JPH01131066A - Boron nitride based compact calcined under ordinary pressure - Google Patents

Boron nitride based compact calcined under ordinary pressure

Info

Publication number
JPH01131066A
JPH01131066A JP62286484A JP28648487A JPH01131066A JP H01131066 A JPH01131066 A JP H01131066A JP 62286484 A JP62286484 A JP 62286484A JP 28648487 A JP28648487 A JP 28648487A JP H01131066 A JPH01131066 A JP H01131066A
Authority
JP
Japan
Prior art keywords
silicate glass
powder
weight
calcined
compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62286484A
Other languages
Japanese (ja)
Other versions
JP2525432B2 (en
Inventor
Kenichi Adachi
健一 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP62286484A priority Critical patent/JP2525432B2/en
Publication of JPH01131066A publication Critical patent/JPH01131066A/en
Application granted granted Critical
Publication of JP2525432B2 publication Critical patent/JP2525432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/04Particles; Flakes

Abstract

PURPOSE:To obtain a boron nitride based compact calcined under ordinary pressure containing BN, Al2O3 and high-silicate glass at a specific ratio, having a relative density of specific value or above and improved shape restriction and productivity as well as high density and strength and good abrasion resistance, thermal shock resistance and corrosion resistance. CONSTITUTION:The aimed boron nitride based compact calcined under ordinary pressure consists of 70-15wt.% BN, 5-75wt.% Al2O and 10-80wt.% high-silicate glass and has >=55% relative density. The above-mentioned high-silicate glass means boron silicate glass existing in the state where the surface of silica particle is coated with a film of boron oxide and is obtained e.g., by the following method: Borate or boron oxide is added at an amount of about 2-10wt.% as B2O3 to SiO2 existing in the ultrafine particle state and the blend is calcined at about 800-1300 deg.C to afford a calcined compact, which is then pulverized and repeatedly calcined at the above- mentioned temperature and pulverized. The above-mentioned boron nitride compact calcined under ordinary pressure is obtained e.g., by blending each raw material at a prescribed ratio, pulverizing the blend under non-oxidizing atmosphere and then molding the powder and calcining the resultant compact.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、常圧焼結窒化硼素系成形体に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to a pressureless sintered boron nitride molded body.

〈従来の技術〉 窒化硼素(B N)は、電気絶縁性、熱伝導性、耐食性
、耐熱衝撃性、潤滑性等の優れた特性を有する一方、機
械加工の容易な数少ないセラミックスである。このため
上記諸特性が要求される金属溶融用の各種容器をはじめ
、電気絶縁材料、高温伝熱材料等に広く利用されている
<Prior Art> Boron nitride (BN) has excellent properties such as electrical insulation, thermal conductivity, corrosion resistance, thermal shock resistance, and lubricity, and is one of the few ceramics that can be easily machined. For this reason, it is widely used in various metal melting containers that require the above-mentioned properties, electrical insulation materials, high-temperature heat transfer materials, and the like.

BN焼結体は、BNが難焼結性であるので一般には、ホ
ットプレス(加圧焼結)法によって作られている。それ
は、1500〜2300℃にて100kg/cfflを
超える圧力をかけて実施するものであるため、大型形状
品は得られず、また、複雑形状品の製法には適さない等
の問題があった。しかも、現在市販されているBN成形
体は、−旦、円柱状にホットプレスされた焼結体を機械
加工して最終製品形状に仕上げる方法がとられているの
で高価格となる。
Since BN is difficult to sinter, BN sintered bodies are generally produced by a hot press (pressure sintering) method. Since this method is carried out at 1500 to 2300° C. and under a pressure exceeding 100 kg/cffl, there are problems in that large-sized products cannot be obtained and it is not suitable for manufacturing complex-shaped products. Moreover, the BN molded bodies currently on the market are expensive because they are first hot-pressed into a cylindrical shape and then machined into the final product shape.

