JPH0426708A - Impact treatment for material with explosive - Google Patents

Impact treatment for material with explosive

Info

Publication number
JPH0426708A
JPH0426708A JP13121890A JP13121890A JPH0426708A JP H0426708 A JPH0426708 A JP H0426708A JP 13121890 A JP13121890 A JP 13121890A JP 13121890 A JP13121890 A JP 13121890A JP H0426708 A JPH0426708 A JP H0426708A
Authority
JP
Japan
Prior art keywords
exothermic
explosive
exothermic agent
sample
impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13121890A
Other languages
Japanese (ja)
Inventor
Teruyuki Awano
照幸 阿波野
Shunichi Sato
俊一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP13121890A priority Critical patent/JPH0426708A/en
Publication of JPH0426708A publication Critical patent/JPH0426708A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To make initial condition high temp. and to execute treatment under safe condition by executing impact treatment for a material to be treated under condition of heating with exothermic agent. CONSTITUTION:The material 1 to be treated of powder material is incorporated into a sample vessel 2. The sample vessel 2 is housed into a sample holding material 5 having recessed part at center part. To the sample vessel 2, the exothermic agent 3 is put to all the circumference, side face, upper face or lower face. The exothermic agent 3 is exothermic-reacted with ignition source 4 to heat the powder sample 1. After the lapse of desired time, plane wave generating device 9 is explosed with an electric detonator 10 to execute the impact treatment. The exothermic agent is solidified from fused sticking condition after developing exothermic reaction, and impact compression wave developed with an explosive is propagated without attenuating. This method has wide application to formation, synthesization, compression, pressing, etc., of ceramic material, diamond, polymeric material, metallic material, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、爆薬の持つエネルギーを利用して物質を衝撃
処理する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for impact treatment of substances by utilizing the energy of explosives.

〔従来の技術〕[Conventional technology]

爆薬の持つ高温・超高圧のエネルギーを利用して物質を
加工する方法は、二種類以上の異種金属材料を接合させ
る爆発圧着法、炭素を相変態させる事によりダイヤモン
ドを製造する方法、低圧窒化ホウ素より高圧窒化ホウ素
を製造する方法、数ミリから数百ミクロンの粒子を粉砕
して微粉末を得る方法、更には微粉末を圧搾して成型体
を得る方法等様々である。
Methods of processing materials using the high temperature and ultra-high pressure energy of explosives include explosive crimping, which joins two or more dissimilar metal materials, manufacturing diamond by phase transformation of carbon, and low-pressure boron nitride. There are various methods for producing boron nitride at higher pressures, methods for obtaining fine powder by pulverizing particles of several millimeters to several hundred microns, and methods for obtaining molded bodies by compressing fine powder.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、それらの製造方法は、いずれにおいても室温状
態で物質に爆薬の持つエネルギーを加え加工する方法が
一般的である。爆薬によって生じる高温・超高圧のエネ
ルギーは、物質の元素を結合・移動・解離させるもので
あるが、此の際に原子の移動を生じ易くさせるためには
、初期条件を高温下にする事が望ましい事は良く知られ
ている。
However, in all of these manufacturing methods, the general method is to apply the energy of explosives to the substance at room temperature. The high-temperature, ultra-high-pressure energy generated by explosives causes the elements of substances to bond, move, and dissociate, but in order to facilitate the movement of atoms in this case, it is desirable to set the initial conditions to high temperatures. is well known.

現在、被処理物質を加熱する方法としては電気炉を用い
る方法が一般的に行われているが、しかしこの方法では
以下のような問題点があり好ましくない。
Currently, a method using an electric furnace is generally used as a method of heating the material to be treated, but this method is not preferable because it has the following problems.

