熱処理の際の温度は260℃とし、260℃で5時間保持した後、室温まで冷却した。室温まで冷却した後、遊星ボールミルを用いて窒素ガス雰囲気下で粗粉砕した。粗粉砕によって得られた粉末を再度電気炉にセットし、2次焼成として窒素雰囲気下、400℃で3時間加熱処理して、ナノコンポジット磁性粒材料を得た。
(Drying and heat treatment process)
After replacing the water in the aqueous solution containing α-Fe and ε-Fe 2 O 3 particles with ethanol and drying it, 1 g of composite particles of α-Fe and ε-Fe 2 O 3 particles is used as a 10 MPa pressure molding machine Processed to produce a molded body. Next, the obtained molded body was set in an electric furnace and subjected to heat treatment. Nitrogen gas was used as the atmosphere gas for the primary firing, and the flow rate of the gas was set to 300 sccm. The temperature during the heat treatment was 260 ° C., held at 260 ° C. for 5 hours, and cooled to room temperature. After cooling to room temperature, it was roughly crushed under a nitrogen gas atmosphere using a planetary ball mill. The powder obtained by the coarse crushing was again set in an electric furnace, and heat treated at 400 ° C. for 3 hours in a nitrogen atmosphere as secondary firing to obtain a nanocomposite magnetic particle material.
(複合磁性材料の構造分析)
得られた複合磁性材料の結晶構造をXRDで分析した結果、ε-Feの回折ピークとα-Feの回折ピークとがそれぞれ確認でき、それ以外の結晶構造に由来する回折ピークは確認されなかった。
(Structural analysis of composite magnetic materials)
As a result of analyzing the crystal structure of the obtained composite magnetic material by XRD, a diffraction peak of ε-Fe 2 O 3 and a diffraction peak of α-Fe can be confirmed respectively, and diffraction peaks derived from other crystal structures are confirmed It was not done.
また、粒子状の複合磁性材料の断面を走査型電子顕微鏡(SEM)で観察した結果、α-Feを含む海(連続体)中に、ε-Feを含む島が複数存在する海島構造が確認できた。観察画像の10点から島間距離を算出し平均島間距離とその標準偏差を算出すると、平均島間距離は22nm、標準偏差は6nmであった。 In addition, as a result of observing the cross section of the particulate composite magnetic material with a scanning electron microscope (SEM), it is found that there is a plurality of islands containing ε-Fe 2 O 3 in the sea (continuum) containing α-Fe. The structure was confirmed. When the inter-island distance was calculated from 10 points of the observation image and the average inter-island distance and its standard deviation were calculated, the average inter-island distance was 22 nm and the standard deviation was 6 nm.
(複合磁性材料の磁気特性評価)
複合磁性材料の磁気特性(残留磁化と保磁力)を評価した。結果を下記の表1に示す。なお、磁気特性は、後述する比較例5に対して規格化した値で示した。
(Magnetic characterization of composite magnetic materials)
The magnetic properties (residual magnetization and coercivity) of the composite magnetic material were evaluated. The results are shown in Table 1 below. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
[実施例2]
実施例2では、硝酸鉄水和物(Fe(NO・9HO)を溶解した溶解液にε-Fe粒子を分散した分散溶液に、アンモニア水を添加してpHを変化させてFe(OH)粒子を析出した。このことで、Fe(OH)とε-Fe粒子の複合粒子を形成した。その後、Fe(OH)を水素ガスで還元してFeにすることで、Feが海でε-Fe粒子が島となった海島構造を含む複合磁性材料を作製した。 
Example 2
In Example 2, ammonia water is added to a dispersion in which ε-Fe 2 O 3 particles are dispersed in a solution in which iron nitrate hydrate (Fe (NO 3 ) 3 .9H 2 O) is dissolved, and the pH is determined by It was changed to precipitate Fe (OH) 3 particles. This formed composite particles of Fe (OH) 3 and ε-Fe 2 O 3 particles. Thereafter, Fe (OH) 3 was reduced with hydrogen gas to form Fe, thereby producing a composite magnetic material including a sea-island structure in which Fe is in the sea and ε-Fe 2 O 3 particles are islands.
(軟質磁性材料のイオンを含む分散溶液の作製)
Fe(NO・9HOを6g秤量し、純水75mLに溶解させて、硝酸鉄水溶液を得た。次に、ε-Fe粒子0.36gを秤量し硝酸鉄水溶液に添加し、超音波分散機で十分に分散させた分散液を作製した。
(Preparation of dispersion solution containing ions of soft magnetic material)
6 g of Fe (NO 3 ) 3 .9H 2 O was weighed and dissolved in 75 mL of pure water to obtain an aqueous iron nitrate solution. Next, 0.36 g of ε-Fe 2 O 3 particles were weighed, added to an aqueous iron nitrate solution, and a dispersion liquid sufficiently dispersed by an ultrasonic dispersion machine was prepared.
(前駆体粒子の析出)
上記分散液を撹拌しながら28%アンモニア水75mLを添加して、前駆体粒子となるFe(OH)を析出させε-Fe粒子との複合粒子を形成した。得られた複合粒子中の水酸化鉄粒子の粒径を走査型電子顕微鏡(SEM)で観察すると、10nm~20nmの粒子であった。
(Precipitate of precursor particles)
While stirring the dispersion, 75 mL of 28% aqueous ammonia was added to precipitate Fe (OH) 3 as precursor particles to form composite particles with ε-Fe 2 O 3 particles. The particle diameter of the iron hydroxide particles in the obtained composite particles was observed with a scanning electron microscope (SEM), and the particles were 10 nm to 20 nm.
(乾燥・熱処理工程)
Fe(OH)とε-Fe粒子を含む水溶液中の水をエタノールで置換して乾燥処理後に、Fe(OH)とε-Fe粒子の複合粒子1gを、10MPaの加圧成形機で加工し、成形体を作製した。次に、得られた成形体を電気炉にセットし、加熱処理を行った。1次焼成として雰囲気ガスは2%水素-98%窒素の混合ガスを用い、該混合ガスの流量は300sccmとした。加熱処理の際の温度は260℃とし、260℃で5時間保持した後、室温まで冷却した。室温まで冷却した後、遊星ボールミルを用いて窒素ガス雰囲気下で粗粉砕した。粗粉砕によって得られた粉末を再度電気炉にセットし、2次焼成として水素と窒素の混合ガス(2%H-98%N)雰囲気下、500℃で3時間加熱処理して、Fe(OH)をα-Feに還元してノコンポジット磁性粒材料を得た。 
(Drying and heat treatment process)
After replacing the water in the aqueous solution containing Fe (OH) 3 and ε-Fe 2 O 3 particles with ethanol and drying, 1 g of composite particles of Fe (OH) 3 and ε-Fe 2 O 3 particles is 10 MPa It processed with a pressure forming machine, and the molded object was produced. Next, the obtained molded body was set in an electric furnace and subjected to heat treatment. As the primary firing, a mixed gas of 2% hydrogen and 98% nitrogen was used as the atmosphere gas, and the flow rate of the mixed gas was set to 300 sccm. The temperature during the heat treatment was 260 ° C., held at 260 ° C. for 5 hours, and cooled to room temperature. After cooling to room temperature, it was roughly crushed under a nitrogen gas atmosphere using a planetary ball mill. Set to powder again electric furnace obtained by coarse grinding, the secondary firing as hydrogen and nitrogen mixed gas (2% H 2 -98% N 2) atmosphere, and heat-treated for 3 hours at 500 ° C., Fe (OH) 3 was reduced to α-Fe to obtain a composite magnetic particle material.
(複合磁性材料の構造分析)
得られた複合磁性材料の結晶構造をXRDで分析した結果、ε-Feの回折ピークとα-Feの回折ピークとがそれぞれ確認でき、それ以外の結晶構造に由来する回折ピークは確認されなかった。
(Structural analysis of composite magnetic materials)
As a result of analyzing the crystal structure of the obtained composite magnetic material by XRD, a diffraction peak of ε-Fe 2 O 3 and a diffraction peak of α-Fe can be confirmed respectively, and diffraction peaks derived from other crystal structures are confirmed It was not done.
また、粒子状の複合磁性材料の断面を走査型電子顕微鏡(SEM)で観察した結果、α-Feを含む海(連続体)中に、ε-Feを含む島が複数存在する海島構造が確認できた。ε-Feはα-Fe中のほぼ全体に分布していた。観察画像の10点から島間距離を算出し平均島間距離とその標準偏差を算出すると、平均島間距離は18nm、標準偏差は4nmであった。また、島であるε-Feの粒径は30nmであった。 In addition, as a result of observing the cross section of the particulate composite magnetic material with a scanning electron microscope (SEM), it is found that there is a plurality of islands containing ε-Fe 2 O 3 in the sea (continuum) containing α-Fe. The structure was confirmed. ε-Fe 2 O 3 was distributed almost all over α-Fe. When the inter-island distance was calculated from 10 points of the observation image and the average inter-island distance and its standard deviation were calculated, the average inter-island distance was 18 nm and the standard deviation was 4 nm. In addition, the particle diameter of the island ε-Fe 2 O 3 was 30 nm.
(複合磁性材料の磁気特性評価)
得られた複合磁性材料の磁気特性(残留磁化と保磁力)を、振動試料型磁力計を用いて評価した。結果を表1に示す。なお、磁気特性は、後述する比較例5に対して規格化した値で示した。
(Magnetic characterization of composite magnetic materials)
The magnetic properties (residual magnetization and coercivity) of the obtained composite magnetic material were evaluated using a vibrating sample magnetometer. The results are shown in Table 1. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
[実施例3]
実施例3では、塩化鉄(II)水和物(FeCl・4HO)を溶解した溶解液にε-Fe粒子を分散した分散溶液に、アンモニア水を添加してpHを変化させてFe粒子を析出することで、Feとε-Fe粒子の複合粒子を形成した。その後、Feを水素ガスで還元してFeにすることで、Feが海で、ε-Fe粒子が島となった海島構造を含む複合磁性材料を作製した。
[Example 3]
In Example 3, ammonia water is added to a dispersion in which ε-Fe 2 O 3 particles are dispersed in a solution in which iron (II) chloride hydrate (FeCl 2 · 4H 2 O) is dissolved, and the pH is changed. by by depositing a Fe 3 O 4 particles to form composite particles of Fe 3 O 4 with ε-Fe 2 O 3 particles. Thereafter, Fe 3 O 4 was reduced with hydrogen gas to form Fe, thereby producing a composite magnetic material including a sea-island structure in which Fe was in the sea and ε-Fe 2 O 3 particles became islands.
(分散溶液の作製)
FeCl・4HOを3g秤量し、純水75mLに溶解させて、塩化鉄水溶液を得た。次に、実施例1と同様にして得られたε-Fe粒子0.36gを秤量し塩化鉄水溶液に添加し、超音波分散機で十分に分散させた分散液を作製した。
(Preparation of dispersed solution)
3 g of FeCl 2 · 4H 2 O was weighed and dissolved in 75 mL of pure water to obtain an aqueous solution of iron chloride. Next, 0.36 g of ε-Fe 2 O 3 particles obtained in the same manner as in Example 1 was weighed and added to an aqueous solution of iron chloride, and a dispersion liquid sufficiently dispersed by an ultrasonic dispersion machine was produced.
(前駆体粒子の析出)
上記分散液を撹拌しながら28%アンモニア水75mLを添加して、前駆体粒子となるFeを析出させε-Fe粒子との複合粒子を形成した。得られた複合粒子中のFe粒子の粒径を走査型電子顕微鏡(SEM)で観察すると、50nm~80nmの粒子であった。
(Precipitate of precursor particles)
