JPH03287687A - Sintered silicon nitride abrasive and its manufacture - Google Patents
Sintered silicon nitride abrasive and its manufactureInfo
- Publication number
- JPH03287687A JPH03287687A JP2088160A JP8816090A JPH03287687A JP H03287687 A JPH03287687 A JP H03287687A JP 2088160 A JP2088160 A JP 2088160A JP 8816090 A JP8816090 A JP 8816090A JP H03287687 A JPH03287687 A JP H03287687A
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- grinding
- abrasive
- alumina
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052581 Si3N4 Inorganic materials 0.000 title claims abstract description 48
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims description 46
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000000843 powder Substances 0.000 claims abstract description 20
- 238000005245 sintering Methods 0.000 claims abstract description 20
- 239000013078 crystal Substances 0.000 claims abstract description 12
- 229910052582 BN Inorganic materials 0.000 claims abstract description 6
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000007787 solid Substances 0.000 claims abstract description 6
- 238000002156 mixing Methods 0.000 claims abstract description 5
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims abstract description 4
- 238000000227 grinding Methods 0.000 claims description 65
- 239000003082 abrasive agent Substances 0.000 claims description 37
- 238000010304 firing Methods 0.000 claims description 11
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 239000002245 particle Substances 0.000 abstract description 17
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910052761 rare earth metal Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 239000006061 abrasive grain Substances 0.000 description 17
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 7
- 238000001238 wet grinding Methods 0.000 description 7
- 229910010271 silicon carbide Inorganic materials 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000012752 auxiliary agent Substances 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 229910021418 black silicon Inorganic materials 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000007569 slipcasting Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Polishing Bodies And Polishing Tools (AREA)
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は研削砥石、研摩布紙等として利用される窒化け
い素質研摩材、及びその製法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a silicon nitride abrasive material used as a grinding wheel, coated abrasive paper, etc., and a method for producing the same.
[従来技術及び課題]
研摩材特に研削砥石を構成する研摩材粒子である砥粒と
しては、従来アルミナ質、炭化けい素質の一般研摩材が
用いられてきた。しかし、近年より高精度の精密研削加
工に対応するため、ダイヤモンド、立方晶窒化ほう素(
CBN)から成る超硬度研摩材に徐々にその重要性が移
行しつつある。[Prior Art and Problems] Conventionally, a general abrasive material made of alumina or silicon carbide has been used as abrasive particles, which are abrasive particles constituting an abrasive material, particularly a grinding wheel. However, in recent years, diamond, cubic boron nitride (
The importance of superhard abrasives made of CBN is gradually shifting.
しかし、かかる超硬度研摩材は一般研摩材に比して10
0〜200倍という高価格であるため、大量に消費され
る研摩材としては、実用的でない。そのため、一般研摩
材について、精密研削加工にも十分対応できるように、
より高性能にするための改良が種々試みられている。However, such super hard abrasives are 10% harder than general abrasives.
Since it is 0 to 200 times more expensive, it is not practical as an abrasive that is consumed in large quantities. Therefore, we have developed general abrasive materials that can be used for precision grinding.
Various improvements have been attempted to improve performance.
例えば、アルミナ質研摩材について、いわゆるゾル−ゲ
ル法を用いてなる焼結研摩材が提案されている(特開昭
56−32389.同80−231462)。しかし、
ゾル−ゲル法は工程が複雑であり、不安定な因子が多く
、概して量産に不向きである。又。For example, regarding alumina abrasives, sintered abrasives made using the so-called sol-gel method have been proposed (Japanese Patent Laid-Open Nos. 56-32389 and 80-231462). but,
The sol-gel method has a complicated process, many unstable factors, and is generally unsuitable for mass production. or.
精密研削の90%以上を占める湿式研削においては充分
な改善が得られない。Sufficient improvement cannot be obtained in wet grinding, which accounts for more than 90% of precision grinding.
従って2本発明は高性能な精密研削加工に有用であり、
特に低コストで実用性が高く、かつ精密研削の大部分を
占める湿式研削に適した新規な研摩材を簡便に得る方法
を提供することを課題とする。Therefore, the present invention is useful for high-performance precision grinding,
It is an object of the present invention to provide a method for easily obtaining a new abrasive material that is particularly low-cost, highly practical, and suitable for wet grinding, which accounts for the majority of precision grinding.
[課題の解決手段及び作用コ
本発明者はかかる課題を解決するために鋭意検討を重ね
た結果、窒化けい素を主成分とし、これに所定の焼結助
剤を添加してなり、かつこれらを極微細粉末として用い
2成形後圧潰して、焼成に供することにより得られた研
摩材が、これを研削砥石等に利用した場合、極めて優れ
た精密研削加工を達成し得ることを見い出し2本発明を
完成するに至ったものである。[Means for Solving the Problems and Effects] As a result of intensive studies in order to solve the problems, the inventors of the present invention have found that silicon nitride is the main component, a predetermined sintering aid is added thereto, and these We have discovered that an abrasive obtained by molding, crushing, and sintering 2 as an ultrafine powder can achieve extremely excellent precision grinding when used in grinding wheels, etc. This led to the completion of the invention.
即ち2本発明は窒化けい素焼結研摩材の製造方法であっ
て、1m以下の平均結晶粒径を有する窒化けい素粉末に
1−以下の平均結晶粒径を有するアルミナ、希土類酸化
物(イツトリアを包含する)から選択される焼結助剤粉
末を3〜20重量%(対窒化けい素)混合し、これを冷
間成形後圧潰し、六方晶窒化ほう素を固体圧媒として混
在させて1700℃以下の温度で焼成することを特徴と
する。この場合、特に焼成は加圧焼結によって行うこと
を特徴とする。That is, the present invention is a method for producing a silicon nitride sintered abrasive, in which alumina, rare earth oxide (yttria), and alumina and rare earth oxides (ittria) having an average crystal grain size of 1 m or less are added to silicon nitride powder having an average crystal grain size of 1 m or less. 3 to 20% by weight (based on silicon nitride) of sintering aid powder selected from (including) was mixed, this was cold-formed and crushed, and hexagonal boron nitride was mixed as a solid pressure medium to form a 1700 It is characterized by being fired at a temperature below ℃. In this case, the firing is particularly characterized in that it is performed by pressure sintering.
こうして得られる窒化けい素焼結研摩材は、アルミナ、
希土類酸化物(イツトリアを包含する)を構成成分とす
る粒界相を有し、窒化けい素含有量80重量%以上、平
均結晶粒径0.2〜1.On、相対密度(実測密度/理
論密度)90%以上、及び硬度21GPa以上の特性を
有する焼結粒であることを特徴とする。そして、この研
摩材を用いてなる研削砥石又は研摩布紙は極めて優れた
研削性能を有し、精密研削加工特に湿式研削において従
来の一般砥粒では到底達成できない著しく高い研削比を
有する。The silicon nitride sintered abrasive thus obtained is made of alumina,
It has a grain boundary phase composed of rare earth oxides (including ittria), has a silicon nitride content of 80% by weight or more, and has an average grain size of 0.2 to 1. It is characterized by being a sintered grain having characteristics of On, relative density (actual density/theoretical density) of 90% or more, and hardness of 21 GPa or more. A grinding wheel or coated abrasive paper made using this abrasive material has extremely excellent grinding performance, and has an extremely high grinding ratio that cannot be achieved with conventional general abrasive grains in precision grinding, particularly wet grinding.
従来、一般研摩材としては前述の通りアルミナ質研摩材
例えば褐色アルミナ研摩材(記号rAJで表わされる。Conventionally, general abrasives include alumina abrasives, such as brown alumina abrasives (represented by the symbol rAJ), as described above.
以下同じ)、白色アルミナ研摩材(MA)、或いは炭化
けい素質研摩材例えば黒色炭化けい素研摩材(C)、緑
色炭化けい素研摩材(GC)のいずれかであり、窒化け
い素についてはこの種の材料としては実用化されるに至
ったものは知られていない(JIS R8111“人造
研削材”参照)。(same hereinafter), white alumina abrasive (MA), or silicon carbide abrasive such as black silicon carbide abrasive (C), green silicon carbide abrasive (GC); There are no known seed materials that have been put to practical use (see JIS R8111 "Artificial abrasives").
窒化けい素は現行セラミックス材料中最も高強度、高靭
性であり、耐熱衝撃性に優れるため研摩材として有望で
ある。にも拘らず、未だ窒化けい素質研摩材として実用
化されるに至っていないのは、窒化けい素が極めて難焼
結性であるため。Silicon nitride has the highest strength and toughness among current ceramic materials, and has excellent thermal shock resistance, making it promising as an abrasive material. Despite this, silicon nitride has not yet been put into practical use as an abrasive material because silicon nitride is extremely difficult to sinter.
焼結助剤(MgO)の添加を不可欠とし、その助剤の存
在によって高温下で強度・硬度が低下してしまい、又耐
酸化性も低いからであるとされる(特公昭59−177
51>。因みに、この特公昭59− 17751号は本
出願人の知る限りでは唯一窒化けい素質研摩材について
出願公告された発明であり、この発明では、極めて特殊
な化学気相析出法(CVD法)によって基体表面に窒化
けい素からなる析出層を形成し、これを破砕して純粋な
(助剤を含有しない)窒化けい素研摩材を製造し、高温
機械特性に優れたものを提供している。しかし、かかる
方法は複雑な装置を必要とし、又CVD法である以上大
量生産に不向きであり、それ故に現実には実用化されて
いない。It is said that this is because the addition of a sintering aid (MgO) is essential, and the presence of this aid reduces strength and hardness at high temperatures, as well as low oxidation resistance (Japanese Patent Publication No. 59-177).
51>. Incidentally, as far as the applicant is aware, this Patent Publication No. 59-17751 is the only patented invention regarding silicon nitride abrasives. A precipitated layer of silicon nitride is formed on the surface, and this is crushed to produce a pure silicon nitride abrasive (containing no auxiliaries), which provides excellent high-temperature mechanical properties. However, such a method requires complicated equipment, and since it is a CVD method, it is not suitable for mass production, and therefore has not been put into practical use.
本発明では、このように研摩材としては実用化されるに
至っていない窒化けい素を主成分とし。The present invention uses silicon nitride as the main ingredient, which has not yet been put to practical use as an abrasive.
これにアルミナ、希土類酸化物から選択される焼結助剤
を所定量をもって配合し、かつこれらを1−以下(通常
サブミクロン)の極微細粉末として用いると共に成形後
に一旦圧潰して焼成することにより、精密研削加工特に
湿式研削において。A predetermined amount of a sintering aid selected from alumina and rare earth oxides is blended into this, and these are used as ultrafine powder of 1 or less (usually submicron), and after molding, they are once crushed and fired. , precision grinding, especially in wet grinding.
従来汎用されてきたアルミナ質研摩材及び炭化けい素質
研摩材に代替して真に実用化し得る窒化けい素質研摩材
を提供することに成功したものである。The present invention has succeeded in providing a silicon nitride abrasive material that can be put to practical use as a substitute for the conventionally widely used alumina abrasive materials and silicon carbide abrasive materials.
[好適な手段及び作用コ
本発明の新規な窒化けい素質研摩材を得るにあたり、焼
結助剤としてアルミナ(Ajz Os )及びイツトリ
アを含む希土類酸化物から選択される成分−種以上を3
重量%(以下「%」という)以上添加する。一方、この
助剤の添加によっても精密研削加工用の研摩材として充
分な高温高強度、高硬度を有し得ることが必要である。[Preferred Means and Effects] In obtaining the novel silicon nitride abrasive of the present invention, three or more components selected from rare earth oxides including alumina (AjzOs) and ittria are used as sintering aids.
Add at least % by weight (hereinafter referred to as "%"). On the other hand, even with the addition of this auxiliary agent, it is necessary that the abrasive material has high strength and hardness at high temperatures sufficient for use as an abrasive material for precision grinding.
そのため、助剤の合計量は20%以下とする。特に、ア
ルミナ3〜10%、イツトリア3〜lO%の範囲内で添
加することが好ましく、アルミナ約5%及びイツトリア
5%を添加したものが最適である。Therefore, the total amount of auxiliary agents should be 20% or less. In particular, it is preferable to add 3 to 10% alumina and 3 to 10% itria, and it is optimal to add about 5% alumina and 5% itria.
この原料粉末の平均結晶粒径は、主成分たる窒化けい素
、副成分(助剤成分)たるアルミナ。The average crystal grain size of this raw material powder is silicon nitride, which is the main component, and alumina, which is a subcomponent (auxiliary component).
希土類酸化物のいずれについても14以下とされる。こ
れによって得られる窒化けい素質焼結粒が1/a以下の
微細結晶構造となり、これを研摩材として用いたとき高
い研削比を発現することに寄与する。好ましくは原料粉
末の平均粒径を0.2〜0.4−にするとよい。The number of rare earth oxides is 14 or less. The resulting silicon nitride sintered grains have a fine crystal structure of 1/a or less, which contributes to achieving a high grinding ratio when used as an abrasive. Preferably, the average particle size of the raw material powder is 0.2 to 0.4-.
成形は、公知の種々の方法1例えば加圧成形。The molding can be performed using various known methods such as pressure molding.
スリップキャスティングを目的に応じて選択して使用で
きる。冷間成形品はその後かつ焼成前に圧潰されるので
、成形品の形状についても塊状。Slip casting can be selected and used depending on the purpose. Since the cold-formed product is crushed afterwards and before firing, the shape of the molded product is also lumpy.
シート状更にはひも状など特に問わない。It does not particularly matter whether it is in the form of a sheet or even a string.
圧潰によって研摩材として適した粒径に略相当する粒径
まで粉砕される。鋼の精密研削の場合例えば250−〜
350p (# 80〜#8o)程度にすることが好ま
しい。By crushing, the particles are ground to a particle size that approximately corresponds to a particle size suitable for use as an abrasive. For precision grinding of steel, for example 250-~
It is preferable to set it to about 350p (#80 to #8o).
この窒化けい素質粉砕物を焼成するにあたり。When firing this pulverized silicon nitride material.
各粉末に均一な圧力をかけ、研摩材特に砥粒として所期
の粒度の焼結粒を得るためにも、固体の圧媒を混在させ
る。この固体圧媒としては低硬度でありかつ安価な六方
晶窒化ホウ素(HBN)が好ましく、その平均粒径は1
〜2−2その混在量は窒化けい素粉砕物に対して80〜
120%程度にするとよい。他の圧媒例えば黒鉛(C)
を使用した場合、炭化けい素を形成することがある。焼
成方法としては常圧焼結、加圧焼結のいずれでもよいが
、焼結性を高めて高密度、高硬度の窒化けい素質研摩材
を得るためには加圧焼結即ちホットプレス(HP)焼結
、静水圧ホットプレス(HIP)焼結、或いは所定の窒
素分圧(例えば9 kg / c−以上)で行なう雰囲
気加圧焼結が好ましい。焼成温度は窒化けい素の分解を
防止する見地から1700℃以下とすることが好ましい
。A solid pressure medium is mixed in order to apply uniform pressure to each powder and obtain sintered grains of the desired particle size as an abrasive material, especially abrasive grains. As this solid pressure medium, hexagonal boron nitride (HBN), which has low hardness and is inexpensive, is preferable, and its average particle size is 1.
~2-2 The mixed amount is 80~ for the crushed silicon nitride
It is best to set it to about 120%. Other pressure media such as graphite (C)
may form silicon carbide. The firing method may be either normal pressure sintering or pressure sintering, but pressure sintering, or hot press (HP ) sintering, hydrostatic hot press (HIP) sintering, or atmospheric pressure sintering performed at a predetermined nitrogen partial pressure (for example, 9 kg/c- or more). The firing temperature is preferably 1700° C. or lower from the viewpoint of preventing decomposition of silicon nitride.
こうして得られた窒化けい素質焼結粒は1g11以下、
特に0.2〜0.5−程度の極微細な平均結晶粒径を有
する窒化けい素の多結晶体であり、液相焼結によって助
剤を主たる構成成分とする粒界相が存在する。この粒界
相は例えばSi3N4− n Y2O3−mAR20,
で表わされる化合物からなる結晶相や。The silicon nitride sintered particles thus obtained are 1g11 or less,
In particular, it is a polycrystalline body of silicon nitride having an extremely fine average grain size of about 0.2 to 0.5, and a grain boundary phase whose main constituent is an auxiliary agent is present by liquid phase sintering. This grain boundary phase is, for example, Si3N4- n Y2O3-mAR20,
A crystalline phase consisting of a compound represented by
窒化ガラス等のガラス相となって存在する。この点、特
公昭59−17751のCVD法によって基板上に得ら
れた析出層としての微粒結晶質ないしは配合結晶質窒化
けい素を粉砕してなる窒化けい素研摩材砥粒が、助剤を
含有しない高純度の基本的に単結晶又はその集合体であ
ることとは全く異なる。It exists as a glass phase such as nitride glass. In this regard, silicon nitride abrasive abrasive grains made by crushing fine-grain crystalline or blended crystalline silicon nitride as a precipitated layer obtained on a substrate by the CVD method of Japanese Patent Publication No. 59-17751 contain an auxiliary agent. It is completely different from being basically a single crystal or an aggregate thereof with no high purity.
又1本発明にあっては窒化けい素質成形物を焼結する前
に予め圧潰し、 HBN固体圧媒の存在下で焼結させる
ため、焼成物それ自体例えば200〜30〇−程度の粒
径を有しかつ極めて緻密な窒化けい素質焼結粒として得
ることができる。そのため、高破壊エネルギを要する。In addition, in the present invention, the silicon nitride molded product is crushed in advance before sintering and sintered in the presence of an HBN solid pressure medium, so the fired product itself has a particle size of, for example, about 200 to 300 mm. It can be obtained as extremely dense silicon nitride sintered grains. Therefore, high breaking energy is required.
焼結体の粉砕を別途行う必要がない。There is no need to separately crush the sintered body.
かかる窒化けい素焼結研摩材を用い、慣用の方法に従っ
て研削砥石、研摩布紙を製造する。本発明の目的である
精密研削加工用の研削砥石として一般的なビトリフッイ
ド砥石を製造する場合、焼成温度約1000℃のガラス
質結合剤を使用するとよい。こうして得られた研削砥石
は従来の一般研摩材(アルミナ質、炭化けい素質)を用
いてなる研削砥石に比して、同等以上の研削性能を有し
、特に湿式の精密研削においてその特徴が充分に発揮さ
れる。被削材としては金属一般に適用でき、特に耐熱合
金や超工具鋼に対して有効である。この場合、溶着しに
くいことは勿論である。Using such a silicon nitride sintered abrasive material, a grinding wheel and coated abrasive paper are manufactured according to a conventional method. When manufacturing a general vitrified grindstone as a grinding wheel for precision grinding, which is the object of the present invention, it is preferable to use a vitreous bonding agent with a firing temperature of about 1000°C. The grinding wheel obtained in this way has a grinding performance equal to or better than that of a grinding wheel made using conventional general abrasive materials (alumina, silicon carbide), and its characteristics are particularly good in wet precision grinding. It is demonstrated in It can be applied to metals in general as work materials, and is particularly effective for heat-resistant alloys and super tool steels. In this case, it goes without saying that welding is difficult.
[実施例]
平均粒径0.3趨の窒化けい素粉末に平均粒径0.51
aのAezOs5%と平均粒径1.oglのY2o25
%を混合添加して調製しである宇部興産■の市販品の5
N−C−OA粉を冷間静水圧加圧成形(C,1,P、)
用のビニール袋の中へ100〜200g程度つめ脱気し
て真空パックを施した。そして、真空バックの袋ごと2
ton/c−の圧力をかけC,1,Plた。 C,
1,P。[Example] Silicon nitride powder with an average particle size of 0.3 and an average particle size of 0.51
AezOs 5% and average particle size 1. ogl's Y2o25
5 of Ube Industries' commercial product prepared by mixing and adding %
Cold isostatic pressing of N-C-OA powder (C, 1, P,)
Approximately 100 to 200 g was packed into a plastic bag, degassed, and vacuum packed. And 2 bags of vacuum bag
A pressure of ton/c- was applied to C,1,Pl. C,
1.P.
後、ある程度硬くなフた窒化けい素質のC,1,P、品
をビニール袋より取り出し乳鉢等で圧潰し、所望の粒径
にふるい分けた。この所望の粒径にふるい分けた窒化け
い素質成形粉末と圧媒としての六方晶窒化ホウ素()I
BN)粉末とを各300 gづつ取りビニール袋で軽く
混合した。この混合粉体を内径80鶴の黒鉛の金型に充
てんし、これをホットプレス焼成炉(富士電波工業■製
)にセットして20℃/sinの昇温速度で1600℃
迄加熱し、同温度で圧力400kg / (!−をかけ
、60分間加圧焼成した。焼成後、窒化けい素質焼結粒
は圧媒のIBN粉とふるい分けされ、その後超音波洗浄
器にて完全に分離した。洗浄した窒化けい素質焼結粒は
、乾燥機にて乾燥して完全に水分を除去した。この焼結
砥粒は、平均結晶粒径0.2〜0.5−の窒化けい素の
微結晶の構造組織を有し、ビッカース硬度は22GPa
(2,24X 10akg/ j) 、 密度ハ3Jテ
アッt=。この焼結砥粒より再び#BOの砥粒をふるい
分け、その砥粒を用いてビトリファイド研削砥石を作成
し、従来より公知の溶融アルミナ型単結晶研摩材(32
A)と研削性能を比較した。Thereafter, the C, 1, P product, which was somewhat hard and made of silicon nitride, was taken out of the plastic bag, crushed in a mortar, etc., and sieved to a desired particle size. This silicon nitride molded powder sieved to a desired particle size and hexagonal boron nitride ()I as a pressure medium
BN) powder and 300 g of each were taken and mixed gently in a plastic bag. This mixed powder was filled into a graphite mold with an inner diameter of 80 mm, which was set in a hot press firing furnace (manufactured by Fuji Denpa Kogyo ■) and heated to 1600°C at a temperature increase rate of 20°C/sin.
After firing, the silicon nitride sintered grains were sieved from the IBN powder as a pressure medium, and then completely cleaned using an ultrasonic cleaner. The washed silicon nitride sintered grains were dried in a drier to completely remove moisture.The sintered grains were made of silicon nitride grains with an average grain size of 0.2 to 0.5. It has an elementary microcrystalline structure and has a Vickers hardness of 22 GPa.
(2,24X 10akg/j), Density 3J teat=. The #BO abrasive grains are screened again from the sintered abrasive grains, and the abrasive grains are used to create a vitrified grinding wheel, and a conventionally known fused alumina type single crystal abrasive material (32
Grinding performance was compared with A).
研削砥石は、砥粒88.1重量部にセラミック結合剤成
分11.9重量部、デキストリンを3.1重量部加え混
合した後、加圧して成形密度1.88g/c1iに成形
した。次に、この焼成前の生の砥石を電気炉において5
0℃/Hrで1000℃迄加熱した。セラミック質結合
剤は長石と粘土とフリットガラスで成るものを用いた。The grinding wheel was made by mixing 88.1 parts by weight of abrasive grains, 11.9 parts by weight of a ceramic binder component, and 3.1 parts by weight of dextrin, and then pressurizing the mixture to give a molding density of 1.88 g/c1i. Next, this raw grindstone before firing is placed in an electric furnace for 55 minutes.
It was heated to 1000°C at 0°C/Hr. The ceramic binder used was made of feldspar, clay, and fritted glass.
焼成後の研削砥石は、研摩材(砥粒’) 4B、9体積
%、結合剤8.1体積%であった。表1に研削試験用砥
石の性状を示す。尚、砥石の寸法は外径200mX厚み
19關×内径76.2mとした。The grinding wheel after firing contained 4B abrasive material (abrasive grains), 9% by volume, and 8.1% by volume of binder. Table 1 shows the properties of the grindstone for grinding tests. The dimensions of the grindstone were 200 m in outer diameter x 19 m in thickness x 76.2 m in inner diameter.
表 1 研削試験用砥石の性状
ド レス: 重石ドレッサー
この結果を表2に示す。m、i大電力値は砥石幅10關
当りの値であり、最大騒音は27〜130dBの範囲内
であるのでA特性値である(月S)。(以下同じ)
表 2
次に、この表1の研削砥石について、研削試験を行なっ
た。尚、比較の為、実施例の研削砥石と同じ砥粒、結合
剤含有率を有する溶融型アルミナ単結晶砥粒(太平洋ラ
ンダム■製;32A)から成る同形状同寸法の砥石を用
いた。Table 1 Properties of grinding wheels for grinding tests Dressing: Heavy stone dressing The results are shown in Table 2. The high power values m and i are values per 10 degrees of the grinding wheel width, and the maximum noise is within the range of 27 to 130 dB, so it is an A characteristic value (Month S). (The same applies hereinafter) Table 2 Next, a grinding test was conducted on the grinding wheels shown in Table 1. For comparison, a grinding wheel of the same shape and size and made of fused alumina single crystal abrasive grains (manufactured by Pacific Random ■; 32A) having the same abrasive grains and binder content as the grinding wheel of the example was used for comparison.
研削試験条件は次の通りである。The grinding test conditions are as follows.
機 械: 岡本平研CPG−52AN砥石周速:
2[100rn / aIn切込み: 68201m
/ passの乾式プランジダウンカット
被削材: 5KD−1(hc60)
(寸 法): 長さ 100×高さ50X幅10(鰭)
(被削幅)=lO論
表2から明らかな様に2本実施例の研削砥石は単結晶3
2A砥粒から成る比較例の研削砥石に比べて研削比が5
,3倍であり面粗さ及び電力消費量は同程度、騒音は低
く、シかも研削焼けが少ない等のきわめて優れた研削性
能を示した。Machine: Okamoto Heiken CPG-52AN Grinding wheel peripheral speed:
2[100rn/aIn cutting depth: 68201m
/pass dry plunge down cut workpiece material: 5KD-1 (hc60) (dimensions): length 100 x height 50 x width 10 (fin)
(Working width) = lO As is clear from Table 2, the grinding wheel of this example is single crystal 3
The grinding ratio is 5 compared to the comparative example grinding wheel made of 2A abrasive grains.
, 3 times as much, the surface roughness and power consumption were the same, the noise was low, and the grinding performance was extremely excellent, with less grinding burn.
又1表1の砥石を用いて、水溶性研削油を用いた湿式の
研削試験を行った。尚、比較の為表1の82A砥粒(比
較例1)と市販のアルミナセラミック質砥粒(比較例2
)を用いて製造された研削砥石(ツートンカンパニー社
製SG砥石)を用いた。In addition, a wet grinding test using a water-soluble grinding oil was conducted using the grindstone shown in Table 1. For comparison, 82A abrasive grains in Table 1 (Comparative Example 1) and commercially available alumina ceramic abrasive grains (Comparative Example 2) were used.
) (SG grindstone manufactured by Two-Tone Company) was used.
尚、これらの研削砥石は、研削比重2.02 、砥石中
の研摩材体積(%) 48.9%、同結合剤体積(%)
8.1%であり9表1の砥石と同じ構造の砥石とした。These grinding wheels have a grinding specific gravity of 2.02, an abrasive volume (%) of 48.9%, and a binder volume (%) of the grinding wheels.
8.1%, and the whetstone had the same structure as the whetstone shown in Table 1.
研削試験条件は次の通りである。The grinding test conditions are as follows.
機 械: 岡本平研CFG−52AN砥石周速:
2000m / sin切込み: ΔR20taA/
passの湿式プランジダウンカット
5KD−1(HRo 60)
長さ100×高さ50×幅10(鰭)
10鰭
重石ドレッサー
水溶性シムペリアルHD90の10倍
液
この結果を表3に示す。Machine: Okamoto Heiken CFG-52AN Grinding wheel speed:
2000m/sin depth of cut: ΔR20taA/
pass wet plunge down cut 5KD-1 (HRo 60) Length 100 x Height 50 x Width 10 (fin) 10 fin weight dresser Water-soluble Simperial HD90 10x solution The results are shown in Table 3.
被削材:
(寸 法)=
(被削幅) ニ
ド し ス :
研削油:
(以下余白)
表 3
表3から明らかな様に本実施例の窒化けい素焼結砥材を
用いた砥石は、水溶性研削油を用いた湿式の研削試験に
おいても32A砥石と比較して研削比が6倍であり9面
粗さ、電力消費量及び騒音は同程度の優れた研削性能を
示した。又、同時に市販のアルミナセラミック砥粒の砥
石と比較しても研削比で4.3倍1面粗度、最大消費電
力、騒音は同程度であった。よりて、従来の一般研摩材
を用いてなる研削砥石よりも、格段に優れた性能を示し
た。Workpiece material: (Dimensions) = (Workpiece width) Grinding oil: (The following is a margin) Table 3 As is clear from Table 3, the grinding wheel using the silicon nitride sintered abrasive material of this example was In a wet grinding test using water-soluble grinding oil, the grinding ratio was 6 times higher than that of the 32A grinding wheel, and it showed excellent grinding performance with comparable surface roughness, power consumption, and noise. At the same time, when compared with commercially available alumina ceramic abrasive grain grinding wheels, the grinding ratio was 4.3 times higher, and the maximum power consumption and noise were at the same level. Therefore, it showed much better performance than conventional grinding wheels made using general abrasives.
【発明の効果]
以上の如く本発明によれば、高硬度で微細な結晶をもつ
緻密な窒化けい素質研摩材を簡便に得る事ができる。又
、かかる研摩材を用いてなる研削砥石は、耐熱合金等か
ら成る工具、ダイス等の精密研削に好適に利用でき、市
販の溶融型アルミナ砥粒からなる研削砥石と比較してき
わめて優れた性能を示す。又、水溶性研削油を用いた湿
式の研削においても市販の溶融型アルミナ砥粒や焼結型
アルミナセラミック砥粒と比較して、格段に優れた性能
を示す。従って、大変高価な超硬度研摩材が使用されて
いる精密研削においても実用化できる研摩材として極め
て有用である。[Effects of the Invention] As described above, according to the present invention, a dense silicon nitride abrasive having high hardness and fine crystals can be easily obtained. In addition, grinding wheels made of such abrasives can be suitably used for precision grinding of tools, dies, etc. made of heat-resistant alloys, etc., and have extremely superior performance compared to commercially available grinding wheels made of fused alumina abrasive grains. shows. Also, in wet grinding using water-soluble grinding oil, it shows significantly superior performance compared to commercially available fused alumina abrasive grains and sintered alumina ceramic abrasive grains. Therefore, it is extremely useful as an abrasive material that can be put to practical use even in precision grinding where very expensive ultra-hard abrasive materials are used.
第1図は本発明の実施例の製法を示すフローチャートで
ある。
第
窒化けい素微粉
窒化けい素質混合微粉
図FIG. 1 is a flowchart showing a manufacturing method according to an embodiment of the present invention. Silicon nitride fine powder silicon nitride mixed fine powder diagram
Claims (6)
末に1μm以下の平均結晶粒径を有するアルミナ,希土
類酸化物(イットリアを包含する)から選択される焼結
助剤粉末を3〜20重量%(対窒化けい素)混合し,こ
れを冷間成形後圧潰し、六方晶窒化ほう素を固体圧媒と
して混在させて1700℃以下の温度で焼成することを
特徴とする窒化けい素質焼結研摩材の製造方法。(1) 3 to 20% of sintering aid powder selected from alumina and rare earth oxides (including yttria) having an average crystal grain size of 1 μm or less is added to silicon nitride powder having an average crystal grain size of 1 μm or less. Silicon nitride sintered material is produced by mixing % by weight (based on silicon nitride), crushing the mixture after cold forming, mixing hexagonal boron nitride as a solid pressure medium, and sintering it at a temperature of 1700°C or less. Method for manufacturing abrasive material.
製法。(2) The manufacturing method according to claim 1, wherein the firing is performed by pressure sintering.
)を構成成分とする粒界相を有し,窒化けい素含有量8
0重量%以上,平均結晶粒径0.2〜1.0μm,相対
密度90%以上,及び硬度21GPa以上の特性を有す
る焼結粒であることを特徴とする窒化けい素質研摩材。(3) Has a grain boundary phase consisting of alumina and rare earth oxides (including yttria), and has a silicon nitride content of 8
1. A silicon nitride abrasive material characterized by being sintered grains having the following properties: 0% by weight or more, an average grain size of 0.2 to 1.0 μm, a relative density of 90% or more, and a hardness of 21 GPa or more.
ることを特徴とする研削砥石。(4) A grinding wheel characterized by using the silicon nitride abrasive material according to claim 3.
削砥石。(5) The grinding wheel according to claim 4, which is used for wet precision grinding.
ることを特徴とする研摩布紙。(6) A coated abrasive paper characterized by using the silicon nitride abrasive material according to claim 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2088160A JP2779252B2 (en) | 1990-04-04 | 1990-04-04 | Silicon nitride sintered abrasive and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2088160A JP2779252B2 (en) | 1990-04-04 | 1990-04-04 | Silicon nitride sintered abrasive and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03287687A true JPH03287687A (en) | 1991-12-18 |
JP2779252B2 JP2779252B2 (en) | 1998-07-23 |
Family
ID=13935174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2088160A Expired - Fee Related JP2779252B2 (en) | 1990-04-04 | 1990-04-04 | Silicon nitride sintered abrasive and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2779252B2 (en) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8840694B2 (en) | 2011-06-30 | 2014-09-23 | Saint-Gobain Ceramics & Plastics, Inc. | Liquid phase sintered silicon carbide abrasive particles |
US8840696B2 (en) | 2012-01-10 | 2014-09-23 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US8840695B2 (en) | 2011-12-30 | 2014-09-23 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle and method of forming same |
US8986409B2 (en) | 2011-06-30 | 2015-03-24 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive articles including abrasive particles of silicon nitride |
US9017439B2 (en) | 2010-12-31 | 2015-04-28 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US9074119B2 (en) | 2012-12-31 | 2015-07-07 | Saint-Gobain Ceramics & Plastics, Inc. | Particulate materials and methods of forming same |
US9200187B2 (en) | 2012-05-23 | 2015-12-01 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and methods of forming same |
US9238768B2 (en) | 2012-01-10 | 2016-01-19 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having complex shapes and methods of forming same |
US9242346B2 (en) | 2012-03-30 | 2016-01-26 | Saint-Gobain Abrasives, Inc. | Abrasive products having fibrillated fibers |
US9440332B2 (en) | 2012-10-15 | 2016-09-13 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US9457453B2 (en) | 2013-03-29 | 2016-10-04 | Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs | Abrasive particles having particular shapes and methods of forming such particles |
US9517546B2 (en) | 2011-09-26 | 2016-12-13 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive articles including abrasive particulate materials, coated abrasives using the abrasive particulate materials and methods of forming |
US9566689B2 (en) | 2013-12-31 | 2017-02-14 | Saint-Gobain Abrasives, Inc. | Abrasive article including shaped abrasive particles |
US9604346B2 (en) | 2013-06-28 | 2017-03-28 | Saint-Gobain Cermaics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US9676981B2 (en) | 2014-12-24 | 2017-06-13 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle fractions and method of forming same |
US9707529B2 (en) | 2014-12-23 | 2017-07-18 | Saint-Gobain Ceramics & Plastics, Inc. | Composite shaped abrasive particles and method of forming same |
US9771507B2 (en) | 2014-01-31 | 2017-09-26 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle including dopant material and method of forming same |
US9783718B2 (en) | 2013-09-30 | 2017-10-10 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and methods of forming same |
US9803119B2 (en) | 2014-04-14 | 2017-10-31 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US9902045B2 (en) | 2014-05-30 | 2018-02-27 | Saint-Gobain Abrasives, Inc. | Method of using an abrasive article including shaped abrasive particles |
US9914864B2 (en) | 2014-12-23 | 2018-03-13 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and method of forming same |
US9938440B2 (en) | 2015-03-31 | 2018-04-10 | Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs | Fixed abrasive articles and methods of forming same |
CN108117396A (en) * | 2017-12-11 | 2018-06-05 | 陕西科技大学 | The preparation method of biomedical ceramics material based on silicon nitride |
US10106714B2 (en) | 2012-06-29 | 2018-10-23 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US10196551B2 (en) | 2015-03-31 | 2019-02-05 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US10557067B2 (en) | 2014-04-14 | 2020-02-11 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10563105B2 (en) | 2017-01-31 | 2020-02-18 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10711171B2 (en) | 2015-06-11 | 2020-07-14 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10759024B2 (en) | 2017-01-31 | 2020-09-01 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10865148B2 (en) | 2017-06-21 | 2020-12-15 | Saint-Gobain Ceramics & Plastics, Inc. | Particulate materials and methods of forming same |
US11230653B2 (en) | 2016-09-29 | 2022-01-25 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US11718774B2 (en) | 2016-05-10 | 2023-08-08 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles and methods of forming same |
US11926019B2 (en) | 2019-12-27 | 2024-03-12 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive articles and methods of forming same |
US11959009B2 (en) | 2016-05-10 | 2024-04-16 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles and methods of forming same |
US12122017B2 (en) | 2022-12-28 | 2024-10-22 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013102170A1 (en) | 2011-12-30 | 2013-07-04 | Saint-Gobain Ceramics & Plastics, Inc. | Composite shaped abrasive particles and method of forming same |
KR20140106737A (en) | 2011-12-30 | 2014-09-03 | 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 | Forming shaped abrasive particles |
-
1990
- 1990-04-04 JP JP2088160A patent/JP2779252B2/en not_active Expired - Fee Related
Cited By (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9017439B2 (en) | 2010-12-31 | 2015-04-28 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US8840694B2 (en) | 2011-06-30 | 2014-09-23 | Saint-Gobain Ceramics & Plastics, Inc. | Liquid phase sintered silicon carbide abrasive particles |
US8986409B2 (en) | 2011-06-30 | 2015-03-24 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive articles including abrasive particles of silicon nitride |
US9598620B2 (en) | 2011-06-30 | 2017-03-21 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive articles including abrasive particles of silicon nitride |
US9303196B2 (en) | 2011-06-30 | 2016-04-05 | Saint-Gobain Ceramics & Plastics, Inc. | Liquid phase sintered silicon carbide abrasive particles |
US9517546B2 (en) | 2011-09-26 | 2016-12-13 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive articles including abrasive particulate materials, coated abrasives using the abrasive particulate materials and methods of forming |
US8840695B2 (en) | 2011-12-30 | 2014-09-23 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle and method of forming same |
US11453811B2 (en) | 2011-12-30 | 2022-09-27 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle and method of forming same |
US9765249B2 (en) | 2011-12-30 | 2017-09-19 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle and method of forming same |
US10428255B2 (en) | 2011-12-30 | 2019-10-01 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle and method of forming same |
US9771506B2 (en) | 2012-01-10 | 2017-09-26 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having complex shapes and methods of forming same |
US9238768B2 (en) | 2012-01-10 | 2016-01-19 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having complex shapes and methods of forming same |
US11142673B2 (en) | 2012-01-10 | 2021-10-12 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having complex shapes and methods of forming same |
US11649388B2 (en) | 2012-01-10 | 2023-05-16 | Saint-Gobain Cermaics & Plastics, Inc. | Abrasive particles having complex shapes and methods of forming same |
US9567505B2 (en) | 2012-01-10 | 2017-02-14 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having complex shapes and methods of forming same |
US11859120B2 (en) | 2012-01-10 | 2024-01-02 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having an elongated body comprising a twist along an axis of the body |
US8840696B2 (en) | 2012-01-10 | 2014-09-23 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US10364383B2 (en) | 2012-01-10 | 2019-07-30 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having complex shapes and methods of forming same |
US9676980B2 (en) | 2012-01-10 | 2017-06-13 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US10106715B2 (en) | 2012-01-10 | 2018-10-23 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having complex shapes and methods of forming same |
US9242346B2 (en) | 2012-03-30 | 2016-01-26 | Saint-Gobain Abrasives, Inc. | Abrasive products having fibrillated fibers |
US9688893B2 (en) | 2012-05-23 | 2017-06-27 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and methods of forming same |
US9200187B2 (en) | 2012-05-23 | 2015-12-01 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and methods of forming same |
US12043784B2 (en) | 2012-05-23 | 2024-07-23 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and methods of forming same |
US9428681B2 (en) | 2012-05-23 | 2016-08-30 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and methods of forming same |
US10000676B2 (en) | 2012-05-23 | 2018-06-19 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and methods of forming same |
US10106714B2 (en) | 2012-06-29 | 2018-10-23 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US9440332B2 (en) | 2012-10-15 | 2016-09-13 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US11154964B2 (en) | 2012-10-15 | 2021-10-26 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US10286523B2 (en) | 2012-10-15 | 2019-05-14 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US11148254B2 (en) | 2012-10-15 | 2021-10-19 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US9676982B2 (en) | 2012-12-31 | 2017-06-13 | Saint-Gobain Ceramics & Plastics, Inc. | Particulate materials and methods of forming same |
US9074119B2 (en) | 2012-12-31 | 2015-07-07 | Saint-Gobain Ceramics & Plastics, Inc. | Particulate materials and methods of forming same |
US9457453B2 (en) | 2013-03-29 | 2016-10-04 | Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs | Abrasive particles having particular shapes and methods of forming such particles |
US10179391B2 (en) | 2013-03-29 | 2019-01-15 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US11590632B2 (en) | 2013-03-29 | 2023-02-28 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US10668598B2 (en) | 2013-03-29 | 2020-06-02 | Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs | Abrasive particles having particular shapes and methods of forming such particles |
US9604346B2 (en) | 2013-06-28 | 2017-03-28 | Saint-Gobain Cermaics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US9783718B2 (en) | 2013-09-30 | 2017-10-10 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and methods of forming same |
US10563106B2 (en) | 2013-09-30 | 2020-02-18 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and methods of forming same |
US11091678B2 (en) | 2013-12-31 | 2021-08-17 | Saint-Gobain Abrasives, Inc. | Abrasive article including shaped abrasive particles |
US9566689B2 (en) | 2013-12-31 | 2017-02-14 | Saint-Gobain Abrasives, Inc. | Abrasive article including shaped abrasive particles |
US9771507B2 (en) | 2014-01-31 | 2017-09-26 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle including dopant material and method of forming same |
US11926781B2 (en) | 2014-01-31 | 2024-03-12 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle including dopant material and method of forming same |
US10597568B2 (en) | 2014-01-31 | 2020-03-24 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle including dopant material and method of forming same |
US10557067B2 (en) | 2014-04-14 | 2020-02-11 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US11891559B2 (en) | 2014-04-14 | 2024-02-06 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US9803119B2 (en) | 2014-04-14 | 2017-10-31 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US9902045B2 (en) | 2014-05-30 | 2018-02-27 | Saint-Gobain Abrasives, Inc. | Method of using an abrasive article including shaped abrasive particles |
US10351745B2 (en) | 2014-12-23 | 2019-07-16 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and method of forming same |
US11608459B2 (en) | 2014-12-23 | 2023-03-21 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and method of forming same |
US9707529B2 (en) | 2014-12-23 | 2017-07-18 | Saint-Gobain Ceramics & Plastics, Inc. | Composite shaped abrasive particles and method of forming same |
US11926780B2 (en) | 2014-12-23 | 2024-03-12 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and method of forming same |
US9914864B2 (en) | 2014-12-23 | 2018-03-13 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and method of forming same |
US9676981B2 (en) | 2014-12-24 | 2017-06-13 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle fractions and method of forming same |
US10358589B2 (en) | 2015-03-31 | 2019-07-23 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US9938440B2 (en) | 2015-03-31 | 2018-04-10 | Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs | Fixed abrasive articles and methods of forming same |
US11472989B2 (en) | 2015-03-31 | 2022-10-18 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US12084611B2 (en) | 2015-03-31 | 2024-09-10 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US10196551B2 (en) | 2015-03-31 | 2019-02-05 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US11643582B2 (en) | 2015-03-31 | 2023-05-09 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US10711171B2 (en) | 2015-06-11 | 2020-07-14 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US11879087B2 (en) | 2015-06-11 | 2024-01-23 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US11959009B2 (en) | 2016-05-10 | 2024-04-16 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles and methods of forming same |
US11718774B2 (en) | 2016-05-10 | 2023-08-08 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles and methods of forming same |
US11230653B2 (en) | 2016-09-29 | 2022-01-25 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US10563105B2 (en) | 2017-01-31 | 2020-02-18 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US11427740B2 (en) | 2017-01-31 | 2022-08-30 | Saint-Gobain Ceramics & Plastics, Inc. | Method of making shaped abrasive particles and articles comprising forming a flange from overfilling |
US11932802B2 (en) | 2017-01-31 | 2024-03-19 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles comprising a particular toothed body |
US10759024B2 (en) | 2017-01-31 | 2020-09-01 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US11549040B2 (en) | 2017-01-31 | 2023-01-10 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles having a tooth portion on a surface |
US10865148B2 (en) | 2017-06-21 | 2020-12-15 | Saint-Gobain Ceramics & Plastics, Inc. | Particulate materials and methods of forming same |
CN108117396A (en) * | 2017-12-11 | 2018-06-05 | 陕西科技大学 | The preparation method of biomedical ceramics material based on silicon nitride |
US11926019B2 (en) | 2019-12-27 | 2024-03-12 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive articles and methods of forming same |
US12122953B2 (en) | 2020-12-22 | 2024-10-22 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US12122017B2 (en) | 2022-12-28 | 2024-10-22 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
Also Published As
Publication number | Publication date |
---|---|
JP2779252B2 (en) | 1998-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03287687A (en) | Sintered silicon nitride abrasive and its manufacture | |
JPH10330734A (en) | Silicon carbide composited silicon nitride abrasive and its preparation | |
JPH10113875A (en) | Super abrasive grain abrasive grindstone | |
JP3262301B2 (en) | Silica carbide wire sintered abrasive particles and method for producing the same | |
CN103561911B (en) | Superhard construction body, tool elements and preparation method thereof | |
EP3221087B1 (en) | Bonded abrasive articles and methods of manufacture | |
JP4684599B2 (en) | Method for producing cubic boron nitride | |
JP2020514235A (en) | Sintered polycrystalline cubic boron nitride material | |
JP2011131379A (en) | Grinding tool and method of manufacturing the same | |
WO1995003370A1 (en) | Silicon carbide grain | |
JPH08216030A (en) | Manufacture of grind body | |
JP2004506094A (en) | Manufacturing method of polishing products containing cubic boron nitride | |
KR20080111546A (en) | Method of making a cbn compact | |
JPS61201751A (en) | High hardness sintered body and its manufacture | |
JP5340028B2 (en) | Cutting tools | |
EP0738198A1 (en) | Method and abrasive article produced thereby | |
JP2972487B2 (en) | Sintered composite abrasive grits, their production and use | |
JP2762661B2 (en) | Porous metal bond whetstone and method of manufacturing the same | |
JPH05295352A (en) | Abrasive material or tool material comprising al2o3-based composite ceramic, and its production | |
JPH0881270A (en) | Ceramic sintered compact containing cubic boron nitride and cutting tool | |
JP3145470B2 (en) | Tungsten carbide-alumina sintered body and method for producing the same | |
JPS62251077A (en) | Vitrifide grinding element | |
JPH0577730B2 (en) | ||
JPH01131066A (en) | Boron nitride based compact calcined under ordinary pressure | |
JPH0594B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |