JP3112286B2 - Manufacturing method of dense machinable ceramics - Google Patents

Manufacturing method of dense machinable ceramics

Info

Publication number
JP3112286B2
JP3112286B2 JP02308660A JP30866090A JP3112286B2 JP 3112286 B2 JP3112286 B2 JP 3112286B2 JP 02308660 A JP02308660 A JP 02308660A JP 30866090 A JP30866090 A JP 30866090A JP 3112286 B2 JP3112286 B2 JP 3112286B2
Authority
JP
Japan
Prior art keywords
maximum temperature
fired body
calcined
kaolin
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02308660A
Other languages
Japanese (ja)
Other versions
JPH04182350A (en
Inventor
俊夫 浜崎
敏行 井原
晃 松本
Original Assignee
三井鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井鉱山株式会社 filed Critical 三井鉱山株式会社
Priority to JP02308660A priority Critical patent/JP3112286B2/en
Publication of JPH04182350A publication Critical patent/JPH04182350A/en
Application granted granted Critical
Publication of JP3112286B2 publication Critical patent/JP3112286B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/16Halogen containing crystalline phase

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ガラス質マトリックス中にフッ素金雲母
(以下F.Pと略称する。)微結晶を分散含有する緻密質
のマシナブルセラミックスの製造方法に関する。更に詳
しくは、ガス吸脱着量が極めて少なく、かつ微細加工や
精密加工が容易である緻密なマシナブルセラミックスの
製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a dense machinable ceramic in which fluorophlogopite (hereinafter abbreviated as FP) microcrystals are dispersed and contained in a vitreous matrix. . More specifically, the present invention relates to a method for producing a dense machinable ceramic having a very small amount of gas adsorbed and desorbed and easy to perform fine processing and precision processing.

(従来の技術) F.P系のガラスセラミックスは特開昭47−2427に開示
されるように調合された原料を高温で溶融し,所望形状
のガラス体とし、F.P結晶を生成・成長させる溶融法が
主体であったが、この製造方法ではエネルギー消費が大
きい、ニアネットシェープ化が困難などの問題があっ
た。これらの解決方法として、F.P系のガラスセラミッ
クスを焼結法で製造できる方法(特開昭62−7649)が開
示され、良好な加工性を有し,ニアネットシェープ化を
可能とし、マシナブルセラミックスの種々用途に対応し
ている。
(Prior art) As for the FP glass ceramics, a melting method of melting a raw material prepared as disclosed in Japanese Patent Application Laid-Open No. 47-2427 at a high temperature, forming a glass body of a desired shape, and generating and growing FP crystals is known. However, this manufacturing method has problems such as large energy consumption and difficulty in near net shaping. As a solution to these problems, a method capable of producing FP-based glass ceramics by a sintering method has been disclosed (Japanese Patent Application Laid-Open No. 62-7649), which has good workability, enables near-net shaping, and provides machinable ceramics. Of various applications.

しかし、マシナブルセラミックスの新しい用途とし
て、例えば電子部品分野におけるピン・グリッド・アレ
イの冶具や医療機器分野でのX線CTスキャナー絶縁部材
などのように微細加工、精密加工ができ、セラミックス
自身のガスの吸脱着がないか、極めて少ないものを必要
とする分野での用途が拡大してきている。しかし、従来
の焼結法によるガラスセラミックスはその製法上若干の
気孔を有するため微細加工、精密加工はできてもガスの
吸脱着性能に問題があった。
However, as a new application of machinable ceramics, fine processing and precision processing are possible, such as jigs for pin grid arrays in the field of electronic components and insulating members for X-ray CT scanners in the field of medical equipment. Applications in fields that require no or very little adsorption and desorption are increasing. However, glass ceramics produced by the conventional sintering method have some pores due to their production method, so that fine processing and precision processing can be performed, but there is a problem in gas adsorption / desorption performance.

(発明が解決しようとする課題) 本発明は、上記課題を解決するため、比較的簡単な製
造法である焼結法により、微細加工、精密加工ができ、
ガス吸脱着が極めて少ない緻密なマシナブルセラミック
スの製造方法を提供するためになされたものである。
(Problems to be solved by the invention) In order to solve the above-mentioned problems, the present invention can perform fine processing and precision processing by a sintering method which is a relatively simple manufacturing method.
The purpose of the present invention is to provide a method for producing a dense machinable ceramic with very little gas adsorption and desorption.

(課題を解決するための手段) 本発明者らは、焼結法により製造したF.P系ガラスセ
ラミックスであっても適当な後処理を施すことにより良
好な機械加工性を有し、ほぼ真密度に近い緻密なマシナ
ブルセラミックスが得られることを見いだし本発明を完
成した。即ち、本発明は、焼結法により製造したフッ素
金雲母ガラスセラミックスを熱間静水圧プレス処理する
ことを特徴とする緻密なマシナブルセラミックスの製造
方法である。次に本発明の方法をその実施態様の1つに
従って詳細に説明する。本実施態様は特願平1−257070
号に記載の方法に準じて製造したF.P系のガラスセラミ
ックスをHIP処理するものであって、下記の〜の工
程をその順で包含する。
(Means for Solving the Problems) The present inventors have found that even FP-based glass ceramics manufactured by a sintering method have good machinability by performing appropriate post-treatment, and have almost true density. The present inventors have found that close and dense machinable ceramics can be obtained, and have completed the present invention. That is, the present invention is a method for producing dense machinable ceramics, which comprises subjecting a fluorophlogopite glass ceramic produced by a sintering method to hot isostatic pressing. Next, the method of the present invention will be described in detail according to one of its embodiments. This embodiment is disclosed in Japanese Patent Application No. 1-257070.
This method is for subjecting an FP-based glass ceramic produced according to the method described in the above item to HIP treatment, and includes the following steps (1) to (4) in that order.

カオリン及び活性白土を主原料、Mg、K、F含有化合
物を副原料、及びB2O3を焼結助剤とし、焼成体とした時
点の成分組成を酸化物重量基準で表したとき、SiO2 35
〜60%、Al2O3 10〜20%、MgO 10〜25%、K2O 3〜1
5%、F 2〜15%、B2O3 1〜3%の組成をなすよう
に調整した微粒子原料混合物を最高温度が1,000〜1,100
℃の第1の熱処理条件で仮焼して、フッ素金雲母の結晶
を30〜60vol%含有する、フッ素金雲母及びガラスを含
む仮焼体を得る工程。
When kaolin and activated clay are used as main raw materials, Mg, K, and F-containing compounds are used as auxiliary raw materials, and B 2 O 3 is used as a sintering aid, the component composition at the time of forming a fired body is represented by oxide weight basis, 2 35
6060%, Al 2 O 3 10-20%, MgO 10-25%, K 2 O 3-1
A fine particle material mixture adjusted to have a composition of 5%, F 2 to 15%, and B 2 O 3 to 1 to 3% has a maximum temperature of 1,000 to 1,100.
A step of calcining under a first heat treatment condition of 30 ° C. to obtain a calcined body containing fluorophlogopite and glass and containing 30 to 60 vol% of crystals of fluorophlogopite.

該仮焼体を微粒子に粉砕した後、該仮焼体微粒子を用
いて所望の成形体を成形し、該成形体を最高温度が1,10
0〜1,250℃の第2の熱処理条件で焼結させて焼成体を得
る工程。
After the calcined body is pulverized into fine particles, a desired molded body is formed using the calcined body fine particles.
A step of obtaining a fired body by sintering under the second heat treatment condition of 0 to 1,250 ° C.

該焼成体を熱間静水圧プレス(以下、HIPという)法
により最高温度が800〜1,000℃、最高圧力が500〜2,000
kg/cm2の条件で処理して緻密化する工程。
The maximum temperature of the fired body is 800 to 1,000 ° C and the maximum pressure is 500 to 2,000 by hot isostatic pressing (hereinafter referred to as HIP).
Process of densification by treating under the condition of kg / cm 2 .

本方法においては、主原料としてカオリン及び活性白
土を使用する。ここで使用するカオリンは鉱物学的なカ
オリン鉱物、即ちカオリナイト、ディッカイト、ナクラ
イト、ハロイサイト、メタハロイサイト等の鉱物を含有
し、SiO2及びAl2O3の含有量がそれぞれ概ね40〜50重量
%及び30〜45重量%の範囲のものであれば、種類を問わ
ず用いることができる。活性白土は、モンモリロナイ
ト、ハロイサイトなどのSiO2を含む鉱物を酸処理し、不
要な成分を除去しSiO2の含有率を高めたものであり、Si
O2の含有量が高ければその製法を問わず用いることがで
き、好ましくはSiO2の含有量が98重量%以上のものがよ
い。また、カオリンや活性白土に不純物として含有され
るFe2O3は、製品への着色や電気物性などの点から0.3重
量%以下であることが好ましい。
In this method, kaolin and activated clay are used as main raw materials. The kaolin used here contains mineralogical kaolin minerals, that is, minerals such as kaolinite, dickite, nacrite, halloysite, and metahaloisite, and the content of SiO 2 and Al 2 O 3 is approximately 40 to 50% by weight, respectively. And any type within a range of 30 to 45% by weight. Activated clay is obtained by subjecting minerals containing SiO 2 such as montmorillonite and halloysite to acid treatment to remove unnecessary components and increase the content of SiO 2.
As long as the content of O 2 is high, it can be used irrespective of the production method. Preferably, the content of SiO 2 is 98% by weight or more. Further, the content of Fe 2 O 3 contained as an impurity in kaolin or activated clay is preferably 0.3% by weight or less from the viewpoint of coloring the product and electrical properties.

カオリン及び活性白土をは主としてSiO2及びAl2O3
となるものであり、カオリンと活性白土との割合が重量
比(カオリン/活性白土)で0.5〜5.0好ましくは1.5〜
2.6となるような範囲であり、焼成体(マシナブルセラ
ミックス)中の化学成分組成でSiO2 35〜60重量%,Al2
O3 10〜20重量%となるように使用するが、付随的に他
の原料からSiO2やAl2O3が混入することを妨げるもので
はない。本発明においては、焼成体中のAl2O3成分量に
対するカオリン原料の寄与率を95%以上、同じくSiO2
分量に対するカオリン及び活性白土の合計の寄与率を80
%以上とするものである。
Kaolin and activated clay are mainly sources of SiO 2 and Al 2 O 3 , and the ratio of kaolin and activated clay is 0.5 to 5.0, preferably 1.5 to 5.0, by weight (kaolin / activated clay).
In the range such that 2.6, SiO 2 35 to 60 wt% in the chemical composition in the calcined body (machinable ceramics), Al 2
Although O 3 is used in an amount of 10 to 20% by weight, it does not prevent SiO 2 or Al 2 O 3 from being mixed from other raw materials. In the present invention, the contribution of the kaolin raw material to the amount of Al 2 O 3 component in the fired body is 95% or more, and the total contribution of kaolin and activated clay to the amount of SiO 2 component is 80%.
% Or more.

F.Pを生成させるためには、カオリン、活性白土に加
えて副原料とするMg、K及びFを含有する化合物を使用
する。ここで使用する副原料は特に制限はなく、通常入
手が可能なMgO、K F、K2SiF6などの化合物を、焼成体中
の化学成分組成が前記範囲内に入るような量で、任意に
組み合わせて使用することができる。
In order to generate FP, a compound containing Mg, K, and F as an auxiliary material in addition to kaolin and activated clay is used. The auxiliary materials used here are not particularly limited, and usually available compounds such as MgO, KF, and K 2 SiF 6 are arbitrarily added in such an amount that the chemical component composition in the fired body falls within the above range. They can be used in combination.

これらの各原料を焼成体とした時点の成分組成を酸化
物重量基準で表した時、SiO2 35〜60%、Al2O3 10〜2
0%、MgO 10〜25%、K2O 3〜15%、F 2〜15%及
びB2O3 1〜3%となるような割合で前記各原料を配合
し、各原料の平均粒子径が5μm以下となるように混合
し、粉砕する。上記成分のいずれかが限定範囲をはずれ
た場合、F.P結晶の析出量や成長量が変化し機械加工性
や焼結性等が悪化する。例えば、SiO2が多すぎるとガラ
ス量が増え、F.P結晶が減少するため、機械加工性や耐
熱性が悪化し、逆にSiO2が少なくなるとF.P結晶は増加
するが焼結性が悪くなる。また、成分比によってはホル
ステライトやリュウサイトなどの副生物が生成するよう
になり、得られるガラスセラミックスの物性は劣化す
る。
When the component composition at the time of making each of these raw materials into a fired body is represented by oxide weight basis, SiO 2 35 to 60%, Al 2 O 3 10 to 2
0%, MgO 10 to 25%, K 2 O 3 to 15%, F 2 to 15%, and B 2 O 3 to 1 to 3%. And pulverize so that the particle size is 5 μm or less. If any of the above components deviates from the limited range, the amount of FP crystals deposited and grown changes, and the machinability and sinterability deteriorate. For example, if the amount of SiO 2 is too large, the amount of glass increases and the amount of FP crystals decreases, so that the machinability and heat resistance deteriorate. Conversely, if the amount of SiO 2 decreases, the amount of FP crystals increases but the sinterability deteriorates. Also, depending on the component ratio, by-products such as forsterite and leucite are generated, and the physical properties of the obtained glass ceramics are deteriorated.

粉砕が不十分で平均粒子径が5μmを超えたり、混合
が不十分な場合には、仮焼あるいは焼成時にリュウサイ
トなどの鉱物相が生成し易くなるので好ましくない。
If the pulverization is insufficient and the average particle size exceeds 5 μm, or if the mixing is insufficient, it is not preferable because mineral phases such as leucite are easily generated during calcination or firing.

得られた微粒子原料混合物を最高温度が1,000〜1,100
℃の第1の熱処理条件で仮焼して、30〜60vol%のF.P結
晶の生成を行わしめるが、この熱処理工程は次のように
3段階で行うのが好ましい。即ち、先ず350〜600℃で1
〜10時間保持することにより主としてカオリンの結合水
の脱水を行わしめ、次いで700〜900℃で1〜10時間保持
して各粒子の粒界において固相反応を行わしめ微粒子状
のF.P結晶を一部析出させ、更に1,000〜1,100℃で1〜1
0時間保持することによってF.P結晶を析出,成長させ
る。F.P結晶の大きさとしては、成長時のF.P結晶の均一
分散を考慮して、1〜2μmであることが好ましい。最
高温度が1,000未満では、F.Pの生成が十分でなく焼成体
中のF.P量も少なくなり、また後工程での焼成収縮も大
きくなる。最高温度が1,100℃を超えた場合は、焼結が
進み仮焼体の粉砕性や該仮焼体粉砕物を用いた成形体の
焼結性等が悪くなる。
The maximum temperature of the obtained fine particle material mixture is 1,000 to 1,100
Calcination is performed under the first heat treatment condition of 30 ° C. to produce FP crystals of 30 to 60 vol%, and this heat treatment step is preferably performed in three stages as follows. That is, first at 350-600 ° C
By holding for 10 hours, dehydration of the bound water of kaolin is mainly performed, then holding at 700-900 ° C. for 1-10 hours to carry out a solid phase reaction at the grain boundaries of each particle, and to remove fine FP crystals. Partial precipitation, and then at 1,000-1100 ° C for 1-1
By holding for 0 hours, FP crystals are deposited and grown. The size of the FP crystal is preferably 1 to 2 μm in consideration of the uniform dispersion of the FP crystal during growth. If the maximum temperature is less than 1,000, FP generation is not sufficient, the amount of FP in the fired body is reduced, and firing shrinkage in a subsequent step is increased. If the maximum temperature exceeds 1,100 ° C., sintering proceeds and the pulverizability of the calcined body and the sinterability of a compact using the pulverized calcined body are deteriorated.

具体的な熱処理条件は、用いる原料の種類、配合比等
により、F.P結晶の量や大きさが前記範囲に入るように
適宜設定する。
Specific heat treatment conditions are appropriately set such that the amount and size of the FP crystals fall within the above-mentioned ranges according to the type of raw materials used, the mixing ratio, and the like.

次に、得られた仮焼体を平均粒子径が5μm以下とな
るように粉砕し、該仮焼体微粒子を用いて所望の成形体
を得、該成形体を最高温度が1,100〜1,250℃の第2の熱
処理条件で焼結させ、5〜20μmの大きさのF.P結晶が
互いに絡み合い、その隙間をガラス質のマトリックスが
埋めた形の焼結体を得る。所望の成形体を得る方法とし
ては特に限定はなく、所望する形状、成形性、生産性等
により、例えば一軸加圧成形法、スリップキャスト法、
押出成形法、冷間静水圧プレス法等の各成形法を適宜適
用すれば良く、また必要により適量のバインダー、分散
剤等の成形助剤を用いても良い。
Next, the obtained calcined body is pulverized so that the average particle size becomes 5 μm or less, and a desired molded body is obtained using the calcined body fine particles. The molded body is heated at a maximum temperature of 1,100 to 1,250 ° C. Sintering is performed under the second heat treatment condition to obtain a sintered body in which FP crystals having a size of 5 to 20 μm are entangled with each other and the gap is filled with a vitreous matrix. There is no particular limitation on a method for obtaining a desired molded body, and depending on a desired shape, moldability, productivity, etc., for example, a uniaxial pressure molding method, a slip casting method,
Each molding method such as an extrusion molding method and a cold isostatic pressing method may be appropriately applied, and if necessary, an appropriate amount of a molding aid such as a binder or a dispersant may be used.

第2の熱処理条件の最高温度の保持時間は3〜12時間
とするのが好ましく、3時間未満では焼成体内部の温度
上昇の遅れに伴う不均一が生じ、また12時間を超えると
F.P結晶が成長しすぎて焼成体の強度が低下する。
The holding time at the maximum temperature of the second heat treatment condition is preferably 3 to 12 hours, and if it is less than 3 hours, unevenness occurs due to a delay in temperature rise inside the fired body, and if it exceeds 12 hours,
FP crystals grow too much and the strength of the fired body decreases.

ここで得られる焼成体は、酸化物重量基準でSiO2 35
〜60%、Al2O3 10〜20%、MgO 10〜25%、K2O 3〜1
5%、F 2〜15%、B2O3 1〜3%の成分組成を有
し、30〜60vol%のF.P結晶を含有するガラスセラミック
スであって、ガラス質マトリックス中に5〜20μmの大
きさのF.P結晶が均一に分散し互いに絡み合った構造を
有している。また、このものの嵩密度は2.48〜2.55g/cm
3、真密度は2.66〜2.68g/cm3、気孔率は4〜7%であ
る。
The fired body obtained here is SiO 2 35
6060%, Al 2 O 3 10-20%, MgO 10-25%, K 2 O 3-1
A glass ceramic having a component composition of 5%, F 2 to 15%, and B 2 O 3 to 1 to 3%, and containing 30 to 60% by volume of FP crystals, and having a size of 5 to 20 μm in a vitreous matrix. FP crystals are uniformly dispersed and entangled with each other. The bulk density of this product is 2.48 to 2.55 g / cm
3. The true density is 2.66 to 2.68 g / cm 3 and the porosity is 4 to 7%.

次に、得られた焼成体を最高温度が800〜1,000℃、最
高圧力が500〜2,000kg/cm2の条件で30分〜5時間HIP処
理する。
Next, the obtained fired body is subjected to HIP treatment for 30 minutes to 5 hours at a maximum temperature of 800 to 1,000 ° C. and a maximum pressure of 500 to 2,000 kg / cm 2 .

条件は、HIP処理する焼成体の形状、大きさ等により
適宜設定すれば良い。
The conditions may be appropriately set depending on the shape, size, and the like of the fired body to be HIPed.

温度及び圧力の設定条件が前記範囲の下限をはずれる
と緻密化しづらく、また上限を超えると、温度の場合は
結晶の分解、ガラスの軟化による変形を生じたりする虞
があるので好ましくなく、圧力の場合は容器内容積が小
さくなるため生産性が低下する。
If the temperature and pressure setting conditions deviate from the lower limits of the above ranges, it is difficult to densify, and if the temperature exceeds the upper limit, in the case of temperature, decomposition of crystals, deformation due to softening of glass may occur, which is not preferable. In such a case, productivity decreases because the volume in the container becomes small.

この処理により焼成体中の気孔は減少し、2.66〜2.68
g/cm3というほぼ真密度に近い嵩密度を有する緻密化し
たマシナブルセラミックスが得られる。また加工性はHI
P処理により若干低下するものの、なおガラス溶融法に
よって得られるガラスセラミックス以上の良好な機械加
工性を有しており、後記の試験方法により測定したガス
吸脱着性能は10-9atm・cc/sec台であり優れた特性値を
示している。また緻密化に伴い付随的に曲げ強さが増大
し、HIP処理の前後において約50%増大する。
By this treatment, the pores in the fired body are reduced, and 2.66 to 2.68
A densified machinable ceramics having a bulk density of about g / cm 3 which is close to the true density can be obtained. The workability is HI
Although slightly reduced by the P treatment, it still has better machinability than glass ceramics obtained by the glass melting method, and the gas absorption / desorption performance measured by the test method described later is 10 -9 atm · cc / sec. It is a base and shows excellent characteristic values. In addition, the bending strength increases accompanying densification, and increases by about 50% before and after HIP treatment.

また本発明の他の実施態様として特開昭62−7649号公
報に記載の方法に準じて金属アルコキシド化合物を主体
とする原料から得られる原料粉末を焼結して製造した酸
化重量基準でSiO2 35〜60%、Al2O3 10〜20%、MgO
10〜25%、K2O 3〜15%、F 2〜15%の組成を有す
るF.P系ガラスセラミックスをHIP処理する方法がある。
Further, as another embodiment of the present invention, SiO 2 is prepared on the basis of oxidized weight by sintering a raw material powder obtained from a raw material mainly comprising a metal alkoxide compound according to the method described in JP-A-62-7649. 35-60%, Al 2 O 3 10-20%, MgO
There is a method of performing HIP treatment on FP glass ceramics having a composition of 10 to 25%, K 2 O 3 to 15%, and F 2 to 15%.

この場合はF.P系ガラスセラミックスの組成、結晶状
態の差等により若干機械加工性は低いが、マシナブルセ
ラミックスとして十分な特性を有している。さらに本発
明の方法は種々の方法により製造されたF.P系ガラスセ
ラミックスを使用して実施できるが、前記第一の実施態
様に示したガラスセラミックスが特に良好な効果を示
す。
In this case, although the machinability is slightly low due to the difference in the composition and crystal state of the FP-based glass ceramic, it has sufficient characteristics as a machinable ceramic. Further, the method of the present invention can be carried out using FP-based glass ceramics manufactured by various methods, and the glass ceramics shown in the first embodiment exhibits particularly good effects.

(実施例) 以下,実施例により本発明の方法をさらに具体的に説
明する。
(Examples) Hereinafter, the method of the present invention will be described more specifically with reference to examples.

なお、焼成体及びHIP後の焼成体の機械加工性につい
ては、ドリルによる切削の容易さで評価した。即ち、直
径5mmの超硬ドリルを使用し、加重5kg、回転数435rpmで
10mmの深さに切削するのに要する時間で評価し、この時
間の短いほど機械加工性が良好と判断する。
Note that the machinability of the fired body and the fired body after HIP were evaluated by the ease of cutting with a drill. In other words, using a carbide drill with a diameter of 5 mm, with a load of 5 kg and a rotation speed of 435 rpm
The evaluation is based on the time required for cutting to a depth of 10 mm, and the shorter this time is, the better the machinability is judged.

また、ガスの吸脱着性はHeガスを用いて、MIL−STD−
202E電子、電気部品の試験法の試験方法C III aに準じ
て、加圧タンクに試料を入れ、Heガス圧力 4〜6kg/cm
2、加圧時間 約4時間の条件でガスを吸着させた後、
試料を取り出し、ヘア−ドライヤ−の熱風を用いて試料
表面に付着しているHeガスを除去したものを真空タンク
にいれ、出てくるHeガスをリ−クディテクタで検出する
ことによって評価した。
The gas adsorption and desorption properties were determined using MIL-STD-
202E In accordance with Test Method C IIIa for electronic and electrical parts, place a sample in a pressurized tank and set the He gas pressure to 4 to 6 kg / cm.
2. After adsorbing gas under the condition of pressurization time about 4 hours,
The sample was taken out, and the sample obtained by removing the He gas adhering to the sample surface using hot air from a hair dryer was put into a vacuum tank, and the outgassing He gas was detected by a leak detector to evaluate the sample.

(実施例1) 重量割合で、カオリン 40.8%、活性白土 22.9%、
MgO 16.0%、K2SiF6 11.5%、KF 6.8%、B2O3 2.0
%を配合し、湿式ボールミルを用いて混合、粉砕し平均
粒径3.7μmとし、スプレードライヤーで乾燥したの
ち、380〜420℃で4時間、730〜770℃で6時間、さらに
1,060〜1,090℃で3時間仮焼した。得られた仮焼体中の
F.P結晶量は約50vol%でその大きさは約1μmであっ
た。
(Example 1) By weight percentage, kaolin 40.8%, activated clay 22.9%,
MgO 16.0%, K 2 SiF 6 11.5%, KF 6.8%, B 2 O 3 2.0
%, Mixed and pulverized using a wet ball mill to an average particle diameter of 3.7 μm, dried with a spray drier, then at 380 to 420 ° C. for 4 hours, at 730 to 770 ° C. for 6 hours, and further
Calcination was performed at 1,060 to 1,090 ° C for 3 hours. In the obtained calcined body
The amount of FP crystals was about 50 vol% and the size was about 1 μm.

該仮焼体に成形助剤としてPVA系のバインダー1.0wt%
及び水を添加し、湿式粉砕により、平均粒径3.5μmに
粉砕したあとスプレードライヤーで乾燥、顆粒化した。
得られた顆粒を用いて、700kg/cm2の圧力で一軸加圧成
形し、260mm×260×20mmの板状の成形体とし、常法に従
い脱脂工程を経て1,200〜1,250℃で5時間焼成した。得
られた焼成体の平均的な成分組成は、酸化物重量基準で
SiO2 45.7%、Al2O3 16.1%、MgO 16.7%、K2O 10.
9%、F 8.5%、B2O3 2.0%であり、ガラス質マトリ
ックス中に長さ5〜15μmのF.P結晶を約50vol%含有
し、嵩密度2.50g/cm3、機械加工性30sec/cm、曲げ強さ
1,100kg/cm2、Heガス吸脱着量2.3×10-7atm.cc/secであ
った。
1.0% by weight of PVA-based binder as a molding aid in the calcined body
And water were added, and the mixture was pulverized to an average particle size of 3.5 μm by wet pulverization, and then dried and granulated with a spray drier.
Using the obtained granules, it was uniaxially pressed at a pressure of 700 kg / cm 2 to obtain a plate-like molded body of 260 mm × 260 × 20 mm, which was baked at 1,200 to 1,250 ° C. for 5 hours through a degreasing process according to a conventional method. . The average component composition of the obtained fired body is based on the weight of the oxide.
SiO 2 45.7%, Al 2 O 3 16.1%, MgO 16.7%, K 2 O 10.
9%, F 8.5%, B 2 O 3 2.0%, containing about 50 vol% of FP crystals having a length of 5 to 15 μm in a vitreous matrix, bulk density 2.50 g / cm 3 , machinability 30 sec / cm , Bending strength
It was 1,100 kg / cm 2 and the He gas adsorption / desorption amount was 2.3 × 10 −7 atm.cc/sec.

次いで、該焼成体を1,000kg/cm2の圧力,最高温度900
℃で2時間の条件下でHIP処理した。得られたHIP後の焼
成体の物性は、嵩密度2.67g/cm3、真密度2.68g/cm3、He
ガス吸脱着量7.6×10-9atm.cc/sec、機械加工性36sec/c
m、曲げ強さ1,630kg/cm2であった。
Next, the fired body was pressed at a pressure of 1,000 kg / cm 2 and a maximum temperature of 900 kg / cm 2.
HIP treatment was performed at 2 ° C. for 2 hours. The physical properties of the obtained fired body after HIP are as follows: bulk density 2.67 g / cm 3 , true density 2.68 g / cm 3 , He
Gas adsorption / desorption amount 7.6 × 10 -9 atm.cc/sec, machinability 36sec / c
m, and the bending strength was 1,630 kg / cm 2 .

また前記の方法により作製した焼成体を用いて、HIP
条件として、最高圧力を1,000kg/cm2とし、最高温度を
変えたときのHIP前後の平均嵩密度とそのバラツキ(標
準偏差:σ)を以下に示す。これにより安定した品質の
製品が得られることがわかる。
Further, using the fired body produced by the above method, HIP
The average bulk density before and after HIP and its variation (standard deviation: σ) when the maximum pressure is 1,000 kg / cm 2 and the maximum temperature is changed are shown below. This shows that a product of stable quality can be obtained.

(実施例2) 特開昭62−7649号公報に記載の方法に準じて金属アル
コキシド化合物を主体とする原料から得られる原料粉末
を焼結して製造した、酸化物重量基準でSiO2 48.8%、
Al2O3 18.3%、MgO 17.8%、K2O 10.9%、F 4.2%
の組成を有するマシナブルセラミックスを最高圧力を1,
000kg/cm2とし、HIP処理した結果を下記に示す。
(Example 2) Raw material powder obtained from the raw materials according to the method described in JP 62-7649 discloses mainly a metal alkoxide compound was prepared by sintering, SiO 2 48.8% on an oxide weight basis ,
Al 2 O 3 18.3%, MgO 17.8%, K 2 O 10.9%, F 4.2%
Machinable ceramics with the composition of
The result of HIP treatment at 000 kg / cm 2 is shown below.

また、ガス吸脱着量はHIP処理により最高温度が900℃
の場合5.8×10-7atm・cc/secから6.4×10-8atm・cc/sec
となった。
The maximum temperature of gas adsorption and desorption is 900 ° C due to HIP treatment.
5.8 × 10 -7 atm ・ cc / sec to 6.4 × 10 -8 atm ・ cc / sec
It became.

(発明の効果) 本発明の効果を列挙すれば次のとおりである。(Effects of the Invention) The effects of the present invention are listed as follows.

(1)ガラス溶融法によることなく、より簡単なプロセ
スである焼結法によりほぼ真密度に等しい嵩密度を有す
るものが得られる。
(1) A material having a bulk density almost equal to the true density can be obtained by a sintering method which is a simpler process without using the glass melting method.

(2)ガス吸脱着量は10-9atm.cc/sec台であり,真空雰
囲気下での用途に十分適用できる。
(2) The gas adsorption / desorption amount is on the order of 10 -9 atm.cc/sec, and is sufficiently applicable to applications under a vacuum atmosphere.

(3)極めて良好な機械加工性を有するため、容易に微
細加工、精密加工できる。
(3) Since it has extremely good machinability, fine processing and precision processing can be easily performed.

(4)安定した品質の製品製造が可能である。(4) Stable quality products can be manufactured.

(5)ガラス溶融法と異なり,目的とする製品に近い形
状のものが得られるので材料の損失が少なくてすむ。
(5) Unlike the glass melting method, a material having a shape close to the intended product can be obtained, so that material loss is small.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−143869(JP,A) 特開 平1−197358(JP,A) 特開 平2−233554(JP,A) 特開 昭56−69272(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/00 - 35/22 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-62-143869 (JP, A) JP-A-1-197358 (JP, A) JP-A-2-233554 (JP, A) JP-A-56-143 69272 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C04B 35/00-35/22

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記の工程をその順で包含することを特徴
とする緻密なマシナブルセラミックスの製造方法。 カオリン及び活性白土を主原料、Mg、K、F含有化合
物を副原料、及びB2O3を焼結助剤とし、焼成体とした時
点の成分組成を酸化物重量基準で表した時、SiO2 35〜
60%、Al2O3 10〜20%、MgO 10〜25%、K2O 3〜15
%、F 2〜15%、B2O3 1〜3%の組成をなすように
調整した微粒子原料混合物を最高温度が1,000〜1,100℃
の第1の熱処理条件で仮焼して、フッ素金雲母の結晶を
30〜60vol%含有する、フッ素金雲母及びガラスを含む
仮焼体を得る工程。 該仮焼体を微粒子に粉砕した後、仮焼体微粒子を用い
て所望の成形体を成形し、該成形体を最高温度が1,100
〜1,250℃の第2の熱処理条件で焼結させて焼成体を得
る工程。 該焼成体を熱間静水圧プレス法により最高温度が800
〜1,000℃、最高圧力が500〜2,000kg/cm2の条件で処理
して緻密化する工程。
1. A method for producing dense machinable ceramics, comprising the following steps in the order mentioned. When kaolin and activated clay are used as main raw materials, Mg, K, and F-containing compounds are used as auxiliary raw materials, and B 2 O 3 is used as a sintering aid, and the component composition at the time of forming a fired body is expressed by oxide weight basis, 2 35-
60%, Al 2 O 3 10~20 %, 10~25% MgO, K 2 O 3~15
%, F 2-15%, and B 2 O 3 1-3%. The maximum temperature of the fine particle raw material mixture was adjusted to 1,000-1,100 ° C.
Calcined under the first heat treatment condition of
A step of obtaining a calcined body containing fluorophlogopite and glass containing 30 to 60 vol%. After pulverizing the calcined body into fine particles, a desired molded body is formed using the calcined body fine particles, and the maximum temperature of the molded body is 1,100.
A step of sintering under a second heat treatment condition of ~ 1,250 ° C to obtain a fired body. The maximum temperature of the fired body is 800 by hot isostatic pressing.
~ 1000 ° C., the step of highest pressure is densified by treatment under conditions of 500~2,000kg / cm 2.
JP02308660A 1990-11-16 1990-11-16 Manufacturing method of dense machinable ceramics Expired - Lifetime JP3112286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02308660A JP3112286B2 (en) 1990-11-16 1990-11-16 Manufacturing method of dense machinable ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02308660A JP3112286B2 (en) 1990-11-16 1990-11-16 Manufacturing method of dense machinable ceramics

Publications (2)

Publication Number Publication Date
JPH04182350A JPH04182350A (en) 1992-06-29
JP3112286B2 true JP3112286B2 (en) 2000-11-27

Family

ID=17983753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02308660A Expired - Lifetime JP3112286B2 (en) 1990-11-16 1990-11-16 Manufacturing method of dense machinable ceramics

Country Status (1)

Country Link
JP (1) JP3112286B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346005B1 (en) 1998-01-19 2002-02-12 The Siemon Company Reduced cross-talk high frequency wiring connection system
JP2007031269A (en) * 2005-06-23 2007-02-08 Toto Ltd Machinable glass ceramic and process for production thereof

Also Published As

Publication number Publication date
JPH04182350A (en) 1992-06-29

Similar Documents

Publication Publication Date Title
JPS6125677B2 (en)
US5182059A (en) Process for producing high density SiC sintered bodies
CA1316673C (en) Method for producing high density sic sintered body
JPS62275063A (en) Manufacture of silicon carbide-aluminum nitride sintered product
JPH01308876A (en) Production of sic sintered compact having high density
JP2999486B2 (en) Manufacturing method of machinable ceramics
JP3112286B2 (en) Manufacturing method of dense machinable ceramics
JPS649269B2 (en)
JP3083681B2 (en) MgO-SiO2-based porcelain and method of manufacturing the same
KR102555662B1 (en) Method for Preparing Silicon Nitride Sintered Body and The Silicon Nitride Sintered Body Prepared by The Same
JP3317421B2 (en) Silicon carbide / silicon nitride composite material and method for producing the same
JPS632913B2 (en)
JPH0253388B2 (en)
JPH01131066A (en) Boron nitride based compact calcined under ordinary pressure
JPH02302368A (en) Silicon carbide sintered compact having high toughness and its production thereof
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JP3141505B2 (en) Aluminum nitride sintered body and method for producing the same
JP3223822B2 (en) MgO composite ceramics and method for producing the same
JPH11130543A (en) Beta-type silicon nitride crystal and its production and production of silicon nitride-based sintered compact
JPS62275067A (en) Manufacture of silicon nitride sintered body
JP2573720B2 (en) Manufacturing method of silicon nitride sintered body
JP3413278B2 (en) Method for producing ceramic sintered body with SiC fine particles dispersed therein
JPH0517210A (en) Production of alumina-based composite sintered body and the sintered body
JPS6110069A (en) High strength minute silicon nitride sintered body and manufacture
JPH02307871A (en) Production of ceramic sintered compact

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11