JP2004146542A - Solid material for magnet and its manufacturing method - Google Patents

Solid material for magnet and its manufacturing method Download PDF

Info

Publication number
JP2004146542A
JP2004146542A JP2002309048A JP2002309048A JP2004146542A JP 2004146542 A JP2004146542 A JP 2004146542A JP 2002309048 A JP2002309048 A JP 2002309048A JP 2002309048 A JP2002309048 A JP 2002309048A JP 2004146542 A JP2004146542 A JP 2004146542A
Authority
JP
Japan
Prior art keywords
magnet
solid material
magnetic
magnetic material
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002309048A
Other languages
Japanese (ja)
Other versions
JP4970693B2 (en
JP2004146542A5 (en
Inventor
Etsuji Kakimoto
柿本 悦二
Kiyotaka Doke
道家 清孝
Ichiro Shibazaki
柴崎 一郎
Nobuyoshi Imaoka
今岡 伸嘉
Takashi Chiba
千葉 昂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2002309048A priority Critical patent/JP4970693B2/en
Publication of JP2004146542A publication Critical patent/JP2004146542A/en
Publication of JP2004146542A5 publication Critical patent/JP2004146542A5/ja
Application granted granted Critical
Publication of JP4970693B2 publication Critical patent/JP4970693B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid material for magnet based on rare-earth, iron, nitrogen, hydrogen, and oxygen having a high density and a high magnetic characteristic and is excellent in thermal stability and oxidation resistance, and also to provide a method of manufacturing the material. <P>SOLUTION: The solid material for magnet is manufactured by compression-molding and solidifying a material containing a magnetic material based on rare-earth, iron, nitrogen, hydrogen and oxygen by using an underwater shock wave. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高密度で高磁気特性を有し、熱安定性、耐酸化性に優れた希土類−鉄−窒素−水素−酸素系磁石用固形材料に関する。
また、本発明は、磁性材料粉体を衝撃圧縮して、分解や脱窒を防止しながら高密度・高性能の永久磁石を得る、磁石用固形材料の製造方法に関する。
【0002】
【発明の属する技術分野】
高性能の希土類磁石としては、例えばSm−Co系磁石、Nd−Fe−B系磁石が知られている。前者は高い熱安定性と耐食性等により、また、後者は極めて高い磁気特性、低コスト、原料供給の安定性等によりそれぞれ広く用いられている。今日、更に高い熱安定性と高い磁気特性とを併せ持ち、原料コストの安価な希土類磁石が、電装用や各種FA用のアクチュエータ、あるいは回転機用の磁石として要望されている。
【0003】
一方、菱面体晶又は六方晶の結晶構造を有する希土類−鉄化合物を、NHとHの混合ガス等の中で400〜600℃の比較的低温にて反応させる時、窒素原子及び水素原子が上記結晶、例えばThZn17型化合物の格子間位置に侵入して、キュリー温度や磁気異方性の顕著な増加を招来することが特許文献1に報告されている。
そして、近年、かかる希土類−鉄−窒素−水素系磁性材料が前記要望に沿う新磁石材料として、その実用化への期待が高まっている。
【0004】
窒素と水素とを金属間化合物の格子間に含有し、前記菱面体晶又は六方晶の結晶構造を有する希土類−鉄−窒素−水素系磁性材料(以下R−Fe−N−H系磁性材料という)は、一般に粉体状態にて得られるが、常圧下約600℃以上の温度ではα−Fe分解相と希土類窒化物相とに分解し易いため、自己焼結により固化して磁石用固形材料とすることは、通常の工業的方法では非常に困難である。そこで、R−Fe−N−H系磁性材料を用いた磁石としては、樹脂をバインダとしたボンド磁石が生産され使用されている。しかし、当該材料を用いて作られた磁石は、多くは400℃以上のキュリー温度を有し、本来200℃以上の温度でも磁化を失わない磁性粉体を使用しているにもかかわらず、非特許文献1によると、12−ナイロン樹脂などのバインダの耐熱温度が低いことと保磁力の温度係数が−0.5%/℃程度であるのに対し保磁力が0.6MA/mと小さいことが主な原因となって不可逆減磁率が大きくなり、概ね100℃未満の温度でしか使用されていない。すなわち、最近の高負荷の要求に対して、150℃以上の高温の環境下で使用される動力源としてのブラシレスモータ等を作る場合、このボンド磁石は使用することができないという問題があった。
【0005】
また、樹脂をバインダとした圧縮成形ボンド磁石を製造する場合、充填率を向上させて高性能化するには、工業的に難しい1GPa以上の成形圧力が必要であり、金型寿命等を考慮すると、磁性材料の混合比率は体積分率で80%未満にせざるを得ない場合が多く、圧縮成形ボンド磁石によってはR−Fe−N−H系磁性材料の優れた基本磁気特性が十分に発揮できないという問題があった。
例えば、R−Fe−N−H系磁性材料を原料とするボンド磁石の中で、極めて高い磁気特性を有するものとして(BH)max=186kJ/mの圧縮成形ボンド磁石が非特許文献2にて報告されているが、従来のSm−Co系、Nd−Fe−B系焼結磁石等と比較して、R−Fe−N−H系磁性材料の高い基本磁気特性を十分に発揮しきれていない。
【0006】
以上の問題点を解決するために、樹脂バインダを含まない希土類−鉄−窒素系磁性材料を用いた永久磁石の製造方法が特許文献2に提案されている。 しかしながら、当該方法によると、衝撃圧縮後の残留温度をThZn17型希土類−鉄−窒素系磁性材料の分解温度以下に抑制するためには、衝撃圧縮の際の圧力を一定の狭い範囲に限定しなければならないという欠点があった。これは、従来の衝撃波を用いた場合には、衝撃波自体の持続時間が短いにもかかわらず、磁性材料の温度が高く且つ長い時間にわたって保持される結果、磁性材料が非常に分解され易いからである。
【0007】
しかも、当該方法によれば、得られたものの密度が、最高でも7.28g/cmにとどまるものであった。さらに、当該方法によれば、希土類−鉄−窒素系磁性材料の分解を十分に抑えられないため、保磁力も最高で0.21MA/mと低くとどまるものであった。
また、特許文献3には、大型でヒビや欠けのない成形体を得る目的で、円筒収束衝撃波を用いてThZn17型希土類−鉄−窒素系磁性材料を圧縮固化する方法が開示されているが、当該方法により得られる磁石においても、密度の最高値が7.43g/cm、保磁力の最高値が0.62MA/mと、まだ満足できるものではなかった。
【0008】
他に、衝撃波圧縮により成形したThZn17型希土類−鉄−窒素系磁性材料の例としては、非特許文献3に報告されたものがあるが、10GPaでは充填率が低く20GPaではα−Fe分解相とSmN相への分解が進むため、各衝撃圧縮条件での成形体密度は必ずしも7.45g/cmを超えない場合が多く、又、磁気特性の最高値は保磁力0.57MA/m、(BH)max=134kJ/mと、ThZn17型R−Fe−N−H系ボンド磁石に対して十分高い磁気特性を有しているとは言えないものであった。
以上のように、高密度で分解がなく高磁気特性で、しかも熱安定性が良い磁石用固形材料が強く求められている。
【0009】
これらの高性能磁石向けとは別に、一方で、家電・OA機器や電気自動車への用途において、軽量高性能化の方向も求められている。Sm−Co系磁石の密度が8.4g/cm程度、Nd−Fe−B系磁石の密度が7.5g/cm程度とこれらの磁石を搭載すると機器・ロータなどの重量が大きくなりがちであり、エネルギー効率の劣るものとなる場合があった。また、用途によっては磁気特性に余裕があるため磁石の小型化による軽量化が可能であっても、加工による歩留まりを考慮するとコスト的に必ずしも有利とは言えないものであった。例えば、切削屑は切削面積に比例するので体積が小さくなるほど製品の単位体積当たりの歩留まりは悪くなってしまう。
【0010】
その欠点を補う各種ボンド磁石は上述のように熱安定性に劣るものなので、軽量でありながら高磁気特性であり、熱安定性に優れ、コストパフォーマンスの高い磁石はまだ開発されていない。
また、特許文献4に優れた磁気特性を有する希土類−鉄−窒素−水素−酸素系磁性材料(以下R−Fe−N−H−O系磁性材料という)が提案されており、酸素成分を制御することにより、磁気特性、耐食性ともに優れた材料とした材料である。保磁力の向上に伴う安定した磁気特性を有することと耐酸化性が比較的高いために錆が発生しにくいことが大きな特徴とされる。
【0011】
しかし、このR−Fe−N−H−O系磁性材料は特許文献5及び特許文献6に開示されているように、前述のR−Fe−N−H系材料を好適にボンド磁石として用いるために発明されたものであり、磁石用固形材料として応用された例は未だ報告されていない。
【0012】
【特許文献1】特許第2703281号公報
【特許文献2】特許第3108232号公報
【特許文献3】特開2001−6959号公報
【特許文献4】特許第2708568号公報
【特許文献5】特許第2857476号公報
【特許文献6】特許第2708578号公報
【非特許文献1】電気学会技術報告第729号、電気学会編、第41頁
【非特許文献2】Appl.Phys.Lett.、第75巻、第11号、1601頁
【非特許文献3】J.Appl.Phys.第80巻、第1号、356頁
【0013】
【発明が解決しようとする課題】
本発明の第1目的は、高密度で高磁気特性を有し、熱安定性、耐酸化性に優れたR−Fe−N−H−O系磁石用固形材料、及びその製造方法を提供することである。本発明は、着磁などよって磁化した状態である磁石も含んだ磁石用固形材料を提供する。
【0014】
【課題を解決するための手段】
本発明者等は、上記課題について、鋭意検討した結果、磁気特性及び耐酸化性が優れたR−Fe−N−H−O系磁性材料を、磁場中若しくは無磁場で圧粉成形体にした後、水中衝撃波を用いて衝撃圧縮固化し、衝撃圧縮の持つ超高圧剪断性、活性化作用、短時間現象などの特徴を活かして、R−Fe−N−H−O系磁性材料を主として含有する磁石用固形材料を得ることができることを見出し、本発明を完成した。
【0015】
また、本発明者等は、上記水中衝撃波を用いた場合、R−Fe−N−H−O系磁性材料と硬磁性及び/又は軟磁性の粉体や固体、或いは非磁性材料の粉体又は固形材料を容易に一体化できることも見出し、本発明を完成した。
また、本発明者らは、更に、菱面体晶または六方晶の結晶構造を有するR−Fe−N−H−O系磁性材料を含有し、軽量で磁気特性とその安定性が高い磁石用固形材料を得るために、原料組成と含有率、その製造方法について鋭意検討したところ、窒素だけでなく水素、酸素をも含む磁性材料粉体を用い、その体積分率を80〜97体積%として、磁場中で圧粉成形体にした後、前記圧粉体を一定の衝撃波圧力を有する水中衝撃波で衝撃圧縮し、密度6.15g/cm以上で100℃以上でも使用可能な、金属結合又はイオン結合により固化したR−Fe−N−H−O系磁石用固形材料を容易に得ることができるという知見を得て、本発明を完成した。
【0016】
すなわち、本発明の態様は以下のとおりである。
(1)希土類−鉄−窒素−水素−酸素系磁性材料を50〜100体積%含有した磁石用固形材料。
(2)磁性材料が菱面体晶または六方晶の結晶構造を有する希土類−鉄−窒素−水素−酸素系磁性材料を含有することを特徴とする上記(1)に記載の磁石用固形材料。
(3)希土類−鉄−窒素−水素−酸素系磁性材料が、一般式RαFe100− α β γ δβγδで表され、Rは希土類元素から選ばれる少なくとも一種の元素であり、又、α、β、γ、δは原子百分率で、3≦α≦20、5≦β≦25、0.01≦γ≦5、0.01≦δ≦10である希土類−鉄−窒素−水素−酸素系磁性材料を含有する上記(1)又は(2)の磁石用固形材料。
(4)前記R及び/又はFeの10原子%以下をNi、Ti、V、Cr、Mn、Zn、Cu、Zr、Nb、Mo、Ta、W、Ru、Rh、Pd、Hf、Re、Os、Irから選ばれる少なくとも一種の元素と置換したことを特徴とする上記(1)〜(3)の磁石用固形材料。
(5)前記N及び/又はHの10原子%以下をC、P、Si、S、Alから選ばれる少なくとも一種の元素と置換したことを特徴とする上記(1)〜(4)のいずれかの磁石用固形材料。
【0017】
(6)希土類−鉄−窒素−水素−酸素系磁性材料が、一般式RαFe100− α β γ δβγδεで表され、RはYを含む希土類元素から選ばれる少なくとも一種の元素であり、MはLi、Na、K、Mg、Ca、Sr、Ba、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Pd、Cu、Ag、Zn、B、Al、Ga、In、C、Si、Ge、Sn、Pb、Biから選ばれる少なくとも一種の元素及び/又はRの酸化物、フッ化物、炭化物、窒化物、水素化物、炭酸塩、硫酸塩、ケイ酸塩、塩化物、硝酸塩から選ばれる少なくとも一種であり、又、α、β、γ、δ、εはモル百分率で、3℃  20、5℃  30、0.01℃  10、0.01≦δ≦10、0.1℃ε℃40であることを特徴とする上記(1)〜(5)に記載の磁石用固形材料。
【0018】
(7)前記Rの50原子%以上がSmであることを特徴とする上記(1)〜(6)のいずれかの磁石用固形材料。
(8)前記Feの0.01〜50原子%をCoで置換したことを特徴とする上記(1)〜(7)のいずれかの磁石用固形材料。
(9)前記(1)〜(8)のいずれかの希土類−鉄−窒素−水素−酸素系磁石用固形材料で、結晶相(島)、及び酸素量が島より多い非晶質相(海)を含む海−島構造を有することを特徴とする磁石用固形材料。
(10)希土類−鉄−窒素−水素−酸素系磁性材料を含有した6.15g/cmより高い密度を有する上記(1)〜(9)のいずれかの磁石用固形材料。
(11)希土類−鉄−窒素−水素−酸素系磁性材料を80〜97体積%含有することを特徴とする上記(1)〜(9)のいずれかの磁石用固形材料。
【0019】
(12)希土類−鉄−窒素−水素−酸素系磁性材料以外の成分が密度6.5g/cm以下の元素、化合物またはそれらの混合物であることを特徴とする上記(11)の磁石用固形材料。
(13)希土類−鉄−窒素−水素−酸素系磁性材料以外の部分に大気、不活性ガスのうち少なくとも1種を含有することを特徴とする上記(11)〜(12)のいずれかの磁石用固形材料。
(14)希土類−鉄−窒素−水素−酸素系磁性材料以外の部分に酸化物、フッ化物、炭化物、窒化物、水素化物、炭酸化物、硫酸塩、ケイ酸塩、塩化物、硝酸塩のうち少なくとも1種を含有することを特徴とする上記(11)〜(13)のいずれかの磁石用固形材料。
(15)希土類−鉄−窒素−水素−酸素系磁性材料以外の部分に有機物を含有することを特徴とする上記(11)〜(14)のいずれかの磁石用固形材料。
【0020】
(16)常温の残留磁束密度B、常温の保磁力HcJ、磁石として使用するときのパーミアンス係数P及び最高使用温度Tmaxの関係が、μを真空の透磁率とするとき、
≦μcJ(P+1)(11000−50Tmax)/(10000−6Tmax
であることを特徴とする上記(1)〜(15)のいずれかの磁石用固形材料。
(17)保磁力HcJが0.76MA/m以上で、しかも角形比B/Jが95%以上であることを特徴とする上記(1)〜(16)のいずれかの磁石用固形材料。
(18)Fe、Co、Niから選ばれる少なくとも一種の元素を含む軟磁性材料が前記希土類−鉄−窒素−水素−酸素系磁性材料と均一に分散され、一体化していることを特徴とする上記(1)〜(17)のいずれかの磁石用固形材料。
(19)希土類−鉄−ほう素系磁性材料、希土類−コバルト系磁性材料、フェライト系磁性材料から選ばれる少なくとも一種の磁性材料が前記希土類−鉄−窒素−水素−酸素系磁性材料と均一に添加混合され、一体化していることを特徴とする上記(1)〜(18)のいずれかの磁石用固形材料。
(20)磁性材料の粒界に非磁性相が存在することを特徴とする上記(1)〜(19)のいずれかに記載の磁石用固形材料。
【0021】
(21)上記(1)〜(20)のいずれかの磁石用固形材料と軟磁性の固形金属材料とを接合して一体化したことを特徴とする磁石用の固形材料。
(22)軟磁性層を有し、軟磁性層と上記(1)〜(21)のいずれかの磁石用固形材料とが交互に積層されて一体化していることを特徴とする磁石用の固形材料。
(23)上記(1)〜(22)のいずれかの磁石用固形材料の少なくとも一部が非磁性の固形材料で覆われたことを特徴とする磁石用の固形材料。
(24)磁気異方性を付与したことを特徴とする上記(1)〜(23)のいずれかの磁石用固形材料。
(25)角柱状、円筒状、リング状、円板状又は平板状に成形したことを特徴とする上記(1)〜(24)のいずれかの磁石用の固形材料。
【0022】
(26)上記(1)〜(7)のいずれかの磁性材料の粒界又は表面にZnを反応させた磁性材料。
(27)希土類−鉄−窒素−水素−酸素系磁性材料の原料粉体を、水中衝撃波を用いて、衝撃圧縮固化することを特徴とする上記(1)〜(26)のいずれかの磁石用固形材料の製造方法。
(28)衝撃波圧力が3〜40GPaの水中衝撃波を用いて衝撃圧縮固化してなることを特徴とする上記(1)〜(26)のいずれかの磁石用固形材料の製造方法。
(29)衝撃波圧力が3〜30GPaの水中衝撃波を用いて衝撃圧縮固化してなることを特徴とする上記(10)の磁石用固形材料の製造方法。
(30)衝撃波圧力が8〜40GPaの水中衝撃波を用いて衝撃圧縮固化してなることを特徴とする上記(10)の磁石用固形材料の製造方法。
【0023】
(31)衝撃波圧力が3〜22GPaの水中衝撃波を用いて衝撃圧縮固化してなることを特徴とする上記(11)〜(15)のいずれかの磁石用固形材料の製造方法。
(32)原料粉体の圧粉成形を磁場中で行うことを特徴とする上記(1)〜(26)のいずれかの磁石用固形材料の製造方法。
(33)原料粉体を圧粉成形した後、水中衝撃波を用いて衝撃圧縮固化することを特徴とする上記(1)〜(26)のいずれかの磁石用固形材料の製造方法。
(34)原料粉体を磁場中で圧粉成形した後、水中衝撃波を用いて衝撃圧縮固化することを特徴とする上記(1)〜(26)の磁石用固形材料の製造方法。
(35)切削加工及び/又は塑性加工により成形することを特徴とする上記(1)〜(26)の磁石用固形材料の製造方法。
【0024】
(36)材料を少なくとも一度100℃以上且つ分解温度より低い温度で熱処理をする工程を含むことを特徴とする磁石用固形材料の(28)〜(36)のいずれかの製造方法。
(37)磁石の静磁場を利用する装置に使用するための部品であって、上記(1)〜(26)のいずれかの磁石用固形材料を用いた部品。
(38)磁石の静磁場を利用する最高使用温度Tmaxが100℃以上の装置であって、その部品として(38)の部品を使用することを特徴とする装置。
を提供するものである。
【0025】
ここで言う固形材料とは、塊状の材料のことを指す。さらに、ここで言う磁石用固形材料とは、塊状の磁性材料のことを指し、磁石用固形材料を構成する磁性材料の粉末同士が直接、または金属相若しくは無機物相を介して、連続的に結合し、全体として塊状を成している状態の磁性材料である。着磁によって磁化し、残留磁束密度を発現している状態を特に磁石と呼ぶが、磁石も又ここで言う磁石用固形材料の範疇に属する。
ここでいう希土類元素とは、周期表第IIIa族のYおよび原子番号57から71までのLa系列の15元素、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luを指す。
ここで言う分解とは、R−Fe−N−H−O系磁性材料粉体の結晶構造が変化するのに伴ってα−Fe分解相が生じることであり、このα−Fe分解相の存在は磁気特性に悪影響を及ぼすので、上記のような分解は防止すべき現象である。但し、本発明で用いる原料の製造工程並びに本発明の磁石用固形材料を製造する工程で、酸素を含む層が非晶質化することがあるが、この現象を本発明でいう分解と区別する。
【0026】
【発明の実施の形態】
以下、本発明について、特に好ましい態様を中心に詳細を説明する。
本発明の磁石用固形材料に用いられるR−Fe−N−H−O系磁性材料は、公知の方法により調製される。
例えば、希土類−鉄合金を高周波法、超急冷法、R/D法、HDDR法、メカニカルアロイング法、メカニカルグラインディング法などで調製し、数十〜数百μm程度に粗粉砕した後、窒素−水素混合ガス、アンモニア−水素混合ガスなどの雰囲気下で窒化水素化処理を行って微粉砕を行い、R−Fe−N−H−O系磁性材料を調製する。これらの工程中では、酸素源の種類、濃度を制御することが重要である。磁性材料の組成、合金の処理法や窒化法によっては粗粉砕や微粉砕を行わない場合もある。
【0027】
本発明においては、工程のいずれかの段階で水素ガス、アンモニアガス、水素を含む化合物などの水素源と接触させ、窒素のみならず水素を導入することが重要である。即ち、R−Fe−N−H−O系磁性材料の水素量については、0.01原子%以上含むことが好ましい。この水素量が0.01原子%未満であると、しばしばα−Fe分解相及び希土類窒化物分解相が生じ、保磁力が低くなり、更に耐食性が低下する場合もあり好ましくない。水素量を0.1原子%以上含有しておれば、さらに好ましい磁石用固形材料の原料となる。
【0028】
同様に、本発明においては、工程のいずれかの段階で粉体を処理する雰囲気、例えば粉砕工程中のガスや溶媒、容器等の粉砕治具、熱処理工程中のガス組成や真空度など、において溶存酸素、水分、酸化物など酸素を含む物質である酸素源と接触させ、制御しながら酸素を導入することが重要である。即ち、R−Fe−N−H−O系磁性材料の酸素量については、0.01原子%以上含むことが好ましい。この酸素量が0.01原子%未満であると、保磁力が低くなり、更に耐食性が低下する場合もあり好ましくない。さらに、保磁力が高く安定した材料を得るためには、この酸素量を好ましくは0.1原子%以上、さらに好ましくは1原子%以上とすることが望まれる。
【0029】
また、粉砕雰囲気中の水蒸気量や水分量を制御するなどによって、水素と酸素を同時に制御しながら導入することも可能であるR−Fe−N−H−O系磁性材料の結晶構造としては、ThZn17型結晶構造等又はそれと同様な結晶構造を有する菱面体晶、又はThNi17、TbCu、CaZn型結晶構造等又はそれと同様な結晶構造を有する六方晶、さらにRFe14BN型、RFe14CN型やR(Fe1−y12型等又はそれと同様な結晶構造を有する正方晶などが挙げられ、そのうち少なくとも一種を含むことが必要である。この中でThZn17型結晶構造等又はそれと同様な結晶構造を有する菱面体晶、又はThNi17、TbCu、CaZn型結晶構造等又はそれと同様な結晶構造を有する六方晶が全体のR−Fe−N−H−O系磁性材料のうち50体積%以上含まれることが好ましく、ThZn17型結晶構造等又はそれと同様な結晶構造を有する菱面体晶が全体のR−Fe−N−H−O系材料のうち50体積%以上含まれることが最も好ましい。
【0030】
本発明における全体の磁石用固形材料に対するR−Fe−N−H−O系磁性材料の体積分率は50〜100体積%とすることが好ましい。但し、R−Fe−N−H−O系磁性材料のみで磁石用固形材料が構成されている場合、或いは、ガス又は有機物との複合材料である場合は、全体の磁石用固形材料に対するR−Fe−N−H−O系磁性材料の体積分率は80〜100体積%であることが好ましい。80体積%未満であると磁性粉同士の連続的な結合が不十分であり、磁石用固形材料を成すことができない。但し、R−Fe−N−H−O系磁性材料以外に、希土類−鉄−ほう素系磁性材料などの硬磁性材料、Coなどの軟磁性材料、金属や無機物である非磁性相などが含まれるときは、それらの体積分率とR−Fe−N−H−O系磁性材料の体積分率を併せた値である固形材料体積分率が80〜100体積%の範囲にあれば良い。
【0031】
ここでいう体積分率とは、磁石用固形材料の空隙を含めた全体の体積に対して磁性材料が占有する体積の割合のことである。
以上のR−Fe−N−H−O系磁性材料は、好ましくは0.1〜100μmの平均粒径を有する粉体状として得られ、磁石用固形材料の原料として供給される。平均粒径が0.1μm未満であると、磁場配向性が不十分となりやすく、残留磁束密度が低くなる傾向がある。逆に平均粒径が100μmを超えると材料組成によっては保磁力が低くなる場合があり、また密度を高くする製造条件が厳しくなる場合があるため、実用性に乏しくなる傾向にある。優れた磁場配向性を付与させるために、更に好ましい平均粒径の範囲は1〜100μmである。
【0032】
また、R−Fe−N−H−O系磁性材料は、高い飽和磁化、高いキュリー点とともに、大きな磁気異方性を有することが特徴である。従って、単結晶粉体とすることができるR−Fe−N−H−O系磁性材料において、外部磁場により容易に磁場配向することができ、高い磁気特性を持つ異方性磁石用固形材料とすることができる。
高い磁化と保磁力を併せ持つ磁石用固形材料の原料として、R、Feの好ましい範囲は、それぞれ5≦α≦20、10≦β≦25である。
【0033】
全体の充填率がほぼ100%で、本発明の方法で実現する強固な金属結合を有する磁石用固形材料を得るための原料粉体中のM成分の好ましい範囲は0.1℃ε℃10である。さらに金属バインダ磁石に比べ保磁力が高く、十分高い磁化を有する磁石用固形材料とするM成分の好ましい範囲は0.1≦ε≦5、更に好ましい範囲は0.1≦ε≦3である。磁化や(BH)max値を非常に高いものとするためには0.1≦ε≦1の範囲とすれば良いが、この場合保磁力の値が不安定になりやすい傾向がある。
【0034】
Nd−Fe−B系焼結磁石は、磁気特性が極めて高く、VCMなどのアクチュエータや各種モータに多用されているが、表面が常温の大気中でも容易に酸化してしまうため、錆落ち防止の目的でニッケルメッキやエポキシ樹脂コーティングなどにより表面処理することが必須となる。
これに対して、R−Fe−N−H−O系磁性材料を用いた磁石の場合、上記の表面処理を必要としないか、或いは簡便なものとすることができる。即ち、コスト的に有利であるだけでなく、アクチュエータやモータとして使用する場合、ステータとロータ間のギャップが磁性の低い表面層分だけ狭く取れるので、回転や反復運動のトルクを大きく取れる利点があり、磁石の磁力を最大限活かすことができる。このため、例えば常温の(BH)max値がNd−Fe−B系磁石より劣る場合であっても、同様なパフォーマンスを発揮することができる。R−Fe−N−H−O系磁性材料を含有した磁石においては、表面処理を必要としない場合、常温の(BH)max値が200kJ/m以上であればコストパフォーマンスの優れた好ましい磁石となり、240kJ/m以上であれば更に好ましい。但し、本発明の中で、ピンニング型の磁化反転機構を持つ磁石用固形材料においては、原料磁性粉自体が熱安定性、耐食性に非常に優れるため、高温扁平用途では特に、常温の(BH)max値が200kJ/m未満であっても好適に用いられるが、その場合であっても常温の(BH)max値が100kJ/m以上あることが望ましい。
【0035】
さらに、等方性の磁石用固形材料においては、さらなる低パーミアンス用途や多極着磁をして応用する場合に好適であって、その場合、常温の(BH)max値が150kJ/m未満であっても良いが、常温の(BH)max値が50kJ/m以上あることが望ましい。
本発明の磁石用固形材料における第1の態様は、7.45g/cmより高い密度を有することを特徴とするR−Fe−N−H−O系磁石用固形材料である。磁化及び磁束密度は充填率に比例するため、密度が小さくなるほど残留磁束密度が低くなり、最大エネルギー積が低下するので、一般に充填率が高い磁石用固形材料ほど高性能磁石用として好適に用いられる。また、R−Fe−N−H−O系磁石材料は多くの場合微粉体であるため、連続孔であるボイド等の酸素の通り道が多く存在すると、微粉体の表面が酸化劣化して保磁力が低下する要因となる。従って、材料組成・用途によっては、十分に密度を上昇させ、表面からの酸素の進入を防ぐことが必要であり、充填率は95%以上、好ましくは98%以上であることが要求され、特に表面近くの充填率は100%近いことが要求される場合がある。
【0036】
ここに言う充填率とは、本発明の磁石用固形材料がR−Fe−N−H−O系磁性材料のみで構成されている場合、R−Fe−N−H−O系磁石用固形材料の密度と真密度との比である。また、ここで言う真密度とは、X線から求められる、R−Fe−Nユニットセルの体積vと、そのユニットセルを構成する原子の原子量の総和wから求められる密度w/vのことであり、一般にX線密度Dxと呼ばれるものであり、磁石用固形材料の密度Dmは、アルキメデス法や体積法などのマクロな方法で求めることができる。
【0037】
酸化劣化が顕著となる材料組成、用途の組み合わせにおいては、磁石用固形材料の密度は、7.45g/cmより大きいことが好ましく、7.50g/cmより大きいことが更に好ましく、7.55g/cmより大きいことが更に好ましく、7.60g/cm以上であることが最も好ましい。また、原料の組成にもよるが、密度が8.0g/cmを超えると、逆に、高磁気特性を有するR−Fe−N−H−O相以外の相が生じ、磁気特性が低下する場合が多いので好ましくない。なお、酸化劣化とは、外界の酸素源によって、磁石用固形材料の磁気特性などに対し望ましくない酸素付加とそれに伴うR−Fe−N−H−O系磁性材料の分解を伴う現象で、本磁石用固形材料並びにその原料粉体への酸素導入とは性質の異なるものである。
【0038】
製造方法や条件によっては、磁石用固形材料の体積が大きくなるほど、内部における充填率が下がる場合があるが、その場合であっても、表面層の充填率が充分上がっていてその厚みが充分大きければ、実用磁石として供することができる。
しかし、磁石用固形材料がR−Fe−N−H−O系材料のみで構成され、残部が大気である場合の密度が6.15g/cm以下であると、いかなる形態、体積の磁石を形成する場合においても磁石内にボイドを多く含み、しばしば衝撃や負荷により欠けや崩壊へと発展するヒビ、割れの原因となったり、上記のような保磁力低下をきたす傾向がある。
【0039】
本発明の方法によれば、R−Fe−N−H−O系磁性材料のみを原料として5cm以下の磁石用固形材料を調製する場合、7.60g/cmを超える密度を有するものが比較的容易に得られるが、例えば0.1mの体積を有する磁石用固形材料を作製した場合において、形態によっては内部に7.45g/cm以下の密度の部分が生じることがある。しかし、そのような場合にあっても、表層部において一部でも7.60g/cmを超える密度を有する磁石用固形材料となっている場合は、耐酸化性を有し、高磁気特性であって、本発明の磁石用固形材料の範疇に属するものと言うことができる。
【0040】
ところで、水素を含有しないThZn17型R−Fe−N系磁性材料は、磁気特性の最適化を図ろうとした場合、窒素量がRFe17当たり3個より少なくなり、熱力学的に不安定なRFe173− Δ相が生じる。この相は、熱的、機械的なエネルギーにより容易にα−Fe分解相と窒化希土類とへ分解する結果、従来の衝撃波圧縮法によっては高性能な磁石用固形材料とはなり得ない。
これに対し、水素が上記で規定される範囲内に制御されれば、通常、その主相は熱力学的に安定なRFe17相又は余剰な窒素を含むRFe173+ Δ相(通常xは0.01〜2程度の範囲)になって熱的、機械的なエネルギーによるα−Fe分解相及び窒化希土類への分解は、Hを含まないThZn17型R−Fe−N系磁性材料に比べて顕著に抑制される。
【0041】
このことは、密度が高く、高磁気特性で、熱安定性、耐酸化性の優れた磁石用固形材料を得るための重要な知見に他ならない。
また、R−Fe−N−H−O系原料粉体中の酸素はこの安定なRFe17相内に必ずしも全量含まれる必要はなく、この強磁性層の周りに局在し、R−Fe−N−H−O、R−Fe−H−O、R−Fe−O、R−Fe−N−H−O−M、R−Fe−H−O−M、R−Fe−O−MなどのR、Fe、N、H、Mのうち少なくとも1種とOを含む任意の組成の非晶質相を形成している構造を取ることが磁気特性の安定上好ましい場合がある。このような磁性粉体の構造の一例として、J.Alloys and Compounds.、第193巻、235頁には、ある条件で作製した強磁性を示すR−Fe−N−H−O微粉体の表面に、酸素が富化された100nm程度の非晶質層が存在する構造を取ることが報告されている。この酸素を多く含む層が分解し、α−Fe分解相に変化すると保磁力が大きく低下する。従来の衝撃波圧縮法によっては、この非晶質相の分解も誘発されるため、従来法によりR−Fe−N−H−O系材料が高性能な磁石用固形材料となりにくいもうひとつの理由になっている。
【0042】
本発明で用いるR−Fe−N−H−O系磁性材料は、ニュークリエーション型、ピンニング型、エクスチェンジスプリング型、交換結合型など磁化反転のメカニズムが異なる各種磁性材料を磁石用固形材料とすることができる。これら全ての磁性材料は、いずれも600℃を超える温度で分解反応が生じるため、高温で高密度化する焼結法によっては磁石用固形材料とすることができないものであり、本発明の衝撃圧縮法を用いて成形することが非常に有効な材料群である。
上述のように、R−Fe−N−H−O系磁性材料はHを含まないR−Fe−N系磁性材料に比べて、熱的・機械的エネルギーによる分解が顕著に抑制されるが、仮に、これが分解して、約100nmを超える粒径の大きなα−Fe分解相と希土類窒化物相とが生じた場合、高価な希土類が多く含まれているのにも関わらず、α−Fe分解相が逆磁区の芽となり、保磁力が大きく低下して好ましくない。
【0043】
そこで、予めR−Fe−N−H−O系磁性材料の副相として、Fe、Co、Fe−Co、パーマロイなどのFe−Ni、Fe−Co−Ni及びそれらの窒化物、さらに以上の成分と前記したM成分との合金、化合物などの軟磁性相を含有する場合、かかる軟磁性相の粒径または厚さが5〜100nm程度となるように調製することによって、実用的な保磁力を維持できる上に、高価な希土類の量を節約することができ、コストパフォーマンスの高い磁石が得られる。
【0044】
これらの軟磁性副相は、特にR−Fe−N−H−O系磁性材料の残留磁束密度を向上させる効果を有する。しかし、軟磁性相の粒径または厚さが5nm未満であると飽和磁化が小さくなってしまい、又、100nmを超えると軟磁性相と硬磁性相並びに軟磁性相同士の交換結合による異方性を保持できなくなり、逆磁区の芽となって保磁力が低くなるので、好ましくない。
このような微構造を達成するために、R−Fe原料の作製法として、M成分を加え、超急冷法によりR−Fe−M原料とする公知の方法や、メカニカルアロイング法又はメカニカルグラインディング法などの公知の方法、又はそれに準じた粉砕法でR−Fe又はR−Fe−M原料を作製するなどの方法を採用できる。
また、このとき、軟磁性副相の量は5〜50体積%であることが好ましい。5体積%未満であると、保磁力は比較的高くなるが、残留磁束密度がR−Fe−N−H−O系材料単独の場合よりさほど高くならず、50体積%を超えると逆に残留磁束密度は高くなるが保磁力が低下し、何れも高い(BH)maxが得られない傾向がある。より好ましい軟磁性相量の範囲は10〜40体積%である。
【0045】
更に、Nd−Fe−B系などの希土類−鉄−ほう素系磁性材料、SmCo系やSmCo17系のような希土類−コバルト系磁性材料、フェライト系磁性材料などの硬磁性粉体のうち一種又は二種以上を、50体積%以下の範囲内で、R−Fe−N−H−O系磁性材料と混合することにより、用途に応じて磁気特性、熱安定性、コストなどの各種実用化要件が最適化された磁石用固形材料を得ることができる。
【0046】
一般に、希土類−鉄−ほう素系材料を多く含む程、磁気特性全般が高くなるが、耐食性が低下する上にコスト高となり、希土類−コバルト系磁性材料を多く含む程、熱安定性が向上するが、磁気特性が低下し、コストが高くなり、フェライト系磁性材料を多く含む程、コストが安くなり、温度特性は向上するが磁気特性が大きく低下する。R−Fe−N−H−O系磁性材料と極端に粒径の異なる他の磁性材料を混合すると、充填率を上げる条件がより広くなる利点がある。
本発明の磁石用固形材料は、特に保磁力が高く角形比の高い磁石とすることを目的として、R−Fe−N−H−O系磁性材料の粒界に非磁相を存在させることができる。
【0047】
その方法としては、特許第2739860号公報及び特許第2705985号公報を初めとする公知の方法、例えば、磁性粉体と非磁性成分を混合して熱処理する方法、磁性粉体表面をメッキ処理する方法、磁性粉体表面に各種蒸着法により非磁性成分をコーティングする方法、磁性粉体を有機金属で処理し該有機金属を光分解させることにより金属成分として粉体表面をコーティングする方法等が挙げられる。さらに、R−Fe−N−H−O系磁性材料と非磁性成分を混合し圧縮成形した後、衝撃波により圧縮する方法も可能である。この磁石用固形材料の特徴は強固で緻密な粒界構造を有するため、金属バインダ磁石より少ないバインダで高い保磁力、充填率を達成でき、耐酸化性が良好となるのである。これらの材料において、R−Fe−N−H−O系磁性材料粉体同士が一部でも非磁性相を介さない強固な結合を有しておれば、機械的強度も満足する磁石用固形材料とすることができる。
【0048】
非磁性成分としては、無機成分、有機成分のいずれも可能であるが、Zn、In、Sn、Ga等の融点が1000℃以下、好ましくは500℃以下の各低融点金属が好ましく、中でもZnを用いると飛躍的に保磁力が上昇し、熱安定性も向上する。高い磁気特性を実現するためには、予めR−Fe−N−H−O系磁性材料に含まれている量も含めて非磁性相の体積分率は、10体積%以下が好ましく、更に5体積%以下が好ましく、3体積%以下であると最も好ましい。又、0.1体積%未満であると保磁力に与える非磁性相の効果がほとんど見られなくなる。
【0049】
本発明の磁石用固形材料は、軟磁性の固形金属材料と接合して一体化することにより、より高いコストパフォーマンスを実現することができる。Fe材、Fe−Co材、珪素鋼板などをR−Fe−N−H−O系磁石用固形材料と組み合わせることにより、磁束密度を増強することができ、更に、表面にそれらの材料やNi若しくはNiを含有する材料を張り合わせることで、加工性や耐食性をさらに増すこともできる。
R−Fe−N−H−O系磁石用固形材料と軟磁性材を接合一体化した例を図1、図2に示す。
【0050】
図1は、R−Fe−N−H−O系磁性材料(硬磁性層)と軟磁性の固形状金属(軟磁性層)とを接合して一体化して得られた磁石用固形材料の断面の一例を示す。
図2は、R−Fe−N−H−O系磁性材料層(硬磁性層)と軟磁性層が交互に積層され一体化された磁石用固形材料の断面の一例を示す。図2のような構成にすると、磁石の表面磁束密度を損なうことなく、低コスト化が図れる。
【0051】
本発明の特徴として、R−Fe−N−H−O系磁性材料粉体と軟磁性バルク材又は粉体とを混合することなく、同時に仕込んで衝撃波圧縮した場合、R−Fe−N−H−O系磁性材料の固化と軟磁性材との一体化を同時に行うことが出来、後工程で一体化の為の、切り出し、溶接、接着剤などによる接着を行う必要がないため、コストメリットが大きい。
本発明の磁石用固形材料は、図3に示すように、その表面の一部又は全部を非磁性の固形材料で覆うことができる。
【0052】
図3は、非磁性体で覆われた磁石用固形材料の断面を例示する。表面全てを非磁性体で覆うような磁石用固形材料は、耐食性を増す効果もあって、高温高湿の過酷な環境での用途では磁気特性を若干犠牲にしてでも非磁性体の被覆をした方が好適な場合もある。非磁性体としては、分解温度や融点の高い有機物、高分子、無機物、非磁性金属などが挙げられるが、熱安定性が特に要求される用途では非磁性金属や無機物による被覆が好ましい。この場合も又、R−Fe−N−H−O系磁性材料粉体と非磁性固形材料又は粉体とを混合することなく同時に仕込んで、衝撃波圧縮した場合、R−Fe−N−H−O系磁性材料の固化と非磁性材との一体化を同時に行うことができる。
【0053】
磁石用固形材料を異方性化し、磁石とするために、通常着磁を行うが、この際に磁石用固形材料に大きな衝撃が加わり、緻密に固化したR−Fe−N−H−O系磁石用固形材料をもってしても、割れ欠けの原因となる場合がある。そのため、着磁場や着磁方法によっては、磁石表面の一部又は全部を非磁性の固形材料で覆うことにより耐衝撃性の高い磁石用固形材料とすることが好ましい。
【0054】
図4は、本発明の他の磁石用固形材料の断面の一例を示すものである。即ち、R−Fe−N−H−O系磁性材料と軟磁性体及び非磁性体を組み合わせることにより、図4に示すような磁石用固形材料を形成することもできる。
本発明の磁石用固形材料は、着磁後の磁気特性に優れることが特徴である。R−Fe−N−H−O系材料が磁気異方性材料であった場合、圧縮成形時に80kA/m以上、好ましくは800kA/m以上の磁場で、磁性粉体を磁場配向することが望ましい。更にまた、衝撃波圧縮成形後に1.6MA/m以上、より好ましくは2.4MA/m以上の静磁場若しくはパルス磁場で着磁することにより、残留磁束密度及び保磁力を増加させることが望ましい。
R−Fe−N−H−O系磁性材料が等方性材料である場合、圧縮成形時の磁場配向は不要であるが、上記のような着磁を行って、充分磁気的に異方化することが必須となる。
【0055】
また、本磁石用固形材料を着磁し、磁石として使用する場合、その用途によっては多種多様な形状が要求される。本磁石用固形材料は、樹脂バインダを含まず、且つ密度が高く、切削加工及び/又は塑性加工により、任意の形状に、通常の加工機で容易に加工することができる。特に、工業的利用価値の高い角柱状、円筒状、リング状、円板状又は平板状の形状に、容易に加工できることが大きな特徴である。一旦これらの形状に加工した後、さらにそれらに切削加工などを施し、瓦状や任意の底辺形状を有する四角柱などに加工することも可能である。即ち、任意の形状から、円筒面を含む曲面、平面により囲まれたあらゆる形態に、容易に切削加工及び/塑性加工を施すにより成形することができるのである。ここで言う切削加工とは、一般的な金属材料の切削加工であり、鋸、旋盤、フライス盤、ボール盤、砥石などによる機械加工であり、塑性加工とは、プレスによる型抜きや成形、圧延、爆発成形などである。また、冷間加工後のひずみ除去の為に、当該磁性材料粉体の分解温度以下での焼き鈍し等の熱処理を行うことができる。磁性材料粉体の組成によっては、塑性加工により、磁気異方性を付与したり強化したりすることができ、また熱処理と組み合わせることにより保磁力の調整を行うことも可能である。熱処理は、後述する衝撃波圧縮の後、生じた歪みを焼鈍したり、微細組織の調整を行い各種磁気特性を向上させるために用いることができる。更に、R−Fe−N−H−O系磁性材料に低融点金属を含む場合などにおいて、圧粉成形と同時に或いはその前後に熱処理を行って磁性粉間の仮結合を強固なものとし、その後の取り扱いを容易にすること等にも利用できる。熱処理温度としては100℃以上且つ分解温度未満の範囲で選ばれ、上述の例以外にも本発明の磁石用固形材料を製造する各工程前、中、後、さらに本発明の磁石用固形材料用に選択した原料作製工程等の任意の段階で熱処理を実施することができる。
【0056】
本発明の磁石用固形材料における第2の態様は、R−Fe−N−H−O系磁性材料を80〜97体積%含有した材料である。この態様は、軽量でありながら磁気特性とその安定性が優れる磁石用固形材料を提供しようというもので、第1の態様とはその目的が全く異なるものである。この態様においては、R−Fe−N−H−O系材料以外の3〜20体積%の部分は、用途や材料組成によっては大気であっても良いが、真空、或いは密度6.5g/cm以下の元素、化合物、またはそれらの混合物であってもよい。
【0057】
本発明の第2の態様である磁石用固形材料の密度は、その特徴を活かすために、6.15〜7.45g/cmとすることが好ましい。6.15g/cm未満であってもR−Fe−N−H−O系磁性材料の成分が80体積%以上となる場合は好ましい場合がある。また、R−Fe−N−H−O系磁性材料を97体積%以下としても7.45g/cmを越える場合があり、既存の固形磁石に比べ軽量である本発明の磁石用固形材料の特徴が活かせなくなることもある。例えば、SmFe170.1磁性材料の真密度は7.69g/cm(IEEE Trans.Magn.、MAG−28、2326頁、及びICDDによるPowderDiffraction File WZ1430を参照)であるが、磁性材料以外の部分が充分無視できるほど密度の低いガスなどであったとして、酸素量が0.1原子%以下で磁性材料の含有率が80〜97体積%のとき、R−Fe−N−H−O系磁石用固形材料の密度は6.15〜7.46となる。
【0058】
なお、本発明の磁石用固形材料は、多結晶体であり、R−Fe−N−H−O主相と異なった界面相を含む場合もあるため、ボイドが無い状態であってもDmは必ずしもDxに一致しない。従って、本発明においては、磁石用固形材料のパッキングの度合いを充填率Dm/Dxで判断するより、Dm自体の値を目安とする方が適切である場合が多い。
R−Fe−N−H−O系材料の組成や磁性材料以外の部分の種類により、R−Fe−N−H−O系材料の体積分率と密度の関係は変わるが、熱安定性の良い磁石用固形材料とするために80体積%以上の磁性材料含有率が求められ、軽量である磁石用固形材料とするために7.45g/cm以下の密度が求められるので、より好ましい磁石用固形材料は、R−Fe−N−H−O系磁性材料を80〜97体積%含有し、しかも密度が6.15〜7.45g/cmの範囲にあるものである。
【0059】
さらに好ましいR−Fe−N−H−O系磁性材料の体積分率または磁石用固形材料の密度の範囲を述べると、特に熱安定性が要求される用途には83〜97体積%であって密度6.35〜7.45g/cmの範囲が選ばれ、機械的強度、磁気特性、熱安定性に非常に優れる軽量な磁石とするためには、85〜96体積%であって密度6.50〜7.40g/cmの範囲が選ばれる。
本発明の磁石用固形材料において、R−Fe−N−H−O系磁性材料以外の成分は密度6.5g/cm以下の元素、化合物またはそれらの混合物であることが好ましい。密度が6.5g/cmを越える元素などであると、磁性材料の体積分率を80%に限定しても、磁石用固形材料全体の密度が7.45g/cmを越える場合が多く、軽量である本発明における第2の態様の特徴が活かせなくなるので好ましくない。
【0060】
密度6.5g/cm以下の元素としては、Al、Ar、B、Be、Br、C、Ca、Cl、F、Ga、Ge、H、He、Kr、Mg、N、Ne、O、P、S、Se、Si、Te、Ti、V、Y、Zrなどが挙げられる。また、これらの化合物、合金や、密度6.5g/cm以上の元素が含まれている場合においても、Mn−Al−CやAl−Cu−Mg合金などのように化合物や合金において密度6.5g/cm以下となるもの、或いは体積比で1:1のBi−Alなどの混合物において密度6.5g/cm以下となるものなどを選択することが好ましい。
R−Fe−N−H−O系磁性材料以外の部分が密度6.5g/cm以下であるガス、例えば、窒素ガス、He、Ar、Neなどの不活性ガスのうち少なくとも1種や水素ガス、アンモニアガスのような還元性ガスであっても良い。これらの磁性材−ガス複合磁石用固形材料は軽量であることが特徴である。
【0061】
また、R−Fe−N−H−O系磁性材料以外の部分が密度6.5g/cm以下のMgO、Al、ZrO、SiO、フェライトなどの酸化物、CaF、AlFなどのフッ化物、TiC、SiC、ZrCなどの炭化物、Si、ZnN、AlNなどの窒化物などであっても好ましく、その他、水素化物、炭酸化物、硫酸塩、ケイ酸塩、塩化物、硝酸塩またはそれらの混合物であっても良い。
この中で、特にBaO・6Fe系、SrO・6Fe系、La添加フェライト系などの硬磁性フェライト、場合によってはMn−Zn系、Ni−Zn系軟磁性フェライトなどを含有させることにより、磁気特性やその安定性を向上させることができる。これらの磁性材−無機物複合磁石用固形材料は機械的強度が高く、熱安定性や磁気特性に優れる。
【0062】
さらに、R−Fe−N−H−O系磁性材料以外の部分が密度6.5g/cm以下の有機物であっても良い。例えば、ポリアミド、ポリイミド、ポリフェニレンオキシド、全芳香族ポリエステルなどエンジニアリング樹脂と呼称される樹脂や液晶ポリマー、エポキシ樹脂、フェノール変性エポキシ樹脂、不飽和ポリエステル樹脂、アルキド樹脂、弗素樹脂など、耐熱性の熱可塑性或いは熱硬化性樹脂を初め、シリコーンゴムなどの有機ケイ素化合物、カップリング剤や滑剤などの有機金属化合物など、ガラス転移点、軟化点、融点、分解点が100℃以上の有機物であるならば本発明の磁石用固形材料の成分として用いることができる。
【0063】
但し、その体積分率は20%以下、好ましくは17%以下、さらに好ましくは10%以下、最も好ましくは5%以下であって、R−Fe−N−H−O系磁性材料の金属結合による固化を妨げるものであってはならない。この磁性材−有機物複合磁石用固形材料は、軽量なわりに耐衝撃性に優れる。但し、高温高湿度の過酷な環境においては、磁性材−有機物複合磁石用固形材料を用いない方が良い場合がある。
【0064】
本発明の磁石用固形材料のR−Fe−N−H−O系磁性材料以外の部分に、上記のガス、無機物、有機物のうち2種以上を同時に含有することができる。例えば、大気である空隙を有し、シリカを分散したシリコーンゴムを含有したR−Fe−N−H−O系磁性材−無機物−有機物複合磁石用固形材料、空隙に不活性ガスである窒素ガスを充填し、シリカを分散したシリコーンゴムを含有したR−Fe−N−H−O系磁性材−ガス−無機物−有機物複合磁石用固形材料などであり、それぞれの成分の特徴を活かして、用途により使い分けることが望ましい。
【0065】
ところで、R−Fe−N−H−O系磁性材料を用いた本発明の磁石用固形材料のうちで、次のような特徴的な微構造を有する材料群がある。80体積%以上の充填率を有し、磁性粉同士連結し連続相を成していると同時に、酸素が富化された非晶質部分のみでも連続相を成し、大部分の原料粉体内に存在していた結晶相がそれぞれ非晶質相の中で孤立しているような構造である。結晶相があたかも島のように非晶質相の海に浮かんでいる、一種の海−島構造を成していると言える。
結晶相は酸素を含まないか、又は非晶質相より酸素量が少ない。この傾向から、結晶相は特に磁化の高い強磁性相となり、非晶質相は非磁性相又は常磁性体も含めた磁化の低い相となりやすい。しかもこの結晶相と非晶質相が強固に結合し一体となって本発明の磁石用固形材料を形成するため、機械的強度が高く、磁気特性、特に角形比が高く、磁気特性の安定性、特に保磁力の安定性が高い材料となる。
【0066】
この海−島構造におけるR−Fe−N−H系或いはR−Fe−N−H−O系結晶相の体積分率は25体積%以上で有る方が磁化及び(BH)maxが大きくて実用的である。好ましくは50体積%以上、さらに好ましくは75体積%以上である。勿論、海(非晶質相)、島(結晶相)双方とも本発明のR−Fe−N−H−O系磁性材料の一部を形成するものであるために、海と島の両方の体積分率を足した値が、また場合によってはそれにM成分の体積分率を加算した値が、R−Fe−N−H−O系磁性材料の磁石用固形材料全体に対する体積分率となる。
以上のような構造を有する磁石用固形材料を製造するときには、非晶質相が分解して磁気特性及びその安定性を悪化させないように衝撃波圧力を小さい範囲に制御する必要がある場合が多い。
【0067】
本発明の磁石用固形材料は、常温の残留磁束密度B、常温の保磁力HcJ、磁石として使用するときのパーミアンス係数P及び最高使用温度Tmaxの関係が、μを真空の透磁率とするとき、
≦μcJ(P+1)(11000−50Tmax)/(10000−6Tmax
であれば更に望ましい。
上記の関係式は、磁石が顕著な減磁をしない条件を定める式であるが、その意味について以下に補足する。ここに顕著な減磁とは、不可逆でかつ大きな減磁のことを指し、例えば1000時間以内に不可逆減磁率で−20%を越えるような減磁を言う。
【0068】
磁石の逆磁場に対する磁化の変化を表すB−H曲線上における屈曲点のH座標は、角形比がほぼ100%であるとき、ほぼHcJの値となる。磁石の動作点が、屈曲点より高磁場側に来ると急激に減磁して、磁石の有する性能を有効に発揮させることができないので、動作点は屈曲点よりも低磁場側にあるべきである。従って、磁石の形状によって決まる反磁場に対する磁束密度の比を内部パーミアンス係数Pc0、磁石として磁気回路や装置に組み込んだ後、運転中磁石に掛かる逆磁場の大きさによって定まる各動作点でのパーミアンス係数の中で最小のパーミアンス係数をPとするとき、Pc0とPのうち小さい方の値をPcminとすれば、少なくとも下記式(1)の範囲内でなければ、顕著な減磁が生じてしまう。
【0069】
【数1】

Figure 2004146542
【0070】
(1)式は室温における条件式であり、温度T℃においては、残留磁束密度の温度係数[α(B)]、保磁力の温度係数[α(HcJ)]を用いて、下記式(2)と書き改めることにより、大幅な減磁が生じない条件が決定される。
【0071】
【数2】
Figure 2004146542
【0072】
ここでPc0がPより小さく、着磁しても磁場を取り去るとすぐに減磁してしまう場合は、予めヨークなどに磁石を組み込んでから着磁することによって顕著な減磁を回避することができるが、少なくとも(2)式によって定める条件を満たしていなくては磁石の使用による顕著な減磁を免れることはできない。
R−Fe−N−H−O系材料の組成や温度領域によってα(B)、α(HcJ)の値は変わるが、ほぼα(B)は−0.06%/℃、α(HcJ)は−0.5%/℃である。α(B)の値に比べてα(HcJ)の値の方が絶対値が大きく、両者とも負の値なので、Tが高いほど(2)式を満たす正の値の組み合わせ(B、HcJ)の領域は小さくなる。従って、本発明の磁石用固形材料を用いて成る磁石が、パーミアンス係数Pの条件で使用される場合、動作中最も高くなる温度Tmax℃により決定される(2)式の範囲にB及びHcJを制御することにより、磁石の減磁を緩和することができることになる。
(2)式にT=Tmax、α(B)=−0.06、α(HcJ)=−0.5を代入し、整理すると下記式(3)のようになる。
【0073】
【数3】
Figure 2004146542
【0074】
即ち、磁石としたとき、B、HcJ、P、Tmax が(3)式を満たせば、顕著な減磁が起こらない磁石であるということができる。また、(3)式によれば、HcJが大きいほど、Bの取りうる値は大きくなる。熱安定性が高く、高磁気特性の磁石とするためには、HcJが0.62MA/mを越える磁石用固形材料とする方が好ましい。
【0075】
本発明の磁石用固形材料において、最も好ましい態様は、磁性材料体積分率を上げることにより、Brを増加させた磁石用固形材料、具体的には、ThZn17型結晶構造等又はそれと同様な結晶構造を有する菱面体晶を有するR−Fe−N−H−O系磁性材料を、充填率を95%以上、好ましくは98%以上、最も好ましくは99%以上とすることで、磁石用固形材料の密度を、7.45g/cm以上、より好ましくは7.50g/cm以上、最も好ましくは7.60g/cm以上とし、常温における最大エネルギー積(BH)maxを高くした磁石用固形材料が、目的とする使用環境において(3)式を満足する磁気特性を有する磁石用固形材料である。
【0076】
ところで、磁性材料の体積分率を上げることにより、Bを大きくして常温の最大エネルギー積(BH)maxが高い磁石用固形材料としたとしても、Tmaxが例えば100℃以上であるような高い温度であって(3)式の範囲を逸脱すれば、減磁が顕著となり、磁性材料の体積分率が低くBの小さい磁石用固形材料とパフォーマンスが変わらなくなってしまう場合がある。つまり、PとTmaxの組み合わせと磁石用固形材料のHcJによっては、R−Fe−N−H−O系磁性材料の体積分率を上げてBを大きく取る意味がない。むしろ、磁性材料の体積分率を下げた方が軽量でコストパフォーマンスの高い磁石用固形材料となるのである。
【0077】
具体的な例を挙げて説明する。HcJ=0.62MA/mであるようなR−Fe−N−H−O系磁性粉体を原料とし、衝撃波圧縮を用いれば、ある条件でほぼ100%の体積分率を有する磁石用固形材料とすることができる。このときのBは1.2Tを越える。
しかし、P=1、Tmax=100℃である用途の場合、(3)式から、Bを0.99T以上とする必要はない。即ち、この場合、0.99Tより高いBを有した磁石用固形材料であったとしても磁石の動作又は使用によって減磁して、0.99TのBを有した磁石とパフォーマンスは変わらなくなるのである。従って、磁性体の体積分率をむしろ83〜85%程度に下げて、B=0.99T程度の磁石とし、軽量かつコストの安い磁石とする方が好ましい。
【0078】
上記は、磁石の形状または磁気回路、動作によって決まる最小のパーミアンス係数、及びB、HcJ、α(B)、α(HcJ)といった磁性材料の磁気的な特性によって決まる熱安定性について述べたものであり、一般に磁石の温度特性とも言われる性質である。
この他に、熱安定性が低下する大きな原因としては、磁性粉体同士が、充分金属結合により接合して固化していないことが挙げられる。本来、永久磁石は外界に静磁ポテンシャルを作るために、結晶の容易磁化方向を揃えているが、磁気的に非平衡な状態であるため、磁性粉体同士が充分結合され固定されていない状態であると、各磁性粉がマトリックスの中で回転するなどして容易磁化方向の向きを変え、蓄えられた静磁エネルギーが徐々に小さくなっていく。
【0079】
磁性粉充填率が80%未満の材料、例えばボンド磁石などは、100℃以上の高温で樹脂が軟化あるいは劣化すると比較的容易に上記のような緩和が起こり、顕著な減磁が生じることになる。ボンド磁石は、その名のとおり、バインダによりボンディングされている磁石であって、金属結合やイオン結合により固化された磁石ではない。熱安定性の不足はそのことに起因する問題点であるといえる。一方、本発明の材料のうち、磁性粉体積分率が80%以上、好ましくは83%以上、更に好ましくは90%以上、最も好ましくは95%以上であれば、磁性粉同士が金属結合で固化しており、このような緩和は起こらない。以上のように、100℃以上で満足する熱安定性を達成するためには、その材料の磁気特性と用途に応じて、磁性材料の体積分率の下限と上限を特定の範囲に設定する必要がある。
【0080】
本発明の磁石用固形材料は、特別な方法によらなくとも、磁石としたときの保磁力HcJが0.76MA/m以上で、しかも角形比B/Jが95%以上である磁石用固形材料とすることもできる。但し、Jは常温の飽和磁化であり、本発明においては外部磁場を1.2MA/mとしたときの磁化の値とする。
例えば、SmFe170.1材料は、ニュークリエーション型の磁場反転機構を持つため粒径と保磁力HcJがほぼ反比例するような関係を持つ。2μm未満になると保磁力が0.76MA/mを越えるが、この領域では、磁性粉の粒径が小さくなるに従って凝集しやすくなり、通常工業的に利用されている磁場では磁性粉体の磁場配向度が急激に落ちて、角形比が低下する。
【0081】
ボールミルでSmFe170.1粗粉体を粉砕して得たR−Fe−N−H−O系磁性材料(酸素量0.1〜5原子%)を1.2MA/mの外部磁場で磁場圧縮成形した充填率80%の圧粉体においては、HcJが0.74MA/mを越えると角形比が急激に低下し、HcJが0.76MA/m以上の領域で95%以下となる。
本発明の磁石用固形材料であると、衝撃波圧縮固化した際に組織を微細化することができるために、保磁力が0.76MA/m未満の磁性粉体を用いて角形比の高い圧粉体を調製し、これを衝撃波圧縮固化すると同時に保磁力を向上させ、高い角形比と高い保磁力を併せ持つ磁石用固形材料とすることができる。 保磁力が0.8〜1.2MA/mの範囲の場合、角形比を95%から、磁場配向の方法と磁性材料の成分などの工夫を加えることによりほぼ100%の範囲で調整することが可能である。
【0082】
次に、本発明の磁石用固形材料の製造法、特にその中で本発明の磁石用固形材料の実現を可能とした衝撃波圧縮について述べる。但し、本発明の製造法は、これに限定されるわけではない。
水中衝撃波による衝撃圧縮方法としては、二重管の最内部に当該粉体を圧粉成形し、中間部に水を入れ、外周部に爆薬を配置し、爆薬を爆轟させることで、前記中間部の水中に衝撃波を導入し、最内部の当該粉体を圧縮する方法や、当該粉体を密閉容器中へ圧粉成形し、水中へ投入し、爆薬を水中にて爆轟させ、その衝撃波により当該粉体を圧縮する方法や、特許第2951349号公報又は、特許第3220212号公報による方法が選択できる。いずれの方法においても、以下に示す水中衝撃波による衝撃圧縮の利点を得ることができる。
【0083】
水中衝撃波を用いた本発明の衝撃圧縮法による圧縮固化工程では、衝撃波の持つ超高圧剪断性、活性化作用は、粉体の金属的結合による固化作用と組織の微細化作用を誘起し、バルク固化と共に高保磁力化することも可能である。このとき、衝撃圧力自体の持続時間は、従来の衝撃波を用いた場合よりも長いが、体積圧縮と衝撃波の非線形現象に基づくエントロピーの増加による温度上昇は極めて短時間(数μs以下)に消失し、分解や脱窒は殆ど起こらない。水中衝撃波を用いて圧縮した後も残留温度は存在する。この残留温度が分解温度(常圧で約600℃)以上になると、R−Fe−N−H−O系化合物等も分解が開始され、磁気特性を劣化するので好ましくない。しかし、水中衝撃波による場合は、従来の衝撃波による場合よりも、残留温度を低く保つことが非常に容易である。
【0084】
即ち、水中衝撃波は以下のような特徴を有する。
(1)水中衝撃波の圧力は、爆薬と水のユゴニオ関係によって決まり、圧力Pは概略次式で示される。
P=288(MPa){(ρ/ρ7.25−1}
上式より、水中衝撃波を用いた場合には、水の密度ρの基準値ρに対する変化に関する圧力Pの増加量が非常に大きいため、爆薬量の調節により容易に超高圧が得られ、その際の磁性材料の温度は従来の衝撃波を用いた場合に比べて容易に低温度に保持される。
(2)衝撃圧力自体の持続時間が長い。
(3)体積圧縮と衝撃波の非線形現象に基づくエントロピーの増加による磁性材料の温度上昇は極めて短時間に消失する。
(4)磁性材料の温度は、その後高く保持されることが少なく、又、長く保持されることが少ない。
(5)衝撃圧力が被圧縮体に均一に負荷される。
水中衝撃波のもつ、これらの優れた特徴によって初めて、R−Fe−N−H−O系材料が熱分解を起こさず、高密度に容易に圧縮固化される。
更に、圧粉成形を磁場中で行うことにより、磁性材料粉体の磁化容易軸を一方向に揃えることができ、得られた圧粉体を衝撃圧縮固化により固形化しても、配向性は損なわれず、磁気的に一軸性の異方性をもつ磁石用固形材料が得られる。
【0085】
本発明において、衝撃波圧力が3〜40GPaの水中衝撃波を用いて圧縮固化することにより、原料磁性粉体の真密度(例えば7.7g/cm)に対し充填率80%を超える密度の磁石用固形材料を得ることができる。衝撃波圧力が3GPaより低いと、必ずしも充填率が80%を超える磁石用固形材料を得ることができない。また、衝撃波圧力が40GPaより高いと、α−Fe分解相等の分解物が生じ易く、好ましくない。また、本発明のR−Fe−N−H−O系原料磁性粉体が、表面に酸素富化された非晶質相を有する場合、その非晶質相を分解させないため、衝撃波圧力を30GPa以下にすることが好ましい。
【0086】
衝撃波圧力が3〜40GPaの水中衝撃波を用いて圧縮固化する場合は、原料磁性粉体の真密度に対し充填率80%を超える密度の磁石用固形材料を再現性良く得ることができる。また、衝撃波圧力が6〜40GPaの水中衝撃波を用いた場合は、充填率が90%を超える高密度の磁石用固形材料を得ることができる。但し、R−Fe−N−H−O系磁性材料の外に、軟磁性材料、希土類−鉄−ほう素系磁性材料などの硬磁性材料、非磁性相などの固形成分を含む場合は、上記の条件は、磁石用固形材料に対するR−Fe−N−H−O系原料磁性粉体の体積分率のみで決定されるわけでない。しかし、R−Fe−N−H−O系磁性材料の体積分率が50体積%以上の磁石用固形材料を分解無く得るためには、上記と同様、衝撃波圧力3〜40GPaの範囲内で水中衝撃波を制御する必要がある。この場合もR−Fe−N−H−O系原料磁性粉体が、上記非晶質相を有する場合、衝撃波圧力を3〜30GPaの範囲に制御することが好ましい。
【0087】
次に、本発明の磁石用固形材料における第1の態様である高密度な磁石用固形材料を製造する場合において、衝撃波圧力8〜40GPaの水中衝撃波を用いる必要がある。衝撃波圧力が8GPaより低いと、必ずしも密度7.45g/cm以上のバルク磁石が得られない。衝撃波圧力が40GPaより高いと、α−Fe分解相等の分解物が生じることがあって、好ましくない。また、本発明のR−Fe−N−H−O系原料磁性粉体が、表面に酸素富化された非晶質相を有する場合、その非晶質相を分解させないため、衝撃波圧力を30GPa以下にすることが好ましい。
【0088】
さらに、本発明における第2の態様である、軽量であり高温特性に優れた磁石用固形材料を製造する場合において、衝撃圧縮時の圧粉体の温度上昇を抑制するために、衝撃圧縮には、衝撃波圧力3〜22GPaの水中衝撃波を用いることが好ましい。衝撃波圧力が3GPaより低いと、必ずしも密度6.15g/cm以上の磁石用固形材料が得られない。衝撃波圧力が22GPaより高いと、密度7.45g/cm以上の磁石用固形材料となる場合が多く、さらに衝撃波圧力が40GPaより高いと、α−Fe分解相等の分解物が生じることがあって好ましくない。上記と同様に、本発明のR−Fe−N−H−O系原料が、表面に酸素富化された非晶質相を有する場合、衝撃波圧力を30GPa以下にすることが好ましい。
【0089】
また、密度が6.35〜7.45g/cmの範囲、さらに6.50〜7.40g/cmの範囲の磁石用固形材料を再現性良く得るには水中衝撃波の衝撃波圧力を3〜20GPa、さらに衝撃波圧力を4〜15GPaとすることで達成される。但し、磁性材−ガス複合磁石用固形材料においては、衝撃圧力が高すぎると容易に密度が7.45g/cmを越える磁石用固形材料となってしまうので衝撃波圧力3〜15GPaの水中衝撃波を用いる方が好ましい。
R−Fe−N−H−O系磁性材料の製造法において酸素源、又は水素源並びに酸素源を接触させて、酸素成分、水素成分を導入することが重要であると既に述べたが、衝撃波圧縮の雰囲気に酸素源や水素源を存在させ接触させて、目的とする組成の磁石用固形材料と成す方法も有効である。
【0090】
本発明の磁石用固形材料の製造方法において、磁石用固形材料に異方性を付与するために、原料粉体の圧粉成形を磁場中で行うことができ、原料粉体を圧粉成形した後、水中衝撃波を用いて衝撃圧縮固化することができる。また、原料粉体を磁場中で圧粉成形した後、水中衝撃波を用いて衝撃圧縮固化することができる。
以上述べたように、磁性粉体として熱的に安定でα−Fe分解相を析出しにくい、水素を含むR−Fe−N−H−O系材料を選び、上記水中衝撃波圧縮固化法にて固形化することにより初めて本発明の磁石用固形材料を作製することができるのであり、この磁石用固形材料を用いて製造する磁石は、高磁気特性で、耐酸化性に優れ、ボンド磁石のように磁性粉体の結合材としての樹脂成分を含まないため、熱安定性に優れた特徴を有する。
【0091】
次に、本発明の第3の態様であるR−Fe−N−H−O系磁石用固形材料を含む部品又は装置について述べる。
最高使用温度Tmaxが100℃以上である用途には、従来のR−Fe−N−H−O系ボンド磁石であると、樹脂成分を含みかつ磁性粉体同士が金属結合で固化していないために、熱安定性に劣り、使用することが難しかった。本発明の磁石用固形材料であれば、よしんば樹脂成分を含んでいてもR−Fe−N−H−O系磁性粉同士が金属結合で固化しているので熱安定性に優れる。さらに磁石用固形材料のB、HcJが、磁石としたときのPとTmax及び(3)式で規定される領域にあれば、大きく減磁せず、軽量でコストパフォーマンスが高い上に熱安定性がさらに優れた磁石とすることができる。
maxの上限はR−Fe−N−H−O系材料のキュリー点付近であり、400℃を越えるが、磁石用固形材料の組成や成分、磁石としての使われ方によりTmax上限は400℃以下の様々な値をとる。例えば、Znで被覆したHcJ=1.6MA/mであるR−Fe−N−H−O系材料を用いたとしても、Tmaxが220℃以上のとき、本発明の磁石用固形材料を磁石として使用することは好ましくない。
【0092】
本発明の磁石用固形材料により得られた磁石のPc0は、0.01〜100、さらに好ましくは0.1〜10であり、Pc0、B、HcJの値の組み合わせが(1)式の範囲を逸脱するときは、ヨークなどを装着してのちPc0を高めてから、着磁を行うことが好ましい。
【0093】
本発明の磁石用固形材料、中でも第2の態様の磁石用固形材料、若しくは(3)式を満足する磁石用固形材料により得られた磁石の静磁場を用いた、各種アクチュエータ、ボイスコイルモータ、リニアモータ、ロータ又はステータとして回転機用モータ、その中で特に産業機械や自動車用モータ、医療用装置や金属選別機の磁場発生源のほかVSM装置、ESR装置、加速器などの分析機用磁場発生源、マグネトロン進行波管、プリンタヘッドや光ピックアップなどOA機器、アンジュレータ、ウイグラ、リターダ、マグネットロール、マグネットチャック、各種マグネットシートなどの装置並びに部品は、Pの極めて小さなステッピングモータなどの特殊な用途を除いて、100℃以上の環境においても顕著な減磁が生ずることなく安定に使用することができる。
【0094】
用途によっては125℃以上の温度でも使用でき、例えばHcJ>0.7(MA/m)かつP>1であるような場合が挙げられる。さらに、150℃以上での使用も可能で、例えばHcJ>0.8(MA/m)かつP>2であるような場合が挙げられる。
また、これらの装置又は部品に用いるとき、本発明の磁石用固形材料を各種加工を施してから、各形状のヨークやホールピース、各種整磁材料を接着、密着、接合した上で組み合わせて用いても良い。
また、本発明の磁石用固形材料を永久磁石同期モータ用ロータとして、もしくはその構成材料の硬磁性材料として使用する場合、本発明の表面磁石構造ロータとして、図5〜図6に示す回転軸断面構造とすることができる。また、埋込磁石構造ロータとして図7〜図12に示す回転軸断面構造とすることができる。
【0095】
以下、本発明を実施例に基づいて説明する。なお、R−Fe−N−H−O系磁性材料の分解の度合いは、成形した磁石用固形材料のX線回折図(Cu−Kα線)をもとに、ThZn17型をはじめとする菱面体晶又は六方晶の結晶構造由来の回折線における最強線の高さaに対する、2θ=44°付近のα−Fe分解相由来の回折線の高さbの比b/aをもって判断した。この値が0.2以下なら分解の度合いは小さいと言える。好ましくは0.1以下である。さらに好ましくは0.05以下で、この場合、分解はほぼ無いと言える。
但し、上記の判定法は、磁石用固形材料の原料となるR−Fe−N−H−O系磁性材料にもともとFe軟磁性材料のような44°付近にピークを持つ材料が含有されている場合は適用できない。この場合、R−Fe−N−H−O系磁性材料を含む原料と磁石用固形材料におけるb/aの相対比により、分解の有無の目安とすることは可能である。
また、本件発明は以下の具体例によって何ら技術的範囲が限定されるものではない。
【0096】
[実施例1]
平均粒径60μmのSmFe17母合金をNH分圧0.35atm、H分圧0.65atmで酸素分圧10 atm以下のアンモニア−水素混合ガス気流中、465℃で7.2ks窒化水素化を行った後、酸素分圧10−5atmアルゴン気流中で1.8ksアニールを行い、溶存酸素量40ppm、含水量20ppmの炭化水素系溶媒を粉砕溶媒として用い10−1atmの窒素気流中で仕込んだボールミルにより平均粒径が約2μmとなるように粉砕し、R−Fe−N−H−O系磁性材料粉体を得た。この粉体を、1.2MA/mの磁場中で磁場配向させながら圧粉成形を行うことで成形体を得た。図13は水中衝撃波を用いた衝撃圧縮法を行う装置の一例を示す説明図である。得られた成形体を図14に示す如く銅製パイプ1に入れて銅製プラグ2に固定した。さらに銅製パイプ3を銅製プラグ2に固定し、更に、この間隙に水を充填し、外周部に均一な間隙を設け、紙筒4を配置し、銅製パイプ3と紙筒4の間隙中に280gの硝酸アンモニウム系爆薬5を装填し、起爆部6より前記爆薬を起爆し、爆薬を爆轟させた。このとき衝撃波圧力は16GPaであった。
【0097】
衝撃圧縮後、パイプ1から固化したR−Fe−N−H−O系磁性材料の体積分率が100%であるSm8.5Fe72.312.72.83.7組成を有する磁石用固形材料を取り出し、4.0MA/mのパルス磁場で着磁し磁気特性を測定した結果、残留磁束密度B=1.18T、保磁力HcJ=0.78MA/m、(BH)max=264kJ/mの結果を得た。又、アルキメデス法により密度を測定した結果、密度7.60g/cm、充填率は99%であった。
【0098】
更に、X線回折法で解析した結果、固化した磁石用固形材料はほとんどα−Fe分解相の析出が起きておらず、ThZn17型菱面体晶の結晶構造を有していることが確認された。
爆薬量を調節して同様の実験を多数回繰り返した。
衝撃波圧力が4GPaより低いと、得られた磁石用固形材料の充填率は必ずしも80%を超えず、衝撃波圧力が30GPaより高いとα−Fe分解相等の分解物が生じることが確認された。又、充填率80%を超える磁石用固形材料をより再現性良く得るためには、衝撃波圧力を3〜30GPaとすることが好ましいことも分かった。又、衝撃波圧力を6〜30GPaとすることで、充填率90%を超える磁石用固形材料が再現性良く得られることも確認された。
【0099】
又、この衝撃波圧力は、密度が6.15〜7.45g/cmである磁石用固形材料をより再現性良く得るためには、衝撃波圧力を3〜15GPaとすることが好ましいことも分かった。
さらに、密度が7.45g/cmを超えるバルク磁石をより再現性良く得るためには、この衝撃波圧力を10〜30GPaとすることが好ましいことも分かった。又、衝撃波圧力12〜30GPaでは密度7.55g/cmを超えるバルク磁石を再現性良く得ることができることも確認された。
【0100】
[比較例1]
平均粒径20μmのSmFe17母合金をNガス気流中、495℃で72ks窒化を行うこと以外は実施例1と同様に、ただし衝撃波圧力を18GPaとすることにより、Sm9.1Fe77.713.2なる組成の磁石用固形材料を作製した。 この磁石用固形材料を4.0MA/mのパルス磁場で着磁し磁気特性を測定した結果、残留磁束密度B=0.96T、保磁力HcJ=0.36MA/m、(BH)max=120kJ/mの結果を得た。又、アルキメデス法により密度を測定した結果7.50g/cmであった。
この材料のX線回折図には、ThZn17型菱面体晶の結晶構造以外にα−Fe分解相由来の回折線も観察された。44°付近におけるα−Fe分解相の回折線とThZn17型菱面体晶の結晶構造を示す(303)最強線との強度比b/aは0.21であった。
【0101】
[比較例2]
図14は、爆薬の爆轟波を直接用いて衝撃圧縮を行う装置の一例を示す説明図である。この装置を用いて、実施例1で得た平均粒径2μmのR−Fe−N−H−O系磁性粉体を銅製パイプ1に入れて銅製プラグ2に固定し、外周部に均一な間隙を設け、紙筒4を配置し、前記間隙中に実施例と同量の硝酸アンモニウム系爆薬5を装填し、起爆部6より前記爆薬を起爆し、爆薬を爆轟させた。衝撃圧縮後、パイプ1から固化した試料を取り出し、X線回折法により解析した結果、衝撃圧縮後はSmNと多量のα−Fe分解相が生成していることが認められ、出発原料のR−Fe−N−H−O系化合物が分解していることが分かった。このときの回折線の強度比b/aは約3であった。
【0102】
[実施例2]
所定量のSm及びFeの金属粉体(重量比16.85:83.15)をめのうボールによる振動ボールミルで180ks間メカニカルアロイング処理したのち、10−5atm以下の真空中600℃で7.2ks間熱処理した。この粉体には、Fe軟磁性材料が約30体積%含まれていた。この粉体を、NH分圧0.35atm、H分圧0.65atmの酸素分圧10 atm以下のアンモニア−水素混合ガス気流中、380℃、1.2ksの条件で窒化水素化処理し、続いて同温度で水素中300sの時間熱処理した。この粉体を用いて、実施例1と同様に、ただし衝撃波圧力を18GPaとすることにより、Sm5.9Fe78.58.83.03.8なる組成の磁石用固形材料を作製した。
【0103】
この磁石用固形材料を4.0MA/mのパルス磁場で着磁し磁気特性を測定した結果、残留磁束密度B=1.22T、保磁力HcJ=0.43MA/m、(BH)max=215kJ/mの結果を得た。又、アルキメデス法により密度を測定した結果7.74g/cmであった。
この材料のX線回折図には、ThZn17型菱面体晶の結晶構造以外にα−Fe由来の回折線も観察されたが、この材料はもともとα−Fe分解相ではないFe軟磁性材料を含む材料であるため、固化によってα−Fe分解相が生じたか否かはX線回折法によって厳密に判定することができなかった。なお、透過型電子顕微鏡観察を行った結果、Fe軟磁性相の体積分率は約30%、その結晶粒径は10〜50nm程度であり、R−Fe−N−H−O系磁性材料の体積分率が約70%である磁石用固形材料となった。
【0104】
[実施例3]
実施例1で得た平均粒径約2μmのR−Fe−N−H−O系粉体と、平均粒径約25μmで組成がSm11.5Co57.6Fe24.8Cu4.4Zr1.7であるSm−Co系粉体を、体積比で50:50の割合になるようにめのう乳鉢に仕込み、溶存酸素量40ppm、含水量30ppmのシクロヘキサン中で湿式混合した。この作業は酸素分圧10−1atmのグローブボックス中で行った。
この混合粉体を用いて、実施例1と同様に、ただし衝撃波圧力を14GPaとすることにより、R−Fe−N−H−O系磁性材料の体積分率50%のR−Fe−N−H−O系磁石用固形材料(酸素量1.7原子%)を作製した。この磁石用固形材料を4.0MA/mのパルス磁場で着磁し磁気特性を測定した結果、残留磁束密度B=1.08T、保磁力HcJ=0.85MA/m、(BH)max=215kJ/mであった。
【0105】
[実施例4]
公知のジエチル亜鉛を用いた光分解法によって、R−Fe−N−H−O系磁性材料の表面にZn金属を被覆した平均粒径約1μmのSm−Fe−Co−N−H−O磁性粉体を調製し、この粉体を用いて、実施例1と同様に、ただし衝撃波圧力を16GPaとすることにより、R−Fe−N−H−O系磁性材料の体積分率が100%であるSm8.2Fe62.6Co6.912.23.33.8Zn3.0なる組成の磁石用固形材料を作製した。
この磁石用固形材料を4.0MA/mのパルス磁場で着磁し磁気特性を測定した結果、残留磁束密度B=1.24T、保磁力HcJ=0.79MA/m、(BH)max=263kJ/mであった。密度は7.71g/cmであった。さらに、X線回折法で解析した結果、固化した磁石用固形材料は、ThZn17型菱面体晶の結晶構造を有していることが確認された。44°付近におけるα−Fe分解相の回折線とThZn17型菱面体晶の結晶構造を示す(303)最強線との強度比b/aは0.08であった。
【0106】
[実施例5]
R−Fe−N−H−O系磁性材料として、公知の方法(特開平8−55712号公報)により得た、磁化反転機構がピンニング型である平均粒径30μmのSm−Fe−Co−Mn−N−H−O磁性粉体を用いて、実施例1と同様に、ただし衝撃波圧力を14GPaとすることにより、R−Fe−N−H−O系磁性材料の体積分率が100%である、Sm8.5(Fe0.89Co0.1166.6Mn3.618.52.60.2なる組成の磁石用固形材料を作製した。この磁石用固形材料を4.0MA/mのパルス磁場で着磁し磁気特性を測定した結果、残留磁束密度B=1.08T、保磁力HcJ=0.39MA/m、(BH)max=128kJ/mであった。体積法で求めた密度は7.70g/cm3であった。さらに、この材料のX線回折図には、ThZn17型菱面体晶の結晶構造以外にα−Fe分解相由来の回折線も観察された。44°付近におけるα−Fe分解相の回折線とThZn17型菱面体晶の結晶構造を示す(303)最強線との強度比b/aは0.06であった。
【0107】
[実施例6]
R−Fe−N−H−O系磁性材料以外の成分をAlとし、実施例1で作製したR−Fe−N−H−O系磁性材料の体積分率が96%となるように配合し、前記混合粉体を減量とする磁石用固形材料を実施例1と同様にして作製した。但し、衝撃波圧力は15GPaとした。その後、4.0MA/mのパルス磁場で着磁し、B、HcJ、角形比B/J、(BH)maxを測定した。
その結果を表1に示した。保持力HcJが0.83MA/mと大きい値であるにも関わらず、角形比96%を得ることができた。
【0108】
[実施例7〜9]
R−Fe−N−H−O系磁性材料以外の成分及び、衝撃波圧力を表1に示したとおりとする以外は、実施例1と同様にして磁石用固形材料を作製し、実施例6と同様にしてそれらの各種磁気特性を測定した。その結果を表1に示した。
【0109】
[実施例10、11及び比較例3]
平均粒径を2.5μmとしたSm8.7Fe74.113.11.13.0なる磁性粉体を用いることと衝撃波圧力を3GPa(実施例10)並びに23GPa(実施例11)としたこと以外は実施例1と同様にしてR−Fe−N−H−O系磁性材料の体積分率が100%である磁石用固形材料を作製した。これらの磁石用固形材料の磁気特性を実施例1と同様にして測定した。その結果を表2に示した。
また、これらの磁石用固形材料を正確に同形状の円盤に加工し、4.8MA/mのパルス磁場で着磁して、Pc0が2の磁石とした。これらの磁石を、125℃の恒温槽中で極力逆磁場が掛からないように注意して3.6Ms放置した。試料引き抜き式磁束測定装置を用いて、恒温槽放置前後の磁束の値を測定し、磁束の変化率、即ち不可逆減磁率(%)を求めた。結果を表2に示した。不可逆減磁率は絶対値が小さいほど熱安定性が良いと判断できる。また、公知の方法によりR−Fe−N−H−O系磁性材料の体積分率を60%とし、Pc0が2の12−ナイロンをバインダとした磁石用固形材料ではない射出成形ボンド磁石(比較例3)について、上記と同様にして不可逆減磁率を求めた。結果を表2に示した。
以上の評価によって得られた結果は、PがPc0と等しく、Tmax=125℃であるような用途を考えたとき、動作又は使用前後の減磁の度合いを調べるのに適切である。
【0110】
表2に示したとおり、比較例3のように、本発明の磁石用固形材料ではない磁石においては、磁性粉体同士が金属結合で固化していないために非常に低い熱安定性を示した。
同様に、実施例10の磁石用固形材料は、充填率が80%以上であるために、磁性粉体同士が金属結合又はイオン結合しているため、高い熱安定性を示すことがわかった。また、磁性粉体同士が金属結合で固化している実施例においても、P、Tmax、B、HcJが(3)式を満たす軽量な磁石用固形材料である実施例10の熱安定性は、(3)式を満たさない実施例11より良好であった。
【0111】
[実施例12及び13]
実施例10の磁石を2個、ヨークを用いず固定してステータとしたブラシ付のDCモータを組み立て、コイルに一定の大きさの電力を与えながら100℃での環境下で36ks運転した(実施例12)。また、実施例11の磁石を用いて上記と同様にモータを組み立て同様に運転した(実施例13)。36ks後の回転数は、初期回転数が安定した直後に比べ、実施例12のモータで約2%、実施例13のモータでは約10%変化し、36ks後の回転数はどちらもほぼ510rpmで同等であった。実施例12のモータで用いた実施例10の磁石は、実施例13のモータで用いた実施例11の磁石より密度が17%も低く、R−Fe−N−H−O系磁性材料の体積分率が低いのにも関わらず上記モータとしたときのパフォーマンスは同じであった。
【0112】
[実施例14]
実施例10において、R−Fe−N−H−O系磁性材料以外の成分をZrOとし、衝撃波圧力を14GPaとする以外は同様にしてR−Fe−N−H−O系磁性材料の体積分率が95%である、密度7.38g/cmの磁石を作製し、実施例12と同様にしてモータを組み立て、100℃の環境下で運転した。その結果、実施例12と同等な成績が得られた。
【0113】
[実施例15]
公知の方法により製造された、平均粒径30μmのR−Fe−N−H−O系HDDR等方性磁性粉体を用いて、実施例1と同様に、R−Fe−N−H−O系磁性材料の体積分率が100%である、Sm8.3Fe76.10.9Ti2.412.00.10.2なる組成の磁石用固形材料を作製した。
この磁石用固形材料を4.0MA/mのパルス磁場で着磁し磁気特性を測定した結果、残留磁束密度B=0.70T、保磁力HcJ=1.05MA/m、(BH)max=75.4kJ/mの結果を得た。又、アルキメデス法により密度を測定した結果7.45g/cmであった。
この材料のX線回折図には、菱面体晶、六方晶の結晶構造以外にα−Fe分解相由来の回折線も観察され、比b/aは0.15であった。
【0114】
[実施例16]
平均粒径60μmのSmFe17母合金をNH分圧0.35atm、H分圧0.65atmで酸素分圧10 atm以下のアンモニア−水素混合ガス気流中、465℃で7.2ks窒化水素化を行った後、酸素分圧10−3atmとしたアルゴン気流中で7.2ksアニールを行い、溶存酸素量45ppm、含水量20ppmの炭化水素系溶媒を粉砕溶媒として用い10−1atmの窒素気流中で仕込んだボールミルにより平均粒径が約2μmとなるように粉砕した。この粉体を用い、実施例1と同様に、但し衝撃波圧力は25GPaとして、R−Fe−N−H−O系磁性材料の体積分率が100%である、Sm8.0Fe67.811.92.69.7組成を有する磁石用固形材料を得た。このとき、成形体を保持する銅製パイプ1の中は湿度を有した大気で満たした。この磁石用固形材料を4.0MA/mのパルス磁場で着磁し、磁気特性を測定した結果、残留磁束密度B=1.06T、保磁力HcJ=0.73MA/m、(BH)max=158kJ/mの結果を得た。又、アルキメデス法により密度を測定した結果、密度7.55g/cm、充填率は99%であった。
【0115】
更に、X線回折法で解析した結果、固化した磁石用固形材料はほとんどα−Fe分解相の析出が起きておらず、ThZn17型菱面体晶の結晶構造を有していることが確認された。
本試料表面を鏡面研磨後5%ナイタール腐食液で30秒間腐食し、FE−SEMにて観察を行った結果、視野内に粒状に観察される部分と前記粒状部分の隙間を埋める様に存在する部分との2相構造であることが判った。EBSPにて各部分の結晶方位の観察を行った結果、前記粒状部分はThZn17型菱面体晶の結晶構造が観察され、その他の部分は非晶質であることが確認された。観察断面の面積比より、ThZn17型菱面体晶部分(結晶相)対非晶質部分(非晶質相)が6対4の体積比で存在することが判った。
【0116】
【表1】
Figure 2004146542
【0117】
【表2】
Figure 2004146542
【0118】
【発明の効果】
本発明のように、菱面体晶又は六方晶の結晶構造を有する希土類−鉄−窒素−水素−酸素系磁性粉体等を圧粉成形し、水中衝撃波を用いた衝撃圧縮をすることにより、バインダを必要とせず、自己焼結によらずに、又、分解、脱窒を防いで、高密度、高性能な磁石用固形材料を得ることを可能にする。さらに、軽量でありながら、高性能、特に磁気特性の安定性が高い磁石用固形材料を得ることを可能にする。
【図面の簡単な説明】
【図1】希土類−鉄−窒素−水素−酸素系磁性材料と軟磁性の固形状金属を接合して一体化して得られた磁石用の固形材料の断面の一例を示す説明図である。
【図2】希土類−鉄−窒素−水素−酸素系磁性材料層と軟磁性層が交互に積層され一体化した磁石用の固形材料の断面の一例を示す説明図である。
【図3】希土類−鉄−窒素−水素−酸素系磁性材料を主として含有する層の周辺の一部又は全部を非磁性の固形状材料で覆った磁石用の固形材料の断面の例を示す説明図である。
【図4】磁石用固形材料の断面の一例を示す説明図である。
【図5】本発明の磁石固形材料を永久磁石同期モータに使用する場合における、表面磁石構造ロータの回転軸断面構造の一例である。
【図6】本発明の磁石固形材料を永久磁石同期モータに使用する場合における、表面磁石構造ロータの回転軸断面構造の一例である。
【図7】本発明の磁石固形材料を永久磁石同期モータに使用する場合における、埋込磁石構造ロータの回転軸断面構造の一例である。
【図8】本発明の磁石固形材料を永久磁石同期モータに使用する場合における、埋込磁石構造ロータの回転軸断面構造の一例である。
【図9】本発明の磁石固形材料を永久磁石同期モータに使用する場合における、埋込磁石構造ロータの回転軸断面構造の一例である。
【図10】本発明の磁石固形材料を永久磁石同期モータに使用する場合における、埋込磁石構造ロータの回転軸断面構造の一例である。
【図11】本発明の磁石固形材料を永久磁石同期モータに使用する場合における、埋込磁石構造ロータの回転軸断面構造の一例である。
【図12】本発明の磁石固形材料を永久磁石同期モータに使用する場合における、埋込磁石構造ロータの回転軸断面構造の一例である。
【図13】水中衝撃波を用いた衝撃圧縮法を実施する手段の一例を示す説明図である。
【図14】比較例で使用した、爆薬の爆轟波を直接用いた衝撃圧縮法を実施する手段の一例を示す説明図である。
【符号の説明】
1 銅製パイプ(粉体を保持する為に使用)
2 銅製プラグ
3 銅製パイプ(水を保持するために使用)
4 紙筒(爆薬を保持するために使用)
5 爆薬
6 起爆部
7 水
8 試料部(希土類−鉄−窒素−水素−酸素系磁性材料を含む試料)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid material for a rare earth-iron-nitrogen-hydrogen-oxygen magnet having high density, high magnetic properties, and excellent thermal stability and oxidation resistance.
The present invention also relates to a method for manufacturing a solid material for a magnet, which obtains a high-density and high-performance permanent magnet while impact-compressing a magnetic material powder to prevent decomposition and denitrification.
[0002]
TECHNICAL FIELD OF THE INVENTION
As high-performance rare-earth magnets, for example, Sm-Co-based magnets and Nd-Fe-B-based magnets are known. The former is widely used for its high thermal stability and corrosion resistance, and the latter is used for its extremely high magnetic properties, low cost, and stable supply of raw materials. Today, rare earth magnets having both higher thermal stability and higher magnetic properties and lower raw material costs are demanded as actuators for electrical equipment and various FAs, or magnets for rotating machines.
[0003]
On the other hand, a rare earth-iron compound having a rhombohedral or hexagonal crystal structure is3And H2When reacting at a relatively low temperature of 400 to 600 ° C. in a mixed gas of nitrogen, nitrogen atoms and hydrogen atoms form the above crystals, for example, Th2Zn17It is reported in Patent Document 1 that a type compound penetrates into interstitial positions and causes a remarkable increase in Curie temperature and magnetic anisotropy.
In recent years, expectations for practical use of such a rare earth-iron-nitrogen-hydrogen magnetic material as a new magnet material meeting the above demands have been increasing.
[0004]
A rare earth-iron-nitrogen-hydrogen-based magnetic material (hereinafter, referred to as an R-Fe-NH-based magnetic material) containing nitrogen and hydrogen between lattices of an intermetallic compound and having the rhombohedral or hexagonal crystal structure. ) Is generally obtained in a powder state, but is easily decomposed into an α-Fe decomposition phase and a rare earth nitride phase at a temperature of about 600 ° C. or more under normal pressure. It is very difficult with ordinary industrial methods. Therefore, as a magnet using an R-Fe-NH-based magnetic material, a bonded magnet using a resin as a binder has been produced and used. However, magnets made using such materials often have a Curie temperature of 400 ° C. or higher, and despite the use of magnetic powder that does not lose magnetization even at a temperature of 200 ° C. or higher, it is non-magnetic. According to Patent Document 1, a binder such as 12-nylon resin has a low heat-resistant temperature and a temperature coefficient of coercive force of about -0.5% / ° C, whereas a coercive force is as small as 0.6 MA / m. The main cause is that the irreversible demagnetization rate becomes large, and it is used only at a temperature generally lower than 100 ° C. That is, when a brushless motor or the like is used as a power source used in a high-temperature environment of 150 ° C. or more in response to recent demands for a high load, there is a problem that the bonded magnet cannot be used.
[0005]
In addition, when manufacturing a compression-molded bonded magnet using a resin as a binder, a molding pressure of 1 GPa or more, which is industrially difficult, is required to improve the filling rate and improve the performance, and considering the mold life and the like, In many cases, the mixing ratio of the magnetic material must be less than 80% in volume fraction, and depending on the compression-molded bonded magnet, the excellent basic magnetic properties of the R-Fe-NH-based magnetic material cannot be sufficiently exhibited. There was a problem.
For example, among bonded magnets made of R—Fe—N—H based magnetic materials, those having extremely high magnetic properties (BH)max= 186kJ / m3Is reported in Non-Patent Document 2, but compared with conventional Sm-Co-based, Nd-Fe-B-based sintered magnets, etc., R-Fe-NH-based magnetic materials High basic magnetic properties are not fully exhibited.
[0006]
In order to solve the above problems, Patent Document 2 proposes a method for manufacturing a permanent magnet using a rare earth-iron-nitrogen based magnetic material that does not contain a resin binder. However, according to this method, the residual temperature after impact compression is set to Th2Zn17In order to suppress the temperature to below the decomposition temperature of the type rare earth-iron-nitrogen based magnetic material, there is a disadvantage that the pressure at the time of impact compression must be limited to a certain narrow range. This is because when a conventional shock wave is used, the temperature of the magnetic material is kept high for a long time despite the short duration of the shock wave itself, so that the magnetic material is very easily decomposed. is there.
[0007]
Moreover, according to the method, the density of the obtained product is at most 7.28 g / cm.3It was something that stayed. Furthermore, according to the method, the decomposition of the rare earth-iron-nitrogen based magnetic material cannot be sufficiently suppressed, and thus the coercive force was as low as 0.21 MA / m at the maximum.
Japanese Patent Application Laid-Open No. H11-163873 discloses a method using a cylindrical convergent shock wave to obtain a large molded body having no cracks or chips.2Zn17A method of compressing and solidifying a rare-earth-iron-nitrogen-based magnetic material is disclosed, but the maximum density of the magnet obtained by the method is 7.43 g / cm.3The maximum value of the coercive force was 0.62 MA / m, which was not yet satisfactory.
[0008]
In addition, Th molded by shock wave compression2Zn17Examples of the type rare earth-iron-nitrogen based magnetic material include those reported in Non-Patent Document 3. However, at 10 GPa, the filling factor is low, and at 20 GPa, decomposition into α-Fe decomposition phase and SmN phase progresses. The compact density under each impact compression condition is always 7.45 g / cm3In many cases, the maximum value of the magnetic properties is 0.57 MA / m, (BH)max= 134kJ / m3And Th2Zn17It could not be said that it had sufficiently high magnetic properties with respect to the type R-Fe-NH bond magnet.
As described above, there is a strong demand for solid materials for magnets which have high density, high magnetic properties without decomposition, and good thermal stability.
[0009]
Apart from these high-performance magnets, on the other hand, there is also a demand for a direction toward higher performance and lighter weight in applications to home appliances, OA equipment, and electric vehicles. The density of the Sm-Co based magnet is 8.4 g / cm3Degree, the density of the Nd—Fe—B based magnet is 7.5 g / cm3When these magnets are mounted, the weight of the device / rotor tends to be large, and the energy efficiency may be poor. Further, depending on the application, there is a margin in the magnetic characteristics, so that the weight can be reduced by reducing the size of the magnet, but it is not necessarily advantageous in terms of cost in view of the yield by processing. For example, since cutting chips are proportional to the cutting area, the smaller the volume, the lower the yield per unit volume of the product.
[0010]
As described above, various bond magnets that compensate for the disadvantages have poor thermal stability. Therefore, a magnet that is lightweight, has high magnetic properties, has excellent thermal stability, and has high cost performance has not yet been developed.
Further, Patent Document 4 proposes a rare earth-iron-nitrogen-hydrogen-oxygen-based magnetic material having excellent magnetic properties (hereinafter referred to as an R-Fe-NHO-based magnetic material), and controls an oxygen component. By doing so, the material has excellent magnetic properties and corrosion resistance. It is a major feature that it has stable magnetic properties with the improvement of coercive force and that rust hardly occurs because of its relatively high oxidation resistance.
[0011]
However, as disclosed in Patent Documents 5 and 6, this R-Fe-N-H-based magnetic material uses the aforementioned R-Fe-N-H-based material suitably as a bond magnet. And no examples of application as a solid material for magnets have been reported yet.
[0012]
[Patent Document 1] Japanese Patent No. 2703281
[Patent Document 2] Japanese Patent No. 3108232
[Patent Document 3] JP-A-2001-6959
[Patent Document 4] Japanese Patent No. 2708568
[Patent Document 5] Japanese Patent No. 2857476
[Patent Document 6] Japanese Patent No. 2708578
[Non-Patent Document 1] Technical Report No. 729 of the Institute of Electrical Engineers of Japan, edited by the Institute of Electrical Engineers of Japan, page 41
[Non-Patent Document 2] Appl. Phys. Lett. 75, No. 11, p. 1601
[Non-Patent Document 3] Appl. Phys. Vol. 80, No. 1, 356 pages
[0013]
[Problems to be solved by the invention]
A first object of the present invention is to provide a solid material for an R-Fe-NHO-based magnet having a high density and high magnetic properties, and having excellent thermal stability and oxidation resistance, and a method for producing the same. That is. The present invention provides a solid material for a magnet including a magnet which is magnetized by magnetization or the like.
[0014]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on the above problems, and as a result, formed an R-Fe-NHO-based magnetic material having excellent magnetic properties and oxidation resistance into a green compact in a magnetic field or without a magnetic field. Afterwards, it is shock-compressed and solidified using underwater shock waves, and mainly contains R-Fe-N-HO-based magnetic materials, taking advantage of the properties of shock compression such as ultra-high pressure shearing, activating action, and short-time phenomena. It has been found that a solid material for a magnet can be obtained, and the present invention has been completed.
[0015]
Further, the present inventors, when using the underwater shock wave, R-Fe-NHO-based magnetic material and hard magnetic and / or soft magnetic powder or solid, or powder of non-magnetic material or They have also found that solid materials can be easily integrated, and have completed the present invention.
In addition, the present inventors further include an R-Fe-N-HO-based magnetic material having a rhombohedral or hexagonal crystal structure, which is lightweight and has high magnetic properties and high stability. In order to obtain the material, the composition and content of the raw material and the manufacturing method thereof were intensively studied. As a result, a magnetic material powder containing not only nitrogen but also hydrogen and oxygen was used, and its volume fraction was set to 80 to 97% by volume. After forming into a green compact in a magnetic field, the green compact was shock-compressed with an underwater shock wave having a constant shock wave pressure to a density of 6.15 g / cm.3With the knowledge that a solid material for an R-Fe-NHO-based magnet solidified by metal bonding or ionic bonding that can be used even at 100 ° C or higher can be easily obtained, the present invention has been completed. .
[0016]
That is, aspects of the present invention are as follows.
(1) A solid material for a magnet containing 50 to 100% by volume of a rare earth-iron-nitrogen-hydrogen-oxygen-based magnetic material.
(2) The solid material for a magnet according to the above (1), wherein the magnetic material contains a rare earth-iron-nitrogen-hydrogen-oxygen-based magnetic material having a rhombohedral or hexagonal crystal structure.
(3) The rare earth-iron-nitrogen-hydrogen-oxygen based magnetic material has a general formula RαFe100- α β γ δNβHγOδWherein R is at least one element selected from rare earth elements, and α, β, γ, and δ are atomic percentages, 3 ≦ α ≦ 20, 5 ≦ β ≦ 25, 0.01 ≦ γ ≦ 5. The solid material for a magnet according to the above (1) or (2), comprising a rare earth-iron-nitrogen-hydrogen-oxygen-based magnetic material satisfying 0.01 ≦ δ ≦ 10.
(4) Ni, Ti, V, Cr, Mn, Zn, Cu, Zr, Nb, Mo, Ta, W, Ru, Rh, Pd, Hf, Re, Os The solid material for a magnet according to any one of the above (1) to (3), wherein the solid material is substituted with at least one element selected from the group consisting of Ir and Ir.
(5) Any one of the above (1) to (4), wherein 10 atomic% or less of N and / or H is replaced with at least one element selected from C, P, Si, S, and Al. Solid material for magnets.
[0017]
(6) The rare earth-iron-nitrogen-hydrogen-oxygen based magnetic material is represented by the general formula RαFe100- α β γ δNβHγOδMεR is at least one element selected from rare earth elements including Y, M is Li, Na, K, Mg, Ca, Sr, Ba, Ti, Zr, Hf, V, Nb, Ta, Cr , Mo, W, Mn, Pd, Cu, Ag, Zn, B, Al, Ga, In, C, Si, Ge, Sn, Pb, Bi, and / or an oxide of R, At least one selected from the group consisting of carbides, carbides, nitrides, hydrides, carbonates, sulfates, silicates, chlorides, and nitrates, and α, β, γ, δ, and ε are mole percentages of 3 ° C. 20, 5 ° C. 磁石 30, 0.01 ° C. 10, 0.01 ≦ δ ≦ 10, 0.1 ° C. ℃ ° C. 40, wherein the solid material for a magnet according to the above (1) to (5),
[0018]
(7) The solid material for a magnet according to any one of the above (1) to (6), wherein 50 atom% or more of the R is Sm.
(8) The solid material for a magnet according to any one of (1) to (7), wherein 0.01 to 50 atomic% of the Fe is substituted with Co.
(9) The solid material for a rare earth-iron-nitrogen-hydrogen-oxygen-based magnet according to any one of (1) to (8), wherein the crystalline phase (island) and the amorphous phase (sea ) Comprising a sea-island structure.
(10) 6.15 g / cm containing rare earth-iron-nitrogen-hydrogen-oxygen based magnetic material3The solid material for a magnet according to any one of the above (1) to (9), which has a higher density.
(11) The solid material for a magnet according to any one of the above (1) to (9), which contains 80 to 97% by volume of a rare earth-iron-nitrogen-hydrogen-oxygen-based magnetic material.
[0019]
(12) Components other than the rare earth-iron-nitrogen-hydrogen-oxygen based magnetic material have a density of 6.5 g / cm.3The solid material for a magnet according to the above (11), which is the following element, compound or mixture thereof.
(13) The magnet according to any one of the above (11) to (12), wherein the portion other than the rare earth-iron-nitrogen-hydrogen-oxygen-based magnetic material contains at least one of air and an inert gas. For solid materials.
(14) At least portions of oxides, fluorides, carbides, nitrides, hydrides, carbonates, sulfates, silicates, chlorides, and nitrates other than the rare earth-iron-nitrogen-hydrogen-oxygen magnetic material The solid material for a magnet according to any one of the above (11) to (13), comprising one kind.
(15) The solid material for a magnet according to any one of the above (11) to (14), wherein an organic substance is contained in a portion other than the rare earth-iron-nitrogen-hydrogen-oxygen-based magnetic material.
[0020]
(16) Residual magnetic flux density B at normal temperaturer, Coercivity H at room temperaturecJ, Permeance coefficient P when used as a magnetcAnd maximum operating temperature TmaxIs μ0Is the vacuum permeability,
Br≤μ0HcJ(Pc+1) (11000-50Tmax) / (10000-6T)max)
The solid material for a magnet according to any one of the above (1) to (15), wherein
(17) Coercive force HcJIs 0.76 MA / m or more, and the squareness ratio Br/ JsIs not less than 95%, the solid material for a magnet according to any one of the above (1) to (16).
(18) The soft magnetic material containing at least one element selected from Fe, Co, and Ni is uniformly dispersed and integrated with the rare earth-iron-nitrogen-hydrogen-oxygen-based magnetic material. (1) The solid material for a magnet according to any one of (1) to (17).
(19) At least one magnetic material selected from a rare earth-iron-boron magnetic material, a rare earth-cobalt magnetic material, and a ferrite magnetic material is uniformly added to the rare earth-iron-nitrogen-hydrogen-oxygen magnetic material. The solid material for a magnet according to any one of the above (1) to (18), which is mixed and integrated.
(20) The solid material for a magnet according to any one of the above (1) to (19), wherein a nonmagnetic phase is present at a grain boundary of the magnetic material.
[0021]
(21) A solid material for a magnet, wherein the solid material for a magnet according to any of the above (1) to (20) and a soft magnetic solid metal material are joined and integrated.
(22) A solid for a magnet having a soft magnetic layer, wherein the soft magnetic layer and the solid material for a magnet according to any one of (1) to (21) are alternately laminated and integrated. material.
(23) A solid material for a magnet, wherein at least a part of the solid material for a magnet according to any of (1) to (22) is covered with a non-magnetic solid material.
(24) The solid material for a magnet according to any one of the above (1) to (23), which is provided with magnetic anisotropy.
(25) The solid material for a magnet according to any one of (1) to (24), wherein the solid material is formed into a prism, a cylinder, a ring, a disk, or a plate.
[0022]
(26) A magnetic material obtained by reacting Zn at a grain boundary or a surface of the magnetic material according to any one of the above (1) to (7).
(27) The magnet according to any one of (1) to (26) above, wherein the raw material powder of the rare earth-iron-nitrogen-hydrogen-oxygen-based magnetic material is subjected to impact compression and solidification using an underwater shock wave. A method for producing a solid material.
(28) The method for producing a solid material for a magnet according to any one of the above (1) to (26), wherein the material is shock-compressed and solidified using an underwater shock wave having a shock wave pressure of 3 to 40 GPa.
(29) The method for producing a solid material for a magnet according to the above (10), wherein the solid material is subjected to impact compression and solidification using an underwater shock wave having a shock wave pressure of 3 to 30 GPa.
(30) The method for producing a solid material for a magnet according to the above (10), wherein the material is shock-compressed and solidified using an underwater shock wave having a shock wave pressure of 8 to 40 GPa.
[0023]
(31) The method for producing a solid material for a magnet according to any one of the above (11) to (15), wherein the material is shock-compressed and solidified using an underwater shock wave having a shock wave pressure of 3 to 22 GPa.
(32) The method for producing a solid material for a magnet according to any one of the above (1) to (26), wherein the compacting of the raw material powder is performed in a magnetic field.
(33) The method for producing a solid material for a magnet according to any one of the above (1) to (26), wherein the raw material powder is compacted, and then subjected to impact compression and solidification using an underwater shock wave.
(34) The method for producing a solid material for a magnet according to the above (1) to (26), wherein the raw material powder is compacted in a magnetic field, and then subjected to impact compression and solidification using an underwater shock wave.
(35) The method for producing a solid material for a magnet according to the above (1) to (26), wherein the solid material is formed by cutting and / or plastic working.
[0024]
(36) The method according to any one of (28) to (36), further comprising a step of heat-treating the material at least once at a temperature of 100 ° C. or higher and lower than the decomposition temperature.
(37) A component for use in an apparatus utilizing a static magnetic field of a magnet, wherein the component uses the solid material for a magnet according to any of (1) to (26) above.
(38) Maximum operating temperature T using static magnetic field of magnetmaxIs a device having a temperature of 100 ° C. or higher, wherein the component (38) is used as the component.
Is provided.
[0025]
Here, the solid material refers to a lump-shaped material. Further, the solid material for magnet as used herein refers to a massive magnetic material, and powders of the magnetic material constituting the solid material for magnet are continuously bonded directly or via a metal phase or an inorganic phase. The magnetic material is in a lump as a whole. A state in which the magnet is magnetized by magnetization and exhibits a residual magnetic flux density is particularly called a magnet. The magnet also belongs to the category of the solid material for magnets referred to herein.
The rare earth element referred to here is Y in Group IIIa of the periodic table and 15 elements in the La series from atomic number 57 to 71, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, and Ho. , Er, Tm, Yb, Lu.
The term “decomposition” as used herein means that an α-Fe decomposition phase is generated as the crystal structure of the R—Fe—N—H—O-based magnetic material powder changes. Has a bad influence on the magnetic properties, so that the above decomposition is a phenomenon to be prevented. However, in the step of producing the raw material used in the present invention and the step of producing the solid material for a magnet of the present invention, the layer containing oxygen may be amorphized, but this phenomenon is distinguished from the decomposition referred to in the present invention. .
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail focusing on particularly preferred embodiments.
The R-Fe-NHO-based magnetic material used for the solid material for a magnet of the present invention is prepared by a known method.
For example, a rare earth-iron alloy is prepared by a high-frequency method, a super-quenching method, an R / D method, an HDDR method, a mechanical alloying method, a mechanical grinding method, and the like. -Hydrogenation treatment is performed in an atmosphere of a hydrogen mixed gas, an ammonia-hydrogen mixed gas or the like to perform fine pulverization to prepare an R-Fe-NHO-based magnetic material. During these steps, it is important to control the type and concentration of the oxygen source. Coarse pulverization or fine pulverization may not be performed depending on the composition of the magnetic material, the processing method of the alloy, or the nitriding method.
[0027]
In the present invention, it is important that at any stage of the process, hydrogen gas, ammonia gas, or a hydrogen-containing compound such as a compound containing hydrogen is introduced to introduce not only nitrogen but also hydrogen. That is, the hydrogen content of the R—Fe—N—H—O-based magnetic material is preferably 0.01 atomic% or more. When the amount of hydrogen is less than 0.01 atomic%, an α-Fe decomposition phase and a rare earth nitride decomposition phase are often generated, and the coercive force is lowered, and the corrosion resistance is sometimes lowered. If the hydrogen content is 0.1 atomic% or more, it is a more preferable raw material for a solid material for a magnet.
[0028]
Similarly, in the present invention, in an atmosphere in which the powder is processed at any stage of the process, for example, a gas or a solvent in a pulverizing process, a pulverizing jig such as a container, a gas composition or a degree of vacuum in a heat treatment process, or the like. It is important to bring into contact with an oxygen source which is a substance containing oxygen such as dissolved oxygen, moisture, and oxide, and to introduce oxygen while controlling the oxygen source. That is, the oxygen content of the R—Fe—N—H—O-based magnetic material is preferably 0.01 atomic% or more. If the oxygen content is less than 0.01 atomic%, the coercive force is reduced, and the corrosion resistance may be further reduced, which is not preferable. Further, in order to obtain a stable material having a high coercive force, it is desired that the oxygen content is preferably 0.1 atomic% or more, more preferably 1 atomic% or more.
[0029]
Further, the crystal structure of the R-Fe-NHO-based magnetic material, in which hydrogen and oxygen can be simultaneously controlled and introduced by controlling the amount of water vapor and the amount of water in the pulverizing atmosphere, for example, Th2Zn17Rhombohedral crystal having a type crystal structure or the like or a crystal structure similar thereto, or Th2Ni17, TbCu7, CaZn5Hexagonal crystal having a crystal structure such as a type crystal structure or a crystal structure similar thereto,2Fe14BNxType, R2Fe14CNxType and R (Fe1-yMy)12NxExamples include a type or a tetragonal crystal having a similar crystal structure, and it is necessary to include at least one of them. Th in this2Zn17Rhombohedral crystal having a type crystal structure or the like or a crystal structure similar thereto, or Th2Ni17, TbCu7, CaZn5It is preferable that the hexagonal crystal having a type crystal structure or the like or a crystal structure similar thereto is contained in 50% by volume or more of the entire R—Fe—N—H—O-based magnetic material.2Zn17Most preferably, the rhombohedral crystal having a type crystal structure or the like or a crystal structure similar thereto is contained in 50% by volume or more of the entire R-Fe-NHO-based material.
[0030]
In the present invention, the volume fraction of the R—Fe—N—H—O-based magnetic material with respect to the entire solid material for a magnet is preferably set to 50 to 100% by volume. However, when the magnet solid material is composed only of the R—Fe—N—H—O-based magnetic material, or when the magnet solid material is a composite material with a gas or an organic substance, R− The volume fraction of the Fe—N—H—O based magnetic material is preferably 80 to 100% by volume. If it is less than 80% by volume, the continuous bonding between the magnetic powders is insufficient, and a solid material for a magnet cannot be formed. However, in addition to the R—Fe—N—H—O based magnetic material, a hard magnetic material such as a rare earth-iron-boron based magnetic material, a soft magnetic material such as Co, and a nonmagnetic phase that is a metal or an inorganic substance are included. In this case, the solid material volume fraction, which is a value obtained by adding the volume fraction of the R-Fe-N-HO-based magnetic material, may be in the range of 80 to 100% by volume.
[0031]
Here, the volume fraction refers to the ratio of the volume occupied by the magnetic material to the entire volume including the voids of the solid material for the magnet.
The R-Fe-NHO-based magnetic material described above is preferably obtained as a powder having an average particle size of 0.1 to 100 µm, and is supplied as a raw material of a solid material for a magnet. If the average particle size is less than 0.1 μm, the magnetic field orientation tends to be insufficient, and the residual magnetic flux density tends to be low. Conversely, if the average particle size exceeds 100 μm, the coercive force may be reduced depending on the material composition, and the production conditions for increasing the density may be severe, which tends to be less practical. In order to impart excellent magnetic field orientation, a more preferable range of the average particle size is 1 to 100 μm.
[0032]
Further, the R-Fe-NHO-based magnetic material is characterized by having high saturation magnetization, high Curie point, and large magnetic anisotropy. Therefore, in the R-Fe-NHO-based magnetic material which can be a single crystal powder, a solid material for an anisotropic magnet which can be easily magnetically oriented by an external magnetic field and has high magnetic properties. can do.
The preferred ranges of R and Fe as raw materials for a solid material for a magnet having both high magnetization and coercive force are 5 ≦ α ≦ 20 and 10 ≦ β ≦ 25, respectively.
[0033]
A preferable range of the M component in the raw material powder for obtaining a solid material for a magnet having a strong metal bond realized by the method of the present invention, which is almost 100% in the total filling rate, is 0.1 ° C. ° C. 10 is there. Further, the preferable range of the M component as a solid material for a magnet having a high coercive force and sufficiently high magnetization as compared with the metal binder magnet is 0.1 ≦ ε ≦ 5, and more preferably 0.1 ≦ ε ≦ 3. Magnetization and (BH)maxIn order to make the value extremely high, the value may be in the range of 0.1 ≦ ε ≦ 1, but in this case, the value of the coercive force tends to be unstable.
[0034]
Nd-Fe-B-based sintered magnets have extremely high magnetic properties and are widely used in actuators such as VCM and various motors. It is essential to perform surface treatment with nickel plating or epoxy resin coating.
On the other hand, in the case of a magnet using an R—Fe—N—H—O-based magnetic material, the above-described surface treatment is not required or can be simplified. In other words, in addition to being advantageous in terms of cost, when used as an actuator or a motor, the gap between the stator and the rotor can be reduced by the surface layer having low magnetism, so that there is an advantage that a large torque can be obtained for rotation and repetitive motion. , It can make the most of the magnetic force of the magnet. For this reason, for example, at room temperature (BH)maxEven when the value is inferior to that of the Nd-Fe-B-based magnet, the same performance can be exhibited. In the case of the magnet containing the R—Fe—N—H—O-based magnetic material, when the surface treatment is not required, the (BH)maxValue is 200 kJ / m3If it is above, it becomes a preferable magnet excellent in cost performance, and 240 kJ / m3It is more preferable if it is above. However, in the present invention, in the case of a solid material for a magnet having a pinning type magnetization reversal mechanism, the raw material magnetic powder itself is extremely excellent in thermal stability and corrosion resistance.maxValue is 200 kJ / m3It is preferably used even if the temperature is lower than (BH) at room temperature.maxValue is 100 kJ / m3It is desirable that there be.
[0035]
Further, an isotropic solid material for magnets is suitable for further low permeance applications and applications in which multi-polar magnetization is applied.maxValue is 150 kJ / m3It may be less than normal temperature (BH)maxValue is 50 kJ / m3It is desirable that there be.
The first aspect of the solid material for a magnet of the present invention is 7.45 g / cm.3It is a solid material for R-Fe-NHO-based magnets having a higher density. Since the magnetization and the magnetic flux density are proportional to the filling rate, the smaller the density, the lower the residual magnetic flux density, and the lower the maximum energy product.Therefore, in general, a solid material for a magnet with a high filling rate is preferably used for a high-performance magnet. . Further, since the R—Fe—N—H—O based magnet material is often a fine powder, if there are many passages of oxygen, such as voids, which are continuous pores, the surface of the fine powder is oxidized and deteriorated, and the coercive force Is a factor that causes a decrease. Therefore, depending on the material composition and application, it is necessary to sufficiently increase the density to prevent oxygen from entering from the surface, and it is required that the filling rate be 95% or more, preferably 98% or more. Filling near the surface may be required to be close to 100%.
[0036]
The filling rate as used herein means that the solid material for a magnet of the present invention is composed of only an R-Fe-N-HO-based magnetic material, Is the ratio of the true density to the true density. The true density referred to here is the density w / v obtained from the volume v of the R-Fe-N unit cell obtained from X-rays and the total atomic weight w of the atoms constituting the unit cell. Yes, it is generally called X-ray density Dx, and the density Dm of the solid material for the magnet can be determined by a macro method such as the Archimedes method or the volume method.
[0037]
In a combination of the material composition and the application in which the oxidative deterioration is remarkable, the density of the solid material for the magnet is 7.45 g / cm.3Preferably greater than 7.50 g / cm3More preferably greater than 7.55 g / cm3More preferably, greater than 7.60 g / cm3It is most preferred that this is the case. Also, depending on the composition of the raw material, the density is 8.0 g / cm.3On the other hand, if it exceeds, a phase other than the R-Fe-NHO phase having high magnetic properties is generated, and the magnetic properties often deteriorate, which is not preferable. Oxidation degradation is a phenomenon that involves the addition of undesired oxygen to the magnetic properties of solid materials for magnets and the accompanying decomposition of the R-Fe-NHO-based magnetic material due to an external oxygen source. It has different properties from the introduction of oxygen into the magnet solid material and its raw material powder.
[0038]
Depending on the manufacturing method and conditions, as the volume of the solid material for magnets increases, the filling rate in the interior may decrease, but even in this case, the filling rate of the surface layer is sufficiently increased and the thickness is sufficiently large. Then, it can be used as a practical magnet.
However, when the solid material for the magnet is composed only of the R—Fe—N—H—O-based material and the balance is air, the density is 6.15 g / cm.3In the following, when forming a magnet of any form and volume, the magnet contains a lot of voids, and often cracks and breaks up due to impact or load, causing cracks, or as described above. Coercive force tends to decrease.
[0039]
According to the method of the present invention, only 5 cm of R-Fe-NHO-based magnetic material is used as a raw material.3When preparing the following solid material for magnets, 7.60 g / cm3Can be obtained relatively easily, for example, 0.1 m3In the case where a solid material for a magnet having a volume of 7.45 g / cm.3The following parts of density may occur: However, even in such a case, even at a part in the surface layer portion, 7.60 g / cm.3When it is a solid material for a magnet having a density exceeding the above, it can be said that it has oxidation resistance, has high magnetic properties, and belongs to the category of the solid material for a magnet of the present invention.
[0040]
By the way, Th which does not contain hydrogen2Zn17The type R-Fe-N-based magnetic material has a nitrogen content of R2Fe17Less than 3 per thermodynamically unstable R2Fe17N3- ΔPhases form. This phase is easily decomposed into an α-Fe decomposition phase and a rare earth nitride by thermal and mechanical energy. As a result, a high-performance solid material for a magnet cannot be obtained by the conventional shock wave compression method.
On the other hand, if the hydrogen is controlled within the range specified above, the main phase usually has a thermodynamically stable R2Fe17N3HxR containing phase or excess nitrogen2Fe17N3+ ΔHxPhase (usually x is in the range of about 0.01 to 2) to decompose into α-Fe decomposition phase and rare earth nitride by thermal and mechanical energy.2Zn17It is significantly suppressed as compared with the type R—Fe—N based magnetic material.
[0041]
This is an important finding for obtaining a solid material for magnets having a high density, high magnetic properties, and excellent thermal stability and oxidation resistance.
Oxygen in the R—Fe—N—H—O-based raw material powder is stable R2Fe17N3HxIt is not necessary that the total amount be contained in the phase, but it is localized around this ferromagnetic layer, and R-Fe-NHO, R-Fe-HO, R-Fe-O, R-Fe- N-H-O-M, R-Fe-H-O-M, R-Fe-O-M, etc., any composition containing at least one of R, Fe, N, H, M and O and O In some cases, it is preferable to take a structure in which a crystalline phase is formed from the viewpoint of stability of magnetic properties. As an example of the structure of such a magnetic powder, J. Pharm. Alloys and Compounds. 193, p. 235, an oxygen-enriched amorphous layer of about 100 nm is present on the surface of a ferromagnetic R-Fe-NHO fine powder produced under certain conditions. It has been reported to take the structure. When the layer containing a large amount of oxygen is decomposed and changes to the α-Fe decomposition phase, the coercive force is greatly reduced. Since the decomposition of the amorphous phase is also induced by the conventional shock wave compression method, another reason that it is difficult for the conventional method to make the R-Fe-N-HO-based material a high-performance solid material for magnets is as follows. Has become.
[0042]
As the R-Fe-N-HO-based magnetic material used in the present invention, various magnetic materials having different magnetization reversal mechanisms such as nucleation type, pinning type, exchange spring type and exchange coupling type are used as solid materials for magnets. Can be. Since all of these magnetic materials undergo a decomposition reaction at a temperature exceeding 600 ° C., they cannot be made into solid materials for magnets by a sintering method in which the density is increased at a high temperature. It is a group of materials that are very effective to be formed by the method.
As described above, the R-Fe-NHO-based magnetic material is significantly suppressed from being decomposed by thermal and mechanical energy as compared with the R-Fe-N-based magnetic material containing no H, If this is decomposed to produce a large α-Fe decomposition phase and a rare earth nitride phase having a large particle size exceeding about 100 nm, the α-Fe decomposition phase is contained despite a large amount of expensive rare earths. The phase becomes buds of reversed magnetic domains, and the coercive force is undesirably reduced.
[0043]
Therefore, Fe-Ni, Fe-Co-Ni and their nitrides, such as Fe, Co, Fe-Co, and permalloy, and the above-mentioned components as sub-phases of the R-Fe-N-HO-based magnetic material in advance When containing a soft magnetic phase such as an alloy or a compound with the above-mentioned M component, a practical coercive force is obtained by adjusting the particle size or thickness of the soft magnetic phase to about 5 to 100 nm. In addition to being able to maintain, the amount of expensive rare earth elements can be saved, and a magnet with high cost performance can be obtained.
[0044]
These soft magnetic subphases have an effect of improving the residual magnetic flux density of the R—Fe—N—H—O-based magnetic material. However, if the particle size or thickness of the soft magnetic phase is less than 5 nm, the saturation magnetization becomes small, and if it exceeds 100 nm, the anisotropy due to exchange coupling between the soft magnetic phase and the hard magnetic phase and between the soft magnetic phases. Cannot be maintained, and the coercive force becomes low due to buds of reverse magnetic domains, which is not preferable.
In order to achieve such a microstructure, as a method for producing an R-Fe raw material, a known method of adding an M component to obtain an R-Fe-M raw material by a super-quenching method, a mechanical alloying method or a mechanical grinding method A known method such as a method, or a method of producing an R-Fe or R-Fe-M raw material by a pulverization method according to the known method can be adopted.
At this time, the amount of the soft magnetic subphase is preferably 5 to 50% by volume. If it is less than 5% by volume, the coercive force becomes relatively high, but the residual magnetic flux density does not become much higher than that of the R—Fe—N—H—O-based material alone. The magnetic flux density increases, but the coercive force decreases, and both are high (BH)maxTend not to be obtained. A more preferable range of the amount of the soft magnetic phase is 10 to 40% by volume.
[0045]
Further, rare earth-iron-boron based magnetic materials such as Nd-Fe-B based materials, SmCo5System and Sm2Co17One or more hard magnetic powders such as rare-earth-cobalt-based magnetic materials and ferrite-based magnetic materials such as R-Fe-N-H-O-based magnetic materials are contained in a range of 50% by volume or less. By mixing with the material, it is possible to obtain a solid material for a magnet in which various practical requirements such as magnetic properties, thermal stability, and cost are optimized according to the application.
[0046]
In general, the more rare-earth-iron-boron-based materials are included, the higher the overall magnetic properties are. However, the corrosion resistance is reduced and the cost is increased. The more rare-earth-cobalt-based magnetic materials are included, the higher the thermal stability is. However, the magnetic properties are reduced and the cost is increased. As the ferrite-based magnetic material is included more, the cost is reduced and the temperature properties are improved, but the magnetic properties are greatly reduced. Mixing the R-Fe-N-H-O-based magnetic material with another magnetic material having an extremely different particle size has the advantage that the condition for increasing the filling rate is broadened.
The solid material for a magnet of the present invention may have a non-magnetic phase at the grain boundaries of the R-Fe-NHO-based magnetic material, particularly for the purpose of providing a magnet having a high coercive force and a high squareness ratio. it can.
[0047]
As the method, there are known methods such as Japanese Patent No. 2739860 and Japanese Patent No. 2705895, for example, a method of mixing a magnetic powder and a non-magnetic component and performing a heat treatment, and a method of plating the surface of the magnetic powder. A method of coating the surface of a magnetic powder with a non-magnetic component by various vapor deposition methods, a method of treating a magnetic powder with an organic metal, and photodecomposing the organic metal to coat the surface of the powder as a metal component. . Further, a method of mixing an R—Fe—N—H—O-based magnetic material and a non-magnetic component, compression-molding the mixture, and compressing by a shock wave is also possible. Since the solid material for magnets has a strong and dense grain boundary structure, a high coercive force and a high filling rate can be achieved with a smaller amount of binder than a metal binder magnet, and the oxidation resistance is good. In these materials, as long as the R—Fe—N—H—O based magnetic material powders have a strong bond without any intervening nonmagnetic phase, a solid material for a magnet that satisfies mechanical strength. It can be.
[0048]
As the non-magnetic component, any of an inorganic component and an organic component can be used, and each low-melting point metal having a melting point of 1000 ° C. or less, preferably 500 ° C. or less, such as Zn, In, Sn, and Ga, is preferable. When used, the coercive force increases dramatically, and the thermal stability also improves. In order to realize high magnetic properties, the volume fraction of the nonmagnetic phase, including the amount previously contained in the R—Fe—N—H—O-based magnetic material, is preferably 10% by volume or less, and more preferably 5% by volume. It is preferably at most 3% by volume, most preferably at most 3% by volume. On the other hand, if it is less than 0.1% by volume, the effect of the non-magnetic phase on the coercive force is hardly observed.
[0049]
The solid material for a magnet of the present invention can realize higher cost performance by being joined to and integrated with a soft magnetic solid metal material. The magnetic flux density can be enhanced by combining Fe material, Fe-Co material, silicon steel plate and the like with the solid material for the R-Fe-NHO-based magnet, and furthermore, those materials and Ni or By laminating a material containing Ni, workability and corrosion resistance can be further increased.
1 and 2 show examples in which a solid material for an R-Fe-NHO-based magnet and a soft magnetic material are joined and integrated.
[0050]
FIG. 1 is a cross section of a solid material for a magnet obtained by joining and integrating an R—Fe—N—H—O based magnetic material (hard magnetic layer) and a soft magnetic solid metal (soft magnetic layer). An example is shown below.
FIG. 2 shows an example of a cross section of a solid material for a magnet in which R—Fe—N—H—O based magnetic material layers (hard magnetic layers) and soft magnetic layers are alternately laminated and integrated. With the configuration shown in FIG. 2, cost reduction can be achieved without impairing the surface magnetic flux density of the magnet.
[0051]
As a feature of the present invention, when the R-Fe-NHO-based magnetic material powder and the soft magnetic bulk material or the powder are mixed and shock-wave compressed simultaneously without mixing, the R-Fe-N-H -The solidification of the O-based magnetic material and the integration with the soft magnetic material can be performed at the same time, and there is no need to perform cutting, welding, bonding with an adhesive, etc. for integration in a later process. large.
As shown in FIG. 3, a part or all of the surface of the solid material for a magnet of the present invention can be covered with a non-magnetic solid material.
[0052]
FIG. 3 illustrates a cross section of a solid material for a magnet covered with a nonmagnetic material. The solid material for magnets, whose entire surface is covered with a non-magnetic material, has the effect of increasing corrosion resistance, and in applications in harsh environments of high temperature and high humidity, a non-magnetic material is coated even if the magnetic properties are slightly sacrificed. In some cases, it is better. Examples of the non-magnetic substance include organic substances, polymers, inorganic substances, and non-magnetic metals having a high decomposition temperature and a high melting point. However, in applications where thermal stability is particularly required, coating with a non-magnetic metal or an inorganic substance is preferable. Also in this case, when the R-Fe-N-H-O-based magnetic material powder and the non-magnetic solid material or the powder are simultaneously charged without being mixed and subjected to shock wave compression, the R-Fe-N-H- The solidification of the O-based magnetic material and the integration with the non-magnetic material can be performed simultaneously.
[0053]
In order to make the solid material for magnet anisotropic and to make it a magnet, the magnet is usually magnetized. At this time, a large impact is applied to the solid material for magnet, and the R-Fe-N-HO system solidified densely Even with a solid material for a magnet, it may cause cracking or chipping. For this reason, depending on the magnetic field or the magnetization method, it is preferable to cover a part or the whole of the magnet surface with a non-magnetic solid material to obtain a solid material for magnets having high impact resistance.
[0054]
FIG. 4 shows an example of a cross section of another solid material for a magnet according to the present invention. That is, a solid material for a magnet as shown in FIG. 4 can also be formed by combining an R—Fe—N—H—O based magnetic material with a soft magnetic material and a non-magnetic material.
The solid material for a magnet of the present invention is characterized by having excellent magnetic properties after magnetization. When the R—Fe—N—H—O-based material is a magnetic anisotropic material, it is desirable to orient the magnetic powder in a magnetic field of 80 kA / m or more, preferably 800 kA / m or more during compression molding. . Furthermore, it is desirable to increase the residual magnetic flux density and coercive force by magnetizing with a static magnetic field or a pulse magnetic field of 1.6 MA / m or more, more preferably 2.4 MA / m or more after the shock wave compression molding.
When the R—Fe—N—H—O based magnetic material is an isotropic material, the magnetic field orientation at the time of compression molding is unnecessary, but the magnetization is performed as described above to sufficiently magnetically anisotropy. It is essential to do.
[0055]
Further, when the solid material for a magnet is magnetized and used as a magnet, various shapes are required depending on the use. The solid material for magnets does not contain a resin binder, has a high density, and can be easily processed into an arbitrary shape by a normal processing machine by cutting and / or plastic working. In particular, it is a great feature that it can be easily processed into a prismatic, cylindrical, ring, disk, or plate shape having high industrial value. Once processed into these shapes, they can be further subjected to a cutting process or the like to be processed into a tile shape or a quadrangular prism having an arbitrary base shape. That is, it can be formed from any shape into any form surrounded by a curved surface including a cylindrical surface and a flat surface by easily performing cutting and / or plastic working. The term “cutting” as used herein refers to cutting of general metal materials, and is machining with a saw, a lathe, a milling machine, a drilling machine, a grindstone, and the like. Molding. In addition, heat treatment such as annealing at a temperature lower than the decomposition temperature of the magnetic material powder can be performed to remove the strain after the cold working. Depending on the composition of the magnetic material powder, it is possible to impart or strengthen magnetic anisotropy by plastic working, and it is also possible to adjust the coercive force by combining it with heat treatment. The heat treatment can be used to anneal the strain generated after the shock wave compression described later or to adjust the fine structure to improve various magnetic properties. Furthermore, when the R-Fe-N-H-O-based magnetic material contains a low melting point metal, heat treatment is performed simultaneously with or before and after compacting to strengthen the temporary bond between the magnetic powders. It can also be used to facilitate the handling of The heat treatment temperature is selected in the range of 100 ° C. or more and less than the decomposition temperature, and before, during, and after each step of producing the solid material for magnets of the present invention in addition to the above-described examples, and further for the solid material for magnets of the present invention. The heat treatment can be performed at an arbitrary stage such as the raw material preparation step selected in the above.
[0056]
A second aspect of the solid material for a magnet according to the present invention is a material containing 80 to 97% by volume of an R-Fe-NHO-based magnetic material. The purpose of this embodiment is to provide a solid material for a magnet which is lightweight and has excellent magnetic properties and stability, and has a completely different purpose from the first embodiment. In this embodiment, the portion of 3 to 20% by volume other than the R—Fe—N—H—O-based material may be air depending on the use or material composition, but may be vacuum or have a density of 6.5 g / cm.3The following elements, compounds, or mixtures thereof may be used.
[0057]
The density of the solid material for a magnet according to the second aspect of the present invention is 6.15 to 7.45 g / cm in order to take advantage of its characteristics.3It is preferable that 6.15 g / cm3Even if the amount is less than 80% by volume, the component of the R-Fe-NHO-based magnetic material may be preferable. Further, even when the R—Fe—N—H—O based magnetic material is 97 vol% or less, it is 7.45 g / cm.3In some cases, and the characteristics of the solid material for magnets of the present invention, which is lighter than existing solid magnets, may not be utilized. For example, Sm2Fe17N3H0.1The true density of the magnetic material is 7.69 g / cm3(See IEEE Trans. Magn., MAG-28, p. 2326, and Powder Diffraction File WZ1430 by ICDD), but it is assumed that a portion other than the magnetic material is a gas whose density is low enough to be neglected. When the content of the magnetic material is 80 to 97% by volume at 0.1 atomic% or less, the density of the solid material for the R-Fe-NHO-based magnet is 6.15 to 7.46.
[0058]
The solid material for a magnet of the present invention is a polycrystalline material, and may include an interface phase different from the R-Fe-N-HO main phase. Does not necessarily match Dx. Therefore, in the present invention, it is often more appropriate to use the value of Dm itself as a guideline than to judge the degree of packing of the solid material for magnet by the filling rate Dm / Dx.
The relationship between the volume fraction and the density of the R-Fe-NHO-based material changes depending on the composition of the R-Fe-NHO-based material and the type of the portion other than the magnetic material. A magnetic material content of 80% by volume or more is required for a good magnet solid material, and 7.45 g / cm for a lightweight magnet solid material.3Since the following density is required, a more preferable solid material for a magnet contains an R-Fe-NHO-based magnetic material in an amount of 80 to 97% by volume and has a density of 6.15 to 7.45 g / cm.3Are in the range of
[0059]
More preferably, the range of the volume fraction of the R—Fe—N—H—O-based magnetic material or the density of the solid material for the magnet is 83 to 97% by volume for applications requiring thermal stability. Density 6.35 to 7.45 g / cm3Is selected, and in order to obtain a lightweight magnet having excellent mechanical strength, magnetic properties, and thermal stability, it is 85 to 96% by volume and has a density of 6.50 to 7.40 g / cm.3Is selected.
In the solid material for a magnet of the present invention, components other than the R—Fe—N—H—O based magnetic material have a density of 6.5 g / cm.3The following elements, compounds or mixtures thereof are preferred. Density 6.5 g / cm3If the magnetic material is an element exceeding the above, the density of the entire solid material for a magnet is 7.45 g / cm even if the volume fraction of the magnetic material is limited to 80%.3In many cases, the characteristics of the second aspect of the present invention, which is lightweight, cannot be utilized, which is not preferable.
[0060]
Density 6.5 g / cm3The following elements include Al, Ar, B, Be, Br, C, Ca, Cl, F, Ga, Ge, H, He, Kr, Mg, N, Ne, O, P, S, Se, Si, Te, Ti, V, Y, Zr and the like can be mentioned. In addition, these compounds, alloys, and a density of 6.5 g / cm3Even when the above elements are contained, the density of the compound or alloy is 6.5 g / cm such as Mn-Al-C or Al-Cu-Mg alloy.3The density is 6.5 g / cm in the following or a mixture such as Bi-Al having a volume ratio of 1: 1.3It is preferable to select the following.
The portion other than the R-Fe-NHO-based magnetic material has a density of 6.5 g / cm.3The following gases, for example, nitrogen gas, at least one of inert gases such as He, Ar, and Ne, and a reducing gas such as hydrogen gas and ammonia gas may be used. These solid materials for magnetic material-gas composite magnets are characterized by being lightweight.
[0061]
The portion other than the R—Fe—N—H—O based magnetic material has a density of 6.5 g / cm.3The following MgO, Al2O3, ZrO2, SiO2, Oxides such as ferrite, CaF2, AlF3Such as fluoride, carbide such as TiC, SiC and ZrC, Si3N4, ZnN, AlN, and the like, and a hydride, a carbonate, a sulfate, a silicate, a chloride, a nitrate, or a mixture thereof.
Among them, especially BaO.6Fe2O3System, SrO.6Fe2O3Magnetic properties and stability thereof can be improved by incorporating a hard magnetic ferrite such as a ferrite-based ferrite or a La-added ferrite, and in some cases, a Mn-Zn-based or Ni-Zn-based soft magnetic ferrite. These solid materials for magnetic material-inorganic composite magnets have high mechanical strength and are excellent in thermal stability and magnetic properties.
[0062]
Further, the portion other than the R—Fe—N—H—O based magnetic material has a density of 6.5 g / cm.3The following organic substances may be used. For example, heat-resistant thermoplastics such as polyamide, polyimide, polyphenylene oxide, wholly aromatic polyester, resins called engineering resins, liquid crystal polymers, epoxy resins, phenol-modified epoxy resins, unsaturated polyester resins, alkyd resins, and fluorine resins Alternatively, if it is an organic substance having a glass transition point, softening point, melting point, and decomposition point of 100 ° C or more, such as a thermosetting resin, an organosilicon compound such as silicone rubber, an organometallic compound such as a coupling agent or a lubricant, etc. It can be used as a component of the solid material for a magnet of the invention.
[0063]
However, the volume fraction is 20% or less, preferably 17% or less, more preferably 10% or less, and most preferably 5% or less, and is determined by the metal bond of the R—Fe—N—H—O-based magnetic material. It must not interfere with solidification. This solid material for a magnetic material-organic composite magnet is excellent in impact resistance in spite of its light weight. However, in a severe environment of high temperature and high humidity, it may be better not to use a solid material for a magnetic material-organic composite magnet.
[0064]
The portion of the solid material for magnets other than the R—Fe—N—H—O-based magnetic material of the present invention may simultaneously contain two or more of the above gases, inorganic substances, and organic substances. For example, a solid material for an R-Fe-NHO-based magnetic material-inorganic-organic composite magnet having an air gap and containing silica-dispersed silicone rubber, and a nitrogen gas as an inert gas in the gap And a solid material for R-Fe-NHO-based magnetic material-gas-inorganic-organic composite magnet containing silicone rubber in which silica is dispersed and utilizing the characteristics of each component, It is desirable to use them properly.
[0065]
By the way, among the solid materials for magnets of the present invention using the R—Fe—N—H—O based magnetic material, there is a material group having the following characteristic microstructure. It has a filling rate of 80% by volume or more and forms a continuous phase by connecting magnetic powders together, and at the same time, forms a continuous phase only with an oxygen-enriched amorphous portion. Has a structure in which the crystal phases existing in each of them are isolated from each other in the amorphous phase. It can be said that the crystal phase forms a kind of sea-island structure in which the crystal phase floats in the amorphous phase sea like an island.
The crystalline phase does not contain oxygen or contains less oxygen than the amorphous phase. Due to this tendency, the crystalline phase becomes a ferromagnetic phase having a particularly high magnetization, and the amorphous phase tends to be a low-magnetization phase including a non-magnetic phase or a paramagnetic substance. In addition, since the crystalline phase and the amorphous phase are firmly bonded and integrated to form the solid material for the magnet of the present invention, the mechanical strength is high, the magnetic properties, especially the squareness ratio, are high, and the magnetic properties are stable. In particular, the material has high coercive force stability.
[0066]
When the volume fraction of the R-Fe-NH-based or R-Fe-NHO-based crystal phase in this sea-island structure is 25% by volume or more, magnetization and (BH) max are large, so that it is practical. It is a target. It is preferably at least 50% by volume, more preferably at least 75% by volume. Of course, since both the sea (amorphous phase) and the island (crystal phase) form part of the R—Fe—N—H—O-based magnetic material of the present invention, both the sea and the island The value obtained by adding the volume fraction, and in some cases, the value obtained by adding the volume fraction of the M component, become the volume fraction of the R-Fe-NHO-based magnetic material with respect to the entire solid material for the magnet. .
When manufacturing a solid material for a magnet having the above structure, it is often necessary to control the shock wave pressure within a small range so that the amorphous phase does not decompose and the magnetic properties and stability thereof are deteriorated.
[0067]
The solid material for a magnet of the present invention has a residual magnetic flux density B at room temperature.r, Coercivity H at room temperaturecJ, Permeance coefficient P when used as a magnetcAnd maximum operating temperature TmaxIs μ0Is the vacuum permeability,
Br≤μ0HcJ(Pc+1) (11000-50Tmax) / (10000-6T)max)
Is more desirable.
The above relational expression is an expression that determines a condition under which the magnet does not significantly demagnetize, and its meaning will be supplemented below. Here, the remarkable demagnetization refers to irreversible and large demagnetization, for example, demagnetization such that the irreversible demagnetization ratio exceeds -20% within 1000 hours.
[0068]
The H coordinate of the inflection point on the BH curve representing the change in magnetization with respect to the reverse magnetic field of the magnet is substantially H when the squareness ratio is approximately 100%.cJValue. If the operating point of the magnet comes to the high magnetic field side from the inflection point, it will be rapidly demagnetized and the performance of the magnet cannot be exhibited effectively, so the operating point should be on the low magnetic field side from the inflection point. is there. Therefore, the ratio of the magnetic flux density to the demagnetizing field, which is determined by the shape of the magnet, is defined as the internal permeance coefficient Pc0After assembling into a magnetic circuit or device as a magnet, the minimum permeance coefficient at each operating point determined by the magnitude of the reverse magnetic field applied to the magnet during operation is PcAnd Pc0And PcThe smaller value of PcminIn this case, significant demagnetization occurs unless it is at least within the range of the following expression (1).
[0069]
(Equation 1)
Figure 2004146542
[0070]
Equation (1) is a conditional equation at room temperature. At the temperature T ° C., the temperature coefficient of the residual magnetic flux density [α (Br)], The temperature coefficient of the coercive force [α (HcJ)] To rewrite the following equation (2) to determine the conditions under which no significant demagnetization occurs.
[0071]
(Equation 2)
Figure 2004146542
[0072]
Where Pc0Is PcIn the case where the magnetism is smaller and demagnetization occurs as soon as the magnetic field is removed even when magnetized, remarkable demagnetization can be avoided by installing a magnet in a yoke or the like before magnetizing, but at least ( 2) Unless the condition defined by the equation is satisfied, significant demagnetization due to the use of a magnet cannot be avoided.
Depending on the composition and temperature range of the R—Fe—N—H—O-based material, α (Br), Α (HcJ) Changes, but almost α (Br) Is −0.06% / ° C., α (HcJ) Is -0.5% / ° C. α (Br) Compared to α (HcJ) Has a larger absolute value and both values are negative values. Therefore, as T increases, the combination of positive values (Br, HcJArea) becomes smaller. Therefore, the magnet made of the solid material for a magnet of the present invention has a permeance coefficient Pc, The highest temperature T during operationmaxB in the range of equation (2) determined byrAnd HcJ, The demagnetization of the magnet can be reduced.
T = T in equation (2)max, Α (Br) = − 0.06, α (HcJ) = − 0.5, and rearranged as shown in the following equation (3).
[0073]
(Equation 3)
Figure 2004146542
[0074]
That is, when a magnet is used, Br, HcJ, Pc, TmaxIf satisfies the expression (3), it can be said that the magnet does not cause significant demagnetization. According to the equation (3), HcJIs larger, BrThe possible value of becomes larger. In order to obtain a magnet having high thermal stability and high magnetic properties, HcJIs preferably more than 0.62 MA / m.
[0075]
In the solid material for a magnet of the present invention, the most preferable embodiment is a solid material for a magnet in which Br is increased by increasing the volume fraction of the magnetic material, specifically, Th.2Zn17An R—Fe—N—H—O-based magnetic material having a rhombohedral crystal having a crystal structure or the like or a crystal structure similar thereto is filled with a filling factor of 95% or more, preferably 98% or more, and most preferably 99% or more. By setting the density of the solid material for a magnet to 7.45 g / cm3Above, more preferably 7.50 g / cm3Above, most preferably 7.60 g / cm3As described above, a solid material for a magnet having a high maximum energy product (BH) max at room temperature is a solid material for a magnet having magnetic properties satisfying the expression (3) in an intended use environment.
[0076]
By the way, by increasing the volume fraction of the magnetic material, BrThe maximum energy product at room temperature (BH)maxEven if a solid material for magnets with highmaxIs higher than, for example, 100 ° C. and deviates from the range of the expression (3), the demagnetization becomes remarkable, and the volume fraction of the magnetic material becomes low and BrIn some cases, the performance may not be different from that of a solid material for a magnet having a small size. That is, PcAnd TmaxCombination and H of solid material for magnetcJIn some cases, increasing the volume fraction of the R—Fe—N—H—O based magnetic materialrThere is no point in taking a big deal. Rather, the lower the volume fraction of the magnetic material, the lighter and more cost-effective solid material for the magnet.
[0077]
A specific example will be described. HcJ= 0.62 MA / m, and using a R-Fe-N-HO-based magnetic powder as a raw material and using shock wave compression, a solid material for magnets having a volume fraction of almost 100% under certain conditions can be obtained. can do. B at this timerExceeds 1.2T.
But Pc= 1, Tmax= 100 ° C, from the equation (3), BrDoes not need to be 0.99T or more. That is, in this case, B higher than 0.99TrEven if it is a solid material for a magnet having arThe performance will be the same as that of a magnet with a. Therefore, the volume fraction of the magnetic material is rather reduced to about 83 to 85%, and BrIt is preferable to use a magnet having a weight of about 0.99T and a magnet that is lightweight and inexpensive.
[0078]
The above is the minimum permeance coefficient determined by the magnet shape or magnetic circuit, operation, and Br, HcJ, Α (Br), Α (HcJ) Describes the thermal stability determined by the magnetic properties of the magnetic material, and is generally called the temperature characteristic of a magnet.
Another major cause of the decrease in thermal stability is that the magnetic powders are not sufficiently solidified by being bonded to each other by metal bonding. Originally, permanent magnets align the easy magnetization direction of the crystal to create a magnetostatic potential in the external world, but because they are magnetically non-equilibrium, the magnetic powders are sufficiently bonded and not fixed. Then, the direction of the easy magnetization direction is changed by rotating each magnetic powder in the matrix, and the stored magnetostatic energy is gradually reduced.
[0079]
For a material having a magnetic powder filling rate of less than 80%, for example, a bonded magnet, when the resin is softened or deteriorated at a high temperature of 100 ° C. or more, the above-described relaxation occurs relatively easily, resulting in remarkable demagnetization. . As the name implies, the bonded magnet is a magnet bonded by a binder, not a magnet solidified by metal bonding or ionic bonding. The lack of thermal stability can be said to be a problem due to this. On the other hand, in the material of the present invention, when the magnetic powder volume fraction is 80% or more, preferably 83% or more, more preferably 90% or more, and most preferably 95% or more, the magnetic powders are solidified by metal bonding. And such relaxation does not occur. As described above, in order to achieve satisfactory thermal stability at 100 ° C. or higher, it is necessary to set the lower and upper limits of the volume fraction of the magnetic material to specific ranges in accordance with the magnetic properties and use of the material. There is.
[0080]
The solid material for a magnet according to the present invention can provide a coercive force H when formed into a magnet without using a special method.cJIs 0.76 MA / m or more, and the squareness ratio Br/ JsIs 95% or more. Where JsIs the saturation magnetization at room temperature, and in the present invention, it is the magnetization value when the external magnetic field is 1.2 MA / m.
For example, Sm2Fe17N3H0.1OxSince the material has a nucleation type magnetic field reversal mechanism, the particle size and coercive force HcJHave a relationship that is almost inversely proportional. When the particle size is less than 2 μm, the coercive force exceeds 0.76 MA / m. In this region, the magnetic powder tends to agglomerate as the particle size becomes smaller. The degree drops sharply and the squareness decreases.
[0081]
Sm with ball mill2Fe17N3H0.1An R—Fe—N—H—O-based magnetic material (oxygen content: 0.1 to 5 atomic%) obtained by pulverizing a coarse powder is subjected to magnetic field compression molding with an external magnetic field of 1.2 MA / m, and the filling rate is 80%. In the green compact ofcJExceeds 0.74 MA / m, the squareness ratio sharply decreases and HcJIs 95% or less in a region of 0.76 MA / m or more.
When the solid material for a magnet according to the present invention is used, it is possible to make the structure finer when compacted by shock wave compression. Therefore, a compact having a high squareness ratio using a magnetic powder having a coercive force of less than 0.76 MA / m is used. A body is prepared, and this is compacted by shock wave compression and at the same time the coercive force is improved, so that a solid material for magnets having both a high squareness ratio and a high coercive force can be obtained. When the coercive force is in the range of 0.8 to 1.2 MA / m, the squareness ratio can be adjusted from 95% to almost 100% by adding a method of magnetic field orientation and components of the magnetic material. It is possible.
[0082]
Next, a method for producing the solid material for a magnet of the present invention, and in particular, a shock wave compression in which the solid material for a magnet of the present invention can be realized will be described. However, the production method of the present invention is not limited to this.
As a shock compression method using an underwater shock wave, the powder is compacted at the innermost portion of a double pipe, water is poured into an intermediate portion, an explosive is arranged on an outer peripheral portion, and the explosive is detonated. A method of introducing a shock wave into the water of the part, compressing the innermost powder, or compacting the powder into a closed container, putting it into the water, detonating the explosive in the water, the shock wave , The method of compressing the powder or the method disclosed in Japanese Patent No. 2951349 or Japanese Patent No. 3220212 can be selected. In either method, the following advantages of shock compression by underwater shock waves can be obtained.
[0083]
In the compression solidification step by the shock compression method of the present invention using underwater shock waves, the ultrahigh pressure shearing property and activation action of the shock waves induce the solidification action by the metallic bonding of the powder and the micronizing action of the structure, and the bulk It is possible to increase the coercive force together with the solidification. At this time, the duration of the shock pressure itself is longer than in the case of using a conventional shock wave, but the temperature rise due to the volume compression and the increase in entropy due to the nonlinear phenomenon of the shock wave disappears in a very short time (several μs or less). Decomposition and denitrification hardly occur. There is residual temperature even after compression using underwater shock waves. When the residual temperature is higher than the decomposition temperature (about 600 ° C. at normal pressure), decomposition of the R—Fe—N—H—O-based compound and the like is started, and the magnetic properties are deteriorated. However, in the case of underwater shock waves, it is much easier to keep the residual temperature low than in the case of conventional shock waves.
[0084]
That is, the underwater shock wave has the following characteristics.
(1) The pressure of the underwater shock wave is determined by the Hugonio relation between the explosive and the water, and the pressure P is roughly expressed by the following equation.
P = 288 (MPa) {(ρ / ρ0)7.25-1}
From the above equation, when the underwater shock wave is used, the reference value ρ of the water density ρ0Since the amount of increase in the pressure P with respect to the change with respect to the pressure is very large, an ultra-high pressure can be easily obtained by adjusting the amount of the explosive, and the temperature of the magnetic material at that time can be easily lowered to a lower temperature than in the case where a conventional shock wave is used. Will be retained.
(2) The duration of the impact pressure itself is long.
(3) The temperature rise of the magnetic material due to the increase in entropy based on the volume compression and the nonlinear phenomenon of the shock wave disappears in a very short time.
(4) The temperature of the magnetic material is rarely kept high thereafter, and is rarely kept long.
(5) The impact pressure is uniformly applied to the object to be compressed.
For the first time, due to these excellent characteristics of the underwater shock wave, the R-Fe-N-HO-based material does not undergo thermal decomposition and is easily compacted at high density.
Further, by performing compacting in a magnetic field, the axis of easy magnetization of the magnetic material powder can be aligned in one direction, and even if the obtained compact is solidified by impact compression solidification, the orientation is impaired. Instead, a solid material for magnets having magnetically uniaxial anisotropy can be obtained.
[0085]
In the present invention, the true density (for example, 7.7 g / cm) of the raw material magnetic powder is obtained by compression-solidification using an underwater shock wave having a shock wave pressure of 3 to 40 GPa.3), A solid material for magnets having a density exceeding 80% can be obtained. If the shock wave pressure is lower than 3 GPa, it is not always possible to obtain a solid material for a magnet having a filling factor exceeding 80%. On the other hand, if the shock wave pressure is higher than 40 GPa, decomposition products such as α-Fe decomposition phase are likely to be generated, which is not preferable. Further, when the R—Fe—N—H—O-based raw material magnetic powder of the present invention has an oxygen-enriched amorphous phase on the surface, the amorphous phase is not decomposed. It is preferable to set the following.
[0086]
When compression-solidification is performed using an underwater shock wave having a shock wave pressure of 3 to 40 GPa, a solid material for a magnet having a density exceeding 80% of the true density of the raw magnetic powder can be obtained with good reproducibility. In addition, when an underwater shock wave having a shock wave pressure of 6 to 40 GPa is used, a high-density solid material for a magnet having a filling rate exceeding 90% can be obtained. However, when a hard magnetic material such as a soft magnetic material, a rare earth-iron-boron magnetic material, and a solid component such as a non-magnetic phase are included in addition to the R-Fe-N-HO magnetic material, Is not determined only by the volume fraction of the R-Fe-NHO-based raw material magnetic powder with respect to the solid material for the magnet. However, in order to obtain a solid material for magnets having a volume fraction of R-Fe-N-H-O-based magnetic material of 50% by volume or more without decomposition, as in the above, water in a shock wave pressure range of 3 to 40 GPa is required. Shock waves need to be controlled. Also in this case, when the R-Fe-N-H-O-based raw material magnetic powder has the above-mentioned amorphous phase, it is preferable to control the shock wave pressure within a range of 3 to 30 GPa.
[0087]
Next, in the case of manufacturing a high-density solid magnet material according to the first aspect of the solid magnet material of the present invention, it is necessary to use an underwater shock wave having a shock wave pressure of 8 to 40 GPa. When the shock wave pressure is lower than 8 GPa, the density is not necessarily 7.45 g / cm.3The above bulk magnet cannot be obtained. If the shock wave pressure is higher than 40 GPa, decomposition products such as α-Fe decomposition phase may be generated, which is not preferable. Further, when the R—Fe—N—H—O-based raw material magnetic powder of the present invention has an oxygen-enriched amorphous phase on the surface, the amorphous phase is not decomposed. It is preferable to set the following.
[0088]
Furthermore, in the second embodiment of the present invention, when manufacturing a solid material for a magnet that is lightweight and has excellent high-temperature characteristics, in order to suppress the temperature rise of the green compact during impact compression, it is necessary to use impact compression. It is preferable to use an underwater shock wave having a shock wave pressure of 3 to 22 GPa. If the shock wave pressure is lower than 3 GPa, the density is not necessarily 6.15 g / cm.3The above solid material for magnets cannot be obtained. When the shock wave pressure is higher than 22 GPa, the density is 7.45 g / cm.3In many cases, the above-mentioned solid material for magnets is used, and when the shock wave pressure is higher than 40 GPa, decomposition products such as α-Fe decomposition phase may be generated, which is not preferable. Similarly to the above, when the R—Fe—N—H—O-based raw material of the present invention has an oxygen-enriched amorphous phase on the surface, the shock wave pressure is preferably set to 30 GPa or less.
[0089]
In addition, the density is 6.35 to 7.45 g / cm.3Range, and further 6.50 to 7.40 g / cm3In order to obtain a solid material for a magnet with good reproducibility, the shock wave pressure of the underwater shock wave is 3 to 20 GPa, and the shock wave pressure is 4 to 15 GPa. However, in the case of a solid material for a magnetic material-gas composite magnet, if the impact pressure is too high, the density can easily be 7.45 g / cm.3Therefore, it is preferable to use an underwater shock wave having a shock wave pressure of 3 to 15 GPa.
Although it has already been stated that it is important to introduce an oxygen component and a hydrogen component by bringing an oxygen source or a hydrogen source and an oxygen source into contact with each other in a method for producing an R—Fe—N—H-based magnetic material, It is also effective to use a method in which an oxygen source or a hydrogen source is present and brought into contact with a compression atmosphere to form a magnet solid material having a desired composition.
[0090]
In the method for producing a solid material for a magnet of the present invention, in order to impart anisotropy to the solid material for a magnet, compacting of the raw material powder can be performed in a magnetic field, and the raw material powder is compacted. Thereafter, it can be subjected to shock compression solidification using an underwater shock wave. Further, after the raw material powder is compacted in a magnetic field, it can be subjected to impact compression and solidification using underwater shock waves.
As described above, an R-Fe-NHO-based material containing hydrogen, which is thermally stable and hardly precipitates an α-Fe decomposition phase as a magnetic powder, is selected, and is subjected to the underwater shock wave compression solidification method. By solidifying, the solid material for magnet of the present invention can be produced for the first time.A magnet manufactured using this solid material for magnet has high magnetic properties, excellent oxidation resistance, and is similar to a bonded magnet. It does not contain a resin component as a binder for magnetic powder, so that it has excellent heat stability.
[0091]
Next, a component or an apparatus including a solid material for an R-Fe-NHO-based magnet according to a third embodiment of the present invention will be described.
For applications where the maximum use temperature Tmax is 100 ° C. or higher, conventional R—Fe—N—H—O bond magnets contain resin components and magnetic powders are not solidified by metal bonding. In addition, heat stability was inferior, and it was difficult to use. The solid material for a magnet of the present invention is excellent in thermal stability because the R-Fe-NHO-based magnetic powders are solidified by metal bonding even if they contain a resin component. Furthermore, B of solid material for magnetr, HcJIs the magnet PcAnd TmaxAnd in the region defined by the formula (3), a magnet that does not greatly demagnetize, is lightweight, has high cost performance, and has even more excellent thermal stability can be obtained.
TmaxThe upper limit is near the Curie point of R—Fe—N—H—O-based material, which exceeds 400 ° C., but depends on the composition and components of the solid material for magnets and the way in which it is used as a magnet.maxThe upper limit takes various values of 400 ° C. or less. For example, H coated with ZncJ= 1.6 MA / m, even if an R-Fe-NHO-based material havingmaxWhen is higher than 220 ° C., it is not preferable to use the solid material for a magnet of the present invention as a magnet.
[0092]
P of the magnet obtained from the solid material for a magnet of the present inventionc0Is from 0.01 to 100, more preferably from 0.1 to 10,c0, Br, HcJIf the combination of the values deviates from the range of the expression (1), a yoke is attached and then Pc0It is preferable to perform the magnetization after increasing the value.
[0093]
Various actuators, voice coil motors, and the like, using the static magnetic field of a magnet obtained from the solid material for a magnet of the present invention, in particular, the solid material for a magnet according to the second embodiment, or the solid material for a magnet satisfying the expression (3). Linear motors, motors for rotating machines as rotors or stators, of which motors for industrial machines and automobiles in particular, magnetic field sources for medical equipment and metal sorting machines, as well as magnetic field generators for analyzers such as VSM devices, ESR devices and accelerators Equipment and parts such as OA equipment such as source, magnetron traveling wave tube, printer head and optical pickup, undulator, wiggler, retarder, magnet roll, magnet chuck, various magnet sheets, etc.cExcept for special applications such as extremely small stepping motors, it can be used stably even in an environment of 100 ° C. or more without significant demagnetization.
[0094]
Depending on the application, it can be used at a temperature of 125 ° C. or higher.cJ> 0.7 (MA / m) and Pc> 1. Further, it can be used at 150 ° C. or higher.cJ> 0.8 (MA / m) and Pc> 2.
In addition, when used in these devices or parts, the solid material for the magnet of the present invention is subjected to various processes, and then the yokes and hole pieces of various shapes, various magnetic shunt materials are bonded, adhered, joined and used in combination. May be.
When the solid material for a magnet of the present invention is used as a rotor for a permanent magnet synchronous motor or as a hard magnetic material of its constituent material, the surface magnet structure rotor of the present invention has a rotating shaft cross section shown in FIGS. It can be structured. In addition, the embedded magnet structure rotor may have a rotating shaft sectional structure shown in FIGS.
[0095]
Hereinafter, the present invention will be described based on examples. The degree of decomposition of the R—Fe—N—H—O-based magnetic material was determined based on the X-ray diffraction diagram (Cu-Kα ray) of the molded solid material for magnets based on Th.2Zn17The ratio of the height b of the diffraction line derived from the α-Fe decomposition phase around 2θ = 44 ° to the height a of the strongest line in the diffraction line derived from the rhombohedral or hexagonal crystal structure including the type b / The judgment was made based on a. If this value is 0.2 or less, it can be said that the degree of decomposition is small. Preferably it is 0.1 or less. More preferably, it is 0.05 or less. In this case, it can be said that there is almost no decomposition.
However, in the above-described determination method, a material having a peak near 44 °, such as an Fe soft magnetic material, is originally contained in the R—Fe—N—H—O-based magnetic material that is a raw material of the solid material for the magnet. If not applicable. In this case, it is possible to use the relative ratio of b / a between the raw material containing the R—Fe—N—H—O based magnetic material and the solid material for the magnet as a measure of the presence or absence of decomposition.
The technical scope of the present invention is not limited by the following specific examples.
[0096]
[Example 1]
Sm with an average particle size of 60 μm2Fe17Master alloy with NH3Partial pressure 0.35atm, H2Oxygen partial pressure of 10 with a partial pressure of 0.65 atm 3After performing a hydrogenation of 7.2 ks at 465 ° C. in an ammonia-hydrogen mixed gas stream of atm-51.8 ks annealing was performed in an atm argon stream, and a hydrocarbon solvent having a dissolved oxygen content of 40 ppm and a water content of 20 ppm was used as a grinding solvent.-1The resulting mixture was pulverized by a ball mill charged in a nitrogen stream of atm so as to have an average particle diameter of about 2 μm to obtain an R-Fe-NHO-based magnetic material powder. This powder was compacted while performing magnetic field orientation in a magnetic field of 1.2 MA / m to obtain a compact. FIG. 13 is an explanatory diagram showing an example of an apparatus for performing a shock compression method using underwater shock waves. The obtained compact was put in a copper pipe 1 and fixed to a copper plug 2 as shown in FIG. Further, the copper pipe 3 is fixed to the copper plug 2, the gap is filled with water, a uniform gap is provided on the outer periphery, the paper cylinder 4 is arranged, and 280 g is inserted into the gap between the copper pipe 3 and the paper cylinder 4. Was charged, and the explosive was detonated from the detonating section 6 to detonate the explosive. At this time, the shock wave pressure was 16 GPa.
[0097]
Sm in which the volume fraction of the R-Fe-NHO-based magnetic material solidified from the pipe 1 after the impact compression is 100%8.5Fe72.3N12.7H2.8O3.7The solid material for a magnet having a composition was taken out, magnetized with a pulse magnetic field of 4.0 MA / m, and the magnetic properties were measured.r= 1.18T, coercive force HcJ= 0.78 MA / m, (BH)max= 264 kJ / m3Was obtained. Also, as a result of measuring the density by the Archimedes method, the density was 7.60 g / cm.3And the filling factor was 99%.
[0098]
Further, as a result of analysis by the X-ray diffraction method, the solidified solid material for the magnet hardly caused precipitation of the α-Fe decomposition phase, and Th2Zn17It was confirmed to have a rhombohedral crystal structure.
The same experiment was repeated many times by adjusting the amount of explosive.
When the shock wave pressure is lower than 4 GPa, the filling rate of the obtained solid material for magnet does not necessarily exceed 80%, and when the shock wave pressure is higher than 30 GPa, it is confirmed that decomposition products such as α-Fe decomposition phase are generated. It was also found that the shock wave pressure is preferably set to 3 to 30 GPa in order to obtain a magnet solid material having a filling factor of more than 80% with higher reproducibility. Further, it was also confirmed that by setting the shock wave pressure to 6 to 30 GPa, a solid material for a magnet having a filling factor of more than 90% can be obtained with good reproducibility.
[0099]
Also, the shock wave pressure has a density of 6.15 to 7.45 g / cm.3It was also found that the shock wave pressure is preferably set to 3 to 15 GPa in order to obtain the solid material for magnet with good reproducibility.
Further, the density is 7.45 g / cm.3It has also been found that it is preferable to set the shock wave pressure to 10 to 30 GPa in order to obtain a bulk magnet with a reproducibility of more than 0.1. At a shock wave pressure of 12 to 30 GPa, the density is 7.55 g / cm.3It has also been confirmed that bulk magnets exceeding the above can be obtained with good reproducibility.
[0100]
[Comparative Example 1]
Sm with an average particle size of 20 μm2Fe17Mother alloy N2The same as in Example 1 except that the nitriding was performed at 495 ° C. for 72 ks in a gas stream, except that the shock wave pressure was set to 18 GPa.9.1Fe77.7N13.2A solid material for a magnet having the following composition was produced.着 As a result of magnetizing this solid material for a magnet with a pulse magnetic field of 4.0 MA / m and measuring the magnetic properties, the residual magnetic flux density Br= 0.96 T, coercive force HcJ= 0.36 MA / m, (BH)max= 120kJ / m3Was obtained. The result of measuring the density by the Archimedes method was 7.50 g / cm.3Met.
The X-ray diffraction diagram of this material shows Th2Zn17In addition to the crystal structure of the rhombohedral crystal, diffraction lines derived from the α-Fe decomposition phase were also observed. Diffraction line of α-Fe decomposition phase at around 44 ° and Th2Zn17The intensity ratio b / a with the (303) strongest line indicating the crystal structure of the rhombohedral crystal was 0.21.
[0101]
[Comparative Example 2]
FIG. 14 is an explanatory diagram showing an example of an apparatus for performing impact compression by directly using the detonation wave of an explosive. Using this apparatus, the R—Fe—N—H—O-based magnetic powder having an average particle diameter of 2 μm obtained in Example 1 was put in a copper pipe 1 and fixed to a copper plug 2, and a uniform gap was formed around the outer periphery. The paper cylinder 4 was arranged, the same amount of the ammonium nitrate explosive 5 as in the example was loaded in the gap, and the explosive was detonated from the detonating section 6 to detonate the explosive. After the impact compression, a solidified sample was taken out of the pipe 1 and analyzed by an X-ray diffraction method. As a result, it was confirmed that SmN and a large amount of α-Fe decomposition phase were formed after the impact compression. It was found that the Fe-NHO compound was decomposed. At this time, the intensity ratio b / a of the diffraction lines was about 3.
[0102]
[Example 2]
A predetermined amount of Sm and Fe metal powder (weight ratio 16.85: 83.15) was subjected to mechanical alloying treatment for 180 ks by a vibrating ball mill using agate balls, and then 10-5Heat treatment was performed at 600 ° C. for 7.2 ks in a vacuum of atm or less. This powder contained about 30% by volume of Fe soft magnetic material. This powder is converted into NH3Partial pressure 0.35atm, H2Oxygen partial pressure 10 with a partial pressure of 0.65 atm 3Hydrogen nitride treatment was performed at 380 ° C. and 1.2 ks in an ammonia-hydrogen mixed gas stream of atm or less, and then heat treatment was performed in hydrogen at the same temperature for 300 s. Using this powder, as in Example 1, except that the shock wave pressure was set to 18 GPa,5.9Fe78.5N8.8H3.0O3.8A solid material for a magnet having the following composition was produced.
[0103]
As a result of magnetizing this solid material for a magnet with a pulse magnetic field of 4.0 MA / m and measuring the magnetic properties, the residual magnetic flux density Br= 1.22T, coercive force HcJ= 0.43 MA / m, (BH)max= 215kJ / m3Was obtained. In addition, the result of measuring the density by the Archimedes method was 7.74 g / cm.3Met.
The X-ray diffraction diagram of this material shows Th2Zn17Diffraction lines derived from α-Fe were also observed in addition to the crystal structure of the rhombohedral crystal. However, since this material was originally a material containing an Fe soft magnetic material that was not an α-Fe decomposition phase, it was decomposed by solidification. Whether or not a phase had occurred could not be determined exactly by X-ray diffraction. As a result of observation by a transmission electron microscope, the volume fraction of the Fe soft magnetic phase was about 30%, the crystal grain size was about 10 to 50 nm, and the R-Fe-N-H-O-based magnetic material was A solid material for magnets having a volume fraction of about 70% was obtained.
[0104]
[Example 3]
R-Fe-NHO-based powder having an average particle size of about 2 μm obtained in Example 1 and an Sm composition having an average particle size of about 25 μm11.5Co57.6Fe24.8Cu4.4Zr1.7Was charged into an agate mortar at a volume ratio of 50:50 and wet-mixed in cyclohexane having a dissolved oxygen content of 40 ppm and a water content of 30 ppm. This operation is performed with oxygen partial pressure-1Performed in glove box of atm.
Using this mixed powder, in the same manner as in Example 1, except that the shock wave pressure was set to 14 GPa, the R-Fe-N-O-based magnetic material having a 50% volume fraction of R-Fe-N- A solid material for an HO-based magnet (oxygen content: 1.7 atomic%) was produced. As a result of magnetizing this solid material for a magnet with a pulse magnetic field of 4.0 MA / m and measuring the magnetic properties, the residual magnetic flux density Br= 1.08T, coercive force HcJ= 0.85 MA / m, (BH)max= 215kJ / m3Met.
[0105]
[Example 4]
A Sm-Fe-Co-N-HO magnetic material having an average particle size of about 1 μm, in which a surface of an R-Fe-NHO-based magnetic material is coated with Zn metal by a known photolysis method using diethylzinc. A powder was prepared, and this powder was used in the same manner as in Example 1 except that the shock wave pressure was set to 16 GPa so that the volume fraction of the R—Fe—N—H—O-based magnetic material was 100%. Some Sm8.2Fe62.6Co6.9N12.2H3.3O3.8Zn3.0A solid material for a magnet having the following composition was produced.
As a result of magnetizing this solid material for a magnet with a pulse magnetic field of 4.0 MA / m and measuring the magnetic properties, the residual magnetic flux density Br= 1.24T, coercive force HcJ= 0.79 MA / m, (BH)max= 263 kJ / m3Met. The density is 7.71 g / cm3Met. Furthermore, as a result of the analysis by the X-ray diffraction method, the solidified solid material for the magnet is Th2Zn17It was confirmed to have a rhombohedral crystal structure. Diffraction line of α-Fe decomposition phase at around 44 ° and Th2Zn17The intensity ratio b / a with the (303) strongest line indicating the crystal structure of the rhombohedral crystal was 0.08.
[0106]
[Example 5]
As an R-Fe-NHO-based magnetic material, Sm-Fe-Co-Mn having a pinning type magnetization reversal mechanism and having an average particle diameter of 30 µm, which was obtained by a known method (Japanese Patent Application Laid-Open No. 8-55712). As in Example 1 except that the shock wave pressure was set to 14 GPa using the -NHO magnetic powder, the volume fraction of the R-Fe-NHO-based magnetic material was 100%. Yes, Sm8.5(Fe0.89Co0.11)66.6Mn3.6N18.5H2.6O0.2A solid material for a magnet having the following composition was produced. As a result of magnetizing this solid material for a magnet with a pulse magnetic field of 4.0 MA / m and measuring the magnetic properties, the residual magnetic flux density Br= 1.08T, coercive force HcJ= 0.39 MA / m, (BH)max= 128kJ / m3Met. The density determined by the volume method was 7.70 g / cm3. Further, the X-ray diffraction diagram of this material shows that Th2Zn17In addition to the crystal structure of the rhombohedral crystal, diffraction lines derived from the α-Fe decomposition phase were also observed. Diffraction line of α-Fe decomposition phase at around 44 ° and Th2Zn17The intensity ratio b / a with the (303) strongest line indicating the crystal structure of the rhombohedral crystal was 0.06.
[0107]
[Example 6]
Components other than the R—Fe—N—H—O based magnetic material are Al2O3The R-Fe-NHO-based magnetic material prepared in Example 1 was blended so that the volume fraction was 96%, and a solid material for a magnet in which the mixed powder was reduced in Example 1 was used. It was produced in the same manner as described above. However, the shock wave pressure was 15 GPa. Then, it is magnetized with a pulse magnetic field of 4.0 MA / m, and Br, HcJ, Squareness ratio Br/ Js, (BH)maxWas measured.
The results are shown in Table 1. Holding force HcJIs 0.83 MA / m, which is a large value, and a squareness ratio of 96% can be obtained.
[0108]
[Examples 7 to 9]
A solid material for a magnet was prepared in the same manner as in Example 1 except that the components other than the R—Fe—N—H—O-based magnetic material and the shock wave pressure were as shown in Table 1. Similarly, their various magnetic properties were measured. The results are shown in Table 1.
[0109]
[Examples 10 and 11 and Comparative Example 3]
Sm with an average particle size of 2.5 μm8.7Fe74.1N13.1H1.1O3.0Volume of the R—Fe—N—H—O-based magnetic material in the same manner as in Example 1 except that the magnetic powder was used and the shock wave pressure was 3 GPa (Example 10) and 23 GPa (Example 11). A solid material for a magnet having a fraction of 100% was produced. The magnetic properties of these magnet solid materials were measured in the same manner as in Example 1. The results are shown in Table 2.
Further, these solid materials for magnets are machined into disks of exactly the same shape, magnetized with a pulse magnetic field of 4.8 MA / m, andc0Was 2 magnets. These magnets were allowed to stand for 3.6 Ms in a thermostat at 125 ° C., taking care not to apply a reverse magnetic field as much as possible. The value of the magnetic flux before and after standing in the thermostat was measured using a sample withdrawing magnetic flux measuring device, and the rate of change of the magnetic flux, that is, the irreversible demagnetization rate (%) was determined. The results are shown in Table 2. It can be determined that the smaller the absolute value of the irreversible demagnetization rate, the better the thermal stability. In addition, the volume fraction of the R—Fe—N—H—O-based magnetic material is set to 60% by a known method.c0The irreversible demagnetization rate was determined in the same manner as above for an injection-molded bonded magnet (Comparative Example 3) which was not a solid material for a magnet and used 12-nylon as a binder. The results are shown in Table 2.
The result obtained by the above evaluation is PcIs Pc0Equal to TmaxConsidering an application where = 125 ° C., it is suitable for examining the degree of demagnetization before and after operation or use.
[0110]
As shown in Table 2, as in Comparative Example 3, in the magnet which was not a solid material for a magnet of the present invention, extremely low thermal stability was exhibited because the magnetic powders were not solidified by metal bonding. .
Similarly, it was found that the solid material for magnets of Example 10 exhibited high thermal stability because the magnetic powder was bonded to each other by metal bonding or ionic bonding because the filling rate was 80% or more. Also, in the embodiment in which the magnetic powders are solidified by metal bonding, Pc, Tmax, Br, HcJHowever, the thermal stability of Example 10 which is a lightweight solid material for magnets satisfying the expression (3) was better than that of Example 11 which did not satisfy the expression (3).
[0111]
[Examples 12 and 13]
A brushed DC motor was assembled as a stator by fixing the two magnets of Example 10 without using a yoke, and was operated for 36 ks in an environment at 100 ° C. while applying a certain amount of power to the coil (implementation). Example 12). A motor was assembled and operated in the same manner as described above using the magnet of Example 11 (Example 13). The rotation speed after 36 ks changes by about 2% in the motor of the twelfth embodiment and by about 10% in the motor of the thirteenth embodiment as compared to immediately after the initial rotation speed is stabilized, and both rotation speeds after 36 ks are approximately 510 rpm. It was equivalent. The magnet of the tenth embodiment used in the motor of the twelfth embodiment has a density 17% lower than the magnet of the eleventh embodiment used in the motor of the thirteenth embodiment, and the volume of the R—Fe—N—H—O-based magnetic material. Despite the low fraction, the performance with the above motor was the same.
[0112]
[Example 14]
In Example 10, components other than the R—Fe—N—H—O-based magnetic material were replaced with ZrO.2Similarly, except that the shock wave pressure is set to 14 GPa, the volume fraction of the R—Fe—N—H—O-based magnetic material is 95%, and the density is 7.38 g / cm.3And a motor was assembled in the same manner as in Example 12 and operated under a 100 ° C. environment. As a result, a result equivalent to that of Example 12 was obtained.
[0113]
[Example 15]
Using an R-Fe-NHO-based HDDR isotropic magnetic powder having an average particle diameter of 30 µm manufactured by a known method, as in Example 1, R-Fe-N-HO was used. Sm having a volume fraction of 100% based magnetic material8.3Fe76.1B0.9Ti2.4N12.0H0.1O0.2A solid material for a magnet having the following composition was produced.
As a result of magnetizing this solid material for a magnet with a pulse magnetic field of 4.0 MA / m and measuring the magnetic properties, the residual magnetic flux density Br= 0.70T, coercive force HcJ= 1.05 MA / m, (BH)max= 75.4kJ / m3Was obtained. Moreover, the result of measuring the density by the Archimedes method was 7.45 g / cm.3Met.
In the X-ray diffraction diagram of this material, diffraction lines derived from the α-Fe decomposition phase were observed in addition to the rhombohedral and hexagonal crystal structures, and the ratio b / a was 0.15.
[0114]
[Example 16]
Sm with an average particle size of 60 μm2Fe17Master alloy with NH3Partial pressure 0.35atm, H2Oxygen partial pressure of 10 with a partial pressure of 0.65 atm 3After performing a hydrogenation of 7.2 ks at 465 ° C. in an ammonia-hydrogen mixed gas stream of atm-3The annealing was performed in an argon gas flow of atm for 7.2 ks, using a hydrocarbon solvent having a dissolved oxygen content of 45 ppm and a water content of 20 ppm as a grinding solvent.-1It was pulverized by a ball mill charged in a nitrogen stream of atm so that the average particle size became about 2 μm. Using this powder, as in Example 1, except that the shock wave pressure was 25 GPa and the volume fraction of the R-Fe-NHO-based magnetic material was 100%.8.0Fe67.8N11.9H2.6O9.7A solid material for a magnet having a composition was obtained. At this time, the inside of the copper pipe 1 holding the compact was filled with a humid atmosphere. The solid material for a magnet was magnetized with a pulse magnetic field of 4.0 MA / m, and the magnetic properties were measured.r= 1.06T, coercive force HcJ= 0.73 MA / m, (BH)max= 158kJ / m3Was obtained. The density was measured by the Archimedes method. As a result, the density was 7.55 g / cm.3And the filling factor was 99%.
[0115]
Further, as a result of analysis by the X-ray diffraction method, the solidified solid material for the magnet hardly caused precipitation of the α-Fe decomposition phase, and Th2Zn17It was confirmed to have a rhombohedral crystal structure.
After mirror polishing the sample surface, the sample surface was corroded with a 5% nital etchant for 30 seconds, and observed by FE-SEM. It was found that it had a two-phase structure with the part. Observation of the crystal orientation of each part by EBSP revealed that the granular part was Th2Zn17A crystal structure of a rhombohedral crystal was observed, and the other parts were confirmed to be amorphous. From the area ratio of the observed cross section,2Zn17It was found that a rhombohedral part (crystal phase) to an amorphous part (amorphous phase) existed at a volume ratio of 6: 4.
[0116]
[Table 1]
Figure 2004146542
[0117]
[Table 2]
Figure 2004146542
[0118]
【The invention's effect】
As in the present invention, a rare earth-iron-nitrogen-hydrogen-oxygen-based magnetic powder or the like having a rhombohedral or hexagonal crystal structure is compacted and subjected to shock compression using an underwater shock wave, thereby obtaining a binder. This makes it possible to obtain a high-density, high-performance solid material for magnets without the necessity of self-sintering and by preventing decomposition and denitrification. Furthermore, it is possible to obtain a solid material for a magnet which is lightweight, yet has high performance, particularly high stability of magnetic properties.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an example of a cross section of a solid material for a magnet obtained by joining and integrating a rare earth-iron-nitrogen-hydrogen-oxygen-based magnetic material and a soft magnetic solid metal.
FIG. 2 is an explanatory view showing an example of a cross section of a solid material for a magnet in which rare earth-iron-nitrogen-hydrogen-oxygen-based magnetic material layers and soft magnetic layers are alternately laminated and integrated.
FIG. 3 is a view showing an example of a cross section of a solid material for a magnet in which a part or the entire periphery of a layer mainly containing a rare earth-iron-nitrogen-hydrogen-oxygen-based magnetic material is covered with a nonmagnetic solid material. FIG.
FIG. 4 is an explanatory view showing an example of a cross section of a solid material for a magnet.
FIG. 5 is an example of a sectional structure of a rotating shaft of a surface magnet structure rotor when the solid magnet material of the present invention is used for a permanent magnet synchronous motor.
FIG. 6 is an example of a sectional structure of a rotating shaft of a surface magnet structure rotor when the magnet solid material of the present invention is used for a permanent magnet synchronous motor.
FIG. 7 is an example of a rotating shaft sectional structure of an embedded magnet structure rotor when the magnet solid material of the present invention is used for a permanent magnet synchronous motor.
FIG. 8 is an example of a rotating shaft sectional structure of an embedded magnet structure rotor when the magnet solid material of the present invention is used for a permanent magnet synchronous motor.
FIG. 9 is an example of a rotating shaft cross-sectional structure of an embedded magnet structure rotor when the magnet solid material of the present invention is used for a permanent magnet synchronous motor.
FIG. 10 is an example of a rotary shaft cross-sectional structure of an embedded magnet structure rotor when the magnet solid material of the present invention is used for a permanent magnet synchronous motor.
FIG. 11 is an example of a rotating shaft cross-sectional structure of an embedded magnet structure rotor when the magnet solid material of the present invention is used for a permanent magnet synchronous motor.
FIG. 12 is an example of a rotating shaft cross-sectional structure of an embedded magnet structure rotor when the magnet solid material of the present invention is used for a permanent magnet synchronous motor.
FIG. 13 is an explanatory diagram showing an example of a means for performing a shock compression method using an underwater shock wave.
FIG. 14 is an explanatory view showing an example of a means for performing a shock compression method directly using a detonation wave of an explosive used in a comparative example.
[Explanation of symbols]
1 Copper pipe (used to hold powder)
2 copper plug
3 copper pipe (used to hold water)
4 paper cylinder (used to hold explosives)
5 explosives
6 Initiator
7 water
8 Sample part (sample containing rare earth-iron-nitrogen-hydrogen-oxygen based magnetic material)

Claims (16)

希土類−鉄−窒素−水素−酸素系磁性材料を50〜100体積%含有した磁石用固形材料。A solid material for a magnet containing 50 to 100% by volume of a rare earth-iron-nitrogen-hydrogen-oxygen magnetic material. 菱面体晶または六方晶の結晶構造を有する希土類−鉄−窒素−水素−酸素系磁性材料を含有することを特徴とする請求項1に記載の磁石用固形材料。The solid material for a magnet according to claim 1, comprising a rare earth-iron-nitrogen-hydrogen-oxygen-based magnetic material having a rhombohedral or hexagonal crystal structure. 希土類−鉄−窒素−水素−酸素系磁性材料が、一般式RαFe100− α β γ δβγδで表され、Rは希土類元素から選ばれる少なくとも一種の元素であり、又、α、β、γ、δは原子百分率で、3≦α≦20、5≦β≦25、0.01≦γ≦5、0.01≦δ≦10である請求項1又は2の磁石用固形材料。Rare earth - iron - nitrogen - hydrogen - oxygen-based magnetic material has the general formula R α Fe 100- α - β - γ - expressed in δ N β H γ O δ, R is at least one element selected from rare earth elements And α, β, γ, and δ are atomic percentages and satisfy 3 ≦ α ≦ 20, 5 ≦ β ≦ 25, 0.01 ≦ γ ≦ 5, 0.01 ≦ δ ≦ 10. Solid material for magnets. 希土類−鉄−窒素−水素−酸素系磁性材料が、一般式RαFe100− α β γ δβγδεで表され、RはYを含む希土類元素から選ばれる少なくとも一種の元素であり、MはLi、Na、K、Mg、Ca、Sr、Ba、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Pd、Cu、Ag、Zn、B、Al、Ga、In、C、Si、Ge、Sn、Pb、Biから選ばれる少なくとも一種の元素及び/又はRの酸化物、フッ化物、炭化物、窒化物、水素化物、炭酸塩、硫酸塩、ケイ酸塩、塩化物、硝酸塩から選ばれる少なくとも一種であり、又、α、β、γ、δ、εはモル百分率で、3≦α≦20、5≦β≦30、0.01≦γ≦10、0.01≦δ≦10、0.1≦ε≦40であることを特徴とする請求項1又は2に記載の磁石用固形材料。Rare earth - iron - nitrogen - hydrogen - oxygen-based magnetic material has the general formula R α Fe 100- α - β - γ - expressed in δ N β H γ O δ M ε, R is selected from rare earth elements including Y At least one element, M is Li, Na, K, Mg, Ca, Sr, Ba, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Pd, Cu, Ag, Zn , B, Al, Ga, In, C, Si, Ge, Sn, Pb, Bi, at least one element and / or oxide, fluoride, carbide, nitride, hydride, carbonate, sulfuric acid of R At least one selected from salts, silicates, chlorides, and nitrates, and α, β, γ, δ, and ε are mole percentages, 3 ≦ α ≦ 20, 5 ≦ β ≦ 30, 0.01 ≦ 3. The structure according to claim 1, wherein γ ≦ 10, 0.01 ≦ δ ≦ 10, and 0.1 ≦ ε ≦ 40. Solid material for a magnet according. 希土類−鉄−窒素−水素−酸素系磁性材料を含有した6.15g/cmより高い密度を有する請求項1〜4のいずれかの磁石用固形材料。Rare earth - iron - nitrogen - hydrogen - oxygen-based one solid material for a magnet of claims 1 to 4 having a density greater than 6.15 g / cm 3 containing a magnetic material. 希土類−鉄−窒素−水素−酸素系磁性材料以外の成分が密度6.5g/cm以下の元素、化合物またはそれらの混合物であることを特徴とする請求項5の磁石用固形材料。Rare earth - iron - nitrogen - hydrogen - oxygen-based magnetic materials other than component density 6.5 g / cm 3 or less elements, compounds or solid material for a magnet of claim 5, characterized in that a mixture thereof. 常温の残留磁束密度B、常温の保磁力HcJ、磁石として使用するときのパーミアンス係数P及び最高使用温度Tmaxの関係が、μを真空の透磁率とするとき、
≦μcJ(P+1)(11000−50Tmax)/(10000−6Tmax
であることを特徴とする請求項1〜6のいずれかの磁石用固形材料。
When the relationship among the residual magnetic flux density B r at room temperature, the coercive force H cJ at room temperature, the permeance coefficient P c when used as a magnet, and the maximum use temperature T max is, when μ 0 is the magnetic permeability of vacuum,
B r ≦ μ 0 H cJ ( P c +1) (11000-50T max) / (10000-6T max)
The solid material for a magnet according to any one of claims 1 to 6, wherein
Fe、Co、Niから選ばれる少なくとも一種の元素を含む軟磁性材料が前記希土類−鉄−窒素−水素−酸素系磁性材料と均一に分散され、一体化していることを特徴とする請求項1〜7のいずれかの磁石用固形材料。A soft magnetic material containing at least one element selected from the group consisting of Fe, Co, and Ni is uniformly dispersed and integrated with the rare earth-iron-nitrogen-hydrogen-oxygen-based magnetic material. 7. The solid material for a magnet according to any of 7. 希土類−鉄−ほう素系磁性材料、希土類−コバルト系磁性材料、フェライト系磁性材料から選ばれる少なくとも一種の磁性材料が前記希土類−鉄−窒素−水素−酸素系磁性材料と均一に添加混合され、一体化していることを特徴とする請求項1〜8のいずれかの磁石用固形材料。Rare earth-iron-boron based magnetic material, rare earth-cobalt based magnetic material, at least one magnetic material selected from ferrite based magnetic material is uniformly added and mixed with the rare earth-iron-nitrogen-hydrogen-oxygen based magnetic material, The solid material for a magnet according to any one of claims 1 to 8, wherein the solid material is integrated. 磁性材料の粒界に非磁性相が存在することを特徴とする請求項1〜9のいずれかに記載の磁石用固形材料。The solid material for a magnet according to any one of claims 1 to 9, wherein a non-magnetic phase exists at a grain boundary of the magnetic material. 請求項1〜10のいずれかの磁石用固形材料と軟磁性の固形金属材料とを接合して一体化したことを特徴とする磁石用の固形材料。A solid material for a magnet, wherein the solid material for a magnet according to any one of claims 1 to 10 and a soft magnetic solid metal material are joined and integrated. 軟磁性層を有し、軟磁性層と請求項1〜11のいずれかの磁石用固形材料とが交互に積層されて一体化していることを特徴とする磁石用の固形材料。A solid material for a magnet, comprising a soft magnetic layer, wherein the soft magnetic layer and the solid material for a magnet according to any one of claims 1 to 11 are alternately laminated and integrated. 請求項1〜12のいずれかの磁石用固形材料の少なくとも一部が非磁性の固形材料で覆われたことを特徴とする磁石用の固形材料。13. A solid material for a magnet, wherein at least a part of the solid material for a magnet according to claim 1 is covered with a non-magnetic solid material. 角柱状、円筒状、リング状、円板状又は平板状に成形したことを特徴とする請求項1〜13のいずれかの磁石用の固形材料。The solid material for a magnet according to any one of claims 1 to 13, wherein the solid material is shaped into a prism, a cylinder, a ring, a disk, or a flat plate. 希土類−鉄−窒素−水素−酸素系磁性材料の原料粉体を、水中衝撃波を用いて、衝撃圧縮固化することを特徴とする請求項1〜14のいずれかの磁石用固形材料の製造方法。The method for producing a solid material for a magnet according to any one of claims 1 to 14, wherein the raw material powder of the rare earth-iron-nitrogen-hydrogen-oxygen-based magnetic material is subjected to impact compression and solidification using an underwater shock wave. 請求項1〜14のいずれかの磁石用固形材料を製造する方法であって、材料を少なくとも一度100℃以上且つ分解温度より低い温度で熱処理をする工程を含むことを特徴とする磁石用固形材料の製造方法。The method for producing a solid material for a magnet according to any one of claims 1 to 14, comprising a step of heat-treating the material at least once at a temperature of 100 ° C or higher and lower than a decomposition temperature. Manufacturing method.
JP2002309048A 2002-10-23 2002-10-23 Solid material for magnet Expired - Lifetime JP4970693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002309048A JP4970693B2 (en) 2002-10-23 2002-10-23 Solid material for magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002309048A JP4970693B2 (en) 2002-10-23 2002-10-23 Solid material for magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012032884A Division JP5339644B2 (en) 2012-02-17 2012-02-17 Manufacturing method of solid material for magnet

Publications (3)

Publication Number Publication Date
JP2004146542A true JP2004146542A (en) 2004-05-20
JP2004146542A5 JP2004146542A5 (en) 2005-12-08
JP4970693B2 JP4970693B2 (en) 2012-07-11

Family

ID=32454984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002309048A Expired - Lifetime JP4970693B2 (en) 2002-10-23 2002-10-23 Solid material for magnet

Country Status (1)

Country Link
JP (1) JP4970693B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064948A1 (en) * 2004-12-17 2006-06-22 Hitachi Metals, Ltd. Rotor for motor and method for producing the same
JP2011009414A (en) * 2009-06-25 2011-01-13 Nidec Sankyo Corp Method of manufacturing magnet, and lens drive device
CN106957985A (en) * 2017-04-28 2017-07-18 桂林电子科技大学 A kind of DyHoFe electromagnetic wave absorbing materials and preparation method thereof
CN110415908A (en) * 2019-06-26 2019-11-05 宁波金轮磁材技术有限公司 A kind of rare-earth Nd-Fe-B permanent magnetic material and preparation method thereof
WO2024038829A1 (en) * 2022-08-19 2024-02-22 日亜化学工業株式会社 α-FE-CONTAINING RARE EARTH ELEMENT-IRON-NITROGEN MAGNETIC POWDER, MANUFACTURING METHOD FOR SAME, MAGNETIC MATERIAL FOR MAGNETIC FIELD AMPLIFICATION, AND MAGNETIC MATERIAL FOR ULTRA-HIGH FREQUENCY ABSORPTION

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502A (en) * 1984-06-13 1986-01-06 Asahi Chem Ind Co Ltd Molding method of powdery body
JPH01283301A (en) * 1988-03-03 1989-11-14 General Motors Corp <Gm> Explosive compression of rare earth/transition alloy in fluid
JPH01318204A (en) * 1988-06-20 1989-12-22 Seiko Epson Corp Resin-reinforced sintering magnet and manufacture thereof
JPH03101102A (en) * 1989-09-13 1991-04-25 Asahi Chem Ind Co Ltd Rare earth-iron-nitrogen-hydogen-oxygen-based magnetic material
JPH03160705A (en) * 1989-11-20 1991-07-10 Asahi Chem Ind Co Ltd Bonded magnet
JPH0426708A (en) * 1990-05-23 1992-01-29 Asahi Chem Ind Co Ltd Impact treatment for material with explosive
JPH0479202A (en) * 1990-07-23 1992-03-12 Asahi Chem Ind Co Ltd Permanent magnet consisting of single magnetic domain particle
JPH08264360A (en) * 1995-03-28 1996-10-11 Seiko Epson Corp Resin-bonded magnet and its manufacture
JPH0957089A (en) * 1995-08-28 1997-03-04 Nippon Oil & Fats Co Ltd Synthesis device using impulse wave and method for synthesizing high pressure-phase material
JP2001006959A (en) * 1999-06-17 2001-01-12 Sumitomo Special Metals Co Ltd Manufacture of pare-earth-iron-nitrogen permanent magnet
JP2002319503A (en) * 2001-04-24 2002-10-31 Asahi Kasei Corp Solid material for magnet and its manufacturing method
WO2002089153A1 (en) * 2001-04-24 2002-11-07 Asahi Kasei Kabushiki Kaisha Solid material for magnet
JP2002329603A (en) * 2001-04-27 2002-11-15 Asahi Kasei Corp Magnetic solid material and its manufacturing method
JP2003017307A (en) * 2001-06-29 2003-01-17 Asahi Kasei Corp Solid material for magnet and method of fabricating the magnet

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502A (en) * 1984-06-13 1986-01-06 Asahi Chem Ind Co Ltd Molding method of powdery body
JPH01283301A (en) * 1988-03-03 1989-11-14 General Motors Corp <Gm> Explosive compression of rare earth/transition alloy in fluid
JPH01318204A (en) * 1988-06-20 1989-12-22 Seiko Epson Corp Resin-reinforced sintering magnet and manufacture thereof
JPH03101102A (en) * 1989-09-13 1991-04-25 Asahi Chem Ind Co Ltd Rare earth-iron-nitrogen-hydogen-oxygen-based magnetic material
JPH03160705A (en) * 1989-11-20 1991-07-10 Asahi Chem Ind Co Ltd Bonded magnet
JPH0426708A (en) * 1990-05-23 1992-01-29 Asahi Chem Ind Co Ltd Impact treatment for material with explosive
JPH0479202A (en) * 1990-07-23 1992-03-12 Asahi Chem Ind Co Ltd Permanent magnet consisting of single magnetic domain particle
JPH08264360A (en) * 1995-03-28 1996-10-11 Seiko Epson Corp Resin-bonded magnet and its manufacture
JPH0957089A (en) * 1995-08-28 1997-03-04 Nippon Oil & Fats Co Ltd Synthesis device using impulse wave and method for synthesizing high pressure-phase material
JP2001006959A (en) * 1999-06-17 2001-01-12 Sumitomo Special Metals Co Ltd Manufacture of pare-earth-iron-nitrogen permanent magnet
JP2002319503A (en) * 2001-04-24 2002-10-31 Asahi Kasei Corp Solid material for magnet and its manufacturing method
WO2002089153A1 (en) * 2001-04-24 2002-11-07 Asahi Kasei Kabushiki Kaisha Solid material for magnet
JP2002329603A (en) * 2001-04-27 2002-11-15 Asahi Kasei Corp Magnetic solid material and its manufacturing method
JP2003017307A (en) * 2001-06-29 2003-01-17 Asahi Kasei Corp Solid material for magnet and method of fabricating the magnet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064948A1 (en) * 2004-12-17 2006-06-22 Hitachi Metals, Ltd. Rotor for motor and method for producing the same
US8039998B2 (en) 2004-12-17 2011-10-18 Hitachi Metals, Ltd. Rotor for motor and method for producing the same
JP2011009414A (en) * 2009-06-25 2011-01-13 Nidec Sankyo Corp Method of manufacturing magnet, and lens drive device
CN106957985A (en) * 2017-04-28 2017-07-18 桂林电子科技大学 A kind of DyHoFe electromagnetic wave absorbing materials and preparation method thereof
CN110415908A (en) * 2019-06-26 2019-11-05 宁波金轮磁材技术有限公司 A kind of rare-earth Nd-Fe-B permanent magnetic material and preparation method thereof
WO2024038829A1 (en) * 2022-08-19 2024-02-22 日亜化学工業株式会社 α-FE-CONTAINING RARE EARTH ELEMENT-IRON-NITROGEN MAGNETIC POWDER, MANUFACTURING METHOD FOR SAME, MAGNETIC MATERIAL FOR MAGNETIC FIELD AMPLIFICATION, AND MAGNETIC MATERIAL FOR ULTRA-HIGH FREQUENCY ABSORPTION

Also Published As

Publication number Publication date
JP4970693B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
KR100524340B1 (en) Solid Material for Magnet
JP4830024B2 (en) Composite magnetic material for magnet and manufacturing method thereof
EP2077567B1 (en) R-t-b sintered magnet
US8388766B2 (en) Anisotropic rare earth sintered magnet and making method
US20120145944A1 (en) Magnetic material and motor obtained using same
US6984271B2 (en) Rare earth magnet, process for producing same, and motor using rare earth magnet
JP5501828B2 (en) R-T-B rare earth permanent magnet
JP2004031781A (en) Rare earth magnet, its manufacturing method and motor using the same
EP2608224A1 (en) Rare earth-iron-nitrogen system alloy material, method for producing rare earth-iron-nitrogen system alloy material, rare earth-iron system alloy material, and method for producing rare earth-iron system alloy material
JP2012124189A (en) Sintered magnet
JP5165785B2 (en) Solid material for magnet
JP2008060241A (en) High resistance rare-earth permanent magnet
JP3739266B2 (en) Method for manufacturing replacement spring magnet
JP4970693B2 (en) Solid material for magnet
JP5339644B2 (en) Manufacturing method of solid material for magnet
JP2004146543A (en) Solid material for magnet and its manufacturing method
JP4873516B2 (en) Solid material for magnet and method for producing the same
JP2004031780A (en) Rare earth magnet, its manufacturing method and motor using the same
JP4790933B2 (en) Solid material for magnet and method for producing the same
JP4790927B2 (en) Solid material for magnet and method for producing the same
JP2004146432A (en) Solid material for magnet
JP3357421B2 (en) Method for forming magnetic field of magnet powder and method for manufacturing magnet
Mirtaheri et al. Advances in Developing Permanent Magnets with Less or No Rare-Earth Elements
JP2005272924A (en) Material for anisotropic exchange spring magnet, and manufacturing method therefor
JPH0636916A (en) Fe-b-r base bond magnet

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100113

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4970693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350