それは、爆発の際の衝撃により装置を破損させない事、
緊雑な電気系統により爆薬取り扱い上の危険防止を計る
事、更には高温物質の配置における安全対策を考慮しな
ければならない事等により、衝撃処理現場で効率良く加
熱する為には非常に複雑な装置を必要とし、またその操
作も繁雑で不安全な事である。
This is to ensure that the equipment is not damaged by the impact of an explosion.
Efficient heating at shock treatment sites is extremely complex due to the complicated electrical system that must be used to prevent dangers when handling explosives, and the need to take safety measures into consideration when placing high-temperature materials. It requires equipment, and its operation is complicated and unsafe.

本発明者は上記の問題点を解決するために種々検討を行
った結果、本発明を成すに至ったものである。
The present inventor has completed the present invention as a result of various studies to solve the above problems.

〔課題を解決だめの手段〕[Means to solve the problem]

本発明は、爆薬の持つエネルギーを利用して物質を衝撃
処理する方法において、かかる被処理物質を発熱剤で加
熱した状態で衝撃処理することを特徴とする爆薬による
物質の衝撃処理方法である。
The present invention is a method for impact treating a substance using the energy of an explosive, which is characterized in that the material to be treated is subjected to the impact treatment while being heated with an exothermic agent.

本願発明に用いる発熱剤とは、化学反応によって熱を発
生させる全ての反応剤を意味する。
The exothermic agent used in the present invention means any reactive agent that generates heat through a chemical reaction.

具体的には、酸化カルシウムと水等による水和反応によ
る発熱を利用しても良いし、酸化性の強い物質と空気中
の酸素による反応熱を利用しても良い。しかし最も好ま
しいのは単位重量当たりの発熱量が大きく、更に取り扱
い性においても粉体状で取り扱えるし、またプレスによ
って任意の形状に成型出来る等の点より金属酸化物と半
金属、金属粉末との混合より成る発熱剤である。この発
熱剤は、金属酸化物より半金属、金属粉末が酸素を奪っ
て酸化する際に大きな酸化熱を発生する。
Specifically, heat generated by a hydration reaction between calcium oxide and water or the like may be used, or heat generated by a reaction between a strongly oxidizing substance and oxygen in the air may be used. However, the most preferred are metal oxides, semimetals, and metal powders because they have a large calorific value per unit weight, can be handled in powder form, and can be molded into any shape by pressing. It is an exothermic agent consisting of a mixture. This exothermic agent generates greater heat of oxidation when metalloids and metal powders deprive oxygen and oxidize than metal oxides.

金属酸化物としては、過マンガン酸カリウム、酸化鉛、
過酸化ストロンチウム、過酸化バリウム、臭素酸塩、酸
化銅、過塩素酸塩、酸化鉄等が用いられ、また、半金属
、金属粉末としては前記酸化物を形成している金属より
も酸化熱の大きい鉄、ケイ素鉄、ケイ素、アルミニウム
、マグネシウム、チタン、ジルコニウム、ホウ素、銅等
が用いられる。この際の混合組み合わせ及び混合比は被
処理物質の加熱温度によって選択されるが、断熱材を用
いて温度コントロールを行っても良い。例えば酸化銅と
鉄粉とケイ素鉄の組み合わせでは約1300°Cの発熱
温度が得られる。
Metal oxides include potassium permanganate, lead oxide,
Strontium peroxide, barium peroxide, bromate, copper oxide, perchlorate, iron oxide, etc. are used, and semimetals and metal powders have a higher oxidation heat than the metal forming the oxide. Large iron, silicon iron, silicon, aluminum, magnesium, titanium, zirconium, boron, copper, etc. are used. The mixing combination and mixing ratio at this time are selected depending on the heating temperature of the substance to be treated, but the temperature may be controlled using a heat insulating material. For example, a combination of copper oxide, iron powder, and silicon iron produces an exothermic temperature of about 1300°C.

この発熱剤の反応を生じさせるためには、発熱剤よりも
容易に反応を生じやすい混合物を着火剤として用いるの
が好ましく、例えばケイ素鉄粉と四三酸化鉛粉末の組み
合わせからなる着火剤が好ましい。
In order to cause this reaction with the exothermic agent, it is preferable to use a mixture as the ignition agent that causes the reaction more easily than the exothermic agent. For example, an ignition agent consisting of a combination of silicon iron powder and trilead tetroxide powder is preferable. .

着火剤の着火源としてはライター・マツチ等でも可能で
あるが、取り扱い上の安全性を考慮して電気的着火が最
も好ましい。
Although a lighter or a match can be used as the ignition source for the ignition agent, electrical ignition is most preferable in consideration of handling safety.

本発明における発熱剤を用いて行なう爆薬衝撃処理方法
としては、前記した爆発圧着法、爆発相変態法、爆発粉
砕法、爆発圧搾法、爆発合成法等爆薬を用いて物質を加
工する際、高温状態にして加工した方が好ましい場合の
全てに適用出来る。
Explosive impact treatment methods using exothermic agents in the present invention include the above-mentioned explosive crimping method, explosive phase transformation method, explosive crushing method, explosive squeezing method, and explosive synthesis method. It can be applied to all cases where it is preferable to process it in a state.

此の際、発熱剤は被処理物質を加温するために、該被処
理物質の全周あるいは一部分に直接又は熱媒体をとうし
て配置されるが、その配置法においては発熱剤からの反
応熱の伝熱を最も効率的に利用する事が好ましい。
In this case, in order to heat the material to be treated, the exothermic agent is placed around the entire circumference or part of the material to be treated, either directly or through a heating medium, but in this placement method, the heat of reaction from the exothermic agent is removed. It is preferable to use heat transfer most efficiently.

更に発熱剤と爆薬の配置においては、爆薬に発熱剤の反
応熱が伝熱する事は好ましくない事から支持物等によっ
て空間を設ける事が最も好ましいが、熱伝導性の低い断
熱材を介しても良い。
Furthermore, when arranging the exothermic agent and the explosive, it is most preferable to provide a space using a support, etc., as it is undesirable for the reaction heat of the exothermic agent to transfer to the explosive. Also good.

かかる様に配置された被処理物質、発熱剤及び爆薬は、
先ず発熱剤の反応熱によって被処理物質が加温され所望
の温度に達した後、爆薬の爆発によるエネルギーが付加
される事により衝撃処理が行なわれる。
The substances to be treated, exothermic agents and explosives arranged in such a manner are
First, the material to be treated is heated by the reaction heat of the exothermic agent and after reaching a desired temperature, impact treatment is performed by adding energy from the explosion of the explosive.

以下に、粉末を爆発圧搾法により成型体にする時に金属
酸化物と半金属゛、金属粉末より成る発熱剤を用いた場
合を例として図面を用いて説明する。
Hereinafter, a case will be explained with reference to the drawings, taking as an example a case where a heat-generating agent made of a metal oxide, a metalloid, and a metal powder is used when powder is made into a molded body by the explosive compression method.

第1図において、成型体にする被処理物質(粉末試料)
1は、試料容器2に収納されている試料容器2の材質は
、鉄鋼等のように金属材料が好ましく、また成型の際に
有害となる空気成分を除去するためには内部を真空にし
ておくのが好ましい。試料容器2は、中心部に凹部を有
した試料保持材5に収納される。試料保持材の材質は、
爆発のエネルギーに耐えるためには鉄鋼、ステンレス鋼
等の金属材料が好ましい。
In Figure 1, the material to be processed (powder sample) to be made into a molded body
1, the material of the sample container 2 housed in the sample container 2 is preferably a metal material such as steel, and the inside is kept in a vacuum to remove harmful air components during molding. is preferable. The sample container 2 is housed in a sample holding material 5 having a recessed portion in the center. The material of the sample holding material is
Metal materials such as steel and stainless steel are preferred in order to withstand the energy of the explosion.

試料保持材5の凹部に収納された試料容器2に対して発
熱剤は全周、側面、上面あるいは下一 面に配置されるが、粉末試料1との反応性において有害
とならなければ試料容器2内に粉末試料1と一緒にして
も良い。発熱剤の着火源4は、通電によって発熱するフ
ィラメントを銅線等の先端に付け、更に着火剤を塗布し
たものであるが、此の際、付着力を増加させるためには
硝化綿等をバインダーとして結合させても良い。電気的
着火による操作が困難な場合は、ガラス繊維、カーボン
繊維等のような繊維状物質に前記着火剤を塗布して導火
線とし、ライター、マツチ等の点火によって遠隔操作し
ても良い。
The exothermic agent is placed on the entire circumference, side, top, or bottom of the sample container 2 housed in the recess of the sample holder 5, but if it does not cause harmful reactivity with the powder sample 1, the sample container 2 It may also be combined with powder sample 1 within the container. The ignition source 4 for the exothermic agent is a filament that generates heat when energized, attached to the tip of a copper wire, etc., and further coated with an igniter.In this case, in order to increase the adhesion force, nitrified cotton or the like is used as a binder. They may be combined. If operation by electrical ignition is difficult, remote control may be performed by applying the above-mentioned igniter to a fibrous material such as glass fiber, carbon fiber, etc. and using it as a fuse, and igniting it with a lighter, matchstick, etc.

飛しょう板7は爆薬8の爆発によるエネルギーを粉末試
料1に伝えるためのものであり、間隙を有して支持物6
によって保持されている。
The flying plate 7 is for transmitting energy from the explosion of the explosive 8 to the powder sample 1, and is attached to the support 6 with a gap.
is held by.

飛しょう板7と粉末試料1間に間隙を有しない場合には
、発熱剤の熱量が飛しょう板7を通して爆薬8に伝熱し
ないために、断熱性の優れた断熱材を用いるのが好まし
い。
When there is no gap between the flying plate 7 and the powder sample 1, it is preferable to use a heat insulating material with excellent heat insulation properties, since the heat of the exothermic agent will not be transferred to the explosive 8 through the flying plate 7.

爆薬8を均一に面状で爆轟させるためには平面波発生装
置9を用いるのが好ましく、この平面波発生装置は高爆
速の爆薬と低爆速の爆薬の組み合わせによって構成され
ている。金属板11は、上面より伝播してきた衝撃圧縮
波が底面において反射波(引張波)と成ることを防止す
る効果がある。
In order to detonate the explosive 8 uniformly in a planar shape, it is preferable to use a plane wave generator 9, and this plane wave generator is constructed by a combination of a high detonation velocity explosive and a low detonation velocity explosive. The metal plate 11 has the effect of preventing impact compression waves propagating from the top surface from becoming reflected waves (tensile waves) at the bottom surface.

以上のように組み立てられた衝撃加工装置において、発
熱剤の発生する熱量が周囲に対する放熱によって有効利
用出来ない場合は、発熱剤の周囲あるいは試料保持材5
に保温材等を配置しても良い。
In the impact processing device assembled as described above, if the amount of heat generated by the exothermic agent cannot be used effectively due to heat radiation to the surroundings, the area around the exothermic agent or the sample holding material 5
A heat insulating material etc. may be placed in the area.

衝撃加工装置の設置は、容器の変形及び破損防止の点か
ら砂上が好ましいが、衝撃処理後、残存する熱量を強制
冷却したい場合は水中に没するような構造にしても良い
し、発熱剤を防水構造の容器に収納して初めから水中で
衝撃処理しても良い。
It is preferable to install the impact treatment device on sand to prevent deformation and damage to the container, but if you want to forcefully cool down the remaining heat after impact treatment, it may be constructed so that it is submerged in water, or it can be constructed so that it is submerged in water. It may be stored in a waterproof container and subjected to impact treatment underwater.

かかる衝撃加工装置は、先ず着火源4により発熱剤3を
発熱反応させる事により粉末試料1を加熱し、所望の時
間経過後、電気雷管10によって平面波発生装置9を爆
轟させ衝撃処理を行なう。尚発熱剤は、発熱反応の後は
融着状態により固型化するために、爆薬によって生した
衝撃圧縮波を減衰させる事無く伝播させる。
Such an impact processing device first heats a powder sample 1 by causing an exothermic reaction with an exothermic agent 3 using an ignition source 4, and after a desired time has elapsed, detonates a plane wave generator 9 using an electric detonator 10 to perform impact processing. . It should be noted that the exothermic agent solidifies in a fused state after the exothermic reaction, so that the shock compression wave generated by the explosive is propagated without attenuation.

〔実施例〕〔Example〕

以下、本発明を実施例により説明する。 The present invention will be explained below using examples.

実施例 内径10mm、深さ15肛、厚さ1mmのステンレス製
円筒試料容器に、100メツシユ以下のアルミニウム粉
末を圧填密度1.65 g/cmで装填し、上部を厚さ
1mm、外径10mmのステンレス製円板で蓋をした。
Example A stainless steel cylindrical sample container with an inner diameter of 10 mm, a depth of 15 holes, and a thickness of 1 mm was loaded with aluminum powder of 100 mesh or less at a packing density of 1.65 g/cm, and the upper part was 1 mm thick and an outer diameter of 10 mm. It was covered with a stainless steel disc.

その円筒試料容器を、外径100mm、厚さ40mmで
中央部に内径20mm、深さ17肛の凹部を有する鉄鋼
製試料保持材の凹部の中心部に設置し、その周囲に粒径
300メツシユバスの酸化銅、200メツシユバスの鉄
及び100メツシパスのケイ素鉄が混合比4:4:2で
混合された発熱剤10gを装填した。
The cylindrical sample container was placed in the center of the recess of a steel sample holder with an outer diameter of 100 mm, a thickness of 40 mm, and a recess with an inner diameter of 20 mm and a depth of 17 holes in the center. 10 g of an exothermic agent containing copper oxide, 200 mesh baths of iron, and 100 mesh baths of silicon iron mixed in a mixing ratio of 4:4:2 was loaded.

発熱剤の着火源は、平均粒径30ミクロンのケイ素鉄と
平均粒径3ミクロンの四三酸化鉛を重量比で3ニアの割
合で混合した混合物を硝化綿をバインダーとしてフィラ
メントに付着させ、電気的着火とした。
The ignition source of the exothermic agent is a mixture of silicon iron with an average particle size of 30 microns and trilead tetroxide with an average particle size of 3 microns in a weight ratio of 3 nia, which is attached to the filament using nitrified cotton as a binder. It was electrically ignited.

爆薬の爆発によるエネルギーを伝える飛しよう板として
厚さ5m、外径100mmの鉄鋼製円板を、該円板の下
表面と保持材上部の表面との間隙が10鵬となるように
して支持物により設置した。その上に爆速6500 m
/sec以上を有するシート状の爆薬500gを搭載し
、更に爆速2500 m/sec以上の爆薬と爆速65
00■八ec以上の爆薬を組み合わせて作った平面波発
生装置と電気雷管を設置し、衝撃加工装置を組立てた。
A steel disk with a thickness of 5 m and an outer diameter of 100 mm was used as a flying plate to transmit the energy from the explosion of the explosive, and the gap between the lower surface of the disk and the upper surface of the holding material was 10 mm. It was installed by On top of that, it has an explosive speed of 6500 m.
Equipped with 500g of sheet-like explosives with a detonation speed of 2,500m/sec or more, and an explosive with a detonation velocity of 65m/sec or more.
A plane wave generator made from a combination of explosives of 0.00■8 ec or more and an electric detonator were installed, and an impact processing device was assembled.

かかる衝撃加工装置において、先ず電気によって発熱剤
の発熱反応を生じさせた。その後約5分間経過して、電
気雷管により爆薬を起爆させた。
In such an impact processing device, first, an exothermic reaction of the exothermic agent was caused by electricity. Approximately five minutes later, the explosives were detonated using an electric detonator.

その結果、得られたアルミニウム成型体は2・48g/
ailの密度を有しており、走査電子顕微鏡で粒子界面
を観察した結果、粒子が変形した状態での接合が認めら
れた。
As a result, the aluminum molded body obtained was 2.48 g/
ail density, and as a result of observing the particle interface with a scanning electron microscope, it was observed that the particles were bonded in a deformed state.

比較例 実施例1における、試料保持材の中心部の凹部を内径1
2mm、深さ17岨とし、該凹部に試料容器を設置し、
発熱剤は用いない以外は、実施例と同様に衝撃加工装置
を組立てた後、電気雷管により爆薬を起爆させた。得ら
れたアルミニウム成型体の密度は2.21 g/c+f
であり、走査電子顕微鏡で観察した結果、粒子界面に空
孔が数多く認められクラックも認められた。
Comparative Example In Example 1, the recess in the center of the sample holding material was made with an inner diameter of 1
2 mm and a depth of 17 holes, and a sample container was installed in the recess,
After assembling the impact processing device in the same manner as in the example except that no exothermic agent was used, the explosive was detonated using an electric detonator. The density of the obtained aluminum molded body is 2.21 g/c+f
As a result of observation using a scanning electron microscope, many pores and cracks were observed at the particle interface.

〔発明の効果〕〔Effect of the invention〕

本発明は、初期条件を高温化する事により爆発衝撃処理
時における原子移動を容易にさせるばかりでなく、衝撃
処理現場において容易に被処理物質を高温加熱すること
ができ、かつ安全な状態で行なう事を可能にしたもので
ある。更には、従来衝撃処理加工において十分な物が得
れなかった例えばセラミックス材料、ダイヤモンド、高
分子材料、金属材料等の成形、合成、圧搾、圧着等巾広
い応用性を持つものである。
The present invention not only facilitates the movement of atoms during explosive impact treatment by increasing the temperature of the initial conditions, but also allows the material to be treated to be easily heated to high temperatures at the impact treatment site, and in a safe manner. It is what made things possible. Furthermore, it has a wide range of applicability, such as molding, synthesis, squeezing, and crimping of ceramic materials, diamonds, polymer materials, metal materials, etc., which have not been sufficiently obtained in conventional impact treatment processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)は本発明に用いる一態様の衝撃加工装置の
縦断面図、第1図(B)は第1図(A)のA−A′線で
の切断断面図であり、第2図は本発明に用いる他の態様
の衝撃加工装置の縦断面図である。 1は被処理物質(粉末試料)、2ば試料容器、3は発熱
剤、4は発熱剤の着火源、5は試料保持材、6は間隙用
の支持物、7は飛しょう板、8は爆薬、9は平面波発生
装置、10は電気雷管、11は金属板。 特許出願人  旭化成工業株式会社
FIG. 1(A) is a longitudinal cross-sectional view of an impact processing apparatus according to one embodiment of the present invention, and FIG. 1(B) is a cross-sectional view taken along line AA' in FIG. 1(A). FIG. 2 is a longitudinal sectional view of another embodiment of the impact processing device used in the present invention. 1 is a substance to be processed (powder sample), 2 is a sample container, 3 is an exothermic agent, 4 is an ignition source for the exothermic agent, 5 is a sample holding material, 6 is a support for the gap, 7 is a flying plate, 8 9 is an explosive, 9 is a plane wave generator, 10 is an electric detonator, and 11 is a metal plate. Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 爆薬の持つエネルギーを利用して物質を衝撃処理する方
法において、かかる被処理物質を発熱剤で加熱した状態
で衝撃処理することを特徴とする爆薬による物質の衝撃
処理方法。
1. A method for impact treatment of a substance using an explosive, the method comprising performing impact treatment on a substance to be treated while being heated with an exothermic agent.
JP13121890A 1990-05-23 1990-05-23 Impact treatment for material with explosive Pending JPH0426708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13121890A JPH0426708A (en) 1990-05-23 1990-05-23 Impact treatment for material with explosive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13121890A JPH0426708A (en) 1990-05-23 1990-05-23 Impact treatment for material with explosive

Publications (1)

Publication Number Publication Date
JPH0426708A true JPH0426708A (en) 1992-01-29

Family

ID=15052798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13121890A Pending JPH0426708A (en) 1990-05-23 1990-05-23 Impact treatment for material with explosive

Country Status (1)

Country Link
JP (1) JPH0426708A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146542A (en) * 2002-10-23 2004-05-20 Asahi Kasei Chemicals Corp Solid material for magnet and its manufacturing method
JP2008307592A (en) * 2007-06-18 2008-12-25 Asahi Kasei Chemicals Corp Explosive working method
CN109513922A (en) * 2018-12-26 2019-03-26 王荆楠 A kind of explosive forming equipment of metal powder
CN113787249A (en) * 2021-10-08 2021-12-14 舞钢神州重工金属复合材料有限公司 Explosive welding method for large-size metal composite plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146542A (en) * 2002-10-23 2004-05-20 Asahi Kasei Chemicals Corp Solid material for magnet and its manufacturing method
JP2008307592A (en) * 2007-06-18 2008-12-25 Asahi Kasei Chemicals Corp Explosive working method
CN109513922A (en) * 2018-12-26 2019-03-26 王荆楠 A kind of explosive forming equipment of metal powder
CN113787249A (en) * 2021-10-08 2021-12-14 舞钢神州重工金属复合材料有限公司 Explosive welding method for large-size metal composite plate

Similar Documents

Publication Publication Date Title
Thadhani Shock‐induced and shock‐assisted solid‐state chemical reactions in powder mixtures
Yi et al. Effect of heating rate on the combustion synthesis of Ti-Al intermetallic compounds
US3401019A (en) Process for synthesizing diamond
Song et al. Shock-induced chemical reactions and synthesis of nickel aluminides
US1415516A (en) Method of and apparatus for reducing metals, etc.
US3238019A (en) Method of making diamond
US4790735A (en) Materials processing using chemically driven spherically symmetric implosions
US3165826A (en) Method of explosively forming fibers
Thadhani Shock compression processing of powders
JPH0426708A (en) Impact treatment for material with explosive
US5847355A (en) Plasma-assisted microwave processing of materials
Grebe et al. Combustion synthesis and subsequent
Rosenband et al. A microscopic and analytic study of aluminum particles agglomeration
US2848324A (en) Method of producing agglomerates highly resistant against heat and/or chemical attack
US4552742A (en) Materials processing using chemically driven spherically symmetric implosions
Itin et al. Effect of mechanical activation on the regularities of self-propagating high-temperature synthesis in the titanium-nickel system
SU1644996A1 (en) Method of manufacturing diamonds
US5108966A (en) Process for producing wurtzitic or cubic boron nitride
Ji et al. Near‐Infrared Laser Initiation Mechanism of Pentaerythritol Tetranitrate Doped with Aluminum Nanoparticles
JP3955477B2 (en) Method for producing alumina hollow particles
US5114645A (en) Fabrication of ceramics by shock compaction of materials prepared by combustion synthesis
Shahzad et al. Study and development of NiAl intermetallic coating on hypo-eutectoid steel using highly activated composite granules of the Ni–Al system
Nesterenko Controlled high-rate-strain shear bands in inert and reactant porous materials
JP3739194B2 (en) Method of high temperature impact solidification of cemented carbide powder
JP2004168575A (en) Method for sintering ceramic