以上のような問題を解決するため各種の常圧焼結法が試
みられているが、現在までのところ、BNの特性を発揮
できるBN焼結体は得られていない。例えば、特開昭6
1−132563号公報では、高圧でラバープレス成形
し、得られた予備成形体を黒鉛モールドに挿入して自由
膨張を制限する下での焼結が試みられているが、密度・
強度が低い上、生産能率が悪く、大型形状品が得られな
い問題がある。そのため、電気絶縁性、熱伝導性、耐食
性、耐熱衝撃性等のBN本来の優れた特性を有し、安価
に、容易にかつ効率良く製造できる常圧焼結BN成形体
の提供が望まれていた。
Various pressureless sintering methods have been attempted to solve the above problems, but so far no BN sintered body capable of exhibiting the characteristics of BN has been obtained. For example, JP-A-6
No. 1-132563 attempts to perform sintering by rubber press molding under high pressure and inserting the obtained preform into a graphite mold to restrict free expansion.
In addition to low strength, there are problems in that production efficiency is poor and large-sized products cannot be obtained. Therefore, it is desired to provide a pressureless sintered BN molded body that has the inherent excellent properties of BN, such as electrical insulation, thermal conductivity, corrosion resistance, and thermal shock resistance, and can be manufactured easily and efficiently at low cost. Ta.

〈発明が解決しようとする問題点〉 本発明は、BN焼結体の形状制約と生産性を改善し、従
来得られなかった高密度、高強度でかつ耐摩耗性、耐熱
衝撃性、耐食性の良好な常圧焼結BN系成形体を提供す
ることを目的とするものである。
<Problems to be Solved by the Invention> The present invention improves the shape constraints and productivity of BN sintered bodies, and provides high density, high strength, and wear resistance, thermal shock resistance, and corrosion resistance that were previously unobtainable. The object is to provide a good pressureless sintered BN molded body.

〈問題点を解決するための手段〉 すなわち、本発明は、BN70〜15重量%、AN20
35〜75重景%、高ケイ酸ガラス10〜80重量%か
らなる相対密度が55%以上の常圧焼結BN系成形体で
ある。
<Means for Solving the Problems> That is, the present invention provides a method for solving problems in which BN70 to 15% by weight, AN20
It is an atmospheric pressure sintered BN-based molded body having a relative density of 55% or more and consisting of 35 to 75 weight percent high silicate glass and 10 to 80 weight percent high silicate glass.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

は予備成形時の可塑変形性に優れているため高密度の予
備成形体が得られ易い。
Since it has excellent plastic deformability during preforming, it is easy to obtain a high-density preform.

A A 203粉末は、市販品で良いが望ましくは純度
99.0%以上、平均粒子径1μm以下のものである。
The AA 203 powder may be a commercially available product, but preferably has a purity of 99.0% or more and an average particle size of 1 μm or less.

A 7!20.の粒度はBN粉末と同等あるいはそれよ
りも微細粒はど焼結体密度及び強度が向上するので好ま
しい。
A 7!20. The particle size is preferably equal to or finer than that of BN powder because the density and strength of the sintered body are improved.

次に、本発明でいう高ケイ酸ガラスとは、シリカ粒子の
表面が酸化硼素の膜で被覆された状態の硼ケイ酸ガラス
を意味する。このものば、例えば超微粒状態の5in2
に硼酸又は酸化硼素を8203として2〜10重量%添
加し800〜1300°C程度の温度範囲で焼成するこ
とによって得られた焼結体を粉砕し、再び上記温度範囲
で焼成し、粉砕するという操作を繰り返すことによって
得ることができる。通常の硼ケイ酸ガラスを構成成分と
して含有させる場合よりもとくに優れた耐水性を示し、
その結果、電気特性、耐熱衝撃性に優れた焼結体となる
Next, high silicate glass as used in the present invention means borosilicate glass in which the surface of silica particles is coated with a film of boron oxide. This material is, for example, 5in2 in an ultra-fine state.
The sintered body obtained by adding 2 to 10% by weight of boric acid or boron oxide as 8203 and firing at a temperature range of about 800 to 1300°C is crushed, then fired again at the above temperature range, and crushed. can be obtained by repeating the operation. It exhibits particularly superior water resistance than when ordinary borosilicate glass is included as a component,
As a result, a sintered body with excellent electrical properties and thermal shock resistance is obtained.

本発明の常圧焼結BN系成形体は、以上のBN粉末、A
7!203粉末及び特殊に合成された高ケイ酸ガラスを
最終製品組成になるように混合しその混合物を5tol
/c[以上の圧力にて成形した後焼成する方法、及び比
表面積を入手したそれの2倍以上になるまで微粉砕して
なるBN粉末にへ1203粉末と高ケイ酸ガラスを混合
するか又はBNとA N 203と高ケイ酸ガラスの混
合物を比表面積が元の2倍以上になるまで破断、せん断
、磨砕等の粉砕をした後2 ton/c♂以上の圧力で
成形した後焼成する方法によって製造することができる
The pressureless sintered BN-based compact of the present invention comprises the above BN powder, A
7!203 powder and specially synthesized high silicate glass are mixed to make the final product composition, and the mixture is mixed with 5 tol.
1203 powder and high silicate glass are mixed into the BN powder obtained by pulverizing it until the specific surface area is more than twice that of the obtained one, or A mixture of BN, AN 203, and high silicate glass is pulverized by breaking, shearing, grinding, etc. until the specific surface area becomes more than twice the original size, then molded at a pressure of 2 ton/c♂ or more, and then fired. It can be manufactured by a method.

成形装置としては、金型成形機、冷間等方圧成形機(C
I P)等の通常の成形機を用いることができる。結晶
性の高い六方晶のBN粉末あるいは非晶質のBN粉末を
そのまま用いる時の成形圧力は、5 ton/cn!以
上好ましくは7 ton/cJ以上である。
The molding equipment includes a mold molding machine, a cold isostatic press molding machine (C
A conventional molding machine such as IP) can be used. The molding pressure when using highly crystalline hexagonal BN powder or amorphous BN powder as is is 5 ton/cn! More preferably, it is 7 ton/cJ or more.

5 ton/cJ未溝の成形圧力では、相対密度55%
以上の常圧焼結BN系成形体を得ることが困難となる。
At a molding pressure of 5 ton/cJ without grooves, the relative density is 55%.
It becomes difficult to obtain the above pressureless sintered BN-based compact.

一方、微粉砕したBN粉末あるいは、入手した原料を混
合・粉砕した微粉末を用いる時の成形圧力は、2ton
/cut以上で上記と同様の効果が得られる。この時の
粉砕装置としては、ボールミル、振動ボールミル、アト
ライター、ライカイ機等の通常の粉砕機を用いることが
できる。なお、粉砕は、元の粉末の比表面積の2倍以上
好ましくは10倍以上になるまで行う。2倍未満の粉砕
では相対密度55%以上の常圧焼結BN系成形体を得る
ことが困難となる。
On the other hand, when using finely pulverized BN powder or fine powder obtained by mixing and pulverizing obtained raw materials, the molding pressure is 2 tons.
/cut or more, the same effect as above can be obtained. As a crushing device at this time, a conventional crusher such as a ball mill, a vibrating ball mill, an attritor, a Raikai machine, etc. can be used. The pulverization is performed until the specific surface area of the powder becomes at least twice, preferably at least 10 times, the specific surface area of the original powder. If the pulverization is less than twice, it becomes difficult to obtain a pressureless sintered BN-based compact having a relative density of 55% or more.

粉砕を行う場合、それを酸化雰囲気で行うと硼素酸化物
の生成がみられ、そのまま焼成すると焼結体中に遊離の
酸化硼素が存在する状態となり耐湿性及び熱伝導率の低
下をきたすばかりでなく、焼結体にクランクが発生する
。この場合、生成した硼素酸化物を除去する処理を行う
ことにより本発明品を得る原料として使用できる。硼素
酸化物を除去する方法としては、メタノール、エタノー
ル、グリセリン等のアルコール類による処理である。具
体的には、アルコールを含んだスラリーの加熱あるいは
、アルコールによる洗浄・濾過である。粉砕を硼素酸化
物が生成しないような例えばN2、Ar等の非酸化性雰
囲気で行えば上記の硼素酸化物を除去する工夫は必ずし
も必要でない。
If pulverization is carried out in an oxidizing atmosphere, boron oxide will be generated, and if the sintered body is sintered, free boron oxide will be present in the sintered body, which will only lead to a decrease in moisture resistance and thermal conductivity. Otherwise, a crank will occur in the sintered body. In this case, by performing a treatment to remove the generated boron oxide, it can be used as a raw material for obtaining the product of the present invention. A method for removing boron oxides is treatment with alcohols such as methanol, ethanol, and glycerin. Specifically, this involves heating a slurry containing alcohol, or washing and filtering with alcohol. If the pulverization is performed in a non-oxidizing atmosphere such as N2 or Ar where boron oxides are not produced, the above-mentioned measures to remove boron oxides are not necessarily required.

上記した方法により粉砕を行ったものは、高圧成形をす
ることなく相対密度55%以上の常圧焼結BN系成形体
を得ることができる。これは、結晶の格子不整及び部分
的な非晶質化が進むと同時に新たに形成された粒子面が
現われ所謂メカノケミカル効果により活性化された粉末
になったためと考えられる。高強度の常圧焼結BN系成
形体を得るには、成形圧力を高くして予備成形体密度を
できるだけ高くすることが望ましい。
When pulverized by the method described above, a pressureless sintered BN-based molded body having a relative density of 55% or more can be obtained without high-pressure molding. This is considered to be because newly formed particle surfaces appeared at the same time as the crystal lattice misalignment and partial amorphization progressed, resulting in a powder activated by a so-called mechanochemical effect. In order to obtain a high-strength pressureless sintered BN-based compact, it is desirable to increase the compacting pressure to make the preform density as high as possible.

焼成は、1200〜1800°Cの非酸化性雰囲気で行
う。焼成温度が1200℃未満では、BN粒同志及びB
H粒とi20.、高ケイ酸ガラスが直接結合しにくいの
で高強度の常圧焼結BN系成形体が得られない。一方、
1800℃を超えるとA7!、03、高ケイ酸ガラスが
熱分解・蒸発を起し本来の添加剤としての作用を失う。
Firing is performed in a non-oxidizing atmosphere at 1200-1800°C. When the firing temperature is less than 1200°C, BN grains and B
H grain and i20. Since the high silicate glass is difficult to bond directly, a high-strength pressureless sintered BN-based molded body cannot be obtained. on the other hand,
A7 when it exceeds 1800℃! , 03, high silicate glass causes thermal decomposition and evaporation and loses its original function as an additive.

望ましくは、特に高強度の常圧焼結BN系成形体が得ら
れる1400〜1600℃での非酸化性雰囲気である。
A non-oxidizing atmosphere at 1,400 to 1,600° C. is preferable, in which a particularly high-strength pressureless sintered BN-based molded body can be obtained.

非酸化性雰囲気としてはHe、 Ar、 N2等の不活
性雰囲気が適当である。焼成装置としては、タンマン炉
、抵抗加熱炉、高周波炉等が用いられる。
As the non-oxidizing atmosphere, an inert atmosphere such as He, Ar, N2, etc. is suitable. As the firing device, a Tammann furnace, a resistance heating furnace, a high frequency furnace, etc. are used.

以上のようにして製造された本発明の常圧焼結BN系成
形体は、BH70〜15重景%重量 I! 2035〜
75重量%、高ケイ酸ガラス10〜80重量%を含有す
る。Al2O2が75重量%を超えると相対的にBNの
含有量が減少しBHの特性が発揮されない。一方、A 
7!、03が5重量%未滴になると酸化生成したB2O
3を固定する能力が小さくなり高強度の焼結体とはなら
ない。高ケイ酸ガラスが80重量%を超えると熱伝導性
、電気絶縁性等のBNの優れた特性が著しく低下する。
The pressureless sintered BN-based molded body of the present invention produced as described above has a BH of 70 to 15% weight I! 2035~
75% by weight and 10-80% by weight of high silicate glass. If Al2O2 exceeds 75% by weight, the BN content will be relatively reduced and the BH properties will not be exhibited. On the other hand, A
7! , B2O produced by oxidation when 03 becomes 5% by weight
The ability to fix 3 becomes small, and a high-strength sintered body cannot be obtained. When the content of high silicate glass exceeds 80% by weight, the excellent properties of BN such as thermal conductivity and electrical insulation properties are significantly reduced.

特に成形体の使用温度が上昇するとこの傾向は、−層激
しくなる。なお高ケイ酸ガラスはX線により同定できる
。また、以上のようにして製造された本発明の常圧焼結
BN系成形体の焼結体密度は、相対密度で55%以上と
なる。相対密度が55%未満でば気孔が多く緻密でない
ため、曲げ強さ、耐熱衝撃性、゛耐摩耗性、耐食性が向
上せずブレークリング、連鋳用ノズル等の用途には適さ
ない。
In particular, as the temperature at which the molded product is used increases, this tendency becomes even more severe. Note that high silicate glass can be identified by X-rays. Moreover, the sintered body density of the pressureless sintered BN-based molded body of the present invention produced as described above is 55% or more in terms of relative density. If the relative density is less than 55%, it has many pores and is not dense, so bending strength, thermal shock resistance, abrasion resistance, and corrosion resistance do not improve, making it unsuitable for applications such as break rings and continuous casting nozzles.

〈実施例〉 以下本発明を実施例並びに比較例をもってさらに具体的
に説明するが、本発明にこれらに限定されるものではな
い。
<Examples> The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these.

実施炎上 市販のBN粉末(六方晶、純度99.0%、比表面積6
n’f/g)60重量部にAβ203粉末(純度99%
、比表面積8m/g)20重量部、高ケイ酸ガラス(ア
エロジルとして市販されている乾式法ホワイトカーボン
90%に高純度B2O3を10%添加して空気中で11
00℃2時間加熱して得られたものをボールミルで粉砕
して自作した。平均粒子径3μm、比表面積8n(/g
)20重量部添加した後振動ボールミルにて混合し、成
形用混合粉末を得た。次にこの混合粉末を5tol/c
Jの圧力で冷間等方圧成形して得られた予備成形体を前
記BN粉末の入った黒鉛容器中に埋め込み高周波炉にて
1600℃、60分間、N2雰囲気下で焼成した。得ら
れた焼結体の相対密度、曲げ強さ、ショアー硬度の測定
結果を表に示す。
Commercially available BN powder (hexagonal crystal, purity 99.0%, specific surface area 6)
n'f/g) to 60 parts by weight of Aβ203 powder (99% purity)
, specific surface area 8 m/g), 20 parts by weight of high silicate glass (10% high purity B2O3 was added to 90% dry process white carbon commercially available as Aerosil, and 11 parts by weight was added in air.
The material obtained by heating at 00° C. for 2 hours was ground in a ball mill to make it myself. Average particle diameter 3μm, specific surface area 8n (/g
) After adding 20 parts by weight, the mixture was mixed in a vibrating ball mill to obtain a mixed powder for molding. Next, add this mixed powder to 5tol/c.
The preform obtained by cold isostatic pressing at a pressure of J was embedded in a graphite container containing the BN powder and fired in a high frequency furnace at 1600° C. for 60 minutes in an N2 atmosphere. The measurement results of the relative density, bending strength, and Shore hardness of the obtained sintered body are shown in the table.

尖旌炎芳 実施例1で得た成形用混合粉末を用い成形圧力を7to
n/cn!としたこと以外は実施例1と同様の方法にて
実施した。
Using the mixed powder for molding obtained in Example 1, the molding pressure was 7 to
n/cn! It was carried out in the same manner as in Example 1 except for the following.

大隻炎↓ BN粉末50重量部、へNzO+40重量部、高ケイ酸
ガラス10重量部を添加・混合して成形用混合粉末を得
、この混合粉末を用い、焼成温度を1400°Cとした
こと以外は実施例1と同様の方法により実施した。
Daisenen↓ 50 parts by weight of BN powder, 40 parts by weight of NzO + 40 parts by weight, and 10 parts by weight of high silicate glass were added and mixed to obtain a mixed powder for molding, and this mixed powder was used at a firing temperature of 1400°C. Except for this, the same method as in Example 1 was used.

失隻桝↓ 硼酸とメラミンとを1:1の重量比率で混合しアンモニ
アガス気流中にて1200°C14時間、加熱処理して
BN純度90%、比表面積50m/gのBN粉末を得た
。この粉末をX線回折した結果、非晶質BNであること
が判った。この粉末40重量部、A#zO340重量部
、高ケイ酸ガラス20重量部を添加・混合し成形用混合
粉末を得た。この混合粉末を用い、成形圧力を7ton
/cJ及び焼成温度を1400℃としたこと以外は実施
例1と同様の方法にて実施した。
Boric acid and melamine were mixed at a weight ratio of 1:1 and heat treated at 1200°C for 14 hours in an ammonia gas stream to obtain BN powder with a BN purity of 90% and a specific surface area of 50 m/g. As a result of X-ray diffraction of this powder, it was found that it was amorphous BN. 40 parts by weight of this powder, 340 parts by weight of A#zO, and 20 parts by weight of high silicate glass were added and mixed to obtain a mixed powder for molding. Using this mixed powder, the molding pressure was 7 tons.
The same method as in Example 1 was carried out except that /cJ and the firing temperature were 1400°C.

実施炎上 実施例1で用いたBN粉末をライカイ機で比表面積が6
0n?/gになるまで大気中にて粉砕した後、メタノー
ルで洗浄乾燥しBN微粉末を得た。
Implementation Flaming The BN powder used in Example 1 was heated with a Raikai machine to a specific surface area of 6.
0n? After pulverizing in the air until the powder was pulverized to 1.2 g, the powder was washed with methanol and dried to obtain fine BN powder.

比表面積は、BET法にて測定した。この粉末50重量
部にAN20325重量部、高ケイ酸ガラス25重量部
を添加した後ボールミルにて混合し成形用混合粉末を得
た。次に該混合粉末を金型に充填し2 ton/cnT
の圧力で一軸加圧成形した。この予備成形体を用いたこ
と以外は実施例1と同様の方法にて実施した。
The specific surface area was measured by the BET method. To 50 parts by weight of this powder, 25 parts by weight of AN20325 and 25 parts by weight of high silicate glass were added and mixed in a ball mill to obtain a mixed powder for molding. Next, the mixed powder was filled into a mold and the amount was 2 tons/cnT.
Uniaxial pressure molding was carried out at a pressure of . It was carried out in the same manner as in Example 1 except that this preform was used.

実施例■ 実施例5で得たBN微粉末40重量部にA A 203
20重量部、高ケイ酸ガラス40重量部を添加・混合し
て成形用混合粉末を得た。この混合粉末を用い、焼成温
度を1400℃としたこと以外は、実施例1と同様の方
法にて実施した。
Example ■ Add A A 203 to 40 parts by weight of the BN fine powder obtained in Example 5.
20 parts by weight and 40 parts by weight of high silicate glass were added and mixed to obtain a mixed powder for molding. The same method as in Example 1 was carried out except that this mixed powder was used and the firing temperature was 1400°C.

実施例1 実施例1で用いたBN粉末をアトライターで比表面積が
70m/gになるまでN2雰囲気下にて粉砕しBNi粉
末を得た。この粉末を用いたこと以外は、実施例5と同
様の方法にて実施した。
Example 1 The BN powder used in Example 1 was pulverized with an attritor under an N2 atmosphere until the specific surface area became 70 m/g to obtain BNi powder. It was carried out in the same manner as in Example 5 except that this powder was used.

実施例l 実施例1で用いたBN粉末40重量部にA 12203
30重量部、高ケイ酸ガラス30重量部を添加した後、
ライカイ機で比表面積が60rrr/gになるまで大気
中にて粉砕した後、メタノールで洗浄乾燥し成形用混合
粉末を得た。
Example 1 A 12203 was added to 40 parts by weight of the BN powder used in Example 1.
After adding 30 parts by weight and 30 parts by weight of high silicate glass,
After pulverizing in the air using a Raikai machine until the specific surface area became 60 rrr/g, the mixture was washed with methanol and dried to obtain a mixed powder for molding.

この混合粉末を用いたこと以外は、実施例5と同様の方
法にて実施した。
The same method as in Example 5 was carried out except that this mixed powder was used.

実施桝主 実施例8で得た成形用の粉末を用いたこと以外は、実施
例1と同様の方法にて実施した。
Main Example The same method as in Example 1 was carried out except that the powder for molding obtained in Example 8 was used.

実施拠工立 実施例1で用いたBN粉末20重量部にA N 20゜
60重量部、高ケイ酸ガラス20重量部を添加した後、
アトライターで比表面積が70n(/gになるまでN2
雰囲気下にて粉砕し成形用混合粉末を得た。この混合粉
末を用いたこと以外は実施例5と同様の方法にて実施し
た。
After adding 20°60 parts by weight of AN and 20 parts by weight of high silicate glass to 20 parts by weight of the BN powder used in Example 1,
N2 until the specific surface area becomes 70n (/g) with an attritor.
It was pulverized in an atmosphere to obtain a mixed powder for molding. The same method as in Example 5 was carried out except that this mixed powder was used.

実施炎上上 実施例1で用いたBN粉末20重量部にAj2.0゜2
0重量部、高ケイ酸ガラス60重量部添加した後、アト
ライターで比表面積が70 % / gになるまでN2
雰囲気下にて粉砕し成形用混合粉末を得た。
Aj2.0°2 was added to 20 parts by weight of the BN powder used in Example 1.
After adding 0 parts by weight and 60 parts by weight of high silicate glass, N2 was added with an attritor until the specific surface area became 70%/g.
It was pulverized in an atmosphere to obtain a mixed powder for molding.

この混合粉末を用いたこと以外は実施例5と同様の方法
にて実施した。
The same method as in Example 5 was carried out except that this mixed powder was used.

ル較炭土 実施例1で用いたBN粉末をそのまま成形用の粉末とし
て用いた以外は実施例1と同様の方法にて実施した。
Comparative Coal Soil The same method as in Example 1 was carried out except that the BN powder used in Example 1 was used as it was as a powder for molding.

北較炎) 実施例3で得た成形用混合粉末を用い、成形圧力を2 
ton/c+Jとしたこと以外は実施例1と同様の方法
にて実施した。
Using the mixed powder for molding obtained in Example 3, the molding pressure was set to 2.
It was carried out in the same manner as in Example 1 except that ton/c+J was used.

几煎■1 実施例1で用いたBN粉末40重量部にA l1203
40重量部、高ケイ酸ガラス20重量部添加した後ボー
ルミルで混合し成形用混合粉末を得た。この混合粉末を
用いたこと以外は実施例5と同様の方法にて実施した。
Roasting ■1 Add Al1203 to 40 parts by weight of the BN powder used in Example 1.
After adding 40 parts by weight of high silicate glass and 20 parts by weight of high silicate glass, they were mixed in a ball mill to obtain a mixed powder for molding. The same method as in Example 5 was carried out except that this mixed powder was used.

北較五↓ 実施例1で用いたBN粉末10重量部にA A 20゜
50重量部、高ケイ酸ガラス40重量部添加した後ボー
ルミルで混合し成形用混合粉末を得た。この混合粉末を
用いたこと以外は、実施例1と同様の方法にて実施した
50 parts by weight of AA and 40 parts by weight of high silicate glass were added to 10 parts by weight of the BN powder used in Example 1, and then mixed in a ball mill to obtain a mixed powder for molding. The same method as in Example 1 was carried out except that this mixed powder was used.

尚、表に記載したBN焼結体の各物性測定は、次の方法
により行った。
In addition, each physical property measurement of the BN sintered compact described in the table was performed by the following method.

+11  相対密度;焼結体の方法より体積を求め、そ
の重量より密度を求めた後、相対密度(%)−密度(g
/c+J)/理論密度(g/cd)X100O式にて算
出した。
+11 Relative density; After determining the volume using the sintered body method and determining the density from its weight, calculate relative density (%) - density (g
/c+J)/theoretical density (g/cd)X100O formula.

(2)常温曲げ強さ、 JIS R1601に準拠して
測定した。
(2) Room temperature bending strength, measured in accordance with JIS R1601.

(3)  ショアー硬度、 JIS Z 2246に準
拠して測定した。
(3) Shore hardness, measured in accordance with JIS Z 2246.

(4)耐熱衝撃性;焼結体より15nx 45n+X 
5鶴の試料を切り出し、1500℃に急熱後10分間保
持し急冷するサイクルを繰り返した際に、クランクが発
生したサイクル回数 〈発明の効果〉 本発明の常圧焼結BN系成形体は、密度が高く、高強度
であり、形状制約を受けることがない。
(4) Thermal shock resistance; 15nx 45n+X from sintered body
When a sample of 5 cranes was cut out, and the cycle of rapidly heating it to 1500°C, holding it for 10 minutes, and rapidly cooling it was repeated, the number of cycles at which cranking occurred (effects of the invention) The pressureless sintered BN-based molded body of the present invention is as follows: It has high density, high strength, and is not subject to shape restrictions.

特許出願人 電気化学工業株式会社Patent applicant Denki Kagaku Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1.BN70〜15重量%、Al_2O_35〜75重
量%、高ケイ酸ガラス10〜80重量%からなり相対密
度が55%以上であることを特徴とする常圧焼結窒化硼
素系成形体。
1. A pressureless sintered boron nitride-based molded body comprising 70 to 15% by weight of BN, 35 to 75% by weight of Al_2O_, and 10 to 80% by weight of high silicate glass, and having a relative density of 55% or more.
JP62286484A 1987-11-14 1987-11-14 Normal pressure sintered boron nitride compact Expired - Fee Related JP2525432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62286484A JP2525432B2 (en) 1987-11-14 1987-11-14 Normal pressure sintered boron nitride compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62286484A JP2525432B2 (en) 1987-11-14 1987-11-14 Normal pressure sintered boron nitride compact

Publications (2)

Publication Number Publication Date
JPH01131066A true JPH01131066A (en) 1989-05-23
JP2525432B2 JP2525432B2 (en) 1996-08-21

Family

ID=17704996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62286484A Expired - Fee Related JP2525432B2 (en) 1987-11-14 1987-11-14 Normal pressure sintered boron nitride compact

Country Status (1)

Country Link
JP (1) JP2525432B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244067A (en) * 1988-08-04 1990-02-14 Koransha Co Ltd Bn no-pressure sintered ceramic having excellent melting flacture resistance
WO1990005122A1 (en) * 1988-11-10 1990-05-17 Kabushiki Kaisha Kouransha Boron nitride ceramic having excellent resistance against fusing damage
JPH0328171A (en) * 1989-06-23 1991-02-06 Nec Corp Ceramic composition material
US5389587A (en) * 1988-11-10 1995-02-14 Kabushiki Kaisha Kouransha BN-group ceramics having excellent resistance to loss by dissolving
US7914886B2 (en) 2003-08-21 2011-03-29 Saint-Gobain Ceramics & Plastics, Inc. Structural component comprising boron nitride agglomerated powder
JP2014501687A (en) * 2010-12-06 2014-01-23 セーエヌエールエス Method for obtaining an optically transparent glass-ceramic material in the infrared region

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244067A (en) * 1988-08-04 1990-02-14 Koransha Co Ltd Bn no-pressure sintered ceramic having excellent melting flacture resistance
WO1990005122A1 (en) * 1988-11-10 1990-05-17 Kabushiki Kaisha Kouransha Boron nitride ceramic having excellent resistance against fusing damage
US5389587A (en) * 1988-11-10 1995-02-14 Kabushiki Kaisha Kouransha BN-group ceramics having excellent resistance to loss by dissolving
JPH0328171A (en) * 1989-06-23 1991-02-06 Nec Corp Ceramic composition material
US7914886B2 (en) 2003-08-21 2011-03-29 Saint-Gobain Ceramics & Plastics, Inc. Structural component comprising boron nitride agglomerated powder
US8169767B2 (en) 2003-08-21 2012-05-01 Saint-Gobain Ceramics & Plastics, Inc. Boron nitride agglomerated powder and devices comprising the powder
JP2014501687A (en) * 2010-12-06 2014-01-23 セーエヌエールエス Method for obtaining an optically transparent glass-ceramic material in the infrared region

Also Published As

Publication number Publication date
JP2525432B2 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
JPH0231031B2 (en)
JPS62100412A (en) Production of alumina-zirconia compound powder body
US5063184A (en) Pressureless sintered body of boron nitride
JPS62275063A (en) Manufacture of silicon carbide-aluminum nitride sintered product
JP6964100B2 (en) Hexagonal boron nitride molded product, hexagonal boron nitride granulated product for manufacturing it, and its manufacturing method
JPH01131066A (en) Boron nitride based compact calcined under ordinary pressure
JP2999486B2 (en) Manufacturing method of machinable ceramics
JPH0312316A (en) Boron nitride powder and its sintered body
KR102555662B1 (en) Method for Preparing Silicon Nitride Sintered Body and The Silicon Nitride Sintered Body Prepared by The Same
JPS632913B2 (en)
JPH01131069A (en) Complex compact calcined under ordinary pressure
JP2614874B2 (en) Pressureless sintered boron nitride compact
JPS6253473B2 (en)
JPH01131072A (en) Production of sintered material having corrosion resistance at high temperature
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JPH01131062A (en) Complex compact calcined under ordinary pressure
JPS6034515B2 (en) Manufacturing method of silicon carbide ceramic sintered body
CN115256250B (en) Diamond ceramic grinding tool for cutting thick bricks and preparation method thereof
JP3112286B2 (en) Manufacturing method of dense machinable ceramics
JPH0512299B2 (en)
JPS6141872B2 (en)
JPH02225370A (en) Production of mica compounded ceramics
KR100879332B1 (en) Method of preparing carbonaceous material by using cokes dust
JP3496795B2 (en) Method for producing silicon nitride powder
JPH01179763A (en) Production of combined sintered body of boron nitride and silicon nitride

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees