JP2008307592A - Explosive working method - Google Patents

Explosive working method Download PDF

Info

Publication number
JP2008307592A
JP2008307592A JP2007159896A JP2007159896A JP2008307592A JP 2008307592 A JP2008307592 A JP 2008307592A JP 2007159896 A JP2007159896 A JP 2007159896A JP 2007159896 A JP2007159896 A JP 2007159896A JP 2008307592 A JP2008307592 A JP 2008307592A
Authority
JP
Japan
Prior art keywords
explosive
self
reactive substance
powder
explosives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007159896A
Other languages
Japanese (ja)
Other versions
JP5290540B2 (en
Inventor
Kazuyuki Hokamoto
和幸 外本
Shoichiro Kai
彰一郎 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2007159896A priority Critical patent/JP5290540B2/en
Publication of JP2008307592A publication Critical patent/JP2008307592A/en
Application granted granted Critical
Publication of JP5290540B2 publication Critical patent/JP5290540B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B1/00Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
    • B30B1/001Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by explosive charges

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Press Drives And Press Lines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an explosive working method which utilizes explosives, can controls cracks, strain, joinability or the like after working, and is low in cost and improved in productivity and safety. <P>SOLUTION: In the explosive working method, a self-reactive substance 5 arranged between the explosives 2 and the material to be worked is reacted by shock waves generated by the detonation of explosives 2, thereby acting both the shock waves and the reaction heat of the self-reactive substance 5 to the material to be worked. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、爆発加工方法に関し、より詳しくは、爆薬の衝撃波を利用し、様々な材料を接合、被覆、圧搾、成形、合成、分解する方法に関する。   The present invention relates to an explosive processing method, and more particularly to a method for joining, coating, squeezing, molding, synthesizing, and decomposing various materials using a shock wave of an explosive.

爆薬の衝撃波を利用し、各種材料を接合、被覆、圧搾、成形、合成、分解する方法は広く知られている。通常は、目的とする材料を試料容器に封入後、爆薬の爆轟による衝撃波を直接あるいは間接的に試料に作用させ、目的を達成している。   Methods for joining, coating, squeezing, molding, synthesizing and decomposing various materials using the shock wave of explosives are widely known. Usually, after a target material is sealed in a sample container, a shock wave caused by explosive detonation is applied directly or indirectly to the sample to achieve the purpose.

例えば特許文献1には、円筒形圧搾装置の内部に磁石粉体を充填し、その周囲に爆薬を配置し、爆薬の爆轟と同時に粉体を圧縮固化する方法が開示されている。また、特許文献2には、円筒形圧搾装置の内部に磁石粉体を充填し、その周囲にそれぞれ隔離された水と爆薬を配置し、爆薬の爆轟と同時に磁石粉体を圧縮固化する方法が開示されている。また、特許文献3には、円柱状の試料ホルダー内に硬度のきわめて高い粉末を充填し、その上部に水と火薬をそれぞれ隔離して配置し、爆薬の爆轟と同時に粉末を固化成形する方法が開示されている。また、特許文献4には、試料を充填した板状の装置を水槽内にセットし、爆薬の爆轟と同時に容器内の試料を接合、圧着、被覆、固化、合成させる方法が開示されている。   For example, Patent Document 1 discloses a method in which a magnetic powder is filled in a cylindrical squeezing device, an explosive is disposed around the cylinder, and the powder is compressed and solidified simultaneously with the explosive detonation. Further, Patent Document 2 discloses a method in which magnet powder is filled in a cylindrical squeezing device, water and explosives that are isolated from each other are arranged, and the magnetic powder is compressed and solidified simultaneously with detonation of the explosive. Is disclosed. Patent Document 3 discloses a method in which powder having extremely high hardness is filled in a cylindrical sample holder, water and explosives are separately disposed on the upper portion thereof, and the powder is solidified and formed simultaneously with the detonation of the explosive. Is disclosed. Patent Document 4 discloses a method in which a plate-shaped device filled with a sample is set in a water tank, and the sample in the container is joined, pressed, covered, solidified, and synthesized simultaneously with the detonation of the explosive. .

しかし、特許文献1〜4の方法は、粉体あるいは板材に対し、爆薬の衝撃波(衝撃圧力)だけを印加する爆発加工方法であり、高硬度材料や高融点材料等を加工する場合に、加工後の割れや歪が発生する場合があった。   However, the methods of Patent Documents 1 to 4 are explosive processing methods in which only the explosive shock wave (impact pressure) is applied to the powder or plate material. When processing a high hardness material, a high melting point material, or the like, the processing is performed. Later cracks and distortions may occur.

特許文献5には、特許文献3に類似した装置を用いて、より良好な成形体を得るために、粉末を予め加熱し圧縮固化する方法が開示されている。   Patent Document 5 discloses a method in which a powder is preliminarily heated and compressed and solidified using an apparatus similar to Patent Document 3 in order to obtain a better molded body.

しかし、特許文献5の方法では、固化する粉末を電気炉等によって事前に加熱することで、加工後の割れや歪を制御することは可能であるが、装置には爆薬が充填されているため、装置全体を加熱することができず、事前に試料容器だけを分離させ、爆薬に影響を及ぼさない距離で加熱する必要がある。そのため、この方法では、まず電気炉が必要であり、かつ試料容器を自動あるいは手動にて移動させる装置も必要であるため、製造コストが高い。   However, in the method of Patent Document 5, it is possible to control cracks and distortion after processing by heating the solidified powder in advance with an electric furnace or the like, but the device is filled with explosives. The entire apparatus cannot be heated, it is necessary to separate only the sample container in advance and heat it at a distance that does not affect the explosive. Therefore, in this method, an electric furnace is required first, and an apparatus for moving the sample container automatically or manually is also required, so that the manufacturing cost is high.

特開2001−6959号公報JP 2001-6959 A 特開2003−243212号公報Japanese Patent Laid-Open No. 2003-243212 特開平6−198496号公報JP-A-6-198496 特開2006−255710号公報JP 2006-255710 A 特開平9−239257号公報JP 9-239257 A

そこで、本発明は、爆薬を利用した爆発加工方法において、加工後の割れ、歪および接合性等を制御し、かつ低コストで製造性、安全性を向上させた方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method in which cracking, strain, and bondability after processing are controlled in an explosive processing method using an explosive, and productivity and safety are improved at low cost. To do.

本発明者等は、鋭意検討を行なった結果、爆薬と被加工材料の間に自己反応性物質を配置することで、前記課題を解決できることを見出し、本発明をなすに至った。   As a result of intensive studies, the present inventors have found that the above-described problems can be solved by arranging a self-reactive substance between the explosive and the material to be processed, and have made the present invention.

即ち、本発明の爆発加工方法は、爆薬の爆轟によって発生した衝撃波により、該爆薬と被加工材料の間に配置された自己反応性物質を反応させ、前記衝撃波と前記自己反応性物質の反応熱との双方を、前記被加工材料に作用させることを特徴とする。   That is, the explosive processing method of the present invention reacts the self-reactive substance disposed between the explosive and the material to be processed by a shock wave generated by detonation of the explosive, and reacts the shock wave with the self-reactive substance. It is characterized in that both the heat and the work material are allowed to act.

本発明の爆発加工方法によれば、加工後の割れ、歪および接合性を向上させることができる。   According to the explosive processing method of the present invention, it is possible to improve cracking, strain and bondability after processing.

しかも、従来は困難であった高硬度材料や高張力材料等の爆発加工を、安全にかつ効率よく行うことが可能になる。例えば、高硬度材料粉末を基材に被覆させる場合、割れがなくかつ緻密な被覆層が基材上に形成されるため、耐磨耗性の要求される超硬工具鋼やその他耐磨耗材料として使用できる。また、塑性変形のしにくい高張力鋼や伸びの少ないチタン合金、アルミ合金、ニッケル合金を、成形あるいは基材に接合させる場合も、従来の爆発加工法よりも、良好な成形あるいは接合が可能になる。   In addition, it is possible to safely and efficiently perform explosive processing of high hardness materials, high tension materials, and the like, which has been difficult in the past. For example, when a high hardness material powder is coated on a base material, a hard coating layer without cracks and a dense coating layer is formed on the base material. Can be used as Also, when molding high-strength steels that are difficult to plastically deform, titanium alloys with low elongation, aluminum alloys, and nickel alloys are molded or bonded to a substrate, better molding or bonding is possible than with conventional explosive processing methods. Become.

以下、本発明について、粉末を基材表面にコーティングする場合を例にとり、詳細に説明する。   Hereinafter, the present invention will be described in detail by taking as an example the case where powder is coated on the surface of a substrate.

図1は、本発明の方法を実施するための装置の一例を示す模式図である。図1に示すように、円柱状の容器8の内部には、基材7が配置され、その表面に粉末6が充填されている。本例においては、基材7と粉末6が、被加工材料である。さらに、粉末6の上には、それぞれ分離板3を介して、自己反応性物質5、水4が、この順で配置され、更にその上に爆薬2が配置されている。   FIG. 1 is a schematic view showing an example of an apparatus for carrying out the method of the present invention. As shown in FIG. 1, the base material 7 is arrange | positioned inside the cylindrical container 8, and the powder 6 is filled in the surface. In this example, the base material 7 and the powder 6 are materials to be processed. Further, the self-reactive substance 5 and the water 4 are arranged in this order on the powder 6 via the separation plate 3, respectively, and the explosive 2 is further arranged thereon.

そして、雷管1を使って起爆すると、爆薬2の爆轟によって発生した衝撃波が、水4を媒体として伝播し、自己反応性物質5を反応させ、その反応熱が衝撃波とともに粉末6に作用し、粉末6が圧搾固化されて、基材7上にコーティングされる。   Then, when detonation is performed using the detonator 1, the shock wave generated by the detonation of the explosive 2 propagates using the water 4 as a medium, reacts with the self-reactive substance 5, and the reaction heat acts on the powder 6 together with the shock wave. The powder 6 is pressed and solidified and coated on the substrate 7.

本発明で用いられる爆薬2とは、爆轟波を発生する火薬類であり、火薬類取締法第1章第2条の2に定義された爆薬である。具体的には、硝酸エステル類のPETN(ペンタエリスリトールテトラナイトレート)やニトログリセリン、ニトロ化合物のTNT(トリニトロトルエン)、ニトラミンのシクロトリメチレントリニトラミンやシクロテトラメチレンテトラニトラミンなどが挙げられる。爆薬はこれらの単独を用いてもよく、2種以上の混合物を用いても良い。爆薬の爆速は特に限定されないが、好ましくは2000〜9000m/sec、より好ましくは5000m/sec〜8000m/secである。   Explosives 2 used in the present invention are explosives that generate detonation waves, and are explosives defined in Chapter 1 Article 2 of Explosives Control Law. Specific examples include nitrate esters PETN (pentaerythritol tetranitrate) and nitroglycerin, nitro compounds TNT (trinitrotoluene), nitramines cyclotrimethylenetrinitramine and cyclotetramethylenetetranitramine. These explosives may be used alone or in a mixture of two or more. The explosive speed of the explosive is not particularly limited, but is preferably 2000 to 9000 m / sec, more preferably 5000 m / sec to 8000 m / sec.

また、本発明で用いられる自己反応性物質5としては、例えば、火薬類取締法第1章第2条の1に定義された火薬等、爆轟波を伴わない火薬が挙げられ、爆発時の発生熱量が高いものが好ましい。具体的には、硝酸エステル類のニトログリセリンやニトログリコールやニトロセルロース、過塩素酸を主とするコンポジット推進薬などが挙げられる。自己反応性物質はこれらの単独を用いてもよく、2種類以上の混合物を用いても良い。   Examples of the self-reactive substance 5 used in the present invention include explosives not accompanied by detonation waves, such as explosives defined in Chapter 1 of Article 1 of the Explosives Control Law. Those having a high heat generation amount are preferred. Specific examples include nitroglycerin nitrates, nitroglycol, nitrocellulose, and composite propellants mainly composed of perchloric acid. These self-reactive substances may be used alone or as a mixture of two or more kinds.

水4は必要に応じて用いればよく、また衝撃波の伝播状態を変更させるために、水4の代替として油やその他の粘性物質を配置しても良い。水4を用いる場合、衝撃波を作用させる全面に、厚さ1mm以上となるように配置することが好ましい。   The water 4 may be used as necessary, and oil or other viscous substances may be disposed in place of the water 4 in order to change the propagation state of the shock wave. When water 4 is used, it is preferably disposed so as to have a thickness of 1 mm or more on the entire surface on which the shock wave acts.

容器8の材質は、取り扱い時に破壊しないものであれば良いが、金属製が好ましい。また、分離板3は必要に応じて配置すればよく、爆薬2と水4の間に両者を分離させる分離板3を配置してもよい。分離板3は特に材質の限定はないが、薄い金属が好ましく、特に自己反応性物質5の上に配置する分離板3は、熱伝導性の良い銅箔またはアルミ箔が好ましい。   The material of the container 8 may be any material that does not break during handling, but is preferably made of metal. Moreover, what is necessary is just to arrange | position the separating plate 3 as needed, and you may arrange | position the separating plate 3 which isolate | separates both between the explosive 2 and the water 4. FIG. The material of the separator plate 3 is not particularly limited, but a thin metal is preferable. In particular, the separator plate 3 disposed on the self-reactive substance 5 is preferably a copper foil or an aluminum foil having good thermal conductivity.

被加工材料としては特に限定されないが、金属またはセラミックスからなる粉体、金属またはセラミックスからなる板材等が挙げられ、二種以上の粉体、二種以上の板材が混在していてもよい。特に、本発明は、WC/Co混合粉末等の高硬度材料、高張力鋼や、チタン合金、アルミ合金、ニッケル合金等の高張力材料を被加工材料とした場合に、有用である。   Although it does not specifically limit as a to-be-processed material, The powder which consists of metal or ceramics, the board | plate material which consists of metal or ceramics, etc. are mentioned, Two or more types of powders and two or more types of plate materials may be mixed. In particular, the present invention is useful when a high-hardness material such as a WC / Co mixed powder, a high-tensile steel, or a high-tensile material such as a titanium alloy, an aluminum alloy, or a nickel alloy is used as a work material.

本発明の加工方法は、コーティングに限定されず、接合、被覆、圧搾、成形、合成、分解等にも適用できる。   The processing method of the present invention is not limited to coating, but can also be applied to joining, coating, pressing, molding, synthesis, decomposition, and the like.

また、本発明を実施するための装置も図1のものに限定されず、例えば、図2、3に示す装置等が挙げられる。   Moreover, the apparatus for implementing this invention is not limited to the thing of FIG. 1, For example, the apparatus shown in FIG.

以下、本発明を実施例に基づいて説明するが、本発明は以下の実施例に示されたものに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to what was shown by the following example.

<実施例1>
図1の装置(軟鋼製、内径30mm)に、以下に示す爆薬等を充填し、雷管1を使って起爆し、粉末を基材の上にコーティングした。尚、分離板としては、粉末上に厚み50μmの銅箔、自己反応性物質上に厚み2mmのSUS板を用いた。
爆薬:SEP爆薬(旭化成ケミカルズ(株)製)、45g(爆速約7000m/sec)
自己反応性物質:ニトロセルロース、3.05g(0.96mm厚、密度約4.5g/cm3
水:3.53g(5mm厚)
粉末:WC/Co混合粉末(WC75mass%、Co25mass%)、9.82g
基材:SS400、直径3cm×厚さ3mm
<Example 1>
The apparatus shown in FIG. 1 (made of mild steel, inner diameter 30 mm) was filled with the following explosives, etc., detonated using the detonator 1, and coated with powder on the substrate. As the separation plate, a 50 μm thick copper foil was used on the powder, and a 2 mm thick SUS plate was used on the self-reactive substance.
Explosive: SEP explosive (Asahi Kasei Chemicals Corporation), 45 g (explosion speed approx. 7000 m / sec)
Self-reactive substance: nitrocellulose, 3.05 g (0.96 mm thickness, density of about 4.5 g / cm 3 )
Water: 3.53g (5mm thickness)
Powder: WC / Co mixed powder (WC75 mass%, Co25 mass%), 9.82 g
Base material: SS400, diameter 3cm x thickness 3mm

目視および光学顕微鏡観察では、コーティング層の割れ・空隙はなく、良好な成形体であることを確認し、コーティング層と基材との接合も良好であった。また、成形体を1100℃、1時間熱処理し、マイクロビッカース硬度計にて硬度を測定した結果、平均1085Hvの高い硬度を示すことも確認した。さらに、ボールオンディスクタイプの磨耗試験により0.1m/sの速度で、1kg荷重を1日作用させて磨耗重量を計測した結果、10mgの磨耗減量であった。   Visual observation and observation with an optical microscope confirmed that the coating layer was free of cracks and voids and was a good molded product, and the coating layer and the substrate were also well bonded. Moreover, as a result of heat-processing a molded object for 1 hour at 1100 degreeC and measuring hardness with a micro Vickers hardness meter, it also confirmed showing the high hardness of an average 1085Hv. Furthermore, as a result of measuring the wear weight by applying a 1 kg load for one day at a speed of 0.1 m / s by a wear test of a ball-on-disk type, the weight loss was 10 mg.

<比較例1>
自己反応性物質を用いない以外は、実施例1と同様にしてコーティングした。
<Comparative Example 1>
Coating was carried out in the same manner as in Example 1 except that no self-reactive substance was used.

目視および光学顕微鏡観察では、コーティング層の組織は、実施例1に比べて、粒子の脱落が多く見られた。また、実施例1と同様にして硬度を測定した結果、平均1076Hv程度の硬度を示した。さらに、実施例1と同様にして測定した磨耗減量は17mgであった。   In visual observation and observation with an optical microscope, in the structure of the coating layer, more particles dropped out than in Example 1. Moreover, as a result of measuring the hardness in the same manner as in Example 1, an average hardness of about 1076 Hv was shown. Furthermore, the wear loss measured in the same manner as in Example 1 was 17 mg.

本発明によれば高硬度材料や高張力材料等の爆発加工が可能であり、例えば、本発明により高硬度材料粉末を基材に被覆した加工品は耐磨耗性の要求される超硬工具鋼やその他耐磨耗材料として使用できる。   According to the present invention, explosive processing of a high hardness material, a high tension material, or the like is possible. For example, a processed product in which a base material is coated with a high hardness material powder according to the present invention is a cemented carbide tool that requires wear resistance. Can be used as steel and other wear resistant materials.

また、塑性変形のしにくい高張力鋼や伸びの少ないチタン合金、アルミ合金、ニッケル合金を成形あるいは基材に接合させる場合にも、本発明は有用であるし、新たな合成、分解技術への展開も可能である。   In addition, the present invention is useful when molding high-strength steels that are difficult to plastically deform, titanium alloys with low elongation, aluminum alloys, nickel alloys, or joining to base materials. Deployment is also possible.

本発明の方法を実施するための装置の一例を示す模式図である。It is a schematic diagram which shows an example of the apparatus for enforcing the method of this invention. 本発明の方法を実施するための装置の他の例を示す模式図である。It is a schematic diagram which shows the other example of the apparatus for enforcing the method of this invention. 本発明の方法を実施するための装置の他の例を示す模式図である。It is a schematic diagram which shows the other example of the apparatus for enforcing the method of this invention.

符号の説明Explanation of symbols

1 雷管
2 爆薬
3 分離板
4 水
5 自己反応性物質
6 粉末
7 基材
8 容器
1 Detonator 2 Explosive 3 Separation plate 4 Water 5 Self-reactive substance 6 Powder 7 Base material 8 Container

Claims (4)

爆薬の爆轟によって発生した衝撃波により、該爆薬と被加工材料の間に配置された自己反応性物質を反応させ、前記衝撃波と前記自己反応性物質の反応熱との双方を、前記被加工材料に作用させることを特徴とする爆発加工方法。   A shock wave generated by detonation of the explosive causes a self-reactive substance disposed between the explosive and the work material to react, and both the shock wave and the reaction heat of the self-reactive substance are used as the work material. Explosive processing method characterized by acting on the surface. 前記自己反応性物質が、火薬類取締法第1章第2条の1に定義される火薬であることを特徴とする請求項1に記載の爆発加工方法。   2. The explosive processing method according to claim 1, wherein the self-reactive substance is an explosive defined in Chapter 1 of Article 1 of Explosives Control Law. 前記被加工材料が、1種類以上の金属あるいはセラミックスからなる粉体または板材であることを特徴とする請求項1または2に記載の爆発加工方法。   The explosion processing method according to claim 1 or 2, wherein the material to be processed is a powder or a plate made of one or more kinds of metals or ceramics. 前記衝撃波を、前記爆薬と前記自己反応性物質との間に配置した水を媒体として伝播させることを特徴とする請求項1〜3のいずれかに記載の爆発加工方法。   The explosion processing method according to any one of claims 1 to 3, wherein the shock wave is propagated by using water arranged between the explosive and the self-reactive substance as a medium.
JP2007159896A 2007-06-18 2007-06-18 Explosive processing method Expired - Fee Related JP5290540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007159896A JP5290540B2 (en) 2007-06-18 2007-06-18 Explosive processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007159896A JP5290540B2 (en) 2007-06-18 2007-06-18 Explosive processing method

Publications (2)

Publication Number Publication Date
JP2008307592A true JP2008307592A (en) 2008-12-25
JP5290540B2 JP5290540B2 (en) 2013-09-18

Family

ID=40235679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007159896A Expired - Fee Related JP5290540B2 (en) 2007-06-18 2007-06-18 Explosive processing method

Country Status (1)

Country Link
JP (1) JP5290540B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068551A (en) * 2009-08-22 2011-04-07 Kumamoto Univ Method for manufacturing inorganic-compound bulk body and inorganic-compound bulk body
JP2015516886A (en) * 2012-04-05 2015-06-18 ジ・オハイオ・ステート・ユニバーシティ Electrically driven rapid vaporization of foil, wire and strip materials used for impact welding and sheet metal forming
CN111215855A (en) * 2020-02-20 2020-06-02 有研工程技术研究院有限公司 Titanium/nickel alloy part based on explosive welding and laser additive manufacturing and preparation method
US11084122B2 (en) 2017-07-13 2021-08-10 Ohio State Innovation Foundation Joining of dissimilar materials using impact welding

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103862697A (en) * 2014-03-19 2014-06-18 中国船舶重工集团公司第七○二研究所 Cylindrical underground explosion shock wave compaction device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243205A (en) * 1987-03-30 1988-10-11 Takashi Chiba Production of compressed body of metal powder
JPH02180560A (en) * 1988-12-30 1990-07-13 Sumitomo Coal Mining Co Ltd Super abrasive grain grindstone and manufacture thereof
JPH0312365A (en) * 1989-06-12 1991-01-21 Komatsu Ltd Manufacture of ceramic sintered body
JPH03234398A (en) * 1990-02-13 1991-10-18 Asahi Chem Ind Co Ltd Production of powder compressed body utilizing underwater impulsive wave
JPH0426708A (en) * 1990-05-23 1992-01-29 Asahi Chem Ind Co Ltd Impact treatment for material with explosive
JPH0857696A (en) * 1994-08-16 1996-03-05 Asahi Chem Ind Co Ltd High-temperature impact powder solidification molding method and powder solidification molding device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243205A (en) * 1987-03-30 1988-10-11 Takashi Chiba Production of compressed body of metal powder
JPH02180560A (en) * 1988-12-30 1990-07-13 Sumitomo Coal Mining Co Ltd Super abrasive grain grindstone and manufacture thereof
JPH0312365A (en) * 1989-06-12 1991-01-21 Komatsu Ltd Manufacture of ceramic sintered body
JPH03234398A (en) * 1990-02-13 1991-10-18 Asahi Chem Ind Co Ltd Production of powder compressed body utilizing underwater impulsive wave
JPH0426708A (en) * 1990-05-23 1992-01-29 Asahi Chem Ind Co Ltd Impact treatment for material with explosive
JPH0857696A (en) * 1994-08-16 1996-03-05 Asahi Chem Ind Co Ltd High-temperature impact powder solidification molding method and powder solidification molding device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068551A (en) * 2009-08-22 2011-04-07 Kumamoto Univ Method for manufacturing inorganic-compound bulk body and inorganic-compound bulk body
JP2015516886A (en) * 2012-04-05 2015-06-18 ジ・オハイオ・ステート・ユニバーシティ Electrically driven rapid vaporization of foil, wire and strip materials used for impact welding and sheet metal forming
US11084122B2 (en) 2017-07-13 2021-08-10 Ohio State Innovation Foundation Joining of dissimilar materials using impact welding
US11759884B2 (en) 2017-07-13 2023-09-19 Ohio State Innovation Foundation Joining of dissimilar materials using impact welding
CN111215855A (en) * 2020-02-20 2020-06-02 有研工程技术研究院有限公司 Titanium/nickel alloy part based on explosive welding and laser additive manufacturing and preparation method
CN111215855B (en) * 2020-02-20 2021-05-11 有研工程技术研究院有限公司 Titanium/nickel alloy part based on explosive welding and laser additive manufacturing and preparation method

Also Published As

Publication number Publication date
JP5290540B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5290540B2 (en) Explosive processing method
Zhang et al. The effect of annealing on the interface microstructure and mechanical characteristics of AZ31B/AA6061 composite plates fabricated by explosive welding
Acarer et al. Investigation of explosive welding parameters and their effects on microhardness and shear strength
Zhou et al. Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications
US9021845B2 (en) Electrically driven rapidly vaporizing foils, wires and strips used for collision welding and sheet metal forming
JP2007015018A (en) Magnesium composite material and its manufacturing method
Acarer et al. The influence of some factors on steel/steel bonding quality on there characteristics of explosive welding joints
Fronczek et al. Microstructure changes and phase growth occurring at the interface of the Al/Ti explosively welded and annealed joints
Kinsey et al. Effect of dilution on reaction properties and bonds formed using mechanically processed dilute thermite foils
Walley et al. Response of thermites to dynamic high pressure and shear
US5531369A (en) Process for making machines resistant to cavitation and liquid droplet erosion
SE467495B (en) WANT TO INCREASE THE EFFECTS OF ENERGY-EFFICIENT EXPLOSIVE MIXTURES, AND ACCORDINGLY TO PRODUCING EXPLOSIVE MIXTURES MIXTURES
Kumar et al. The joining of magnesium and aluminium alloys by inclined arrangement of explosive welding
EP3385222A1 (en) Coated particle
JPH01157785A (en) Method of explosive-welding alloy aluminum
EP3637037B1 (en) Method for synthesizing nanodiamond using an explosive body
US5353708A (en) Method for production of ultradispersed diamond
Thadhani et al. Shock-induced reaction synthesis (SRS) of nickel aluminides
JP2951349B2 (en) Manufacturing method of powder pressed body using underwater shock wave
EP3610979B1 (en) Dissimilar metal joint including flame-retardant magnesium alloy layer, and method of producing such joint
Lewczuk et al. Performance of BCHMX in Small Charges
Muneshwar et al. Metallurgical studies on explosive welded aluminium alloy-stainless steel bimetallic plates
Saikov et al. Energetic Materials Based on W/PTFE/Al: Thermal and Shock-Wave Initiation of Exothermic Reactions. Metals 2021, 11, 1355
McGrath METALLOGRAPHIC EVALUATION OF EXPLOSIVELY BONDED AND EXPLOSIVELY COMPACTED MATERIALS
RU2284448C1 (en) Method for production of high-temperature condensed gaseous and ionized explosion products for simulation of conditions of natural and technogenic catastrophes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120817

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120817

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130606

R150 Certificate of patent or registration of utility model

Ref document number: 5290540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees