JPH02180560A - Super abrasive grain grindstone and manufacture thereof - Google Patents

Super abrasive grain grindstone and manufacture thereof

Info

Publication number
JPH02180560A
JPH02180560A JP33344488A JP33344488A JPH02180560A JP H02180560 A JPH02180560 A JP H02180560A JP 33344488 A JP33344488 A JP 33344488A JP 33344488 A JP33344488 A JP 33344488A JP H02180560 A JPH02180560 A JP H02180560A
Authority
JP
Japan
Prior art keywords
powder
grindstone
metal
volume
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33344488A
Other languages
Japanese (ja)
Inventor
Tamotsu Akashi
明石 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Coal Mining Co Ltd
Original Assignee
Sumitomo Coal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Coal Mining Co Ltd filed Critical Sumitomo Coal Mining Co Ltd
Priority to JP33344488A priority Critical patent/JPH02180560A/en
Publication of JPH02180560A publication Critical patent/JPH02180560A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable grinding of high performance for the grinding of a material difficult to grind by strongly holding super abrasive grains by a bonding material of excellent wear resistance and having a pore as well. CONSTITUTION:A grindstone contains super abrasive grains at >=5vol.% and <=60vol.%. Moreover the bonding phase of the residual part is composed of 50-90vol.% of a carbide, nitride, oxide, silicide or at least one kind of those solid solutions and 10-50vol.% pore. The above super abrasive grain is composed of at least one kind of a diamond, cubic boron nitride and wurtzite boron nitride. As for the manufacture, the above abrasive grain layer component powder 1 is pressurized, DC and AC are simultaneously flowed by passing push rods 13a, 13b and the reaction of each component is started. Both DC and AC are cut off immediately after the reaction start and the temp. rise more than that is constrained. After completion of the reaction, a grindstone material strongly bonding the abrasive grain layer to the grindstone base metal is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分gff] 本願は、ダイヤモンド等の超砥粒を用いた研削砥石及び
その製造方法に係るものであり、詳しくは高硬度焼入れ
鋼や高硬度なセラミックス材料の高精度、高能率加工に
適した新規な超砥粒砥石及びその砥石を簡単な装置と手
段を用いて製造する方法に関するものである。
[Detailed description of the invention] [Industrial application gff] The present application relates to a grinding wheel using super abrasive grains such as diamond and a method for manufacturing the same, and specifically relates to a grinding wheel using super abrasive grains such as diamond, and more specifically, a grinding wheel using super abrasive grains such as diamond, and a method for manufacturing the same. The present invention relates to a new superabrasive grindstone suitable for high-precision, high-efficiency machining of materials, and a method for manufacturing the grindstone using simple equipment and means.

[従来の技術] 従来、この種のものにあっては、下記のようなものにな
りている。
[Prior Art] Conventionally, this type of device is as follows.

ダイヤそンド、立方晶窒化ほう素(以下CBNと略す)
及びウルツ鉱型窒化ほう素(以下WONと略す)は超砥
粒と呼ばれ、これら超砥粒の硬度や靭性は従来のアルミ
ナや炭化硅素砥粒に比べはるかに優れ、耐摩耗性も高い
Diamond, cubic boron nitride (hereinafter abbreviated as CBN)
and wurtzite boron nitride (hereinafter abbreviated as WON) are called superabrasive grains, and these superabrasive grains have far superior hardness and toughness than conventional alumina and silicon carbide abrasive grains, and have high wear resistance.

このため、これら超砥粒を用いた砥石は、従来砥粒を用
いた砥石の研削性能を大きく上回る優れた性能を発揮す
る。
Therefore, a grindstone using these superabrasive grains exhibits excellent grinding performance that greatly exceeds the grinding performance of a grindstone using conventional abrasive grains.

特に、最近、次々に開発されている高硬度、高強度材料
の高能率加工は、それら超砥粒砥石に頼らざるを得ない
のが現状である。
In particular, the current situation is that high-efficiency machining of high-hardness, high-strength materials that have been developed one after another in recent years has no choice but to rely on these superabrasive grindstones.

超砥粒を用いた砥石は、その結合材の種類により、メタ
ルポンド砥石、レジンポンド砥石、及びビトリファイド
ポンド砥石に大別できる。メタルポンド砥石の結合材用
材料としてはCu−5n系合金が主流であり、これにZ
nやMlその他の金属を加えた合金が用いられる。
Grinding wheels using superabrasive grains can be broadly classified into metal pound grinding wheels, resin pound grinding wheels, and vitrified pound grinding wheels, depending on the type of bonding material. Cu-5n alloy is the mainstream as a binding material for metal pound grinding wheels, and Z
An alloy containing n, Ml, or other metals is used.

メタルポンド砥石は砥粒の保存力が高く、ポンド材の耐
摩耗性も優れる反面、この優れた耐摩耗性のために、砥
石として要求される研削の途中で適当に摩耗して砥粒を
順次露出さ・せるという切刃の自己形成能力に乏しく、
切・れ味が悪くなるという欠点をもつ。
Metal pound whetstones have a high abrasive grain storage capacity and the pound material has excellent abrasion resistance, but because of this excellent abrasion resistance, it wears out appropriately during the grinding process required for a whetstone, and the abrasive grains are gradually removed. The cutting edge lacks the self-forming ability of exposing and exposing.
It has the disadvantage of poor cutting quality.

又、レジンポンド砥石“の結合材用材料としては、主に
フェノール樹脂が用いられ、この他に、ポリイミド、エ
ポキシ等の樹脂が用いられる。
Furthermore, as the binding material for the resin pound grindstone, phenol resin is mainly used, and in addition to this, resins such as polyimide and epoxy are also used.

レジンポンドは、他のメタルやビ・トリップイドポンド
材に比べ軟らかいので、研削動作中の砥石にかかる衝撃
を緩和することができるという特徴をもつ。
Resin ponds are softer than other metals or bi-tripoid pond materials, so they have the characteristic of being able to reduce the impact that is applied to the grindstone during grinding operations.

しかし1反面、砥粒の保持力が弱く、又、ポンド材のす
り減り摩耗も□大きく、砥石の摩耗が著しいという欠点
がある。
However, on the other hand, there are disadvantages in that the holding power of the abrasive grains is weak, the abrasion of the pound material is large, and the abrasion of the grindstone is significant.

一方、ビトリファイドボンド砥石の結合材用材料として
は、主に、人造のガラスフリットが使用され、この他、
天然の窯業原料、例えば長石や粘土が使われることもあ
る。
On the other hand, artificial glass frit is mainly used as the binding material for vitrified bond grinding wheels.
Natural ceramic raw materials, such as feldspar and clay, may also be used.

これらの材料を結合材としたビトリファイドボンド砥石
は、メタルポンドやレジンポンド砥石の中間的な耐摩耗
性を有し、ポンド材自体の剛性が高いという特徴を生か
し、主に、精密研削の分野に使用される。
Vitrified bond grinding wheels made of these materials have wear resistance that is intermediate to metal pound or resin pound wheels, and take advantage of the high rigidity of the pound material itself, and are mainly used in the field of precision grinding. used.

近年この高剛性をもつビトリファイドポンド砥石による
高硬度、高強度な51sN4やSlCのような構造用セ
ラミックス材料の加工が試みられてきているが、まだ満
足な結果は得られていない。
In recent years, attempts have been made to process structural ceramic materials such as 51sN4 and SlC, which have high hardness and high strength, using this highly rigid vitrified pound grinding wheel, but satisfactory results have not yet been obtained.

これは、これらの難削材と呼ばれる新しい材料の研削に
対して、従来のビトリファイドボンド砥石での砥粒の保
持力が弱いことの他、結合材の耐摩耗性が低いことに起
因すると考えられている。
This is thought to be due to the weak abrasive retention power of conventional vitrified bond grindstones when grinding these new materials, which are called difficult-to-machine materials, as well as the low wear resistance of the bonding material. ing.

砥粒保持力の強化及び結合材の耐摩耗性の向上を目的と
して、種々改良がなされている。
Various improvements have been made with the aim of strengthening the abrasive retention force and improving the wear resistance of the bonding material.

一つは、結合材の耐摩耗性を上げる目的で、ガラス買の
結合材中に骨材としてアルミナや炭化硅素を補助砥粒と
して加える方法であり、他は主にガラスフリット材を各
砥粒毎に最適なものを選択し、砥粒と結合材の物理化学
的なヌレ性を高めることにより砥粒保持力を高めようと
するものである。
One method is to add alumina or silicon carbide as aggregate to the glass bonding material as auxiliary abrasive grains in order to increase the wear resistance of the bonding material.The other method is to add glass frit material to each abrasive grain. The aim is to increase the abrasive retention force by selecting the optimal one for each case and increasing the physicochemical wettability of the abrasive grains and the binder.

さらに、それら二つの改良を組み合わせた方法もある。Furthermore, there is also a method that combines these two improvements.

[発明が解決しようとする課題] 従来の技術で述べたものにあっては、下記のような問題
点を有していた。
[Problems to be Solved by the Invention] The conventional techniques described above have the following problems.

最近開発されている構造用セラミックスをはじめとする
難削材の加工では、研削加工の効率や精度の他、研削加
工の残留応力の問題等の観点からみると、市場の要求を
満足する超砥粒砥石はまだ市販されるに至っていない。
When processing difficult-to-cut materials such as structural ceramics, which have recently been developed, superabrasives that meet market demands are needed from the standpoint of grinding efficiency and accuracy, as well as residual stress issues during grinding. Grain grindstones are not yet commercially available.

砥粒保持力及び結合材の耐摩耗性の面では、前述のよう
にメタルポンド砥石は確かに優れるが、構造用セラミッ
クス等の難削材の加工では、特に研削中の衝撃負荷の作
用のない高剛性の下での研削が必要であり、このような
目的に番ヨ、剛性の劣るメタルポンド砥石は不向暫であ
る。
As mentioned above, metal pound grinding wheels are certainly superior in terms of abrasive retention and wear resistance of the bonding material, but when processing difficult-to-cut materials such as structural ceramics, it is especially important that there is no impact load during grinding. Grinding under high rigidity is required, and metal pound grinding wheels with inferior rigidity are not suitable for such purposes.

ビトリファイドボンド砥石は、一般に砥粒、結合材及び
気孔よりなるが、難削材の加工では砥粒の摩耗に比べ結
合材のすり減り摩耗が顕著になるため、近年、気孔のな
いマトリックス型と呼ばれるタイプの砥石が市販されて
いる。
Vitrified bond grinding wheels generally consist of abrasive grains, a bonding material, and pores, but when processing difficult-to-cut materials, wear of the bonding material becomes more pronounced than wear of the abrasive grains. whetstones are commercially available.

これは砥石中の気孔をなくすことにより、砥粒の保持面
積を増加させることにより砥粒保持力を高めること及び
気孔をなくすことにより、結合材自体の強度を高め、そ
の耐摩耗性を向上させることを目的としている。
By eliminating pores in the grinding wheel, the area for holding the abrasive grains is increased, thereby increasing the abrasive grain retention power.By eliminating pores, the strength of the bonding material itself is increased and its wear resistance is improved. The purpose is to

しかし、このタイプの砥石は、研削中に新しい砥粒切刃
を出現させる作用に乏しく、又、研削作業開始時や作業
中に度々、ツルーイングによる整形と切刃を出すドレッ
シングをする必要があり、手間がかかる。
However, this type of whetstone does not have the ability to make new abrasive cutting edges appear during grinding, and it is necessary to perform shaping by truing and dressing to make cutting edges appear at the beginning of grinding work and often during grinding work. It takes time and effort.

又、このことは、自動研削装置へ適用する場合の大きな
障害となる他、精密研削への適用も難しい。
Moreover, this is a major obstacle when applied to automatic grinding equipment, and is also difficult to apply to precision grinding.

又、砥石のもつ気孔は、研削性能自体とも深く関係する
。研削中、気孔は切りくずを排除する所謂チップポケッ
トとして作用し、又、目詰まりしやすい被剛材の研削や
研削熱の発生が問題となる場合には、気孔は冷却水を効
率よく運ぶポケットとしても作用する。
Furthermore, the pores of a grindstone are closely related to the grinding performance itself. During grinding, the pores act as so-called chip pockets to remove chips, and when grinding a rigid material that is prone to clogging or the generation of grinding heat is a problem, the pores act as pockets that efficiently transport cooling water. It also acts as

これらの結果として、砥石中の気孔は、目詰まりの少な
い、又、研削熱の発生の少ない、切れ味のよい研削を可
能にするものである。
As a result, the pores in the grindstone enable sharp grinding with less clogging and generation of grinding heat.

従って、このような働きをする気孔を含まない砥石は、
上述の欠点の他、特に高強度、高靭性の材料の研削に、
おいては目詰まりを起こしやすく、このため研削抵抗が
増大し、研削熱の発生が著しくなる。
Therefore, a grindstone that does not contain pores that functions in this way is
In addition to the above-mentioned drawbacks, especially for grinding high-strength, high-toughness materials,
In this case, clogging is likely to occur, which increases grinding resistance and generates significant grinding heat.

さらに、この熱を冷却水により効率的に除去することが
できないという問題があった。
Furthermore, there was a problem in that this heat could not be efficiently removed by cooling water.

研削熱の発生は、被剛材表面での微小亀裂の発生原因と
なり、材料の強度や信頼性を低下させる。
The generation of grinding heat causes microcracks to occur on the surface of the rigid material, reducing the strength and reliability of the material.

本願は、従来の技術の有するこのような問題点に鑑みな
されたものであり、その目的とするところは、次のよう
な事のできるものを提供しようとするものである。
The present application was made in view of the problems of the prior art, and its purpose is to provide a system that can do the following.

本発明の目的は、高硬度、高強度な難削材の研削加工に
おいて、従来のビトリファイドボンドの超砥粒砥石のも
つ上述のような欠点や問題点を改良することであり、耐
摩耗性の優れた結合材により超砥粒を強く侃持し、かつ
、気孔を合わせ持つことにより、難削材の研削に対し、
高性能な研削を可能にする新規な超砥粒砥石及びその砥
石を簡単な装置と手段により製造する方法を提供するこ
とである。
The purpose of the present invention is to improve the above-mentioned drawbacks and problems of conventional vitrified bond superabrasive grinding wheels in the grinding of hard, high-strength, difficult-to-cut materials. The excellent bonding material strongly holds the superabrasive grains and also has pores, making it suitable for grinding difficult-to-cut materials.
An object of the present invention is to provide a new superabrasive grindstone that enables high-performance grinding and a method for manufacturing the grindstone using simple equipment and means.

[a[!を解決するための手段] 上記目的を達成するために、本発明のものは下記のよう
になるものである。
[a[! Means for Solving] In order to achieve the above object, the present invention is as follows.

本発明者は、高硬度、高強度な被剛材の加工に対して、
耐摩耗性及び砥粒保持力の優れた砥石用ポンド材料の開
発をめざし、鋭意研究を重ねてきた。
The present inventor has developed a method for processing high-hardness, high-strength rigid materials.
We have been conducting extensive research with the aim of developing a pound material for grinding wheels with excellent wear resistance and abrasive grain retention.

その結果、結合材構成成分の出発原料の一部又は全部と
して、反応により体積の減少する性質のある自己発熱反
応に関与する成分を含む砥粒層構成粉末を用い、その自
己発熱反応を着火、開始させ、砥粒層構成粉末を焼結さ
せることにより、反応生成物で砥粒が強固に保持され、
かつ、均一な気孔をもつ砥石が得られ、その結合材の耐
摩耗性も優れていることを見出し、この知見に基づいて
本発明をなすに至った。
As a result, an abrasive layer forming powder containing a component that participates in a self-heating reaction that has the property of reducing its volume due to reaction is used as part or all of the starting raw material for the binder component, and the self-heating reaction is ignited. By starting the process and sintering the powder that makes up the abrasive grain layer, the abrasive grains are firmly held by the reaction product.
In addition, it was discovered that a grindstone having uniform pores can be obtained, and that the bonding material thereof has excellent wear resistance, and based on this knowledge, the present invention was completed.

すなわち、本発明は、超砥粒粉末に(a)金属炭化物、
窒化物、ほう化物、酸化物、ケイ化物、又はそれらの固
溶体の少なくとも1稙よりなる成分と(b)自己発熱反
応により炭化物、窒化物、ほう化物、酸化物、ケイ化物
、又はそれらの固溶体の少なくとも1種を生成する成分
を配合するに際し、成分(b)の体積%が出発原料配合
組成中の超砥粒を除いた残りの20%以上となるように
配合、混合した粉末を成形し、その一部又は全体を加熱
することにより自己発熱反応を開始、進行させ、超砥粒
を含む砥粒PJ 11成粉末を焼結することを特徴とし
、超砥粒を5体積%以上、50体積%未満含有し、残り
の結合相が炭化物、窒化物、酸化物、ケイ化物、又はこ
れらの固溶体の少なくとも1稲及び気孔よりなる超砥粒
砥石を提供するものである。
That is, the present invention includes superabrasive powder containing (a) metal carbide,
(b) a component consisting of at least one element of nitride, boride, oxide, silicide, or a solid solution thereof; When blending the components that produce at least one kind, blending and molding the mixed powder so that the volume % of component (b) is 20% or more of the remaining starting material composition excluding the superabrasive grains, It is characterized by starting and advancing a self-heating reaction by heating a part or the whole thereof, and sintering the abrasive grain PJ 11 powder containing superabrasive grains, in which the superabrasive grains are contained at 5% by volume or more and 50% by volume. %, and the remaining binder phase is composed of at least one of carbides, nitrides, oxides, silicides, or solid solutions thereof, and pores.

ある種のセラミックス、特に高融点化合物の合成では、
その構成元素からの化合物生成熱はモル当り数10〜数
100kJにも達する。
In the synthesis of certain ceramics, especially high melting point compounds,
The heat of compound formation from its constituent elements reaches several 10 to several 100 kJ per mole.

この大きな生成熱が原料粉末中に次々と伝播することに
より、次々と反応を励起、開始し、反応を持続する。
This large heat of formation propagates into the raw material powder one after another, exciting and starting reactions one after another, and sustaining the reactions.

例えば1丁!とCの粉末から丁lCを合成する場合、丁
、ICの化学量論比のTIとCの粉末を混合、成形し、
その一端よりタングステン等の加熱ワイヤーを用いて着
火、反応を開始させると、その反応は成形体全体に及び
、外部からの加熱なしにTICが合成できる。
For example, one knife! When synthesizing TI and C powders, TI and C powders in a stoichiometric ratio of TI and C are mixed and molded,
When ignition and reaction are started from one end using a heating wire made of tungsten or the like, the reaction spreads throughout the molded body, and TIC can be synthesized without external heating.

このようなセラミックスの合成方法は、合成用の特殊な
炉を必要とせず、経済的であり、最近注目を集めている
This method of synthesizing ceramics does not require a special furnace for synthesis, is economical, and has recently attracted attention.

この反応は、千の性質からSelf−propagat
Ing Hlgh−Temperature Synt
hesig(略して5H5)と呼ばれ、日本B1?はま
だ統一的呼称はなく、自己発熱反応または自己燃焼反応
と呼ばれている。
This reaction is self-propagating from a thousand properties.
Ing Hlgh-Temperature Synt
It is called hesig (abbreviated as 5H5) and is a Japanese B1? There is no unified name for this reaction yet, and it is called a self-heating reaction or self-combustion reaction.

ここでは前者の呼び方を採用する。The former name is adopted here.

このような自己発熱反応で合成できる高融点セラミック
スの例のいくつかを表1に示す。
Table 1 shows some examples of high melting point ceramics that can be synthesized by such self-heating reactions.

高融点セラミックスの例 自己発熱反応の特徴は反応熱が著しく大きいことと、反
応に伴う体積減少が大きく、その割合は材料によるが、
多くは30%にも達することである。
Example of high-melting point ceramics The characteristics of self-heating reactions are that the heat of reaction is extremely large, and that the volume decreases due to the reaction is large, although the proportion depends on the material.
In many cases, it reaches 30%.

本発明には、結合材構成成分の出発原料の一部または全
体として、反応により体積の減少する性質のある自己発
熱反応に関与する成分を用いるが、この目的には次のよ
うな原料成分とその反応を利用できる。
In the present invention, a component that participates in a self-heating reaction that has the property of reducing its volume due to reaction is used as a part or the whole of the starting raw material for the binder component, but for this purpose, the following raw materials and components are used. You can use that reaction.

窒素雰囲気 1)^l  →  ^1N 2)Tl◆28 = TIB! 3 ) 2Ta * C+ 28  = TaBa +
 TaC4) 3Cr20m+8^l◆4C→2Crs
C*◆3^l、0゜5 ) Mo5s ◆2^1 令2
Sl  −h Mo5I2+^1,0゜自己発熱反応に
伴う熱による温度上昇は、生成熱の全てが生成物の温度
上昇に使われると仮定して計算できる。
Nitrogen atmosphere 1) ^l → ^1N 2) Tl◆28 = TIB! 3) 2Ta * C+ 28 = TaBa +
TaC4) 3Cr20m+8^l◆4C→2Crs
C*◆3^l, 0゜5) Mo5s ◆2^1 Rei2
Sl -h Mo5I2+^1,0° The temperature increase due to heat accompanying the self-heating reaction can be calculated on the assumption that all of the heat of formation is used to raise the temperature of the product.

このようにして計算した断熱合成反応熱が生成物の融点
に達すると反応中に液相が出現し、原子の拡散は容易に
なり、自己発熱反応は容易に進行する。
When the heat of adiabatic synthesis reaction calculated in this way reaches the melting point of the product, a liquid phase appears during the reaction, atoms diffuse easily, and the self-heating reaction progresses easily.

TIと8からのTlB2の合成はこのような例である。The synthesis of TlB2 from TI and 8 is such an example.

一方、SIとCからの−SICを合成する反応では、そ
の生成熱はaqkJ1モルと小さく、これによる温度上
昇はSICの融点2400℃に達しない。
On the other hand, in the reaction of synthesizing -SIC from SI and C, the heat of formation is as small as 1 mol of aqkJ, and the resulting temperature increase does not reach the melting point of SIC, 2400°C.

二のため、この反応は一度着火しても途中で停止してし
まう。
For two reasons, this reaction stops halfway even if it ignites once.

この種の反応を利用する場合には、予め1000℃程度
に成形体を加熱した状態で着火し、反応中に一部液相が
生成するようにすると、反応を継続させることができる
When using this type of reaction, the reaction can be continued by preheating the compact to about 1000° C. and igniting it so that a portion of the liquid phase is generated during the reaction.

本発明ではこのように反応中に一部液相の生成する反応
を利用することにより、砥粒を充分包み込むように結合
材を分布させることができ、砥粒の保持力を物理的にも
強化できたものと考えられる。
In the present invention, by utilizing the reaction in which a part of the liquid phase is generated during the reaction, it is possible to distribute the binder so as to sufficiently envelop the abrasive grains, and physically strengthen the holding power of the abrasive grains. It is considered that it was made.

また、本発明には、超砥粒として、ダイヤモンドの他、
 CBN%WONを用いることかでするが、結合材によ
るこれらの砥粒の保持力を増すためには、結合材の出発
原料として用いる金属粉末として、炭素、窒素、ほう素
と化学的親和性の高い金属で、かつ、反応により硬度の
高いセラ攪ツクスを生成するような周期律表第4a、5
a、Ba族金属の粉末が適する。
In addition to diamond, the present invention also includes diamond as a superabrasive grain.
CBN%WON can be used, but in order to increase the retention of these abrasive grains by the binder, it is necessary to use metal powders that have a chemical affinity with carbon, nitrogen, and boron as the starting material for the binder. Items 4a and 5 of the periodic table, which are highly metallic and produce highly hard ceramics through reaction.
a. Powders of group Ba metals are suitable.

これは、ダイヤモンドやCBN%IBMの粒表面を薄く
覆っていると考えられるそれらの低圧相材料と、それら
金属が容易に反応することにより、その反応生成物が超
砥粒と結合材であるセラミックスとの結合を仲介するよ
うな役割を果たすためと考えられる。
This is because these metals easily react with the low-pressure phase materials that are thought to thinly cover the grain surfaces of diamond and CBN%IBM, and the reaction product forms the superabrasive grain and the ceramic bonding material. This is thought to be because it plays a role of mediating the bond with.

本発明による砥石では単にセラミックス化合物粉末を結
合材として用いた場合より、はるかに優れた砥粒保持力
が発揮できたが、この結果は、上述の物理的な効果と化
学的効果の重畳したものと考えられる。
The grinding wheel according to the present invention was able to exhibit much better abrasive retention power than when ceramic compound powder was simply used as a binder, but this result was due to the combination of the above-mentioned physical and chemical effects. it is conceivable that.

さらに、結合材による砥粒の保持を強化するには、砥粒
として、周期律表第4a。
Furthermore, in order to strengthen the retention of the abrasive grains by the binder, as the abrasive grains, the abrasive grains from No. 4a of the periodic table can be used.

5a、Ba族金属を薄く表面コートした砥粒を出発原料
として用いることができる。この表面の金属は、添加金
属粉末と同じように反応に関与でき、砥粒と結合材の接
合を一層強くすることができ効果的である。
5a, abrasive grains whose surface is thinly coated with a Ba group metal can be used as the starting material. This metal on the surface can participate in the reaction in the same way as the additive metal powder, and is effective in making the bond between the abrasive grains and the binder even stronger.

結合材の耐摩耗性は、主にその硬さに依存し、結合材用
材料は、被剛材の強度と硬さに合わせて選択する必要が
ある。
The wear resistance of the bonding material mainly depends on its hardness, and the material for the bonding material must be selected in accordance with the strength and hardness of the material to be stiffened.

砥石の結合材は、前述のように単に耐摩耗性に優れてい
れば良いのではなく1.研削の過程で砥粒の摩耗に合わ
せて結合材自体も順次減耗し、次々と新しい砥粒刃先を
出現させ、良好な切味を継続で診るものでなければなら
ない。
The bonding material for the whetstone does not just have to have excellent wear resistance as mentioned above; As the abrasive grains wear out during the grinding process, the bonding material itself gradually wears down, and new abrasive grain edges appear one after another, so that good cutting quality must be continuously checked.

従って、例えば、比較的軟らかい被剛材の場合には、砥
石の結合材としては、TICやTl1hのような高硬度
な耐摩耗性の高い材料はむしろ不向きであり、千のよう
な場合には。
Therefore, for example, in the case of relatively soft rigid materials, highly hard and wear-resistant materials such as TIC and Tl1h are rather unsuitable as bonding materials for grinding wheels; .

酸化物やケイ化物のような比較的硬度の低い材料・の方
が適する・。
Materials with relatively low hardness such as oxides and silicides are more suitable.

又、逆に最近開発の進んでいる多くの高硬度、高強度な
構造用セラミックスの加工には、砥石結合材としては酸
化物系のものより硬度、強度の優れた炭化物、窒化物、
ほう化物、又はそれらの固溶体が適する。
On the other hand, for the processing of many high-hardness, high-strength structural ceramics that have recently been developed, carbides, nitrides, and
Borides or solid solutions thereof are suitable.

本発明では、砥石結合材の構成成分の出発原料として、
自己発熱反応によりセラミックス化合物を作る成分のみ
、または、この成分と合わせて金属炭化物、窒化物、ほ
う化物、酸化物、ケイ化物、又はこれらの固溶体の少な
くとも1種を用いることができる。
In the present invention, as a starting material for the constituent components of the grinding wheel binding material,
At least one of metal carbides, nitrides, borides, oxides, silicides, or solid solutions thereof can be used alone or in combination with components that produce a ceramic compound through a self-heating reaction.

この後者の場合に加える金属炭化物等のセラミックス成
分は、次の二つの役割をもつ。
In this latter case, the ceramic component such as metal carbide that is added has the following two roles.

一つは、自己発熱反応に伴う反応熱が著しく大きい場合
、この成分の添加によりその反応熱を希釈することによ
り、砥石全体の温度をある適当なところで抑える役割で
ある。
One is that when the reaction heat associated with a self-heating reaction is extremely large, the addition of this component dilutes the reaction heat, thereby suppressing the temperature of the entire grindstone at a certain appropriate point.

もう一つは、自己発熱反応に伴う気孔率の増加が著しい
場合、上記成分の添加により、相対的に自己発熱反応に
関与する成分の量を減らし、砥石中の気孔率を調整する
役割である。
The other is that when the porosity increases significantly due to the self-heating reaction, the addition of the above components relatively reduces the amount of components involved in the self-heating reaction and adjusts the porosity in the grinding wheel. .

例えば、ダイヤモンド砥粒の結合材としてTl1hを選
び、その出発原料として、チタン粉末とほう米粉末を用
いる場合、Tl◆2B→71B、の反応に伴う反応熱は
著しく大きく、このときの反応部分の温度は3000℃
近くにもなる。
For example, when Tl1h is selected as the binder for diamond abrasive grains and titanium powder and borax powder are used as the starting materials, the reaction heat associated with the reaction of Tl◆2B→71B is extremely large, and the reaction part at this time The temperature is 3000℃
It becomes close too.

このときの砥粒層(超砥粒と結合材よりなる層)の平衡
温度は、1500t〜2000℃にも達し、ダイヤモン
ド砥粒表面での軟らかい低圧相への変換が起きる。
At this time, the equilibrium temperature of the abrasive grain layer (layer consisting of superabrasive grains and binder) reaches as high as 1,500 t to 2,000° C., and conversion to a soft low-pressure phase occurs on the surface of the diamond abrasive grain.

一部では、TIとの反応に関与でき、TiCとなるが、
他の大部分は、そのまま砥粒と結合材の間に介在する結
果、結合材の砥粒保持力は著しく低下し好ましくない。
Some of them can participate in the reaction with TI and become TiC, but
Most of the other particles are interposed as they are between the abrasive grains and the binder, which is undesirable because the abrasive retention force of the binder is significantly reduced.

ここで、結合材構成成分の原料として (丁1+8)混合粉末だけでなく、例えば、アルミナや
炭化硅素のような化合物を加えておけば、τ1B、の生
成熱は同じであるが、砥粒層の温度はダイヤモンドの逆
変#h温度以下に抑えられ、砥粒保持力及び耐摩耗性の
優れた結合材をもつ超砥粒砥石を得ることができる。
Here, if a compound such as alumina or silicon carbide is added in addition to the (1+8) mixed powder as a raw material for the binder component, the heat of formation of τ1B is the same, but the abrasive layer The temperature is suppressed below the inverse variation #h temperature of diamond, and it is possible to obtain a superabrasive grindstone having a bonding material with excellent abrasive grain retention and wear resistance.

しかし、結合材構成成分の出発原料中での自己発熱反応
に関与する成分の量が、20体積%未満では、反応熱の
分散が大きくなり、発・熱反応を持続できなくなるため
、着火は可能でも途中で停止してしまう。
However, if the amount of components involved in the self-heating reaction in the starting material of the binder component is less than 20% by volume, the dispersion of the reaction heat becomes large and the exothermic reaction cannot be sustained, so ignition is possible. But it stops midway.

゛このような場合、砥粒層を高温に加熱することにより
、自己発熱反応を持続させることもできるが、この方法
では前述のような超砥粒表面での低圧相への逆変換が起
き、好ましくない。
゛In such cases, the self-heating reaction can be sustained by heating the abrasive grain layer to a high temperature, but in this method, the reverse conversion to the low-pressure phase occurs on the superabrasive grain surface as described above, Undesirable.

結合材構成成分の出発原料中での自己発熱反応に関与す
る成分の量は、実験の結果、20体積%以上必要であり
、好ましくは、40体積%以上でありた。
As a result of experiments, the amount of the component involved in the self-heating reaction in the starting material of the binder component is required to be 20% by volume or more, preferably 40% by volume or more.

ここで、この成分の上限は、用いる自己発熱反応の種類
により決まるものであり、反応に伴う温度上昇の少ない
場合には、100体積%、つまり、結合材構成成分の全
体を反応に関与する成分で構成できる。
Here, the upper limit of this component is determined by the type of self-heating reaction used, and if the temperature rise accompanying the reaction is small, the upper limit of this component is 100% by volume, that is, the entire binder component is the component participating in the reaction. It can be composed of

自己発熱反応に伴う体積収縮は、多くの場合前述のよう
に15〜30%である。
The volumetric shrinkage associated with the self-heating reaction is often 15-30%, as mentioned above.

しかし、実際には反応の出発原料は圧粉体であり、−そ
のときの気孔の他、反応中の高温部分での°揮発成分の
気化による気孔も加わり、結果的には加圧なしの状態で
、この種の反応生成物のもつ気孔率は、50〜60%に
も達する。
However, in reality, the starting material for the reaction is a powder compact, and in addition to the pores at that time, pores due to the vaporization of volatile components at the high temperature part during the reaction are also added, resulting in a state without pressurization. The porosity of this type of reaction product reaches 50 to 60%.

高切込み、低送り条件でのクリップ フィード研削のような場合は、このような高気孔率の砥
石が適当な場合もあるが、他の用途では砥粒保持力や結
合材の耐摩耗性の面から、気孔率を10〜40%に調整
する必要がある。
In cases such as clip-feed grinding with high depth of cut and low feed conditions, such high-porosity grinding wheels may be appropriate, but in other applications, the abrasive retention power and wear resistance of the bonding material may be affected. Therefore, it is necessary to adjust the porosity to 10 to 40%.

砥石結合材構成成分の出発原料として、自己発熱反応に
関与しない成分のセラミックス化合物は、この添加によ
り相対的に発熱反応成分の量を減らし、反応後の気孔率
を調整する作用をもつものである。
As a starting material for the grinding wheel binding material component, a ceramic compound that does not participate in the self-heating reaction has the effect of relatively reducing the amount of the exothermic reaction component and adjusting the porosity after the reaction. .

本発明に係る超砥粒砥石の砥粒として、前述のようにダ
イヤモンド、、CBN%IIIBNを用いることができ
るが、被剛材との化学的親和性の面から、高硬度鉄系材
料の研削には、CBN%WON砥粒を用いた砥石が、又
、高硬度のセラミックス材料の研削にはダイヤモンド砥
粒を用いた砥石が適する。
Diamond, CBN%IIIBN, as described above, can be used as the abrasive grains of the superabrasive grindstone according to the present invention, but from the viewpoint of chemical affinity with the material to be stiffened, it is difficult to grind high-hardness iron-based materials. A grindstone using CBN%WON abrasive grains is suitable for grinding, and a grindstone using diamond abrasive grains is suitable for grinding high hardness ceramic materials.

その際の砥粒の含有量は、研削性能の面からは少なくと
も5体積%以上必要であるが、その量が60%以上では
相対的に砥粒の量が多くなりすぎ、結合材による砥粒保
持力が弱くなり、研削性能は低下する。
The content of abrasive grains in this case needs to be at least 5% by volume or more from the viewpoint of grinding performance, but if the amount exceeds 60%, the amount of abrasive grains becomes relatively too large, and the abrasive grains due to the binding material Holding force becomes weaker and grinding performance deteriorates.

本発明に係る砥石での超砥粒含有量は、5体積%以上、
60体積%未満であり、好ましくは、10〜40体稙%
の範囲である。
The superabrasive grain content in the grindstone according to the present invention is 5% by volume or more,
Less than 60% by volume, preferably 10-40% by volume
is within the range of

従来の砥石の一つの改良型として市販されているマトリ
ックス型の砥石は、前述のように研削加工において重要
な役割を果たす気孔を犠牲にして、砥粒の保持力を高め
、かつ、結合材の耐摩耗性を高める方向で開発されたも
のである。
Matrix-type grinding wheels, which are commercially available as an improved version of conventional grinding wheels, sacrifice the pores that play an important role in the grinding process, as described above, to increase the holding power of the abrasive grains, and to increase the retention of the binder. It was developed with the aim of increasing wear resistance.

本発明に係る超砥粒砥石の製造方法では、結合材構成成
分の出発原料の一部又は全部として、自己発熱反応によ
りセラミックス化合物及び新たな気孔を生成する成分を
用いることにより、研削加工で重要な気孔を犠牲にする
ことなく、高い砥粒保持力をもち、かり。
In the method for manufacturing a superabrasive grindstone according to the present invention, a component that generates a ceramic compound and new pores through a self-heating reaction is used as part or all of the starting materials for the binder component, which is important in grinding processing. It has high abrasive retention without sacrificing the pores.

耐摩耗性の高い結合材が容易に形成されるという特徴を
もっている。
It has the characteristic that a bonding material with high wear resistance can be easily formed.

これにより、超砥粒砥石が本来的にもつ優れた研削特性
が発揮できる。
This allows the superabrasive grindstone to exhibit its inherent excellent grinding properties.

本発明に係る超砥粒砥石は、ホットプレスなどの加圧、
加熱方法を用いても製造で幹るが、必ずしも必要なく、
次に述べるような方法で製造できる。
The superabrasive grindstone according to the present invention can be applied by applying pressure such as a hot press,
Although heating methods are useful in manufacturing, they are not always necessary.
It can be manufactured by the method described below.

超砥粒粉末に自己発熱反応によりセラ ミックス化合物を生成する単体成分、又は混合粉末を加
え、さらに、必要であれば、これにセラミックス化合物
を添加した砥粒層構成粉末を成形後、又は成形型に混合
粉末を充填した状態で、少なくともその成形体の一部又
は全体を加熱し、反応を開始、進行させる。
A single component or a mixed powder that generates a ceramic compound through a self-heating reaction is added to the superabrasive powder, and if necessary, a ceramic compound is added to the abrasive layer constituent powder after molding or into a mold. At least a part or the whole of the molded body filled with the mixed powder is heated to initiate and advance the reaction.

自己発熱反応は、室温下又は1200℃以下の加熱条件
下で、例えば、加熱したタングステンワイヤーを近づけ
ることにより着火、開始できる。
The self-heating reaction can be ignited and started at room temperature or under heating conditions of 1200° C. or lower, for example, by bringing a heated tungsten wire close.

第1図は、本発明に係る砥石の製造に用いることので鮒
る加熱ワイヤーを用いた砥石の製造装置の1実施例を示
したものである。
FIG. 1 shows an embodiment of a grindstone manufacturing apparatus using a heating wire that is used for manufacturing a grindstone according to the present invention.

砥石台金2をもって成形された砥粒層構成粉末1を、第
1図に示すような雰囲気の調整できる容器6の中に配置
し、その砥粒層構成粉末1と接しない程度の至近距離に
図のような加熱用のタングステンワイヤー4を置く。
The powder 1 forming the abrasive layer formed with the grinding wheel base 2 is placed in a container 6 in which the atmosphere can be adjusted as shown in FIG. Place a tungsten wire 4 for heating as shown in the figure.

次にこのタングステンワイヤー4を通電により加熱し、
それにより自己発熱反応を開始させる。
Next, this tungsten wire 4 is heated by energizing it,
This initiates a self-heating reaction.

反応は円筒状砥粒層構成粉末の全体に渡り、砥石台金2
の周りに焼結した砥粒層が強固に結合した砥石材料を得
ることができる。
The reaction occurs throughout the powder constituting the cylindrical abrasive grain layer.
It is possible to obtain a grindstone material in which a sintered abrasive grain layer is firmly bonded around the sintered abrasive grain layer.

反応の着火雰囲気は、発熱反応での生成物が酸化物であ
り、又、出発原料に加えられている成分も酸化物セラミ
ックスであるような場合には、酸化雰囲気でも差し支え
ないが、その他の場合は、真空雰囲気、窒素雰囲気や不
活性雰囲気が望ましい。
The ignition atmosphere for the reaction may be an oxidizing atmosphere in cases where the product of the exothermic reaction is an oxide and the component added to the starting material is an oxide ceramic, but in other cases. A vacuum atmosphere, nitrogen atmosphere or inert atmosphere is preferable.

自己発熱反応の着火方法として、上に述べたような加熱
ワイヤーによる方法もあるが、本発明に係る砥石の出発
原料のように、必ずその成分の一部として金属粉末が含
まれているよ′うな場合には、それを利用した直接通電
による瞬間的な加熱による着火方法を用いることもでき
る。
As a method of igniting the self-heating reaction, there is also a method using a heating wire as described above, but it always contains metal powder as a part of its components, like the starting material of the grindstone according to the present invention. In such a case, it is also possible to use an ignition method that utilizes instantaneous heating through direct energization.

第2図は放電加熱法を用いた砥石の製造装置である。FIG. 2 shows a grindstone manufacturing apparatus using a discharge heating method.

図中、11は金型、12は絶縁材円筒、13aは上部押
しn% 13bは下部押し棒、14は絶縁シート、15
は台座、1Bは加圧ラム、1フは金型支持リングである
In the figure, 11 is a mold, 12 is an insulating material cylinder, 13a is an upper push n%, 13b is a lower push rod, 14 is an insulating sheet, 15
is a pedestal, 1B is a pressure ram, and 1F is a mold support ring.

内側に焼結アルミナ等の絶縁材円筒12をもつ鉄製等の
シリンダー状の金型11の中に第2図のように下部押し
棒13bをセットした後、その上に砥石台金2と共に、
砥粒層構成粉末1を装填し、その上に上部押し締13m
を置き、薄いテフロン等の絶縁シート重4を介してその
上部押し棒13aを加圧ラムta1?so關Pa程度に
軽く加圧する。
As shown in FIG. 2, the lower push rod 13b is set in a cylindrical mold 11 made of iron or the like with an insulating cylinder 12 of sintered alumina or the like inside, and then the lower push rod 13b is placed on top of the lower push rod 13b together with the grindstone base metal 2.
Load the abrasive layer constituent powder 1 and press the upper part 13m on top of it.
, and pressurize the upper push rod 13a with the pressurizing ram ta1 through the insulating sheet weight 4 made of thin Teflon or the like. Apply light pressure to about 300 lbs.

金属製の台座15と下部押し棒13bの間にも薄いテフ
ロン等の絶縁シート14を入れる。
A thin insulating sheet 14 made of Teflon or the like is also placed between the metal pedestal 15 and the lower push rod 13b.

上、下部押し棒13a、13bは黒鉛又は金属製材料で
つくり、これに放電加熱用の電源フを41続する。放電
加熱は加圧ラム16により、上、下部押し棒13a、1
3bを通して砥粒層構成粉末1を軽く加圧した状態で上
部押し棒13a−砥粒層構成粉末1−砥石台金2−下部
押し棒13・bの回路に、文法、直流の重なった電流を
流すことにより行い、これにより砥粒層構成粉末1中の
反応を開始し、その焼結を行う。
The upper and lower push rods 13a and 13b are made of graphite or metal, and are connected to a power source for discharge heating. Discharge heating is performed by the pressurizing ram 16, and the upper and lower push rods 13a, 1
With the powder 1 making up the abrasive layer layer lightly pressurized through 3b, a superimposed current of grammar and direct current is applied to the circuit of the upper push rod 13a - the powder 1 making up the abrasive grain layer - the grinding wheel base 2 - the lower push rod 13 b. This is carried out by flowing, thereby starting a reaction in the powder 1 constituting the abrasive grain layer, and sintering it.

例えば、ダイヤモンド砥粒に、チタンと炭素の等モル混
合物を70体積%となるように混合して得た成形体の場
合、CI2当りSOO^の直流と5OGHzの高周波電
流SOO^の重畳電流を数秒流すと、成形体の温度は瞬
間的には1000℃以上まで達し、反応が開始される。
For example, in the case of a molded body obtained by mixing diamond abrasive grains with an equimolar mixture of titanium and carbon at 70% by volume, a superimposed current of a direct current of SOO^ and a high frequency current SOO^ of 5 OGHz per CI2 is applied for several seconds. When flowing, the temperature of the molded body instantaneously reaches 1000° C. or more, and the reaction begins.

この場合の加熱は、主に金属粉末同志の粒接点や金属粉
末と炭素粉末の粒接点で起こり、それにより化学反応が
開始されており、この時点で通電を停止させれば、砥粒
層全体を必要以上に加熱する必要がなく、悪い影響を及
ぼす超砥粒表面での逆変換も抑えられ、好都合である。
In this case, heating occurs mainly at the grain contacts between the metal powders and between the metal powder and the carbon powder, which initiates a chemical reaction, and if the current is stopped at this point, the entire abrasive grain layer will be heated. There is no need to heat the superabrasive more than necessary, and reverse conversion on the surface of the superabrasive grain, which has a negative effect, can be suppressed, which is advantageous.

又、この方法では、タングステンワイヤー法によるよう
な成形体の一ケ所での着火でなく、はぼ均一な着火が可
能であり、得られる砥石の均一性を高めるのに効果的で
ある。
Furthermore, this method allows for more uniform ignition, rather than ignition at one location on the molded body as is the case with the tungsten wire method, and is effective in increasing the uniformity of the resulting grindstone.

又、本発明に係る砥石の製造では、前述のように必ずし
も加圧は必要ではないが、出来上がった砥石の気孔率を
低く抑えたいような場合には、成形型に出発原料を充填
した状態で着火し、加圧しながら反応を進行させること
もできる。
In addition, in the production of the grindstone according to the present invention, pressurization is not necessarily necessary as described above, but if it is desired to keep the porosity of the finished grindstone low, ignition may be performed with the forming mold filled with the starting material. However, the reaction can also be allowed to proceed while pressurizing.

内径研削用途の径の小さい砥石の場合を除いて、一般の
超砥粒を用いた研削砥石は、その超砥粒が高価なため、
砥粒を含む厚さ1〜5■■の砥粒層と砥粒を含まない合
金部よりなる複合構造となりている。
Except for small-diameter grinding wheels for internal grinding, grinding wheels using general super-abrasive grains are expensive, so
It has a composite structure consisting of an abrasive grain layer with a thickness of 1 to 5 mm containing abrasive grains and an alloy part that does not contain abrasive grains.

上に述べた例は、そのような複合構造をもつ砥石の製造
方法の例であるが、合金のない構造の比較的小径の超砥
粒砥石も上述の方法と同様の方法で製造できる。
Although the example described above is an example of a method for manufacturing a grinding wheel with such a composite structure, a comparatively small diameter superabrasive grinding wheel with an alloy-free structure can also be manufactured by a method similar to that described above.

本発明に係る砥石の製造方法として、衝撃圧縮による方
法がある。
As a method for manufacturing the grindstone according to the present invention, there is a method using impact compression.

この方法は、特に通常の砥石の製造方法では製造が困難
な砥石径の大きな、砥粒層厚みの薄い砥石の製造に適す
る。
This method is particularly suitable for manufacturing a grindstone with a large diameter and a thin abrasive grain layer, which is difficult to manufacture using a normal grindstone manufacturing method.

粉末の衝撃圧縮では、その断熱圧縮に伴い高温が発生す
る。
In the impact compression of powder, high temperatures are generated due to the adiabatic compression.

この高温の発生度合は、粉末の初期密度により調整でき
、初期密度の低い程、一定圧力下での発生温度は高くな
る。
The degree of generation of this high temperature can be adjusted by the initial density of the powder, and the lower the initial density, the higher the temperature generated under constant pressure.

衝撃圧縮による自己発熱反応の開始は、このような粉末
の断熱圧縮に伴う熱を利用したものである。
The initiation of a self-heating reaction by impact compression utilizes the heat accompanying such adiabatic compression of powder.

この方法では、出発原料は一度高密度まで圧縮され気孔
はほぼ零まで減少するが、発熱反応の大部分は圧縮中で
なく、圧力の解放された後に進行するため、この反応に
より生成する気孔はそのまま生成物である砥粒層中に残
すことができる。
In this method, the starting material is once compressed to a high density and the pores are reduced to almost zero, but most of the exothermic reaction occurs not during compression but after the pressure is released, so the pores generated by this reaction are It can be left as is in the product abrasive layer.

第3図は1本発明に係る砥石の製造方法に用いることの
できる円筒衝撃波圧縮装置の1実施例を示したものであ
る。
FIG. 3 shows an embodiment of a cylindrical shock wave compression device that can be used in the grindstone manufacturing method according to the present invention.

上下に金属製又は木製のプラグ20a。Metal or wooden plugs 20a at the top and bottom.

20bをもち、かつ、その中心軸に沿って、第3図に示
すような金属製の中棒24をもつ円筒状試料容器22に
おいて、中棒24と円筒状試料容器22の内側にできる
薄肉円筒状の空間に砥粒層構成粉末1を均一に充填する
In a cylindrical sample container 22 having a metal center rod 24 along its central axis as shown in FIG. 3, a thin cylinder formed inside the center rod 24 and the cylindrical sample container 22 The abrasive layer constituting powder 1 is uniformly filled into the space of .

ここで、円筒状試料容器22の材料として、金屑、プラ
スチック、及び紙を利用できる。
Here, as the material for the cylindrical sample container 22, scrap metal, plastic, and paper can be used.

その円筒状試料容器22の外側に爆薬25を充填する。The outside of the cylindrical sample container 22 is filled with explosives 25.

雷管18により爆薬25を起爆し、その爆発を下方へ伝
播させることにより、爆轟衝撃波をまず円筒状試料容器
22に伝え、次にこの衝撃波で砥粒層構成粉末1を?f
I撃圧縮する。
By detonating the explosive 25 with the detonator 18 and propagating the explosion downward, a detonation shock wave is first transmitted to the cylindrical sample container 22, and then this shock wave detonates the powder 1 constituting the abrasive grain layer. f
I-hit compression.

この衝撃圧縮により砥粒層構成粉末オの中の反応は開始
され、その焼結が起きると同時に、中棒24と強固に接
合される。
This impact compression initiates a reaction in the powder constituting the abrasive grain layer, and at the same time sintering occurs, it is firmly joined to the middle rod 24.

ここで、中棒24を鉄やアルミニウム合金で作成してお
くと、砥粒層焼結後、この中棒をそのまま砥石台金とし
て利用でき好都合である。
Here, it is advantageous if the center rod 24 is made of iron or aluminum alloy so that after the abrasive grain layer is sintered, the center rod can be used as it is as a grindstone base metal.

一方、砥石径の比較的小さい場合には、第3図の中棒2
4のない状態、つまり、砥粒層構成粉末をそのまま円筒
状試料容器22に充填し、その外側に爆薬25を置き、
雷管18で起爆し、試料を衝撃圧縮し、砥石材料を製造
することもできる。
On the other hand, if the diameter of the grinding wheel is relatively small,
4, that is, the powder constituting the abrasive grain layer is directly filled into the cylindrical sample container 22, and the explosive 25 is placed outside of it.
It is also possible to detonate the sample with the detonator 18 and impact-compress the sample to produce a grindstone material.

又、衝撃圧縮の方法としては、第4図のように、第3図
の円筒状試料容器22の外側に、さらにもう一つの径の
大きい駆動 チューブ26を置き、該円筒状試料容器22との間に空
間を作り、その駆動チェーブ26の外側に爆薬25を配
置する。そして、雷管18で爆薬25を起爆し、それに
より円筒状試料容器22に衝突させることにより、衝撃
波を発生させ、これを試料に伝播させて砥粒層構成粉末
を衝撃圧縮する方法も用いることができる。
In addition, as a method of impact compression, as shown in FIG. 4, another drive tube 26 with a large diameter is placed outside the cylindrical sample container 22 of FIG. A space is created in between, and an explosive 25 is placed outside the drive tube 26. It is also possible to use a method of detonating the explosive 25 with the detonator 18 and causing it to collide with the cylindrical sample container 22 to generate a shock wave, which is then propagated to the sample to impact-compress the powder constituting the abrasive layer. can.

又、目的とする砥石の形状によっては、特にカップホイ
ール型のようにホイールの円周方向の砥粒層の幅は大き
いが、厚みは薄いような場合には、上に述べたような円
筒法より、むしろ平面波法の方が砥石製造が容易な場合
もある。
Also, depending on the shape of the target grinding wheel, especially when the width of the abrasive grain layer in the circumferential direction of the wheel is large but the thickness is thin, such as a cup wheel type, the cylindrical method described above may be used. In some cases, it may be easier to manufacture grindstones using the plane wave method.

第5図は、本発明に係る砥石の製造に用いることのでき
る平面Iff圧縮装置の1実施例を示したものである。
FIG. 5 shows an embodiment of a planar If compression device that can be used for manufacturing a grindstone according to the present invention.

この装置は、平面′aIi波を作るための爆薬レンズ2
8を含む爆薬系と試料容器30m。
This device consists of an explosive lens 2 for producing plane 'aIi waves.
Explosive system including 8 and sample container 30m.

30bの回収を容易にするためのモーメンタムトラップ
32a、32bよりなっている。
It consists of momentum traps 32a and 32b to facilitate the collection of 30b.

砥粒層構成粉末を試料容器30a、30bに設けた試料
室31に充填し、これをモーメンタムトラップ(鉄製ブ
ロック)32aの中にセットする。
The powder constituting the abrasive grain layer is filled into the sample chamber 31 provided in the sample containers 30a and 30b, and this is set in a momentum trap (iron block) 32a.

試料容器30a、30bの材質は、対象とする砥石材料
により広い範囲の材料を選択できるが、一般にはコスト
の面から鉄、真ちゅう、銅やステンレスが適する。
The material for the sample containers 30a, 30b can be selected from a wide range of materials depending on the target grindstone material, but iron, brass, copper, and stainless steel are generally suitable from the cost standpoint.

第5図の上の部分は、この装置の爆薬構成を示したもの
であり、円錐形状の爆薬レンズ28は、その頂点にある
雷管18により起爆され、爆薬レンズ28での燃焼は平
面的に下方向へ伝播されるようになっている。
The upper part of FIG. 5 shows the explosive configuration of this device. A conical explosive lens 28 is detonated by the detonator 18 at its apex, and the combustion in the explosive lens 28 is carried out downward in a plane. It is designed to be propagated in the direction.

さらに、その平面的燃焼がその下の爆薬25に伝播され
、この爆薬の平面燃焼を起ζし、その燃焼で発生した爆
轟衝撃波により下の金属製の駆動板29が高速に加速さ
れ、下の試料容器30aに衝突する。
Furthermore, the planar combustion is propagated to the explosive 25 below, causing planar combustion of this explosive, and the detonation shock wave generated by the combustion accelerates the metal drive plate 29 below at a high speed. collides with the sample container 30a.

この衝突により試料容930 mに平面衝撃波が発生し
、砥粒層構成粉末が衝撃圧縮される。これにより円筒法
の場合と同様に自己発熱反応が開始され、砥粒層の焼結
が起きる。
This collision generates a plane shock wave in the sample volume of 930 m, and the powder constituting the abrasive grain layer is compressed by impact. As a result, a self-heating reaction is started as in the case of the cylindrical method, and sintering of the abrasive grain layer occurs.

この平面波法の場合にも、円筒法と同じく、試料容器3
0aに直接、接して爆薬25を配置した直接法も用いる
ことができる。
In the case of this plane wave method, as well as the cylindrical method, the sample container 3
A direct method in which the explosive 25 is placed in direct contact with 0a can also be used.

以下、実施例により本発明をさらに詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

[作用] 効果と共に説明する。[Effect] Explain along with the effects.

[発明の実施例] (実施例1〜341図参照) 平均粒径10μlのチタン粉末と平均 0.5μmの非晶質炭素粉末を等そルに混合した粉末に
平均砥粒5μmのアルミナ粉末を体積比で4=1 とな
るように混合し、結合材構成成分の出発原料を作成した
[Examples of the Invention] (Examples 1 to 341 See Figures) Alumina powder with an average abrasive grain of 5 μm was added to a powder obtained by equally mixing titanium powder with an average particle size of 10 μl and amorphous carbon powder with an average particle size of 0.5 μm. They were mixed in a volume ratio of 4=1 to prepare a starting material for the binder component.

さらに、この混合粉末に平均粒径100μ鴎のダイヤそ
ンド粉末を体積比で4:lとなるように混合し、砥粒層
構成成分の出発原料を得た。この粉末から中心部に砥石
台金としてsOl■φ×5−一1のアルミ台金をもつ外
径100saφ、厚み5■■の成形体を得た。
Further, diamond powder having an average particle size of 100 μm was mixed with this mixed powder at a volume ratio of 4:1 to obtain a starting material for the abrasive layer constituents. From this powder, a molded body having an outer diameter of 100 saφ and a thickness of 5 mm was obtained, having an aluminum base metal of sOl■φ×5-11 as a grinding wheel base metal in the center.

このアルミ製の砥石台金2の付いた砥粒層構成粉末1を
第1図に示す装置の耐熱レンガ3の上に置き、真空引き
用バルブ10とガス置換用バルブ9により容器6の中の
雰囲気をアルゴンに置換した後、砥粒層構成粉末1から
上に1sslllして配置したタングステンワイヤー4
に通電して、これを赤熱させ、砥粒層構成粉末1の一部
を加熱し、着火、反応を開始させた。
The abrasive layer constituent powder 1 with the aluminum grinding wheel base 2 is placed on the heat-resistant brick 3 of the apparatus shown in FIG. After the atmosphere was replaced with argon, a tungsten wire 4 was placed 1ssllll above the abrasive layer constituent powder 1.
was energized to make it red hot, heating a part of the powder 1 constituting the abrasive grain layer, igniting it, and starting a reaction.

反応は、砥石台金2の周りの砥粒層構成粉末1全体に一
様に進行し、反応終了後、アルミ台金に砥粒層の強固に
結合した砥石材料を得た。
The reaction proceeded uniformly over the entire powder 1 constituting the abrasive layer around the grinding wheel base 2, and after the reaction was completed, a grinding wheel material in which the abrasive layer was firmly bonded to the aluminum base was obtained.

得られた砥石の砥粒層の′結合材構成成分をX線回折分
析により調べたところ、アルミナと反応生成物であるT
ICより成っていた。
When the constituent components of the binder in the abrasive grain layer of the obtained grinding wheel were investigated by X-ray diffraction analysis, it was found that T, which is a reaction product with alumina,
It consisted of an IC.

次に、この砥粒層の一部を研磨し、その組織を光学顕微
鏡で観察したところ、反応により生成したTICの微細
粒子が10θμ層のダイヤモンド粒子を取り囲み、ダイ
ヤモンド粒子とそれら粒子との間にはクラック等はみら
れず、密な接着状態が得られていた。
Next, a part of this abrasive grain layer was polished and its structure was observed with an optical microscope. It was found that fine TIC particles generated by the reaction surrounded the diamond particles in the 10θμ layer, and there were gaps between the diamond particles and these particles. No cracks were observed, and a tight adhesive state was obtained.

結合材部分は、反応生成物である数μ■のTICの間に
アルミナ粒子と数μ−〜数100μ−の気孔とが均一に
分散した組織になっており、この砥粒層の気孔率は約2
5%であった。
The bonding material part has a structure in which alumina particles and pores of several microns to several hundred microns are uniformly dispersed between several microns of TIC, which is a reaction product, and the porosity of this abrasive layer is Approximately 2
It was 5%.

次にこのアルミ台金をもった焼結後の円板状の砥石材料
の上下面をStCの粗粒で軽く研磨し、上下面の平衡を
出し、さらにアルミ台金に中心穴を開けた後、砥石バラ
ンスの調整及びツルーイングを経て、研削試験のできる
砥石を得た。
Next, the upper and lower surfaces of the sintered disc-shaped grinding wheel material with this aluminum base metal were lightly polished with coarse grains of StC to balance the upper and lower surfaces, and a center hole was drilled in the aluminum base metal. After adjusting the grinding wheel balance and truing, a grinding wheel that can be used for grinding tests was obtained.

この砥石との比較のため、同様に 100μ會のダイヤ
モンド粉末と粒径1oμ■以下のガラスフリットを体積
比4:!になるように配合、混合した後、前述の砥石と
同様のアルミ台金を用いて、1050tで焼成し、前述
の砥石と同形状、同寸法の砥石を作成した。
For comparison with this whetstone, we also used diamond powder of 100 μm and glass frit with a particle size of 1 μm or less in a volume ratio of 4:! After blending and mixing to give the following results, using the same aluminum base metal as the above-mentioned whetstone, it was fired at 1050 tons to create a whetstone having the same shape and size as the above-mentioned whetstone.

なお、この砥石の気孔率は、約25%であった。Note that the porosity of this grindstone was about 25%.

この砥石材料から前述の砥石と同様の方法により研削試
験用の砥石を作成した。
A grindstone for a grinding test was made from this grindstone material in the same manner as the above-mentioned grindstone.

これら二つの砥石の研削性能は、被剛材として、100
ma X  200asx  20mm’ノ平板状の焼
結アルミナを用い、一定条件での研削量が25ccとな
ったと幹の各砥石の直径摩耗量を測定し、その摩耗量に
より評価した。
The grinding performance of these two whetstones is 100% as a rigid material.
Using sintered alumina in the form of a flat plate measuring 200 as x 20 mm, the amount of diameter wear of each grindstone on the trunk was measured when the amount of grinding under certain conditions reached 25 cc, and the amount of wear was evaluated.

研削試験条件では、周速1500■/■1n、テーブル
送Q 10s/sIn、横送す2s+m、切込み0.0
5mm、湿式とした。
The grinding test conditions were: peripheral speed 1500■/■1n, table feed Q 10s/sIn, horizontal feed 2s+m, and depth of cut 0.0.
5 mm, wet type.

その結果、本発明に係る砥石の場合の研削量25ccで
の砥石直径摩耗量、は55μ皇であった。
As a result, in the case of the grindstone according to the present invention, the wear amount of the grindstone diameter was 55 μm when the grinding amount was 25 cc.

これに対し、比絞めための砥石の場合の同摩耗量は、本
発明に係る砥石の場合の5倍近い275μ■に達し、耐
摩耗性は著しく劣るものであった。
On the other hand, the amount of wear in the case of the grindstone for specific tightening reached 275 μm, which is nearly five times that in the case of the grindstone according to the present invention, and the wear resistance was significantly inferior.

研削中の音は、本発明と比較の砥石とで差はだめられな
かりた。
There was no difference in sound during grinding between the grindstone of the present invention and the comparative grindstone.

(実施例2〜第1図参照) 平均粒径5μmのアルミ(^l)粉末と平均粒径5μ−
の炭・窒化タンタル(Ta(CN)’)粉末を体積比で
コニlで配合、混合し、結合材構成成分の出発原料粉末
を得た。
(See Example 2 to Figure 1) Aluminum (^l) powder with an average particle size of 5 μm and an average particle size of 5 μm
Tantalum carbon/nitride (Ta(CN)') powder was blended and mixed in a volume ratio with Conil to obtain a starting raw material powder for a binder component.

一方、joO〜150 μsのCBN粉末と20〜40
μmのIIBN粉末をl=1の割合で配合、混合し、超
砥粒構成粉末を得た。
On the other hand, CBN powder with joO~150 μs and 20~40 μs
IIBN powder of μm was blended and mixed at a ratio of l=1 to obtain a superabrasive powder.

次に上に述べた結合材構成成分の出発原料粉末と超砥粒
構成粉末を体積比で3=2の割合に配合、混合し、砥粒
層構成粉末を得た。
Next, the starting raw material powder of the binder component described above and the superabrasive grain constituent powder were blended and mixed in a volume ratio of 3=2 to obtain an abrasive layer constituent powder.

この粉末から実施例1と同様の方法により中央部にアル
ミ台金をもつ外径100m5+、厚さ5習■の成形一体
を作製した。
From this powder, a molded integral body having an aluminum base metal in the center and having an outer diameter of 100 m5+ and a thickness of 5 mm was produced using the same method as in Example 1.

このアルミ合金製の砥石台金2の付いた砥粒N構成粉末
1を第1図に示す装置の耐熱レンガ3の上に置き、雰囲
気を窒素に置換した後、実施例1と同オニの方法により
、タングステンワイヤー4に通電し、砥粒層構成粉末l
の一部を加熱し、着火した。
This abrasive grain N component powder 1 attached to the aluminum alloy grinding wheel base 2 was placed on the heat-resistant brick 3 of the apparatus shown in FIG. 1, and after replacing the atmosphere with nitrogen, the same method as in Example 1 was used. , the tungsten wire 4 is energized, and the abrasive layer constituting powder l
A portion of it was heated and ignited.

反応完了後、アルミ合金に砥粒層の結合した砥石材料を
取出し、実施例1・と同様の方法により、砥粒層構成粉
末とその組織を調べた。
After the reaction was completed, the abrasive material in which the abrasive grain layer was bonded to the aluminum alloy was taken out, and the powder constituting the abrasive grain layer and its structure were examined in the same manner as in Example 1.

その結果、砥粒層は丁a (CN)と反応生成物である
^INよりなりAIは検出されなかった。
As a result, the abrasive layer was composed of CN and the reaction product ^IN, and no AI was detected.

また組織観察では、Ta (CM)と反応生成物^IN
 M CON、 WBNを強固に結合した均一な組織が
みられ、それら結合材と砥粒間の結合は充分強いことが
分かった。
In addition, in the structure observation, Ta (CM) and the reaction product ^IN
A uniform structure in which M CON and WBN were firmly bound together was observed, and it was found that the bond between the binder and the abrasive grains was sufficiently strong.

又、ここで得た砥石中の気孔率は、23%であった。Moreover, the porosity in the grindstone obtained here was 23%.

この砥石材料から実施例1と同様の方法により、その上
下面を研磨した後、研削試験用の砥石を作製した。
The upper and lower surfaces of this grindstone material were polished by the same method as in Example 1, and then a grindstone for a grinding test was produced.

又、比較のため本実施例と同様のCBN%111N粉末
を用い、同じ比率で混合した超砥粒粉末を用い、これ&
:低融点のガラスフリットを60体積%加えた粉末を本
実施例と同様のアルミ台金を使ってホットプレス法によ
り本実施例と同じ形状、寸法の砥石材料を得た。
For comparison, CBN% 111N powder similar to this example was used, and superabrasive powder mixed at the same ratio was used.
: A grinding wheel material having the same shape and dimensions as in this example was obtained by hot pressing a powder containing 60% by volume of low melting point glass frit using the same aluminum base metal as in this example.

この砥石の気孔率は本実施例と同じ23%であつた。The porosity of this grindstone was 23%, the same as in this example.

次に、これら2つの砥石の研削性能を実施偏重と同様の
平面研削法により評価した。
Next, the grinding performance of these two grindstones was evaluated using the same surface grinding method as the actual weight bias.

ここでは、被削材にHRc@Sに焼入れした高速度鋼5
IIH−3の平板を用い、これを周速12SO*/mi
n、テーブル送りIss/mln、横送り21m 、’
切込み0.1−  の条件で平面研削し、その研削量が
5Occとなったと鮒の砥石の直径摩耗量を測定し、そ
の摩耗量から性能を評価した。
Here, the work material is high-speed steel 5 hardened to HRc@S.
Using a flat plate of IIH-3, it was set at a circumferential speed of 12SO*/mi.
n, table feed Iss/mln, horizontal feed 21m,'
Surface grinding was carried out under conditions of a depth of cut of 0.1-mm, and when the amount of grinding reached 5 Occ, the diameter wear amount of the carp grindstone was measured, and the performance was evaluated from the wear amount.

本発明に係る砥石の50cc研削時での砥石直径摩耗量
は、43μmであり、又、研削量も異常なかフた。
The grindstone diameter wear amount during 50cc grinding of the grindstone according to the present invention was 43 μm, and the amount of grinding was also not abnormal.

これに対し、比較で作成した砥石は、研削初期より研削
量が大きく、研削面に研削焼けのような模様が現れ始め
たため途中で試験を中止した。
On the other hand, the grindstone prepared for comparison had a larger amount of grinding than at the beginning of grinding, and the test was stopped midway because a pattern like grinding burn began to appear on the grinding surface.

なお、図中、5は絶縁管、7は電源、8はO−リングで
ある。
In addition, in the figure, 5 is an insulating tube, 7 is a power supply, and 8 is an O-ring.

(実施例3〜第2図参照) 平均粒径10μ腸のチタン(TI)粉末と平均粒径0.
5μ−の非晶炭素粉末と平均粒径 lμ置の非晶質ほう
素粉末なモル比で、2:2:lとなるように配合、混合
し、結合材構成成分の出発原料粉末を得た。
(See Example 3 to Figure 2) Titanium (TI) powder with an average particle size of 10μ and an average particle size of 0.
Amorphous carbon powder with an average particle size of 5 μm and amorphous boron powder with an average particle size of 1 μm were blended and mixed at a molar ratio of 2:2:1 to obtain a starting material powder for the binder component. .

次に、この粉末と平均粒径150μmのダイヤモンド粉
末を体積比で5:lに配合、混合し、砥粒層構成粉末を
得た。
Next, this powder and diamond powder having an average particle size of 150 μm were blended and mixed at a volume ratio of 5:1 to obtain an abrasive layer constituting powder.

第2図の加圧ラム16を上げ、さらに、上部押し棒13
aを金型11より上に上げた状態で、まず内径49.9
φ、厚さ10霞■のアルミ合金製の砥石台金2を下部押
し棒13bの上に置き、そして、その上に砥粒層構成粉
末1を充填した後、上部押し棒13aを降ろし、加圧ラ
ム16 ’t” 50MPa程度に加圧した。
Raise the pressure ram 16 shown in FIG.
With a raised above the mold 11, first set the inner diameter to 49.9.
A grindstone base metal 2 made of aluminum alloy with a diameter of φ and a thickness of 10 mm is placed on the lower push rod 13b, and after filling the abrasive layer constituent powder 1 thereon, the upper push rod 13a is lowered and the grinding wheel base 2 is placed on the lower push rod 13b. Pressure ram 16't'' was pressurized to about 50 MPa.

次に、黒鉛製の上、下部押し棒13m。Next, the upper and lower push rods made of graphite are 13m long.

13bを通して砥粒層構成粉末にaOO^の直流と70
0^、5OOHxの交流を同時に約10秒流し、チタン
、炭素、ほう葉間の反応を開始させた。
A direct current of aOO^ and 70
Alternating currents of 0^ and 5OOHx were simultaneously flowed for about 10 seconds to initiate a reaction between titanium, carbon, and borax.

反応開始直後に直流、交流とも切り、それ以上の温度上
昇を抑えた。数秒後、反応は終り、アルミ合金製の砥石
台金に砥粒層の強固に結合した砥石材料が得られた。
Immediately after the start of the reaction, both direct current and alternating current were turned off to prevent further temperature rise. After a few seconds, the reaction was completed, and a grinding wheel material was obtained in which the abrasive grain layer was firmly bonded to the aluminum alloy grinding wheel base.

この砥粒層構成成分をX線回折で調べたところTICと
丁lB!よりなっており、金属TIは検出されず、又、
ダイヤモンドの低圧相への逆変換も認められなかりた。
When the constituent components of this abrasive grain layer were examined by X-ray diffraction, they were found to be TIC and TIB! , no metal TI was detected, and
No reverse conversion of diamond to the low-pressure phase was also observed.

次にこの砥石材料の上下面を軽く研磨し、上下面の平衡
を出した後、回転砥石とした。
Next, the upper and lower surfaces of this whetstone material were lightly polished to balance the upper and lower surfaces, and then used as a rotating whetstone.

この砥石を用いて1式で窒化硅素焼結体の小片を研磨し
たところ、異常な研削量もなく、良好な研削状態を示し
た。
When a small piece of silicon nitride sintered body was polished using one set of this grindstone, there was no abnormal amount of grinding, and the grinding state was good.

なお、図中、12は絶縁材円筒、宜4は絶縁シート、1
5は台座、17は金型支持リングである。
In addition, in the figure, 12 is an insulating material cylinder, 4 is an insulating sheet, 1
5 is a pedestal, and 17 is a mold support ring.

(実施例4〜第3図参照) 平均粒径20μ鴎の酸化チタン(丁l02)粉末と平均
粒径0,5μIの非晶質炭素粉末と平均粒径10μ−の
アルミニウム粉末なモル比で3:3:4に配合、混合し
た。
(Refer to Example 4 to Figure 3) The molar ratio of titanium oxide (T102) powder with an average particle size of 20μ, amorphous carbon powder with an average particle size of 0.5μI, and aluminum powder with an average particle size of 10μ is 3. :3:4 and mixed.

さらに、この混合粉末と、平均砥粒5μ麿のMgO50
体積%と平均粒径7μmの5IOt50体積%とからな
る粉末を体積比で1:3となるように配合、混合し、結
合材構成成分の出発原料を得た。
Furthermore, this mixed powder and MgO50 with an average abrasive grain of 5μ
Powder consisting of 50 volume % of 5IOt having an average particle size of 7 μm was blended and mixed at a volume ratio of 1:3 to obtain a starting material for a binder component.

次に、この粉末に、平均粒径100μmのCBN粉末粉
末5稜 lOOμ霞のダイヤモンド粉末50体積%よりなる超砥
粒粉末を20体積%となるように配合、混合ル,砥石の
出発原料粉末を得た。
Next, superabrasive powder consisting of 50 volume% of CBN powder with an average particle size of 100 μm and 50 volume% of diamond powder with an average particle diameter of 100 μm is added to this powder to give a mixing ratio of 20 volume%, and the starting material powder for the grinding wheel is added to the powder. Obtained.

この粉末を第3図において中棒24のないタイプの衝撃
圧縮装置を用いて衝撃圧縮した。
This powder was subjected to impact compression using an impact compression device of the type shown in FIG. 3 without a center rod 24.

ここでは、内径50麿■、高さl50m思で肉厚3、2
■■の鉄製の円筒状試料容器22を用い、これに砥粒層
構成わ)末を初期相対密度55%となるように充填した
Here, the inner diameter is 50 m, the height is 50 m, and the wall thickness is 3.2 m.
A cylindrical sample container 22 made of iron was used, and powder of the abrasive layer structure was filled therein so that the initial relative density was 55%.

又、爆!1125として八NFGを用い、ここでは、円
筒状試料容器22の外側に径方向の淳みが40腸−とな
るようにこのANFOを充填し、起爆して砥粒層構成粉
末を衝撃圧縮した。
Again, explosion! Eight NFG was used as 1125, and this ANFO was filled on the outside of the cylindrical sample container 22 so that the thickness in the radial direction was 40 mm, and it was detonated to impact-compress the powder constituting the abrasive grain layer.

衝撃処理後、試料の外側の鉄製円筒部分を切削加工によ
り除去し、砥石材料の一部が露出したところで、さらに
、SIG砥石を用いて表面を整えた後、バランス取り、
ツルーイングを経て、直径45φの砥石とした。
After the impact treatment, the outer iron cylindrical part of the sample was removed by cutting, and when a part of the grinding wheel material was exposed, the surface was further prepared using a SIG grinding wheel, and then balanced.
After truing, it was made into a whetstone with a diameter of 45φ.

この砥石を用いて内径2001■、外径240■Iのア
ルミナ焼゛結体の円筒の内径を研削したところ、低い研
削抵抗で良好な研削性能を示した。
When this grindstone was used to grind the inner diameter of a cylindrical alumina sintered body having an inner diameter of 2001 mm and an outer diameter of 240 mm, it showed good grinding performance with low grinding resistance.

この砥粒層の結合材構成成分はMgOとStO。The binder components of this abrasive grain layer are MgO and StO.

の他、反応で生成した丁ICと八!,O5であり、金属
Alは認められなかった。
In addition, Ding IC and Hachi produced by the reaction! , O5, and no metal Al was observed.

又、この砥石のもつ気孔率は、やや高く32%であった
Furthermore, the porosity of this grindstone was somewhat high at 32%.

(実施例5〜第3図参照) 実施例1において、結合材構成成分の出発原料の中、ア
ルミナ粉末の部分をwcso体積%とNbN50体稙%
の混合粉末で置き換えた以外は、実施例!と同じ砥粒層
構成成分の出発原料を使用し、第3図に示す衝撃圧縮装
置により衝撃圧縮した。
(Refer to Example 5 to Figure 3) In Example 1, the alumina powder portion of the starting materials for the binder component was divided into wcso volume % and NbN50 volume %.
Example except that it was replaced with a mixed powder of The starting materials having the same abrasive layer constituents were used and subjected to impact compression using the impact compression apparatus shown in FIG.

ここでは、外径90−閣のアルミ合金製の丸棒を中棒,
24として用い、又、円筒状試料容器22としては、内
径foam■、肉厚41の鉄製円筒を用いた。
Here, an aluminum alloy round bar with an outer diameter of 90mm is used as a medium bar,
24, and as the cylindrical sample container 22, an iron cylinder with an inner diameter of foam 2 and a wall thickness of 41 mm was used.

これら中棒24とその外側の円筒状試料容器22ででき
る薄肉円筒状の空間に、上記砥粒層構成粉末を初期相対
密度60%となるように充填した。
A thin cylindrical space formed by the inner rod 24 and the cylindrical sample container 22 outside thereof was filled with the abrasive layer constituent powder so that the initial relative density was 60%.

爆薬25としてANF’Qを用い、これを径方向の厚み
がSO+*sとなるように充填し、これを雷管18で起
爆し、衝撃圧縮した.そして、アルミ合金製の中棒24
をもつ円柱状の砥石材料を得た。
ANF'Q was used as the explosive 25 and filled so that the thickness in the radial direction was SO+*s, which was detonated with the detonator 18 and compressed by impact. And the aluminum alloy inner rod 24
A cylindrical grinding wheel material with .

次に,この丸棒より厚さ5腸−の円板状砥石材料を切断
により作成し、その中心部に軸穴を設けた後、砥石のバ
ランス調整とツルーイングを行い、回転砥石を作成した
Next, a disk-shaped grindstone material with a thickness of 5 mm was cut from this round bar, a shaft hole was provided in the center, and the grindstone was balanced and trued to produce a rotary grindstone.

この砥石を用いて実施例1と同様の方法で砥石の研削性
能を評価した。
Using this grindstone, the grinding performance of the grindstone was evaluated in the same manner as in Example 1.

その結果、研削量25ccでの砥石直径摩耗量は、53
μ論であった.この砥石の結合材構成成分は、WClN
bNと反応生成物であるTiC。
As a result, the grinding wheel diameter wear amount with a grinding amount of 25cc is 53
It was μ theory. The binding material component of this grinding wheel is WClN
bN and TiC, which is a reaction product.

^1,03よりなり、この砥石の気孔率は18%であり
た。
The porosity of this whetstone was 18%.

なお、図中、19は上方板、20aはプラグ、20bは
プラグ、21は爆薬容器、23は下方板、26は駆動チ
ューブ、27は空間である。
In the figure, 19 is an upper plate, 20a is a plug, 20b is a plug, 21 is an explosive container, 23 is a lower plate, 26 is a drive tube, and 27 is a space.

(実施例6〜第5図参照) 平均粒径lOμ膿のMo01粉末と平均粒径10μmの
^I粉末と平均粒径5μ諺の硅素粉末をモル比で1:2
:2に配合、混合した。
(See Example 6 to Figure 5) Mo01 powder with an average particle size of 10 μm, ^I powder with an average particle size of 10 μm, and silicon powder with an average particle size of 5 μm in a molar ratio of 1:2.
:2 was blended and mixed.

さらに、この粉末と平均粒径1Gμ■のZr511粉末
10体積%と平均粒径10μmのTaN粉末粉末3稜 で2=1に配合し、混合して結合材構成成分の出発原料
粉末を得た。
Further, this powder, 10% by volume of Zr511 powder having an average particle size of 1 Gμm, and 3 parts of TaN powder having an average particle size of 10 μm were blended in a ratio of 2=1 and mixed to obtain a starting raw material powder for a binder component.

次に、この粉末と粒径lθ〜20μ量の衝撃合成ダイヤ
そンド粉末を体積比で2:1に配合し、混合し、砥粒層
構成粉末を得た。
Next, this powder and impact synthetic diamond powder having a particle size of lθ to 20 μm were blended at a volume ratio of 2:1 and mixed to obtain an abrasive layer-constituting powder.

この粉末を第5図に示す平面衝撃波発生装置により衝撃
圧縮した。
This powder was impact compressed using a planar shock wave generator shown in FIG.

第5図の試料容器30a.30bは鉄製とし、その内側
の内径50−1の試料室に外径49.91−1厚さ10
a腸のアルミ合金製円板と、砥粒層構成粉末を積層して
配置した。
Sample container 30a in FIG. 30b is made of iron, with an outer diameter of 49.91-1 and a thickness of 10 in the sample chamber with an inner diameter of 50-1.
The aluminum alloy disk of the intestine and the powder constituting the abrasive grain layer were stacked and arranged.

ここでの砥粒層の厚みは約51箇とし、その充填相対密
度は60%とした。
The thickness of the abrasive grain layer here was approximately 51, and the relative packing density thereof was 60%.

衝撃圧縮は、爆薬レンズ28を用いて得た平面爆轟波で
加速された厚さ3.2腸園の鉄製の駆動板29を下の試
料容器3Oa&:衝突させることにより行った。
Shock compression was performed by colliding the lower sample container 3Oa with a drive plate 29 made of iron with a thickness of 3.2 mm accelerated by a plane detonation wave obtained using an explosive lens 28.

衝撃処理後、鉄製の試料容器30a。After impact treatment, iron sample container 30a.

30bを切削により除去し、試料は、アルミ合金製の砥
石台金に砥粒層の強固に接合された状態で回収できた。
30b was removed by cutting, and the sample was recovered with the abrasive grain layer firmly bonded to the aluminum alloy grindstone base metal.

この砥石の結合材はX線回折の結果、 ZrSi2,TaHのほか、反応で生成したMoSi.
、AI,0,よりなっていた。
As a result of X-ray diffraction, the bonding material of this grindstone was found to be ZrSi2, TaH, and MoSi.
,AI,0,.

又、この砥石の気孔率は%22%で あった。Also, the porosity of this whetstone is %22%. there were.

この砥石材料を実施例3と同様の方法で加工し、回転砥
石とした後、この砥石によりCON焼結体の小片を研磨
したところ、良、好な研削状態を示した。
This grindstone material was processed in the same manner as in Example 3 to form a rotary grindstone, and when a small piece of the CON sintered body was polished using this grindstone, a good grinding state was obtained.

なお、図中、31は試料132aは そーメンタムトラップ、32bはモーメンタムトラップ
である。
In addition, in the figure, 31 is a momentum trap for the sample 132a, and 32b is a momentum trap.

[発明の効果] 以上詳述したように本発明は、超砥粒粉末に(a)金属
炭化物、窒化物、ほう化物、酸化物、ケイ化物,又はそ
れらの固溶体の少なくとも1種よりなる成分と(b)自
己発熱反応により炭化物、窒化物、ほう化物、酸化物、
ケイ化物、又はそれらの固溶体の少なくとも1種を生成
する成分を配合するに際し、成分(b)の体積%が出発
原料配合組成中の超砥粒を除いた残りの20%以上とな
るように配合、混合した粉末を成形し、その一部又は全
体を加熱することにより自己発熱反応を開始、進行させ
、超砥粒を含む砥粒層構成粉末を焼結することを特徴と
し、超砥粒を5体積%以上、60体積%未満含有し、残
りの結合相が炭化物、窒化物、ほう化物、酸化物、ケイ
化物、又はこれらの固溶体の少なくとも1種及び気孔よ
りなる超砥粒砥石を簡単な装置と手段を用いて製造する
ことが出来るようにしたものである。
[Effects of the Invention] As detailed above, the present invention provides superabrasive powder with (a) a component consisting of at least one of metal carbides, nitrides, borides, oxides, silicides, or solid solutions thereof; (b) Carbides, nitrides, borides, oxides,
When blending components that produce at least one type of silicide or solid solution thereof, blending so that the volume percent of component (b) is 20% or more of the remaining starting material composition excluding superabrasive grains. , is characterized by molding the mixed powder and heating a part or the whole of it to initiate and advance a self-heating reaction, and sintering the powder constituting the abrasive layer containing superabrasive grains. A superabrasive grinding wheel containing 5% by volume or more and less than 60% by volume, with the remaining binder phase consisting of carbides, nitrides, borides, oxides, silicides, or at least one of these solid solutions and pores, is a simple method. It can be manufactured using equipment and means.

本発明に係る超砥粒砥石は、高硬度焼入れ鋼や高硬度な
セラミックス材料の高精度、高能率加工に好適である。
The superabrasive grindstone according to the present invention is suitable for high-precision, high-efficiency machining of high-hardness hardened steel and high-hardness ceramic materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は加熱ワイヤーを用いた砥石の製造装置の略図的
縦断面図、 第2図は放電を用いた砥石の製造装置の略図的縦断面図
、 第3図、第4図は円筒衝撃圧縮装置の略図的縦断面図、 第5図は平面衝撃圧縮装置の略図的縦断面図である。 111.砥粒層構成粉末、 206.砥石台金、 310.耐熱レンガ、 401.タングステンワイヤー 610.容器、 910.ガス置換用バルブ、 10、、、真空引き用バルブ、 11、金型、 13a.、、上部押し棒、 13b.、、下部押し棒、 16、、、加圧ラム、 18 。 22 。 24 。 25 。 28 。 29 。 30m。 、雷管1 、円筒状試料容器、 中棒1 、爆m% 、爆薬レンズ1 、駆動板、 30m)、、、試料容器。 第5図 手続補正書 平成1年1月1、 発明の名称 超砥粒砥石及びその製造方法 補正をする者 事件との関係 特許出願人 名称 住友石炭鉱業株式会社 代  理  人 〒060 住所 札幌市中央区北1条西3丁目3番地胸 、7エス
タービル 特許請求の範囲の欄 発明の詳細な説明の欄 シ フ 補正の内容 (1)明細書1頁5行から3頁15行の特許請求の範囲
を法文に補正する。 「1.超砥粒を5体積%以上、60体積%未満含有し、
残部の結合相が炭化物、窒化物、ほう化物、酸化物、ケ
イ化物、又はそれらの固溶体の少なくとも11150〜
90体積%と気孔10〜50体積%よりなることを特徴
とする超砥粒砥石。 2、該超砥粒がダイヤモンド、立方晶窒化ほう素、ウル
ツ鉱型窒化ほう素の少なくとも1 flよりなる請求項
1記載の超砥粒砥石。 3、超砥粒粉末に (a)金属炭化物、窒化物、ほう化物、酸化物、ケイ化
物、又はそれらの固溶体の少なくとも1種よりなる成分
、 (b)自己発熱反応により炭化物、窒化物、ほう化物、
酸化物、ケイ化物、又はそれらの固溶体の少なくとも1
稲を生成する下記成分、イ)金属粉末 ロ)金属粉末と炭素粉末の混合粉末 へ)金属粉末とほう素粉束の混合粉末 二)金属粉末と炭素粉末とほう素粉束の混合粉末 ネ)金属粉末と炭素粉末と金属酸化物粉末の混合粉末 へ)金属粉末とほう素粉束と金属酸化物粉末の混合粉末 ト)金属粉末と炭素粉末とほう素粉束と金属酸化物粉末
の混合粉末 チ)金属粉末とケイ素粉末と金属酸化物粉末の混合粉末 を配合するに際し、自己発熱反応に関与する成分(b)
の体積%が出発原料配合組成中の超砥粒を除いた残りの
20%以上となるように配合、混合した砥粒層構成粉末
を成形後、又は成形時にその成形体の一部または全体を
加熱し、自己発熱反応を開始、進行させることにより、
超砥粒を含む砥粒層構成粉末を焼結することを特徴とす
る超砥粒を5体積%以上、1旦体積%未満含有し、残り
結合相が炭化物、窒化物、ほう化物、酸化物、ケイ化物
及びそれらの固溶体の少なくとも1 fi50〜90体
積%と気孔10〜50体積%よりなることを特徴とする
超砥粒砥石の製造方法。 4、該砥粒層構成粉末又はその成形体を衝撃圧縮するこ
とにより自己発熱反応を開始、進行させる請求項3記載
の超砥粒砥石の製造方法。 5、該砥粒層構成粉末又はその成形体を通電加熱するこ
とにより自己発熱反応を開始、進行させる請求項3記載
の超砥粒砥石の製造方法、」 (2)明細書12頁13行の「50」を「60」に補正
する。 (3)明細書30頁9行の「円筒衝撃波圧縮装置」「円
筒衝撃圧縮装置」に補正する。 (4)明細書43頁19行、45頁8行のrt1撃圧縮
装置」を「円筒衝撃圧縮装置」に補正する。 (5)明細書4フ頁10行から11行の波発生装置」を
「平面衝撃圧縮装置」 る。 「平面衝撃 に補正す 以上
Figure 1 is a schematic vertical cross-sectional view of a grindstone manufacturing device using heating wires, Figure 2 is a schematic vertical cross-sectional view of a grindstone manufacturing device using electric discharge, and Figures 3 and 4 are cylindrical impact compression. FIG. 5 is a schematic longitudinal sectional view of a planar impact compression device. 111. Abrasive grain layer constituent powder, 206. Whetstone base metal, 310. Heat-resistant brick, 401. Tungsten wire 610. container, 910. Gas replacement valve, 10, vacuum evacuation valve, 11, mold, 13a. ,,upper push rod, 13b. ,,lower push rod, 16,,,pressure ram, 18. 22. 24. 25. 28. 29. 30m. , detonator 1, cylindrical sample container, middle rod 1, explosive m%, explosive lens 1, drive plate, 30 m), ,, sample container. Figure 5 Procedural amendment January 1, 1999 Name of the invention Super abrasive grindstone and relation to the case of the person amending its manufacturing method Patent applicant name Sumitomo Coal Mining Co., Ltd. Agent Address 060 Address Sapporo City Center Kita 1-jo Nishi 3-3-3 Chest, 7 Esther Building Claims column Detailed description of the invention column Shift Contents of the amendment (1) Claims from page 1, line 5 on page 3 to line 15 on page 3 of the specification amend it to legal text. "1. Contains 5% by volume or more and less than 60% by volume of superabrasive grains,
The remaining binder phase is a carbide, nitride, boride, oxide, silicide, or a solid solution thereof.
A superabrasive grindstone characterized by comprising 90% by volume and 10 to 50% by volume of pores. 2. The superabrasive grindstone according to claim 1, wherein the superabrasive grains are composed of at least 1 fl of diamond, cubic boron nitride, or wurtzite boron nitride. 3. The superabrasive powder contains (a) a component consisting of at least one of metal carbides, nitrides, borides, oxides, silicides, or solid solutions thereof, and (b) carbides, nitrides, and borides by a self-heating reaction. monster,
At least one of an oxide, a silicide, or a solid solution thereof
The following ingredients that produce rice: a) Metal powder B) Mixed powder of metal powder and carbon powder) Mixed powder of metal powder and boron powder bundle 2) Mixed powder of metal powder, carbon powder, and boron powder bundle To mixed powder of metal powder, carbon powder and metal oxide powder) To mixed powder of metal powder, boron powder bundle and metal oxide powder To) Mixed powder of metal powder, carbon powder, boron powder bundle and metal oxide powder h) When blending the mixed powder of metal powder, silicon powder, and metal oxide powder, component (b) that participates in a self-heating reaction.
After molding the abrasive layer constituting powder, which is blended and mixed so that the volume percent of the starting material composition is 20% or more after excluding the superabrasive grains, or during molding, part or all of the molded body is By heating and initiating and advancing a self-heating reaction,
Characterized by sintering a powder constituting an abrasive layer containing superabrasive grains.Contains 5% by volume or more but once less than 5% by volume of superabrasive grains, and the remaining binder phase is a carbide, nitride, boride, or oxide. , a method for producing a superabrasive grindstone characterized by comprising at least 1 fi of 50 to 90 volume % of silicides and solid solutions thereof and 10 to 50 volume % of pores. 4. The method for producing a superabrasive grindstone according to claim 3, wherein the self-heating reaction is initiated and progressed by impact-compressing the powder constituting the abrasive layer or its compact. 5. The method for producing a superabrasive grindstone according to claim 3, wherein a self-heating reaction is initiated and progressed by heating the abrasive layer-constituting powder or its compact by applying electricity." Correct "50" to "60". (3) Correct to "Cylindrical shock wave compression device" and "Cylindrical shock compression device" on page 30, line 9 of the specification. (4) "rt1 impact compression device" on page 43, line 19 and page 45, line 8 of the specification is corrected to "cylindrical impact compression device." (5) "Wave generator" on page 4, lines 10 to 11 of the specification is referred to as a "plane impact compression device." “More than compensating for flat impact.

Claims (1)

【特許請求の範囲】 1、超砥粒を5体積%以上、60体積%未満含有し、残
部の結合相が炭化物、窒化物、ほう化物、酸化物、ケイ
化物、又はそれらの固溶体の少なくとも1種50〜90
体積%と気孔10〜50体積%よりなることを特徴とす
る超砥粒砥石。 2、該超砥粒がダイヤモンド、立方晶窒化ほう素、ウル
ツ鉱型窒化ほう素の少なくとも1種よりなる請求項1記
載の超砥粒砥石。 3、超砥粒粉末に (a)金属炭化物、窒化物、ほう化物、酸化物、ケイ化
物、又はそれらの固溶体の少なくとも1種よりなる成分
、 (b)自己発熱反応により炭化物、窒化物、ほう化物、
酸化物、ケイ化物、又はそれらの固溶体の少なくとも1
種を、生成する下記成分、イ)金属粉末 ロ)金属粉末と炭素粉末の混合粉末 ハ)金属粉末とほう素粉末の混合粉末 ニ)金属粉末と炭素粉末とほう素粉末の混合粉末 ホ)金属粉末と炭素粉末と金属酸化物粉末の混合粉末 ヘ)金属粉末とほう素粉末と金属酸化物粉末の混合粉末 ト)金属粉末と炭素粉末とほう素粉末と金属酸化物粉末
の混合粉末 チ)金属粉末とケイ素粉末と金属酸化物粉末の混合粉末 を配合するに際し、自己発熱反応に関与す る成分(b)の体積%が出発原料配合組成中の超砥粒を
除いた残りの20%以上となるように配合、混合した砥
粒層構成粉末を成形後、又は成形時にその成形体の一部
または全体を加熱し、自己発熱反応を開始、進行させる
ことにより、超砥粒を含む砥粒層構成粉末を焼結するこ
とを特徴とする超砥粒を5体積%以上、50体積%未満
含有し、残り結合相が炭化物、窒化物、ほう化物、酸化
物、ケイ化物及びそれらの固溶体の少なくとも1種 50〜90体積%と気孔10〜50体積%よりなること
を特徴とする超砥粒砥石の製造方法。 4、該砥粒層構成粉末又はその成形体を衝撃圧縮するこ
とにより自己発熱反応を開始、進行させる請求項3記載
の超砥粒砥石の製造方 法。 5、該砥粒層構成粉末又はその成形体を通電加熱するこ
とにより自己発熱反応を開始、進行させる請求項3記載
の超砥粒砥石の製造方 法。
[Claims] 1. Contains 5% by volume or more and less than 60% by volume of superabrasive grains, and the remaining binder phase is at least one of carbides, nitrides, borides, oxides, silicides, or solid solutions thereof. Seeds 50-90
% by volume and pores of 10 to 50% by volume. 2. The superabrasive grindstone according to claim 1, wherein the superabrasive grains are made of at least one of diamond, cubic boron nitride, and wurtzite boron nitride. 3. The superabrasive powder contains (a) a component consisting of at least one of metal carbides, nitrides, borides, oxides, silicides, or solid solutions thereof, and (b) carbides, nitrides, and borides by a self-heating reaction. monster,
At least one of an oxide, a silicide, or a solid solution thereof
A) Metal powder B) Mixed powder of metal powder and carbon powder C) Mixed powder of metal powder and boron powder D) Mixed powder of metal powder, carbon powder and boron powder E) Metal Mixed powder of powder, carbon powder and metal oxide powder F) Mixed powder of metal powder, boron powder and metal oxide powder G) Mixed powder of metal powder, carbon powder, boron powder and metal oxide powder C) Metal When blending the mixed powder of the powder, silicon powder, and metal oxide powder, the volume percent of the component (b) that participates in the self-heating reaction is 20% or more of the remaining starting material composition excluding the superabrasive grains. After molding the abrasive layer composition powder blended and mixed as described above, or during molding, a part or the whole of the compact is heated to initiate and advance a self-heating reaction, thereby forming an abrasive layer composition containing superabrasive grains. Contains 5% by volume or more and less than 50% by volume of superabrasive grains characterized by sintering powder, and the remaining binder phase is at least one of carbides, nitrides, borides, oxides, silicides, and solid solutions thereof. A method for producing a superabrasive grindstone characterized by comprising 50-90% by volume of seeds and 10-50% by volume of pores. 4. The method for producing a superabrasive grindstone according to claim 3, wherein the self-heating reaction is initiated and progressed by impact-compressing the powder constituting the abrasive layer or its compact. 5. The method for producing a superabrasive grindstone according to claim 3, wherein the self-heating reaction is initiated and progressed by heating the abrasive layer constituting powder or its molded product by applying electricity.
JP33344488A 1988-12-30 1988-12-30 Super abrasive grain grindstone and manufacture thereof Pending JPH02180560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33344488A JPH02180560A (en) 1988-12-30 1988-12-30 Super abrasive grain grindstone and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33344488A JPH02180560A (en) 1988-12-30 1988-12-30 Super abrasive grain grindstone and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02180560A true JPH02180560A (en) 1990-07-13

Family

ID=18266172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33344488A Pending JPH02180560A (en) 1988-12-30 1988-12-30 Super abrasive grain grindstone and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02180560A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008307592A (en) * 2007-06-18 2008-12-25 Asahi Kasei Chemicals Corp Explosive working method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152677A (en) * 1985-12-25 1987-07-07 Toshiba Tungaloy Co Ltd Manufacture of grindstone

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152677A (en) * 1985-12-25 1987-07-07 Toshiba Tungaloy Co Ltd Manufacture of grindstone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008307592A (en) * 2007-06-18 2008-12-25 Asahi Kasei Chemicals Corp Explosive working method

Similar Documents

Publication Publication Date Title
JP2004505786A (en) Manufacturing method of polishing products containing diamond
US3982911A (en) Process for the preparation of a composite cubic boron nitride layer abrasive body
WO1997011803A1 (en) Super-abrasive grain-containing composite material
KR20050072753A (en) Method for producing a sintered, supported polycrystalline diamond compact
JP2004506094A (en) Manufacturing method of polishing products containing cubic boron nitride
JPH0713279B2 (en) High-pressure phase boron nitride sintered body for cutting tool and manufacturing method thereof
WO1995008654A1 (en) Composite material and process for producing the same
SE454983B (en) HARD MATERIAL BODY OF CUBIC BORN NITRID
JPH03287687A (en) Sintered silicon nitride abrasive and its manufacture
JPH08216030A (en) Manufacture of grind body
US4215999A (en) Abrasive compact with a core of high rigidity material
WO1999003641A1 (en) Diamond-containing stratified composite material and method of manufacturing the same
JP2006315898A (en) Cubic boron nitride sintered compact
JPS61201751A (en) High hardness sintered body and its manufacture
JPH07286229A (en) High pressure phase boron nitride sintered body for cutting tool and its production
JPS627149B2 (en)
JPH02180560A (en) Super abrasive grain grindstone and manufacture thereof
JPH02252660A (en) Calcined compact of hardly calcinable powder, its abrasive grain and grindstone and production thereof
JP2505789B2 (en) High hardness sintered body tool
JPS6311414B2 (en)
JP2020059079A (en) Sintered material split body, cutting tool element using sinter material split body, and method of manufacturing the same
JPH0790465A (en) Composite body of refractory and metal and its manufacture
JPS6141873B2 (en)
Sharin et al. Efficiency of Hybrid Sintering Technology for Cemented Carbide Diamond-Containing Composites with Impregnation, Including Thermal Diffusion Metallization of Diamonds
JPH02145263A (en) Manufacture of grinding grindstone