While stirring the dispersion, 75 mL of 28% aqueous ammonia was added to precipitate Fe 3 O 4 as precursor particles, thereby forming composite particles with ε-Fe 2 O 3 particles. The particle diameter of the Fe 3 O 4 particles in the obtained composite particles was observed with a scanning electron microscope (SEM) and found to be particles of 50 nm to 80 nm.
(乾燥・熱処理工程)
Feとε-Fe粒子を含む水溶液中の水をエタノールで置換して乾燥処理後に、Feとε-Fe粒子の複合粒子1gを、10MPaの加圧成形機で加工し、成形体を作製した。次に、得られた成形体を電気炉にセットし、加熱処理を行った。1次焼成として雰囲気ガスは2%水素-98%窒素の混合ガスを用い、該混合ガスの流量は300sccmとした。加熱処理の際の温度は260℃とし、470℃で5時間保持した後、室温まで冷却した。室温まで冷却した後、遊星ボールミルを用いて窒素ガス雰囲気下で粗粉砕した。粗粉砕によって得られた粉末を再度電気炉にセットし、2次焼成として水素と窒素の混合ガス(2%H-98%N)雰囲気下、470℃で3時間加熱処理して、Feをα-Feに還元してナノコンポジット磁性粒材料を得た。 
(Drying and heat treatment process)
After replacing the water in the aqueous solution containing Fe 3 O 4 and ε-Fe 2 O 3 particles with ethanol and drying, 1 g of composite particles of Fe 3 O 4 and ε-Fe 2 O 3 particles is pressurized at 10 MPa It processed by the molding machine and produced the molded object. Next, the obtained molded body was set in an electric furnace and subjected to heat treatment. As the primary firing, a mixed gas of 2% hydrogen and 98% nitrogen was used as the atmosphere gas, and the flow rate of the mixed gas was set to 300 sccm. The temperature during the heat treatment was 260 ° C., held at 470 ° C. for 5 hours, and cooled to room temperature. After cooling to room temperature, it was roughly crushed under a nitrogen gas atmosphere using a planetary ball mill. Set to powder again electric furnace obtained by coarse grinding, the secondary firing as hydrogen and nitrogen mixed gas (2% H 2 -98% N 2) atmosphere, and heat-treated for 3 hours at 470 ° C., Fe 3 O 4 was reduced to α-Fe to obtain a nanocomposite magnetic particle material.
(複合磁性材料の構造分析)
得られた複合磁性材料の結晶構造をXRDで分析した結果、ε-Feの回折ピークとα-Feの回折ピークとがそれぞれ確認でき、それ以外の結晶構造に由来する回折ピークは確認されなかった。
(Structural analysis of composite magnetic materials)
As a result of analyzing the crystal structure of the obtained composite magnetic material by XRD, a diffraction peak of ε-Fe 2 O 3 and a diffraction peak of α-Fe can be confirmed respectively, and diffraction peaks derived from other crystal structures are confirmed It was not done.
また、粒子状の複合磁性材料の断面を走査型電子顕微鏡(SEM)で観察した結果、α-Feを含む海(連続体)中に、ε-Feを含む島が複数存在する海島構造が確認できた。ε-Feはα-Fe中のほぼ全体に分布していた。観察画像の10点から島間距離を算出し平均島間距離とその標準偏差を算出すると、平均島間距離は45nm、標準偏差は12nmであった。また、島であるε-Feの粒径は20nmであった。 In addition, as a result of observing the cross section of the particulate composite magnetic material with a scanning electron microscope (SEM), it is found that there is a plurality of islands containing ε-Fe 2 O 3 in the sea (continuum) containing α-Fe. The structure was confirmed. ε-Fe 2 O 3 was distributed almost all over α-Fe. When the inter-island distance was calculated from 10 points of the observation image and the average inter-island distance and its standard deviation were calculated, the average inter-island distance was 45 nm and the standard deviation was 12 nm. Further, the particle diameter of the island ε-Fe 2 O 3 was 20 nm.
(複合磁性材料の磁気特性評価)
得られた複合磁性材料の磁気特性(残留磁化と保磁力)を、振動試料型磁力計を用いて評価した。結果を表1に示す。なお、磁気特性は、後述する比較例5に対して規格化した値で示した。
(Magnetic characterization of composite magnetic materials)
The magnetic properties (residual magnetization and coercivity) of the obtained composite magnetic material were evaluated using a vibrating sample magnetometer. The results are shown in Table 1. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
[実施例4]
実施例4では、実施例3と同様に塩化鉄(II)水和物(FeCl・4HO)を溶解した溶解液にε-Fe粒子を分散した分散溶液に、アンモニア水を添加してpHを変化させてFe粒子を析出した。このことで、Feとε-Fe粒子の複合粒子を形成した。その後、Feを水素ガスで還元してFeにすることで、Feが海でε-Fe粒子が島となった海島構造を含む複合磁性材料を作製した。なお、実施例4では、実施例3と比較して、析出するFe粒子の粒径を小さくして磁性材料を作製した。
Example 4
In Example 4, ammonia water is added to a dispersion solution in which ε-Fe 2 O 3 particles are dispersed in a solution in which iron chloride (II) hydrate (FeCl 2 .4H 2 O) is dissolved as in Example 3. The pH was changed by addition to precipitate Fe 3 O 4 particles. This formed composite particles of Fe 3 O 4 and ε-Fe 2 O 3 particles. Thereafter, Fe 3 O 4 was reduced with hydrogen gas to form Fe, thereby producing a composite magnetic material including a sea-island structure in which Fe is an island and ε-Fe 2 O 3 particles are an island. In Example 4, compared with Example 3, the particle size of Fe 3 O 4 particles to be precipitated was made smaller to prepare a magnetic material.
(分散溶液の作製)
FeCl・4HOを1.5g秤量し、純水150mLに溶解させて、塩化鉄水溶液を得た。次に、実施例1と同様にして得られたε-Fe粒子0.18gを秤量し塩化鉄水溶液に添加し、超音波分散機で十分に分散させた分散液を作製した。
(Preparation of dispersed solution)
1.5 g of FeCl 2 · 4H 2 O was weighed and dissolved in 150 mL of pure water to obtain an aqueous solution of iron chloride. Next, 0.18 g of ε-Fe 2 O 3 particles obtained in the same manner as in Example 1 was weighed and added to an aqueous solution of iron chloride, and a dispersion liquid sufficiently dispersed by an ultrasonic dispersion machine was produced.
(前駆体粒子の析出)
上記分散液を撹拌しながら28%アンモニア水75mLを添加して、前駆体粒子となるFeを析出させε-Fe粒子との複合粒子を形成した。得られた複合粒子中のFe粒子の粒径を走査型電子顕微鏡(SEM)で観察すると、10nm~30nmの粒子であった。
(Precipitate of precursor particles)
While stirring the dispersion, 75 mL of 28% aqueous ammonia was added to precipitate Fe 3 O 4 as precursor particles, thereby forming composite particles with ε-Fe 2 O 3 particles. The particle diameter of the Fe 3 O 4 particles in the obtained composite particles was observed with a scanning electron microscope (SEM), and it was particles of 10 nm to 30 nm.
(乾燥・熱処理工程)
Feとε-Fe粒子を含む水溶液中の水をエタノールで置換して乾燥処理後に、Feとε-Fe粒子の複合粒子0.5gを10MPaの加圧成形機で加工し、成形体を作製した。次に、得られた成形体を電気炉にセットし、加熱処理を行った。1次焼成の雰囲気ガスは2%水素-98%窒素の混合ガスを用い、該混合ガスの流量は300sccmとした。加熱処理の際の温度は260℃とし、260℃で5時間保持した後、室温まで冷却した。室温まで冷却した後、遊星ボールミルを用いて窒素ガス雰囲気下で粗粉砕した。粗粉砕によって得られた粉末を再度電気炉にセットし、2次焼成として水素と窒素の混合ガス(2%H-98%N)雰囲気下、450℃で3時間加熱処理して、Feをα-Feに還元してナノコンポジット磁性粒材料を得た。 
(Drying and heat treatment process)
After water in an aqueous solution containing Fe 3 O 4 and ε-Fe 2 O 3 particles is replaced with ethanol and dried, 0.5 g of composite particles of Fe 3 O 4 and ε-Fe 2 O 3 particles is added at 10 MPa. It processed with the pressure forming machine and produced the molded object. Next, the obtained molded body was set in an electric furnace and subjected to heat treatment. The atmosphere gas for the primary firing was a mixed gas of 2% hydrogen and 98% nitrogen, and the flow rate of the mixed gas was 300 sccm. The temperature during the heat treatment was 260 ° C., held at 260 ° C. for 5 hours, and cooled to room temperature. After cooling to room temperature, it was roughly crushed under a nitrogen gas atmosphere using a planetary ball mill. Set to powder again electric furnace obtained by coarse grinding, the secondary firing as hydrogen and nitrogen mixed gas (2% H 2 -98% N 2) atmosphere, and heat-treated for 3 hours at 450 ° C., Fe 3 O 4 was reduced to α-Fe to obtain a nanocomposite magnetic particle material.
(複合磁性材料の構造分析)
得られた複合磁性材料の結晶構造をXRDで分析した結果、ε-Feの回折ピークとα-Feの回折ピークとがそれぞれ確認でき、それ以外の結晶構造に由来する回折ピークは確認されなかった。
(Structural analysis of composite magnetic materials)
As a result of analyzing the crystal structure of the obtained composite magnetic material by XRD, a diffraction peak of ε-Fe 2 O 3 and a diffraction peak of α-Fe can be confirmed respectively, and diffraction peaks derived from other crystal structures are confirmed It was not done.
また、粒子状の複合磁性材料の断面を走査型電子顕微鏡(SEM)で観察した結果、α-Feを含む海(連続体)中に、ε-Feを含む島が複数存在する海島構造が確認できた。ε-Feはα-Fe中のほぼ全体に分布していた。観察画像の10点から島間距離を算出し平均島間距離とその標準偏差を算出すると、平均島間距離は20nm、標準偏差は6nmであった。また、島であるε-Feの粒径は20nmであった。 In addition, as a result of observing the cross section of the particulate composite magnetic material with a scanning electron microscope (SEM), it is found that there is a plurality of islands containing ε-Fe 2 O 3 in the sea (continuum) containing α-Fe. The structure was confirmed. ε-Fe 2 O 3 was distributed almost all over α-Fe. When the inter-island distance was calculated from 10 points of the observation image and the average inter-island distance and its standard deviation were calculated, the average inter-island distance was 20 nm and the standard deviation was 6 nm. Further, the particle diameter of the island ε-Fe 2 O 3 was 20 nm.
(複合磁性材料の磁気特性評価)
得られた複合磁性材料の磁気特性(残留磁化と保磁力)を、振動試料型磁力計を用いて評価した。結果を表1に示す。なお、磁気特性は、後述する比較例5に対して規格化した値で示した。
(Magnetic characterization of composite magnetic materials)
The magnetic properties (residual magnetization and coercivity) of the obtained composite magnetic material were evaluated using a vibrating sample magnetometer. The results are shown in Table 1. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
[実施例5]
実施例1で成形体を作製する際に、20kOeの外部磁界を印加した以外は、実施例1と同じ製法で、α-Feが海でε-Fe粒子が島となった海島構造のナノコンポジット磁性粒材料を作製した。XRDとTEMにより結晶構造と結晶配向軸を確認したところ、ε-Feの結晶構造は、直方晶系(Pna21)で、格子定数はa軸が5.1オングストローム、b軸が8.7オングストローム、c軸が9.4オングストロームであった。このうち、磁化容易軸であるc軸は±8度以下の領域が、体積分率で80%以上あった。
[Example 5]
A sea-island structure in which α-Fe is a sea and ε-Fe 2 O 3 particles are an island by the same method as in Example 1 except that an external magnetic field of 20 kOe is applied when producing a molded body in Example 1 Nanocomposite magnetic particle materials were produced. The crystal structure and the crystallographic orientation axis were confirmed by XRD and TEM. The crystal structure of ε-Fe 2 O 3 is a cuboid system (Pna 21), and the lattice constant is 5.1 Å for the a axis and 8. It was 7 angstrom and c axis was 9.4 angstrom. Among these, the c axis, which is the easy axis of magnetization, had a region of ± 8 degrees or less at 80% or more in volume fraction.
また、α-Feの結晶構造は、体心立方構造で、格子定数は約2.9オングストロームであり、磁化容易軸であるa軸(b軸、c軸も同じ)は±9%以下の領域が、体積分率で80%以上あった。また、ε-Feの磁化容易軸とα-Feの磁化容易軸の角度は、おおよそ±6度以下にあった。 The crystal structure of α-Fe is a body-centered cubic structure, the lattice constant is about 2.9 angstroms, and the a-axis (the b-axis and c-axis are the same as the easy axis) is ± 9% or less However, the volume fraction was over 80%. The angle between the easy axis of ε-Fe 2 O 3 and the easy axis of α-Fe was about ± 6 degrees or less.
複合磁性材料の磁気特性(残留磁化と保磁力)を、振動試料型磁力計を用いて評価した結果を表1に示す。なお、磁気特性は、後述する比較例5に対して規格化した値で示した。 The magnetic properties (residual magnetization and coercivity) of the composite magnetic material were evaluated using a vibrating sample magnetometer. The results are shown in Table 1. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
[実施例6]
実施例1で加圧成形機により成形体を作製する際に、圧力を10MPaから50MPaの圧力に変更した以外は、実施例1と同じ製法で、直径10mmの複合磁性材料を作製した。複合磁性材料について、空隙率を測定したところ、7%以下であった。空隙率の測定は、固化体の相対密度の測定にあたっては、固化体表面をエメリー紙及びバブ研磨したのち、表面に樹脂を塗布して純水中に浸漬して受ける浮力から比重を算出(アルキメデス法)し、理論比重に対する比率で表した。
[Example 6]
A composite magnetic material having a diameter of 10 mm was produced in the same manner as in Example 1 except that the pressure was changed from 10 MPa to a pressure of 50 MPa when producing a molded body with a pressure molding machine in Example 1. The porosity of the composite magnetic material was measured and found to be 7% or less. In the measurement of the relative density of the solidified body, the specific gravity is calculated from the buoyancy received by applying the resin on the surface and dipping in pure water after polishing the surface of the solidified body with emery paper and bubbling (Archimedes) And expressed as a ratio to the theoretical specific gravity.
複合磁性材料の磁気特性(残留磁化と保磁力)を評価した。結果を表1に示す。なお、磁気特性は、後述する比較例5に対して規格化した値で示した。 The magnetic properties (residual magnetization and coercivity) of the composite magnetic material were evaluated. The results are shown in Table 1. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
[実施例7]
実施例1で示した方法と同様に、塩化鉄(II)水和物(FeCl・4HO)を溶解した溶解液にε-Fe粒子を分散し、還元剤であるNaBHを添加してFeを析出することで、Feが海でε-Fe粒子が島となった海島構造を含む複合磁性材料を作製した。ただし、ε-Feを含む島同士の距離を狭くするために、析出するFeの粒子サイズを小粒径化する条件で作製した。なお、ε-Fe粒子は実施例1と同じ条件で作製した。
[Example 7]
Similarly to the method described in Example 1, ε-Fe 2 O 3 particles are dispersed in a solution in which iron chloride (II) hydrate (FeCl 2 · 4H 2 O) is dissolved, and NaBH 4 as a reducing agent is dispersed. Was added to precipitate Fe, thereby producing a composite magnetic material including a sea-island structure in which Fe is in the sea and ε-Fe 2 O 3 particles are islands. However, in order to narrow the distance between islands containing ε-Fe 2 O 3 , the particles were prepared under the condition of reducing the particle size of precipitated Fe. The ε-Fe 2 O 3 particles were produced under the same conditions as in Example 1.
(分散溶液の作製)
塩化鉄(II)水和物(FeCl・4HO)を1.5g秤量し、純水75mLに溶解させて、塩化鉄水溶液を得た。次に、ε-Fe粒子0.36gを秤量し塩化鉄水溶液に添加し、超音波分散機で十分に分散させた分散液を作製した。
(Preparation of dispersed solution)
1.5 g of iron (II) chloride hydrate (FeCl 2 · 4H 2 O) was weighed and dissolved in 75 mL of pure water to obtain an aqueous iron chloride solution. Next, 0.36 g of ε-Fe 2 O 3 particles were weighed, added to an aqueous iron chloride solution, and a dispersion liquid sufficiently dispersed by an ultrasonic dispersion machine was prepared.
(小粒径化したFeの析出)
還元剤であるテトラヒドロホウ酸ナトリウム(NaBH)を2g秤量し、純水20mLに溶解させた還元剤溶液を準備した。次に、上記分散液を撹拌しながら、95℃で安定するようにウォーターバスで加熱した。次に、還元剤溶液をスプレー装置で噴霧し添加した。これにより塩化鉄(II)を還元し、複数のε-Fe粒子を含む形でα-Feを析出した。なお、NaBHは、実施例1よりもさらに小さい0.1μL程度の霧状にして添加した。得られた複合粒子中のα-Feの粒径を走査型電子顕微鏡(SEM)で観察すると、α-Feの粒径は30nm~50nmであった。
(Precipitation of reduced particle size Fe)
2 g of sodium tetrahydroborate (NaBH 4 ), which is a reducing agent, was weighed, and a reducing agent solution dissolved in 20 mL of pure water was prepared. Next, the dispersion was heated in a water bath so as to be stable at 95 ° C. while stirring. The reducing agent solution was then added by spraying with a spray device. As a result, iron (II) chloride was reduced, and α-Fe was precipitated in a form containing a plurality of ε-Fe 2 O 3 particles. NaBH 4 was added in the form of a mist of about 0.1 μL, which is smaller than Example 1. When the particle size of α-Fe in the obtained composite particles was observed with a scanning electron microscope (SEM), the particle size of α-Fe was 30 nm to 50 nm.
(乾燥・熱処理工程)
次の工程の乾燥・熱処理行程は、実施例1と同じ条件で複合磁性材料を作製した。
(Drying and heat treatment process)
In the subsequent drying / heat treatment step, a composite magnetic material was produced under the same conditions as in Example 1.
(複合磁性材料の構造分析)
得られた複合磁性材料の結晶構造をXRDで分析した結果、ε-Feの回折ピークとα-Feの回折ピークとがそれぞれ確認でき、それ以外の結晶構造に由来する回折ピークは確認されなかった。
(Structural analysis of composite magnetic materials)
As a result of analyzing the crystal structure of the obtained composite magnetic material by XRD, a diffraction peak of ε-Fe 2 O 3 and a diffraction peak of α-Fe can be confirmed respectively, and diffraction peaks derived from other crystal structures are confirmed It was not done.
また、粒子状の複合磁性材料の断面を走査型電子顕微鏡(SEM)で観察した結果、α-Feを含む海(連続体)中に、ε-Feを含む島が複数存在する海島構造が確認できた。観察画像の10点から島間距離を算出し平均島間距離とその標準偏差を算出すると、平均島間距離は18nm、標準偏差は5nmであった。 In addition, as a result of observing the cross section of the particulate composite magnetic material with a scanning electron microscope (SEM), it is found that there is a plurality of islands containing ε-Fe 2 O 3 in the sea (continuum) containing α-Fe. The structure was confirmed. When the inter-island distance was calculated from 10 points of the observation image and the average inter-island distance and its standard deviation were calculated, the average inter-island distance was 18 nm and the standard deviation was 5 nm.
(複合磁性材料の磁気特性評価)
複合磁性材料の磁気特性(残留磁化と保磁力)を評価した。結果を下記の表1に示す。なお、磁気特性は、後述する比較例5に対して規格化した値で示した。
(Magnetic characterization of composite magnetic materials)
The magnetic properties (residual magnetization and coercivity) of the composite magnetic material were evaluated. The results are shown in Table 1 below. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
[実施例8]
本実施例は、分散溶液の作成工程と、還元によるFe粒子の析出工程において異なる点以外は、実施例1で示した方法と同じ方法で、Feが海でε-Fe粒子が島となった海島構造を含む複合磁性材料を作製した。ただし、ε-Feを含む島の距離を狭くするために、析出するFeの粒子サイズを小粒径化する条件で作製した。なお、ε-Fe粒子は実施例1と同じ条件で作製した。
(分散溶液の作製)
臭化鉄(II)(FeBr)を1.62g秤量し、メタノール150mLに溶解させて、臭化鉄メタノール溶液を得た。次に、ε-Fe粒子0.36gを秤量し臭化鉄メタノール溶液に添加し、超音波分散機で十分に分散させた分散液を作製した。
[Example 8]
The present example is the same as the method shown in Example 1 except that the step of preparing the dispersion solution and the step of depositing the Fe particles by reduction are the same as in the method described in Example 1, except that Fe is sea and ε-Fe 2 O 3 particles are islands. A composite magnetic material containing a sea-island structure was produced. However, in order to narrow the distance of the island containing ε-Fe 2 O 3 , it was manufactured under the condition of reducing the particle size of Fe to be reduced. The ε-Fe 2 O 3 particles were produced under the same conditions as in Example 1.
(Preparation of dispersed solution)
1.62 g of iron (II) bromide (FeBr 2 ) was weighed and dissolved in 150 mL of methanol to obtain a solution of iron bromide in methanol. Next, 0.36 g of ε-Fe 2 O 3 particles were weighed, added to an iron bromide methanol solution, and a dispersion liquid sufficiently dispersed by an ultrasonic disperser was prepared.
(還元によるFe粒子の析出)
還元剤であるテトラヒドロホウ酸ナトリウム(NaBH)を2g秤量し、脱水処理したメタノール20mLに溶解させた還元剤溶液を準備した。次に、上記分散液を撹拌しながら、還元剤溶液を滴下添加した。これにより臭化鉄(II)を還元し、複数のε-Fe粒子を含む形でα-Feを析出した。得られた複合粒子中のα-Feの粒径を走査型電子顕微鏡(SEM)で観察すると、α-Feの粒径は10nm~20nmであった。なお、ε-Fe粒子は脱水処理したメタノールで分散させた以外は実施例1と同じ条件で作製した。この状態では、凝集によって粒径が大きくなるため、ロールミルで粗砕し平均粒径を64nmとし、さらにホモジナイザーで微砕して平均粒径42nmとし、さらにフィルターでろ過して、平均粒径を約36nmにした。
(Precipitation of Fe particles by reduction)
2 g of reducing agent sodium tetrahydroborate (NaBH 4 ) was weighed, and a reducing agent solution in which 20 mL of dehydrated methanol was dissolved was prepared. Next, the reducing agent solution was added dropwise while stirring the dispersion. Thereby, iron (II) bromide was reduced to precipitate α-Fe in a form including a plurality of ε-Fe 2 O 3 particles. When the particle size of α-Fe in the obtained composite particles was observed with a scanning electron microscope (SEM), the particle size of α-Fe was 10 nm to 20 nm. The ε-Fe 2 O 3 particles were produced under the same conditions as in Example 1 except that they were dispersed in dehydrated methanol. In this state, since the particle size increases due to aggregation, the average particle size is coarsened with a roll mill to 64 nm, further finely divided with a homogenizer to an average particle size of 42 nm, and filtered through a filter to obtain an average particle size of about It was 36 nm.
(乾燥・熱処理工程)
次の工程の乾燥・熱処理行程は、実施例1と同じ条件で複合磁性材料を作製した。
(Drying and heat treatment process)
In the subsequent drying / heat treatment step, a composite magnetic material was produced under the same conditions as in Example 1.
(複合磁性材料の構造分析)
得られた複合磁性材料の結晶構造をXRDで分析した結果、ε-Feの回折ピークとα-Feの回折ピークとがそれぞれ確認でき、それ以外の結晶構造に由来する回折ピークは確認されなかった。
(Structural analysis of composite magnetic materials)
As a result of analyzing the crystal structure of the obtained composite magnetic material by XRD, a diffraction peak of ε-Fe 2 O 3 and a diffraction peak of α-Fe can be confirmed respectively, and diffraction peaks derived from other crystal structures are confirmed It was not done.
また、粒子状の複合磁性材料の断面を走査型電子顕微鏡(SEM)で観察した結果、α-Feを含む海(連続体)中に、ε-Feを含む島が複数存在する海島構造が確認できた。観察画像の10点から島間距離を算出し平均島間距離とその標準偏差を算出すると、平均島間距離は12nm、標準偏差は4nmであった。 In addition, as a result of observing the cross section of the particulate composite magnetic material with a scanning electron microscope (SEM), it is found that there is a plurality of islands containing ε-Fe 2 O 3 in the sea (continuum) containing α-Fe. The structure was confirmed. When the inter-island distance was calculated from 10 points of the observation image and the average inter-island distance and its standard deviation were calculated, the average inter-island distance was 12 nm and the standard deviation was 4 nm.
(複合磁性材料の磁気)
複合磁性材料の磁気特性(残留磁化と保磁力)を評価した。結果を下記の表1に示す。なお、磁気特性は、後述する比較例5に対して規格化した値で示した。
(Magnet of composite magnetic material)
The magnetic properties (residual magnetization and coercivity) of the composite magnetic material were evaluated. The results are shown in Table 1 below. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
[実施例9]
実施例1で示した方法と同様に、塩化鉄(II)水和物(FeCl・4HO)を溶解した溶解液にε-Fe粒子を分散し、還元剤であるNaBHを添加してFeを析出することで、Feが海でε-Fe粒子が島となった海島構造を含む複合磁性材料を作製した。ただし、ε-Feを含む島の距離を狭くするために、析出するFeの粒子サイズを小粒径化する条件で作製した。なお、ε-Fe粒子は実施例1と同じ条件で作製した。本実施例は、乾燥・熱処理工程においてパルス通電焼結を行う点が、実施例8と異なる。
[Example 9]
Similarly to the method described in Example 1, ε-Fe 2 O 3 particles are dispersed in a solution in which iron chloride (II) hydrate (FeCl 2 · 4H 2 O) is dissolved, and NaBH 4 as a reducing agent is dispersed. Was added to precipitate Fe, thereby producing a composite magnetic material including a sea-island structure in which Fe is in the sea and ε-Fe 2 O 3 particles are islands. However, in order to narrow the distance of the island containing ε-Fe 2 O 3 , it was manufactured under the condition of reducing the particle size of Fe to be reduced. The ε-Fe 2 O 3 particles were produced under the same conditions as in Example 1. The present embodiment differs from the eighth embodiment in that pulse current sintering is performed in the drying and heat treatment steps.
(分散溶液の作製)
臭化鉄(II)(FeBr)を1.62g秤量し、メタノール150mlに溶解させて、臭化鉄メタノール溶液を得た。次に、ε-Fe粒子0.36gを秤量し臭化鉄メタノール溶液に添加し、超音波分散機で十分に分散させた分散液を作製した。
(Preparation of dispersed solution)
1.62 g of iron (II) bromide (FeBr 2 ) was weighed and dissolved in 150 ml of methanol to obtain a solution of iron bromide in methanol. Next, 0.36 g of ε-Fe 2 O 3 particles were weighed, added to an iron bromide methanol solution, and a dispersion liquid sufficiently dispersed by an ultrasonic disperser was prepared.
(還元によるFe粒子の析出)
還元剤であるテトラヒドロホウ酸ナトリウム(NaBH)を2g秤量し、脱水処理したメタノール20mLに溶解させた還元剤溶液を準備した。次に、上記分散液を撹拌しながら、還元剤溶液を滴下添加した。これにより臭化鉄(II)を還元し、複数のε-Fe粒子を含む形でα-Feを析出した。得られた複合粒子中のα-Feの粒径を走査型電子顕微鏡(SEM)で観察すると、α-Feの粒径は10nm~20nmであった。なお、ε-Fe粒子は脱水処理したメタノールで分散させた以外は実施例1と同じ条件で作製した。この状態では、凝集によって粒径が大きくなるため、ロールミルで粗砕し平均粒径を64nmとし、さらにホモジナイザーで微砕して平均粒径42nmとし、さらにフィルターでろ過して、平均粒径を約36nmにした。
(Precipitation of Fe particles by reduction)
2 g of reducing agent sodium tetrahydroborate (NaBH 4 ) was weighed, and a reducing agent solution in which 20 mL of dehydrated methanol was dissolved was prepared. Next, the reducing agent solution was added dropwise while stirring the dispersion. Thereby, iron (II) bromide was reduced to precipitate α-Fe in a form including a plurality of ε-Fe 2 O 3 particles. When the particle size of α-Fe in the obtained composite particles was observed with a scanning electron microscope (SEM), the particle size of α-Fe was 10 nm to 20 nm. The ε-Fe 2 O 3 particles were produced under the same conditions as in Example 1 except that they were dispersed in dehydrated methanol. In this state, since the particle size increases due to aggregation, the average particle size is coarsened with a roll mill to 64 nm, further finely divided with a homogenizer to an average particle size of 42 nm, and filtered through a filter to obtain an average particle size of about It was 36 nm.
(乾燥・熱処理工程)
次の工程の乾燥・熱処理行程は、以下の手順により行い、焼結磁石を作製した。
(Drying and heat treatment process)
The drying / heat treatment step of the next step was performed according to the following procedure to produce a sintered magnet.
アルゴン雰囲気に保持されたグローブボックス内で、ε-Fe粒子とα-Fe粒子を含むメタノールスラリーからメタノールを蒸発させ、複合磁性材料粉末を得た。その複合磁性材料粉末0.6g秤量し、内径10mmのグラファイト製ダイセットに充填した。そして、大気暴露することなく加圧機構を備えたパルス通電焼結装置(LABOX-650F:シンターランド社製)内にセットした。 In a glove box held in an argon atmosphere, methanol was evaporated from a methanol slurry containing ε-Fe 2 O 3 particles and α-Fe particles to obtain a composite magnetic material powder. 0.6 g of the composite magnetic material powder was weighed and filled in a graphite die set with an inner diameter of 10 mm. Then, it was set in a pulse current sintering apparatus (LABOX-650F: manufactured by Sinterland Co., Ltd.) equipped with a pressing mechanism without exposure to the atmosphere.
次いで、焼結室内を2Pa以下の真空雰囲気としたのち、複合磁性材料粉末に60MPaの圧縮圧力を負荷し、ただちに除荷した。再び60MPaの圧縮圧力を印加し、この圧力を保持したまま、昇温速度 50℃/minにて室温から90℃まで昇温させ、90℃に到達すると保持することなく直ちに冷却を行った。室温まで冷却したことを確認したのち、大気圧に戻し、ダイセットを取り出した。 Next, after setting the sintering chamber in a vacuum atmosphere of 2 Pa or less, a compressive pressure of 60 MPa was applied to the composite magnetic material powder, and the powder was immediately unloaded. A compression pressure of 60 MPa was applied again, and while maintaining this pressure, the temperature was raised from room temperature to 90 ° C. at a heating rate of 50 ° C./min, and cooling was performed immediately without holding when reaching 90 ° C. After confirming cooling to room temperature, the pressure was returned to atmospheric pressure, and the die set was taken out.
(複合磁性材料の構造分析)
得られた複合磁性材料の結晶構造をXRDで分析した結果、ε-Feの回折ピークとα-Feの回折ピークとがそれぞれ確認でき、それ以外の結晶構造に由来する回折ピークは確認されなかった。
(Structural analysis of composite magnetic materials)
As a result of analyzing the crystal structure of the obtained composite magnetic material by XRD, a diffraction peak of ε-Fe 2 O 3 and a diffraction peak of α-Fe can be confirmed respectively, and diffraction peaks derived from other crystal structures are confirmed It was not done.
また、粒子状の複合磁性材料の断面を走査型電子顕微鏡(SEM)で観察した結果、α-Feからなる海(連続体)中に、ε-Feを含む島が複数存在する海島構造が確認できた。観察画像の10点から島間距離を算出し平均島間距離とその標準偏差を算出すると、平均島間距離は11nm、標準偏差は3nmであった。 In addition, as a result of observing the cross section of the particulate composite magnetic material with a scanning electron microscope (SEM), it is found that there is a plurality of islands containing ε-Fe 2 O 3 in the sea (continuum) made of α-Fe. The structure was confirmed. When the inter-island distance was calculated from 10 points of the observation image and the average inter-island distance and its standard deviation were calculated, the average inter-island distance was 11 nm and the standard deviation was 3 nm.
(複合磁性材料の磁気特性評価)
複合磁性材料の磁気特性(残留磁化と保磁力)を評価した。結果を下記の表1に示す。なお、磁気特性は、後述する比較例5に対して規格化した値で示した。
(Magnetic characterization of composite magnetic materials)
The magnetic properties (residual magnetization and coercivity) of the composite magnetic material were evaluated. The results are shown in Table 1 below. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
上記実施例に対する比較例を説明する。
[比較例1]
比較例1では、α-Feナノ粒子とε-Fe粒子とをそれぞれ作製し、これらを混合して熱処理することで、α-Fe粒子とε-Fe粒子を含む複合磁性材料を作製した。
A comparative example to the above embodiment will be described.
Comparative Example 1
In Comparative Example 1, composite magnetic particles containing α-Fe particles and ε-Fe 2 O 3 particles are produced by respectively preparing α-Fe nanoparticles and ε-Fe 2 O 3 particles and mixing them and heat treating them. The material was made.
(α-Feナノ粒子の作製)
軟質磁性材料であるα-Feナノ粒子を、以下の手順で作製した。
まず、硝酸鉄水和物(Fe(NO・9HO)を6g秤量し、純水75mLに溶解させて、硝酸鉄水溶液を得た。28%アンモニア水75mLを撹拌しながら、アンモニア水に対して硝酸鉄水溶液を添加して、前駆体粒子となる水酸化鉄(Fe(OH))を析出させた。析出させた水酸化鉄をフィルターろ過により回収し、純水で十分に洗浄した後に真空乾燥して、水酸化鉄ナノ粒子を得た。得られた水酸化鉄ナノ粒子の粒径を動的光散乱法(DLS)で測定した結果、体積基準の平均粒径は8nmであった。
(Preparation of α-Fe nanoparticles)
The soft magnetic material α-Fe nanoparticles were produced by the following procedure.
First, 6 g of iron nitrate hydrate (Fe (NO 3 ) 3 .9H 2 O) was weighed and dissolved in 75 mL of pure water to obtain an iron nitrate aqueous solution. While stirring 75 mL of 28% ammonia water, an aqueous iron nitrate solution was added to the ammonia water to precipitate iron hydroxide (Fe (OH) 3 ) as precursor particles. The precipitated iron hydroxide was recovered by filter filtration, thoroughly washed with pure water, and then vacuum dried to obtain iron hydroxide nanoparticles. As a result of measuring the particle size of the obtained iron hydroxide nanoparticles by dynamic light scattering (DLS), the volume-based average particle size was 8 nm.
次に、得られた水酸化鉄ナノ粒子をアルミナルツボに入れ、水酸化鉄ナノ粒子を還元雰囲気下で加熱処理することで、α-Feナノ粒子を得た。加熱処理の際の雰囲気ガスとして2%水素-98%窒素の混合ガスを用い、該混合ガスの流量は300sccmとした。加熱処理の際の温度は500℃とし、500℃で5時間保持した後、室温まで冷却した。得られたα-Feナノ粒子の粒径をDLSで測定した結果、体積基準の平均粒径は25nmであった。また、得られたα-Feナノ粒子の結晶構造をXRDによって分析した結果、α-Fe(アルファ鉄)の回折ピークが確認され、それ以外の結晶構造に由来する回折ピークは確認されなかった。 Next, the obtained iron hydroxide nanoparticles were put into an alumina crucible, and the iron hydroxide nanoparticles were heat-treated in a reducing atmosphere to obtain α-Fe nanoparticles. A mixed gas of 2% hydrogen and 98% nitrogen was used as an atmosphere gas in the heat treatment, and the flow rate of the mixed gas was set to 300 sccm. The temperature during the heat treatment was 500 ° C., held at 500 ° C. for 5 hours, and cooled to room temperature. As a result of measuring the particle size of the obtained α-Fe nanoparticles by DLS, the volume-based average particle size was 25 nm. Moreover, as a result of analyzing the crystal structure of the obtained α-Fe nanoparticles by XRD, a diffraction peak of α-Fe (alpha iron) was confirmed, and no diffraction peak derived from other crystal structures was confirmed.
(複合磁性材料の作製)
上述の方法によってそれぞれ作製したαFeナノ粒子とε-Fe粒子を、それぞれ0.48g、0.2g秤量し、遊星ボールミルを用いて窒素ガス雰囲気下で混合した。次に、この混合粉末を10MPaの加圧成形機で加工し、成形体を得た。得られた成形体を電気炉にセットし、1次焼成として水素と窒素の混合ガス(2%H-98%N)雰囲気下、260℃で5時間加熱処理した。室温まで冷却した後、遊星ボールミルを用いて窒素ガス雰囲気下で粗粉砕した。粗粉砕によって得られた粉末を再度電気炉にセットし、2次焼成として水素と窒素の混合ガス(2%H-98%N)雰囲気下、260℃で3時間加熱処理して、複合磁性粒材料を得た。
(Preparation of composite magnetic material)
0.48 g and 0.2 g of each of the α-Fe nanoparticles and the ε-Fe 2 O 3 particles prepared by the above-mentioned method were weighed and mixed in a nitrogen gas atmosphere using a planetary ball mill. Next, this mixed powder was processed by a 10 MPa pressure molding machine to obtain a molded body. The resulting set in the molded body in an electric furnace, primary firing as hydrogen and nitrogen mixed gas (2% H 2 -98% N 2) atmosphere for 5 hours of heat treatment at 260 ° C.. After cooling to room temperature, it was roughly crushed under a nitrogen gas atmosphere using a planetary ball mill. Set to powder again electric furnace obtained by coarse grinding, the secondary firing as hydrogen and nitrogen mixed gas (2% H 2 -98% N 2) atmosphere, and heat-treated for 3 hours at 260 ° C., the composite Magnetic grain material was obtained.
(複合磁性材料の構造分析)
得られた複合磁性材料の結晶構造をXRDで分析した結果、ε-Feの回折ピークとα-Feの回折ピークがそれぞれ確認でき、それ以外の結晶構造に由来する回折ピークは確認されなかった。また、粒子状の複合磁性材料の断面を走査型電子顕微鏡(SEM)で観察した結果、α-Fe粒子とε-Fe粒子が混在する構造が観察された。 
(Structural analysis of composite magnetic materials)
As a result of analyzing the crystal structure of the obtained composite magnetic material by XRD, a diffraction peak of ε-Fe 2 O 3 and a diffraction peak of α-Fe can be confirmed respectively, and diffraction peaks derived from other crystal structures are confirmed. It was not. In addition, as a result of observing a cross section of the particulate composite magnetic material with a scanning electron microscope (SEM), a structure in which α-Fe particles and ε-Fe 2 O 3 particles are mixed was observed.
(複合磁性材料の磁気特性評価)
得られた複合磁性材料の磁気特性(残留磁化と保磁力)を、振動試料型磁力計を用いて評価した。結果を表1に示す。なお、磁気特性は、後述する比較例5に対して規格化した値で示した。
(Magnetic characterization of composite magnetic materials)
The magnetic properties (residual magnetization and coercivity) of the obtained composite magnetic material were evaluated using a vibrating sample magnetometer. The results are shown in Table 1. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
[比較例2]
比較例2では、比較例1と同様の方法でε-Fe粒子を作製し、作製したε-Fe粒子を還元処理することで、ε-Feのコアとα-Feのシェルを含む複合磁性材料を作製した。
Comparative Example 2
In Comparative Example 2, ε-Fe 2 O 3 particles are produced by the same method as Comparative Example 1, and the produced ε-Fe 2 O 3 particles are subjected to reduction treatment to obtain a core of ε-Fe 2 O 3 and α A composite magnetic material containing a -Fe shell was prepared.
(複合磁性材料の作製)
比較例1と同様にして得られたε-Fe粒子を電気炉にセットし、水素と窒素の混合ガス(2%H-98%N)雰囲気下、350℃で30分間加熱処理した。室温まで冷却した後、遊星ボールミルを用いて窒素ガス雰囲気下で粗粉砕した。粗粉砕によって得られた粉末を再度電気炉にセットし、水素と窒素の混合ガス(2%H-98%N)雰囲気下、260℃で3時間加熱処理して、複合磁性材料を得た。
(Preparation of composite magnetic material)
The ε-Fe 2 O 3 particles obtained in the same manner as in Comparative Example 1 was set in an electric furnace, a gas mixture of hydrogen and nitrogen (2% H 2 -98% N 2) atmosphere, heating at 350 ° C. 30 minutes It was processed. After cooling to room temperature, it was roughly crushed under a nitrogen gas atmosphere using a planetary ball mill. Set to powder again electric furnace obtained by coarse grinding, the gas mixture (2% H 2 -98% N 2) under an atmosphere of hydrogen and nitrogen, and heat-treated for 3 hours at 260 ° C., to obtain a composite magnetic material The
(複合磁性材料の構造分析)
得られた複合磁性材料の結晶構造をXRDで分析した結果、ε-Feの回折ピークとα-Feの回折ピークがそれぞれ確認でき、それ以外の結晶構造に由来する回折ピークは確認されなかった。
(Structural analysis of composite magnetic materials)
As a result of analyzing the crystal structure of the obtained composite magnetic material by XRD, a diffraction peak of ε-Fe 2 O 3 and a diffraction peak of α-Fe can be confirmed respectively, and diffraction peaks derived from other crystal structures are confirmed. It was not.
また、粒子状の複合磁性材料の断面を走査型電子顕微鏡(SEM)で観察した結果、ε-Feのコアと、α-Feのシェルを含むコアシェル構造の集合体が確認できた。 In addition, as a result of observing the cross section of the particulate composite magnetic material with a scanning electron microscope (SEM), an aggregate of a core-shell structure including a core of ε-Fe 2 O 3 and a shell of α-Fe could be confirmed.
(複合磁性材料の磁気特性評価)
得られた複合磁性材料の磁気特性(残留磁化と保磁力)を、振動試料型磁力計を用いて評価した。結果を表1に示す。なお、磁気特性は、後述する比較例5に対して規格化した値で示した。
(Magnetic characterization of composite magnetic materials)
The magnetic properties (residual magnetization and coercivity) of the obtained composite magnetic material were evaluated using a vibrating sample magnetometer. The results are shown in Table 1. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
[比較例3]
特許文献1では、硬質磁性粒子と軟質磁性粒子を混合してナノコンポジット磁石を得ている。硬質磁性材料と軟質磁性材料の間に働く交換力は接触面積に比例する。このため、硬質磁性材料と軟質磁性材料の接触面積はできるだけ大きいことが望ましいが、球状の粒子を接触した場合、その接触面積はゼロに近く交換力は極めて小さい。ただし粒子の集合体である粉体を圧縮すれば、粒子間に接触面ができ空隙率が低下することが知られている。ただし、粒子径が100nm以下のナノ粒子は、粒径が小さくなると紛体のかさ密度は低くなり、圧縮しても空隙率を小さくすることが困難になる傾向がある。
Comparative Example 3
In Patent Document 1, a hard magnetic particle and a soft magnetic particle are mixed to obtain a nanocomposite magnet. The exchange force acting between the hard magnetic material and the soft magnetic material is proportional to the contact area. For this reason, it is desirable that the contact area of the hard magnetic material and the soft magnetic material be as large as possible, but when spherical particles are in contact, the contact area is close to zero and the exchange force is extremely small. However, it is known that if the powder which is an aggregate of particles is compressed, the contact surface is formed between the particles and the porosity decreases. However, nanoparticles with a particle size of 100 nm or less tend to have a low bulk density of the powder as the particle size decreases, making it difficult to reduce the porosity even after compression.
比較例3では、比較例1でε-Fe粒子とFe粒子を緻密化して複合磁性材料を作製し、空隙率を測定した。比較例1と同様の方法で作成した平均粒径30nmのε-Fe粒子と、平均粒径25nmのFe粒子を、純水で洗浄し、洗浄されたそれぞれの粒子を有機酸溶液中に分散し、双方の溶液を混ぜ合わせた。超音波を40分間程度照射しながら溶液の混合を行うことにより、双方の粒子をナノコンポジット化した。ε-Fe粒子とFe粒子の体積分率は4:6の割合とし、超音波混合の後、遠心分離機によってナノコンポジット粒子を回収した。 In Comparative Example 3, the composite magnetic material was manufactured by densifying the ε-Fe 2 O 3 particles and the Fe particles in Comparative Example 1, and the porosity was measured. The ε-Fe 2 O 3 particles having an average particle diameter of 30 nm and the Fe particles having an average particle diameter of 25 nm prepared by the same method as Comparative Example 1 are washed with pure water, and the respective washed particles are contained in an organic acid solution. And both solutions were mixed together. Both particles were made into a nanocomposite by mixing the solution while being irradiated with ultrasonic waves for about 40 minutes. The volume fraction of ε-Fe 2 O 3 particles and Fe particles was set to a ratio of 4: 6, and after ultrasonic mixing, the nanocomposite particles were recovered by a centrifugal separator.
このナノコンポジット粒子を、圧縮成形機で50MPaの圧力をかけて直径10mmの複合磁性材料を作製した。実施例6と同様の方法で複合磁性材料の空隙率を求めたところ、空隙率は25.3%だった。 The nanocomposite particles were subjected to a pressure of 50 MPa with a compression molding machine to produce a composite magnetic material having a diameter of 10 mm. The porosity of the composite magnetic material was determined in the same manner as in Example 6 to be 25.3%.
得られた複合磁性材料の磁気特性(残留磁化と保磁力)を、振動試料型磁力計を用いて評価した。結果を表1に示す。なお、磁気特性は、後述する比較例5に対して規格化した値で示した。 The magnetic properties (residual magnetization and coercivity) of the obtained composite magnetic material were evaluated using a vibrating sample magnetometer. The results are shown in Table 1. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
[比較例4]
また、比較例3と同様の方法で、成形圧力を300MPaに変えて、複合磁性材料を作製した場合の空隙率は、22.4%であった。
Comparative Example 4
Moreover, the porosity was 22.4% when the compacting pressure was changed to 300 MPa and a composite magnetic material was manufactured by the same method as Comparative Example 3.
得られた複合磁性材料の磁気特性(残留磁化と保磁力)を、振動試料型磁力計を用いて評価した。結果を表1に示す。なお、磁気特性は、後述する比較例5に対して規格化した値で示した。 The magnetic properties (residual magnetization and coercivity) of the obtained composite magnetic material were evaluated using a vibrating sample magnetometer. The results are shown in Table 1. In addition, the magnetic characteristic was shown by the value normalized with respect to the comparative example 5 mentioned later.
[比較例5]
また、比較例3と同様の方法で、成形圧力を550MPaに変えて、複合磁性材料を作製した場合の空隙率は、21.5%であった。得られた複合磁性材料の磁気特性(残留磁化と保磁力)を、振動試料型磁力計を用いて評価した。結果を表1に示す。
Comparative Example 5
Further, in the same manner as in Comparative Example 3, the porosity was 21.5% when the composite magnetic material was manufactured by changing the molding pressure to 550 MPa. The magnetic properties (residual magnetization and coercivity) of the obtained composite magnetic material were evaluated using a vibrating sample magnetometer. The results are shown in Table 1.
[比較例6]
比較例1の複合磁性材料について、実施例5と同様に、XRDとTEMにより結晶構造と結晶配向軸を確認したところ、磁化容易軸はε-Feが約±25度、α-Feが約±28度であった。なお、比較例6は下記の表1には示されていない。
Comparative Example 6
About the composite magnetic material of Comparative Example 1, when the crystal structure and the crystal orientation axis were confirmed by XRD and TEM in the same manner as in Example 5, the magnetization easy axis was about ± 25 degrees of ε-Fe 2 O 3 and α-Fe Was about ± 28 degrees. Comparative Example 6 is not shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表1に示すように、実施例1~8においては残留磁化と保磁力の両方が比較例1~5に対して向上した。また、実施例9に示されるように、パルス通電焼結により熱処理を行った場合には残留磁化と保持力の向上が著しかった。以上の結果から、軟質磁性材料をイオン化して溶解した溶液中に、硬質磁性材料を含む粒子を分散させて得られる分散液から軟質磁性材料粒子を析出させて製造することで、高い性能の磁性材料を製造できることが分かった。 As shown in Table 1, in Examples 1 to 8, both the remanent magnetization and the coercivity were improved relative to Comparative Examples 1 to 5. Further, as shown in Example 9, when the heat treatment was performed by pulse current sintering, the improvement of the residual magnetization and the coercivity was remarkable. From the above results, high performance magnetic properties can be achieved by depositing soft magnetic material particles from a dispersion obtained by dispersing particles containing a hard magnetic material in a solution obtained by ionizing and dissolving a soft magnetic material. It turned out that the material can be manufactured.
[実施例10]
図9A及び9B並びに図10に示した、インナーロータ型のブラシレスモータにおいて、異なる形状のモータを作製した。表3には、図9Aにおける磁石5の外径、厚み、図9Bにおける磁石5の長さを示した。表4には、図9Aにおけるヨーク6の厚み(円筒厚み)、図9Bにおける移動部(ロータ)蓋8の厚み(蓋厚み)を示した。表5は、図9Aにおけるシャフト7の直径と図9Bにおけるシャフト7の長さを示した。また、表3,4、5にはそれぞれの部位の比重と重量、移動部(ロータ)4全体における重量占有率を示した。また表5には、移動部(ロータ)全体の重量を示した。
[Example 10]
In the inner rotor type brushless motor shown in FIGS. 9A and 9B and FIG. 10, motors of different shapes were manufactured. Table 3 shows the outer diameter and thickness of the magnet 5 in FIG. 9A, and the length of the magnet 5 in FIG. 9B. Table 4 shows the thickness (cylindrical thickness) of the yoke 6 in FIG. 9A and the thickness (lid thickness) of the movable portion (rotor) lid 8 in FIG. 9B. Table 5 shows the diameter of the shaft 7 in FIG. 9A and the length of the shaft 7 in FIG. 9B. Further, in Tables 3, 4 and 5, the specific gravity and weight of each part, and the weight occupancy in the entire moving part (rotor) 4 are shown. Table 5 shows the weight of the entire moving part (rotor).
図12Aには、表3、4、5における実施例1の場合について、モータの回転速度wを、最大回転速度wmaxで、規格化した値w/wmaxを縦軸に、回転開始からの時間tを横軸に示した図である。図12Aでは、本発明(実線)で表記した。図12Bには、表3、4、5における実施例1の場合について、モータの消費電流を縦軸に、回転開始からの時間tを横軸に示した図である。図12Bでは、本発明(実線)で表記した。本実施例に適用した複合磁性材料を含むボンド磁石は、平均粒径5nmの硬質磁性粒子ε-Feを体積分率0.4で含有し、粒子間距離30nm、比重6.7g/cmである複合磁性材料と、比重ρpが1g/cmの樹脂とを、体積分率Vm=0.7(体積比7:3)で混合して作製したものである。かかる本実施例に適用したボンド磁石の比重ρbは、5g/cmである。 In FIG. 12A, for the case of Example 1 in Tables 3, 4, and 5, the rotational speed w of the motor is the maximum rotational speed wmax, the normalized value w / wmax is the vertical axis, and the time t from the start of rotation Is shown on the horizontal axis. In FIG. 12A, the present invention (solid line) is used. FIG. 12B is a diagram showing the current consumption of the motor on the vertical axis and the time t from the start of rotation on the horizontal axis in the case of the first embodiment in Tables 3, 4, and 5. In FIG. 12B, the present invention (solid line) is used. The bonded magnet including the composite magnetic material applied to this example contains hard magnetic particles ε-Fe 2 O 3 with an average particle diameter of 5 nm at a volume fraction of 0.4, an interparticle distance of 30 nm, and a specific gravity of 6.7 g / a composite magnetic material cm 3, and a resin having a specific gravity ρp is 1 g / cm 3, the volume fraction Vm = 0.7 (volume ratio 7: 3) those prepared by mixing in. The specific gravity bb of the bonded magnet applied to the present embodiment is 5 g / cm 3 .
表2には、起動時間(回転速度wが最大速度wmaxの98%になる時間)と、1秒間で要したエネルギーを記載した。測定は、10Vの電圧で行い、エネルギーは1秒間の電流値と電圧の積分値から求めた。この結果、本発明のモータでは、起動時間が0.12秒、エネルギーは4.53Jとなった。 Table 2 describes the start-up time (the time when the rotational speed w is 98% of the maximum speed wmax) and the energy required for one second. The measurement was performed at a voltage of 10 V, and the energy was determined from the integral value of the current and voltage for one second. As a result, in the motor of the present invention, the start-up time was 0.12 seconds, and the energy was 4.53 J.
[比較例7]
実施例10と比較して、磁石を本発明の磁石から、同じ最大エネルギー積を持つネオジム磁石に変更した以外は、同じ構造のモータで測定した結果を図12A及び12Bの破線に示した。比較例のモータでは、起動時間が0.60秒、エネルギーは9.41Jとなった。よって、本発明の磁石を移動部(ロータ)に用いたモータでは、起動時間が早く、消費エネルギー(消費電力)が少ないことが判明した。
Comparative Example 7
As compared with Example 10, the results measured with a motor having the same structure except that the magnet is changed from the magnet of the present invention to a neodymium magnet having the same maximum energy product are shown by broken lines in FIGS. 12A and 12B. In the motor of the comparative example, the start time was 0.60 seconds, and the energy was 9.41 J. Therefore, it was found that, in the motor using the magnet of the present invention for the moving part (rotor), the start-up time is short and the energy consumption (power consumption) is small.
[実施例11]
表3,表4,表5に示したように、形状を変更した以外は、実施例10と同じ構造のモータを作製した。起動時間は0.35秒であった。
[Example 11]
As shown in Tables 3, 4 and 5, a motor having the same structure as in Example 10 was produced except that the shape was changed. The startup time was 0.35 seconds.
[実施例12]
表3,表4,表5に示したように、形状を変更した以外は、実施例10と同じ構造のモータを作製した。起動時間は0.42秒であった。
[Example 12]
As shown in Tables 3, 4 and 5, a motor having the same structure as in Example 10 was produced except that the shape was changed. The startup time was 0.42 seconds.
[比較例8]
表3,表4,表5に示したように、磁石を本発明の磁石から、同じ最大エネルギー積を持つネオジム磁石に変更したこと以外は、実施例11と同じ構造のモータを作製した。起動時間は0.81秒であった。
Comparative Example 8
As shown in Tables 3, 4 and 5, a motor having the same structure as in Example 11 was produced except that the magnet of the present invention was changed to a neodymium magnet having the same maximum energy product. The startup time was 0.81 seconds.
[比較例9]
表3,表4,表5に示したように、磁石を本発明の磁石から、同じ最大エネルギー積を持つネオジム磁石に変更したこと以外は、実施例12と同じ構造のモータを作製した。起動時間は0.76秒であった。
Comparative Example 9
As shown in Tables 3, 4 and 5, a motor having the same structure as in Example 12 was produced except that the magnet of the present invention was changed to a neodymium magnet having the same maximum energy product. The startup time was 0.76 seconds.
以上、実施例10の起動時間は比較例7の起動時間の20%、実施例11の起動時間は比較例8の起動時間の43%、実施例12の起動時間は比較例9の起動時間の55%であった。各例でロータ重量が異なるが、いずれも、本発明のモータは、比較例のモータと比較して起動時間が短く、ロータ(回転部)における重量占有率に応じて起動時間の短縮効果が高い。 As described above, the activation time of Example 10 is 20% of the activation time of Comparative Example 7, the activation time of Example 11 is 43% of the activation time of Comparative Example 8, and the activation time of Example 12 is the activation time of Comparative Example 9. It was 55%. Although the rotor weight is different in each example, the motor of the present invention has a shorter start-up time as compared with the motor of the comparative example, and the effect of shortening the start-up time is high according to the weight occupancy rate in the rotor (rotating portion) .
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Accordingly, the following claims are attached to disclose the scope of the present invention.
本願は、2017年10月20日提出の日本国特許出願特願2017-203059、2018年10月17日提出の日本国特許出願特願2018-196167および2018年10月17日提出の日本国特許出願特願2018-196169を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 Priority is claimed on Japanese Patent Application No. 2017-203059 filed Oct. 20, 2017, Japanese Patent Application No. 2018-196167 filed Oct. 17, 2018, and Japanese Patents filed Oct. 17, 2018. The present application claims priority based on Japanese Patent Application No. 2018-196169, the entire contents of which are incorporated herein by reference.
1  複合磁性材料
2  軟質磁性相
3  硬質磁性粒子
4  移動部(ロータ)
5  磁石
6  ヨーク
7  シャフト
8  蓋
9  モータ
10 電磁石
11 カバー


 
1 composite magnetic material 2 soft magnetic phase 3 hard magnetic particles 4 moving part (rotor)
5 magnet 6 yoke 7 shaft 8 lid 9 motor 10 electromagnet 11 cover


Claims (32)

  1.  軟質磁性相中に硬質磁性粒子が島状に複数分散して存在し、
     前記硬質磁性粒子は、平均粒径が2nm以上であって、隣り合う2つの前記硬質磁性粒子間の平均距離が100nm以下であることを特徴とする複合磁性材料。
    A plurality of hard magnetic particles are dispersed in the form of islands in the soft magnetic phase,
    The composite magnetic material, wherein the hard magnetic particles have an average particle diameter of 2 nm or more and an average distance between two adjacent hard magnetic particles is 100 nm or less.
  2.  前記軟質磁性相は連続体であることを特徴とする請求項1に記載の複合磁性材料。 The composite magnetic material according to claim 1, wherein the soft magnetic phase is a continuous body.
  3.  軟質磁性相中に硬質磁性粒子が島状に複数分散して存在し、前記軟質磁性相は連続体であることを特徴とする複合磁性材料。 A composite magnetic material comprising a plurality of hard magnetic particles dispersed in the form of islands in a soft magnetic phase, wherein the soft magnetic phase is a continuous body.
  4.  前記硬質磁性粒子は、フェリ磁性体または反強磁性体を主成分とする磁性材料を含み、前記軟質磁性相は、フェロ磁性体を主成分とする磁性材料を含むことを特徴とする請求項1から3のいずれか一項に記載の複合磁性材料。 The hard magnetic particle includes a magnetic material mainly composed of a ferrimagnetic material or an antiferromagnetic material, and the soft magnetic phase preferably includes a magnetic material mainly composed of a ferromagnetic material. Composite magnetic material as described in any one of to 3.
  5.  前記硬質磁性粒子は、酸化鉄を主成分とすることを特徴とする請求項4に記載の複合磁性材料。 The composite magnetic material according to claim 4, wherein the hard magnetic particles contain iron oxide as a main component.
  6.  前記硬質磁性粒子は、ε-Feを主成分とすることを特徴とする請求項5に記載の複合磁性材料。 The composite magnetic material according to claim 5, wherein the hard magnetic particles contain ε-Fe 2 O 3 as a main component.
  7.  前記軟質磁性相は、FeまたはCoを主成分とすることを特徴とする請求項4から6のいずれか一項に記載の複合磁性材料。 The composite magnetic material according to any one of claims 4 to 6, wherein the soft magnetic phase contains Fe or Co as a main component.
  8.  前記軟質磁性相は、α-Feを主成分とすることを特徴とする請求項7に記載の複合磁性材料。 The composite magnetic material according to claim 7, wherein the soft magnetic phase contains α-Fe as a main component.
  9.  前記複合磁性材料において、前記硬質磁性粒子の磁化容易軸の方向と所定の一方向とがなす角が、複数の前記硬質磁性粒子のそれぞれについて15度以下であることを特徴とする請求項1から8のいずれか一項に記載の複合磁性材料。 The composite magnetic material according to claim 1, wherein an angle formed by the direction of the magnetization easy axis of the hard magnetic particles and a predetermined one direction is 15 degrees or less for each of the plurality of hard magnetic particles. The composite magnetic material according to any one of 8.
  10.  前記複合磁性材料において、前記軟質磁性相の磁化容易軸の方向と所定の一方向とがなす角が、隣り合う2つの前記硬質磁性粒子間に存在する前記軟質磁性相全体にわたって15度以下であることを特徴とする請求項1から9のいずれか一項に記載の複合磁性材料。  In the composite magnetic material, the angle between the direction of the magnetization easy axis of the soft magnetic phase and a predetermined one direction is 15 degrees or less over the entire soft magnetic phase existing between two adjacent hard magnetic particles. The composite magnetic material according to any one of claims 1 to 9, characterized in that:
  11.  前記複合磁性材料中の空隙の体積分率が20%以下であることを特徴とする請求項1から10のいずれか一項に記載の複合磁性材料。 The composite magnetic material according to any one of claims 1 to 10, wherein a volume fraction of voids in the composite magnetic material is 20% or less.
  12.  前記複合磁性材料中の非磁性体の含有量は、体積分率で10%以下であることを特徴とする請求項1から11のいずれか一項に記載の複合磁性材料。 The composite magnetic material according to any one of claims 1 to 11, wherein the content of the nonmagnetic material in the composite magnetic material is 10% or less by volume fraction.
  13.  外部磁界と磁化の関係で示される磁化曲線の角形比が0.7以上であることを特徴とする請求項1から12のいずれか一項に記載の複合磁性材料。 The composite magnetic material according to any one of claims 1 to 12, wherein a squareness ratio of a magnetization curve represented by a relation between an external magnetic field and magnetization is 0.7 or more.
  14.  前記硬質磁性粒子の平均粒径は1000nm以下であることを特徴とする請求項1から13の何れか一項に記載の複合磁性材料。 The composite magnetic material according to any one of claims 1 to 13, wherein an average particle diameter of the hard magnetic particles is 1000 nm or less.
  15.  前記硬質磁性粒子と前記軟質磁性相の混合割合が、体積分率Vh/(Vs+Vh)で0.2以上0.6以下である(Vsは前記軟質磁性相の体積、Vhは前記硬質磁性粒子の体積)ことを特徴とする請求項1から14のいずれか一項に記載の複合磁性材料。 The mixing ratio of the hard magnetic particles and the soft magnetic phase is 0.2 or more and 0.6 or less in volume fraction Vh / (Vs + Vh) (Vs is the volume of the soft magnetic phase, and Vh is the hard magnetic particles The composite magnetic material according to any one of claims 1 to 14, characterized in that
  16.  隣り合う2つの前記硬質磁性粒子同士が、前記軟質磁性相を介して交換結合していることを特徴とする請求項1から15のいずれか一項に記載の複合磁性材料。 The composite magnetic material according to any one of claims 1 to 15, wherein two adjacent hard magnetic particles are exchange-coupled to each other via the soft magnetic phase.
  17.  Nd元素の含有量が3質量%以下であることを特徴とする請求項1から16のいずれか一項に記載の複合磁性材料。 The composite magnetic material according to any one of claims 1 to 16, wherein the content of the Nd element is 3% by mass or less.
  18.  請求項1から17のいずれか一項に記載の複合磁性材料を含有することを特徴とする磁石。 A magnet comprising the composite magnetic material according to any one of claims 1 to 17.
  19.  最大エネルギー積が170kJ/m以上であることを特徴とする請求項18に記載の磁石。 Magnet according to claim 18, the maximum energy product is characterized in that at 170kJ / m 3 or more.
  20.  前記複合磁性材料と樹脂材料とを含むことを特徴とする請求項18または19に記載の磁石。 The magnet according to claim 18 or 19, comprising the composite magnetic material and a resin material.
  21.  比重が5g/cm以下であることを特徴とする請求項20に記載の磁石。 The magnet according to claim 20, which has a specific gravity of 5 g / cm 3 or less.
  22.  最大エネルギー積が21kJ/m以上であることを特徴とする請求項20または21に記載の磁石。 22. A magnet according to claim 20 or 21, wherein the maximum energy product is 21 kJ / m < 3 > or more.
  23.  請求項18から22のいずれか一項に記載の磁石を含むことを特徴とするモータ。 A motor comprising the magnet according to any one of claims 18 to 22.
  24.  請求項18から22のいずれか一項に記載の磁石を含むロータまたはステータを備えていることを特徴とするモータ。 A motor comprising a rotor or a stator including the magnet according to any one of claims 18 to 22.
  25.  請求項23または24に記載のモータと、前記モータを定速で回転させる期間が、加速回転させる期間の2倍以下である駆動シーケンスで駆動するシーケンサをさらに備えていることを特徴とするモータユニット。 A motor unit comprising: the motor according to claim 23 or 24; and a sequencer driven in a drive sequence in which the period for rotating the motor at a constant speed is twice or less the period for accelerating and rotating. .
  26.  請求項23または24に記載のモータと、前記モータを正回転と逆回転を繰り返す駆動シーケンスで駆動するシーケンサをさらに備えていることを特徴とするモータユニット。 A motor unit comprising: the motor according to claim 23 or 24; and a sequencer for driving the motor in a drive sequence which repeats forward rotation and reverse rotation.
  27.  請求項23または24に記載のモータを有することを特徴とする飛行機器。 An aircraft unit comprising the motor according to claim 23 or 24.
  28.  軟質磁性材料と硬質磁性材料とを含有する複合磁性材料の製造方法であって、
     前記軟質磁性材料は少なくとも1種の遷移金属元素を含み、
     前記遷移金属元素を含むイオンを含有する溶液中に、前記硬質磁性材料を含む粒子を分散させて分散液を得る第1の工程と、
     前記分散液に添加剤を添加して、前記遷移金属元素を含有する粒子を析出させる第2の工程と、を有することを特徴とする複合磁性材料の製造方法。
    A method of manufacturing a composite magnetic material containing a soft magnetic material and a hard magnetic material, comprising:
    The soft magnetic material comprises at least one transition metal element,
    A first step of dispersing particles containing the hard magnetic material in a solution containing ions containing the transition metal element to obtain a dispersion;
    A second step of adding an additive to the dispersion liquid to precipitate particles containing the transition metal element, and manufacturing the composite magnetic material.
  29.  前記添加剤は還元剤であることを特徴とする請求項28に記載の複合磁性材料の製造方法。 The method of claim 28, wherein the additive is a reducing agent.
  30.  前記添加剤は塩基性溶液であり、
     前記第2の工程において、前記分散液に前記塩基性溶液を添加して前記分散液のpHを変化させることで、前記硬質磁性材料を含む粒子の周りに前記遷移金属元素を含む前駆体を析出させたのちに、前記前駆体を還元して前記軟質磁性材料とすることを特徴とする請求項28に記載の複合磁性材料の製造方法。
    The additive is a basic solution,
    In the second step, the basic solution is added to the dispersion to change the pH of the dispersion, thereby depositing the precursor containing the transition metal element around the particles containing the hard magnetic material. The method of manufacturing a composite magnetic material according to claim 28, wherein the precursor is reduced to form the soft magnetic material after being allowed to form.
  31.  前記第2の工程のあとに、熱処理を行う第3の工程を有することを特徴とする請求項28から30のいずれか一項に記載の複合磁性材料の製造方法。 31. A method of manufacturing a composite magnetic material according to any one of claims 28 to 30, further comprising a third step of performing heat treatment after the second step.
  32.  前記第3の熱処理工程がパルス通電焼結であることを特徴とする請求項31に記載の複合磁性材料の製造方法。

     
    The method of manufacturing a composite magnetic material according to claim 31, wherein the third heat treatment step is pulse current sintering.

PCT/JP2018/038922 2017-10-20 2018-10-19 Composite magnetic material, magnet containing said material, motor using said magnet, and method for producing said composite magnetic material WO2019078321A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/847,410 US20200243231A1 (en) 2017-10-20 2020-04-13 Composite magnetic material, magnet comprising the material, motor using the magnet, and method of manufacturing the composite magnetic material

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-203059 2017-10-20
JP2017203059 2017-10-20
JP2018-196167 2018-10-17
JP2018196167A JP2019080055A (en) 2017-10-20 2018-10-17 Composite magnetic material, magnet, motor, and method of producing composite magnetic material
JP2018-196169 2018-10-17
JP2018196169A JP2019080056A (en) 2017-10-20 2018-10-17 Magnet including composite magnetic material and motor using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/847,410 Continuation US20200243231A1 (en) 2017-10-20 2020-04-13 Composite magnetic material, magnet comprising the material, motor using the magnet, and method of manufacturing the composite magnetic material

Publications (1)

Publication Number Publication Date
WO2019078321A1 true WO2019078321A1 (en) 2019-04-25

Family

ID=66173677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038922 WO2019078321A1 (en) 2017-10-20 2018-10-19 Composite magnetic material, magnet containing said material, motor using said magnet, and method for producing said composite magnetic material

Country Status (1)

Country Link
WO (1) WO2019078321A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013055A (en) * 2004-06-24 2006-01-12 Minebea Co Ltd Method for manufacturing anisotropic bond magnet
JP2008021991A (en) * 2006-06-16 2008-01-31 Nitta Ind Corp Magnetic sheet, and antenna device and electronic information transmission apparatus using the magnetic sheet
JP2008060293A (en) * 2006-08-31 2008-03-13 Univ Of Tokyo Magnetic material
JP2008063199A (en) * 2006-09-08 2008-03-21 Univ Of Tokyo epsi-IRON OXIDE-BASED MAGNETIC MATERIAL
JP2011035006A (en) * 2009-07-29 2011-02-17 Tdk Corp Magnetic material, magnet, and method of manufacturing magnetic material
JP2014180081A (en) * 2013-03-13 2014-09-25 Shimadzu Corp Vacuum pump
JP2017008376A (en) * 2015-06-23 2017-01-12 大同特殊鋼株式会社 Fe-BASED ALLOY COMPOSITION, SOFT MAGNETIC POWDER, COMPOSITE MAGNETIC BODY AND MANUFACTURING METHOD OF SOFT MAGNETIC POWDER

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013055A (en) * 2004-06-24 2006-01-12 Minebea Co Ltd Method for manufacturing anisotropic bond magnet
JP2008021991A (en) * 2006-06-16 2008-01-31 Nitta Ind Corp Magnetic sheet, and antenna device and electronic information transmission apparatus using the magnetic sheet
JP2008060293A (en) * 2006-08-31 2008-03-13 Univ Of Tokyo Magnetic material
JP2008063199A (en) * 2006-09-08 2008-03-21 Univ Of Tokyo epsi-IRON OXIDE-BASED MAGNETIC MATERIAL
JP2011035006A (en) * 2009-07-29 2011-02-17 Tdk Corp Magnetic material, magnet, and method of manufacturing magnetic material
JP2014180081A (en) * 2013-03-13 2014-09-25 Shimadzu Corp Vacuum pump
JP2017008376A (en) * 2015-06-23 2017-01-12 大同特殊鋼株式会社 Fe-BASED ALLOY COMPOSITION, SOFT MAGNETIC POWDER, COMPOSITE MAGNETIC BODY AND MANUFACTURING METHOD OF SOFT MAGNETIC POWDER

Similar Documents

Publication Publication Date Title
JP4830024B2 (en) Composite magnetic material for magnet and manufacturing method thereof
US10102950B2 (en) Permanent magnet and method for manufacturing the same, and motor and power generator using the same
JP6521416B2 (en) Magnetic material and its manufacturing method
KR101535487B1 (en) Magnetic substances based on mn-bi, fabrication method thereof, sintered magnet based on mn-bi and its fabrication method
US11732336B2 (en) Magnetic material and method for producing same
US10304600B2 (en) Permanent magnet, and motor and generator using the same
US20200243231A1 (en) Composite magnetic material, magnet comprising the material, motor using the magnet, and method of manufacturing the composite magnetic material
CA2571401A1 (en) Anisotropic nanocomposite rare earth permanent magnets and method of making
CN103839640B (en) Permanent magnet, and motor and power generator using the same
JP5985738B1 (en) Permanent magnets, motors, and generators
JP2012099523A (en) Anisotropic rare earth sintered magnet and method for manufacturing the same
JP2013254756A (en) Sintered magnet
Zhu et al. Chemical synthesis and coercivity enhancement of Nd 2 Fe 14 B nanostructures mediated by non-magnetic layer
CN111373065A (en) Magnetic material and method for producing the same
JP2003257763A (en) Manufacturing method for rare earth permanent magnet
JP6518004B2 (en) Permanent magnet, rotating electrical machine, and vehicle
JP2004146713A (en) Manufacturing methods of r-t-n-based magnetic powder and r-t-n-based bond magnet
JP2018182301A (en) Composite magnetic material and motor
US11331721B2 (en) Magnetic material and process for manufacturing same
WO2019078321A1 (en) Composite magnetic material, magnet containing said material, motor using said magnet, and method for producing said composite magnetic material
JP2018182302A (en) Composite magnetic material, motor, and method for manufacturing composite magnetic material
WO2019053886A1 (en) Permanent magnet, rotating electric machine, and vehicle
JP2004146542A (en) Solid material for magnet and its manufacturing method
JP4790933B2 (en) Solid material for magnet and method for producing the same
JP2005272924A (en) Material for anisotropic exchange spring magnet, and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868169

Country of ref document: EP

Kind code of ref document: A1