JPH0328171A - Ceramic composition material - Google Patents

Ceramic composition material

Info

Publication number
JPH0328171A
JPH0328171A JP1159481A JP15948189A JPH0328171A JP H0328171 A JPH0328171 A JP H0328171A JP 1159481 A JP1159481 A JP 1159481A JP 15948189 A JP15948189 A JP 15948189A JP H0328171 A JPH0328171 A JP H0328171A
Authority
JP
Japan
Prior art keywords
boron nitride
silicon oxide
composite material
dielectric constant
ceramic composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1159481A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kurokawa
泰弘 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1159481A priority Critical patent/JPH0328171A/en
Publication of JPH0328171A publication Critical patent/JPH0328171A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To provide a ceramic composite material having both a low dielectric constant, a high thermal conductivity and excellent in structural reliability and suitable as a traveling-wave tube support material by containing hexagonal system boron nitride and silicon oxide as main components. CONSTITUTION:A ceramic composite material is composed of 5-99wt.%, preferably 10-95wt.%, of hexagonal system boron nitride and silicon oxide as main components (preferably having purities of >=98%). The composite material has a composite structure comprising hexagonal boron nitride homogeneously dispersed in silicon oxide matrix or a composite structure comprising a porous boron nitride ceramic filled with silicon oxide. The ceramic composite material has a dielectric constant of 2.5-5 (frequency; 1MHz), a thermal conductivity of >=10W/mk and a compression strength of 3000-10000kg/cm<2> at room temperature.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明はセラミック複合材料に関し、特にエレクトロニ
クス用の進行波管支持体材料に用いられるセラミック複
合材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a ceramic composite material, and particularly to a ceramic composite material used as a traveling wave tube support material for electronics.

[従来の技術] エレクトロニクスにおける構造体としての用途である進
行波管におけるWやMOの金属らせんの支持体(サポー
トロツド)としては、従来の技術として、石英、ステア
タイト、ザファイヤ、へりリアが検討ざれてきたく丸善
(株〉出版の日本電信電話公社電気通信研究所編で小山
次郎著「進行波管」207ページ)。
[Prior art] Quartz, steatite, zaphire, and herria have been considered as conventional technologies for supporting metal helices of W or MO in traveling wave tubes, which are used as structures in electronics. "Travelling Wave Tube" by Jiro Koyama, edited by Nippon Telegraph and Telephone Public Corporation Telecommunications Research Institute, published by Tetaku Maruzen Co., Ltd., page 207).

一方、近年では通信衛星や放送衛星用の進行波管におい
て、高周波数化のため支持体に対して従来材料よりも優
れた高周波特性としての低誘電率が重要になってきた。
On the other hand, in recent years, in traveling wave tubes for communication satellites and broadcasting satellites, low dielectric constants have become important as supporting materials have better high frequency characteristics than conventional materials due to higher frequencies.

ざらに電子ビームの流入やbロ熱による高周波損失を防
ぐためには、支持体には熱放散のために高熱伝導性も要
求される。゛従来の支持体材料である石英ガラス、石英
、ステアタイト、サファイア、ベリリアでは各々の室温
の誘電率はそれぞれ3.6,  4.3,  6.0,
  9.6,  6.9であり、また各々の熱伝導率は
2.7.3,40 ,260W/m − Kであって、
低誘電率を実現しつつ高熱伝導性を保持することが困難
であった。
In order to prevent high frequency loss due to the inflow of electron beams and heat, the support is also required to have high thermal conductivity for heat dissipation.゛The dielectric constants of conventional support materials such as quartz glass, quartz, steatite, sapphire, and beryllia at room temperature are 3.6, 4.3, 6.0, respectively.
9.6, 6.9, and their respective thermal conductivities are 2.7.3, 40, 260 W/m-K,
It has been difficult to maintain high thermal conductivity while achieving a low dielectric constant.

一方、最近では六方晶窒化ホウ素(hBN)が低誘電率
と高熱伝導率を兼ね備えた材料として注目ざれつつある
On the other hand, recently, hexagonal boron nitride (hBN) has been attracting attention as a material that has both low dielectric constant and high thermal conductivity.

[発明が解決しようとする課題] 六方晶窒化ホウ素(hBN)は、黒鉛と同じく六角網面
の積層構造を有し、層内のa軸方向が共有結合性であり
、積層面に垂直なC軸方向はフ7ンデエアワールス結合
による結晶構造のため、誘電率や熱伝導率に顕著な異方
性を示す。すなわち、hBNのa軸方向の誘電率と熱伝
導率は各々5.1と62 W/m−Kであり、C軸方向
テハ3.5.!=2W/m−Kとの報告がある。
[Problems to be Solved by the Invention] Hexagonal boron nitride (hBN) has a hexagonal network laminated structure like graphite, and the a-axis direction in the layer is covalent bonding, and C perpendicular to the laminated plane. In the axial direction, due to the crystal structure due to the Fundea-Waals bond, the dielectric constant and thermal conductivity exhibit remarkable anisotropy. That is, the dielectric constant and thermal conductivity of hBN in the a-axis direction are 5.1 and 62 W/m-K, respectively, and the dielectric constant in the c-axis direction is 3.5. ! There is a report that =2W/m-K.

また現在、進行波管支持体材料として、例えば気相戒長
法による熱分解窒化ホウ素(PBN)であるユニオン・
カーバイド( Union Carbide)社の商品
名BORALLOYが検討ざれ、一部実用化もされてい
る。しかしながらBORALLOYは、黒鉛などの基板
上に気相戒長法により或膜するため配向性が高く、材料
の面内方向と厚み方向では前述したように誘電率や熱伝
導率が顕著に異なる高異方性を示すため、低誘電率と高
熱伝導率を同時に発揮できない。
At present, Union, which is pyrolyzed boron nitride (PBN) produced by the vapor phase method, is currently being used as a traveling wave tube support material.
Union Carbide's product name BORALLOY is being considered and some have even been put into practical use. However, BORALLOY has a high degree of orientation because it is deposited on a substrate such as graphite using the vapor phase method, and as mentioned above, the dielectric constant and thermal conductivity are significantly different in the in-plane direction and the thickness direction of the material. Because it exhibits tropism, it cannot exhibit low dielectric constant and high thermal conductivity at the same time.

すなわち、低誘電率3.5を利用するためにC軸方向を
支持体の使用方向とした場合には熱伝導率は約2W/m
−Kと従来の石英、ステアタイト、リファイヤ、ベリリ
アよりもかなり小さく、熱放熱性に問題があった。また
熱敢敗のため熱伝導性の良いa軸方向(62W/m −
 K )を支持体の使用方向とした場合には、誘電率が
5.1と高周波化のための低誘電率の要求としては十分
ではなかった。
In other words, if the C-axis direction is used as the support direction to take advantage of the low dielectric constant of 3.5, the thermal conductivity is approximately 2 W/m.
-K is considerably smaller than conventional quartz, steatite, reffire, and beryllia, and has a problem with heat dissipation. In addition, due to heat resistance, the a-axis direction has good thermal conductivity (62W/m -
When the direction of use of the support was K ), the dielectric constant was 5.1, which was not sufficient to meet the requirements for a low dielectric constant for higher frequencies.

またBORALLOYは六方晶窒化ホウ素の本質的な性
質である積層構造に基づいたa軸とC軸の異方性を有す
る配向構造のため、層閤でしばしば剥離および亀裂を生
ずるなど構造体としての信頼性にも問題が多くあった。
In addition, BORALLOY has an oriented structure with anisotropy of the a-axis and c-axis based on the layered structure, which is an essential property of hexagonal boron nitride, so it often peels and cracks in the layers, making it unreliable as a structure. There were also many problems with sexuality.

ざらに熱分解窒化ホウ素は気相戒長法による製造方法で
作られているため、大型で厚い製品が多量に生産できな
いうえ、コストが高いなどの工業的問題点も存在してい
た。
Since pyrolytic boron nitride is manufactured using the vapor phase process, it is not possible to produce large, thick products in large quantities, and there are also industrial problems such as high costs.

本発明者はこのような点に対処して鋭意研究を進めた結
果、六方晶窒化ホウ素と酸化ケイ素から構戒されたセラ
ミック複合材料が低誘電率と高熱伝導率を兼ね備え、構
造上の信頼性にも優れるため進行波管の支持体として最
適であることを見い出し、本発明を完成するに至った。
As a result of intensive research in response to these points, the present inventor found that a ceramic composite material made from hexagonal boron nitride and silicon oxide has both low dielectric constant and high thermal conductivity, and has high structural reliability. The present inventors have discovered that this material is ideal as a support for traveling wave tubes due to its excellent properties, and have completed the present invention.

[8!題を解決するための手段] 本発明は、六方晶窒化ホウ素と酸化ケイ素とを主戒分と
して構成されてなることを特徴とするセラミック複合材
料である。
[8! Means for Solving the Problem] The present invention is a ceramic composite material characterized by being composed of hexagonal boron nitride and silicon oxide as main components.

以下、本発明をさらに詳しく説明する。The present invention will be explained in more detail below.

本発明のセラミック複合材料は六方晶窒化ホウ素と酸化
ケイ素を主戒分とするもので、酸化ケイ素マトリックス
中に六方晶窒化ホウ素粉末が均一に分散された複合構造
、もしくは多孔質窒化ホウ素セラミックスに酸化ケイ素
が充填ざれた複合構造を特徴としている。
The ceramic composite material of the present invention mainly contains hexagonal boron nitride and silicon oxide, and has a composite structure in which hexagonal boron nitride powder is uniformly dispersed in a silicon oxide matrix, or a porous boron nitride ceramic. It features a composite structure filled with silicon.

第1図は、このうち前者の酸化ケイ素マトリックス2中
に六方晶窒化ホウ素粉末3が均一分散ざれた複合構造を
有ずる本発明のセラミック複合材料1を模式的に示す断
面図であり、第2図は後者の多孔質窒化ホウ素セラミッ
クス3に酸化ケイ素2が充填ざれた複合構造を有する本
発明のセラミック複合材料1を模式的に示す断面図であ
る。
FIG. 1 is a cross-sectional view schematically showing a ceramic composite material 1 of the present invention having a composite structure in which hexagonal boron nitride powder 3 is uniformly dispersed in a silicon oxide matrix 2. The figure is a cross-sectional view schematically showing a ceramic composite material 1 of the present invention having a composite structure in which silicon oxide 2 is filled in the latter porous boron nitride ceramic 3.

本発明の六方晶窒化ホウ素と酸化ケイ素から構成ざれる
セラミック複合材料は、最大50%程度の気孔を含有す
ることも誘電率を低下させるために有効である。しかし
ながら、気孔率が50%以上になると、進行波管支持体
等の構造体的利用において機械的強度が不十分となる問
題がある。
It is also effective for the ceramic composite material composed of hexagonal boron nitride and silicon oxide of the present invention to contain pores of up to about 50% in order to lower the dielectric constant. However, when the porosity is 50% or more, there is a problem that the mechanical strength becomes insufficient when used in structures such as traveling wave tube supports.

また、セラミック複合材料の純度は、六方晶窒化ホウ素
と酸化ケイ素の合計として98%以上のものが好ましい
が、95〜98%のものも可能でアル。不純物としては
、Ca,Mg,Ah Si,Fe,Cr,Cu,”ln
等が含まれるが、これらの不純物量が多くなると誘電率
が増大したり、熱伝導率が低下するなどの問題が生ずる
Further, the purity of the ceramic composite material is preferably 98% or more as the total of hexagonal boron nitride and silicon oxide, but it is also possible to have a purity of 95 to 98%. Impurities include Ca, Mg, Ah Si, Fe, Cr, Cu, "ln
However, when the amount of these impurities increases, problems such as an increase in dielectric constant and a decrease in thermal conductivity occur.

本発明のセラミック複合材料での六方晶窒化ホウ素の配
合量は5〜99重量%、好ましくは10〜95重量%で
あることが誘電率や熱伝導率の改善に有効である。
The content of hexagonal boron nitride in the ceramic composite material of the present invention is 5 to 99% by weight, preferably 10 to 95% by weight, which is effective for improving the dielectric constant and thermal conductivity.

また酸化ケイ素としては、石英ガラスが誘電率を小さく
するために有効であるが、β−クリストバライト,β一
トリジマイト,β一石英,α−クルストバライト,α一
石英.α一トリジマイトの結晶構造の酸化ケイ素も有効
である。
As silicon oxide, silica glass is effective in reducing the dielectric constant, but β-cristobalite, β-tridymite, β-quartz, α-crustobalite, α-quartz, etc. Silicon oxide having the α-tridymite crystal structure is also effective.

本発明のセラミック複合材料は、例えば次のような方法
によって製造できる。
The ceramic composite material of the present invention can be manufactured, for example, by the following method.

第1図に示す酸化ケイ素マトリックス中に六方晶窒化ホ
ウ素粉末が均一分敗された複合構造のセラミック複合体
の場合、所定組戊比に配合ざれた酸化ケイ素粉末と窒化
ホウ素粉末をボールミル等で混合し、戊形した後、io
oo〜2000℃程度の常圧または加圧の非酸化性雰囲
気で加熱処理することにより製造することができる。
In the case of a ceramic composite with a composite structure in which hexagonal boron nitride powder is uniformly partitioned into a silicon oxide matrix as shown in Figure 1, silicon oxide powder and boron nitride powder mixed in a predetermined composition ratio are mixed in a ball mill, etc. and after the oval, io
It can be produced by heat treatment in a normal pressure or pressurized non-oxidizing atmosphere at about 0 to 2000°C.

この場合、窒化ホウ素粉末の配合量は5〜60重量%程
度が酸化ケイ素マトリックス中に窒化ホウ素粉末を均一
に分散させるのに適している。熱処理のための非酸化性
雰囲気としては、窒素ガス、アルゴンガス、真空雰囲気
などが便利である。また前述の製造工程において、酸化
ケイ素粉末の代わりに有機金属化合物であるアルキルシ
リケート(例えばエチルシリケート等〉を原料とするこ
ともできる。
In this case, a blending amount of boron nitride powder of about 5 to 60% by weight is suitable for uniformly dispersing the boron nitride powder in the silicon oxide matrix. Convenient non-oxidizing atmospheres for heat treatment include nitrogen gas, argon gas, and vacuum atmosphere. Further, in the above-mentioned manufacturing process, an alkyl silicate (for example, ethyl silicate), which is an organometallic compound, can be used as a raw material instead of silicon oxide powder.

第2図に示す多孔質窒化ホウ素セラミックスに酸化ケイ
素が充填ざれた複合構造を有するセラミック複合体の場
合、窒化ホウ素粉末を60〜95重量%配合された酸化
ケイ素粉末と窒化ホウ素粉末を前述の製造方法と同様に
混合、戊形、加熱処理して製造することが可能である。
In the case of a ceramic composite having a composite structure in which porous boron nitride ceramic is filled with silicon oxide as shown in Fig. 2, silicon oxide powder and boron nitride powder containing 60 to 95% by weight of boron nitride powder are manufactured as described above. It can be manufactured by mixing, shaping, and heat treatment in the same manner as in the above method.

また窒化ホウ素粉末のみを戒型、加熱処理して多孔貿の
窒化ホウ素セラミックスを作製した後、溶融した酸化ケ
イ素融体を注入する方法や、溶媒に溶かした有機金属化
合物であるアルキルシリケート(例えばエチルシリケー
ト等)を含浸し、乾燥、熱分解、加熱処理するなどの方
法も利用することができる。
In addition, there is a method in which only boron nitride powder is molded and heat treated to produce porous boron nitride ceramics, and then molten silicon oxide is injected into the ceramic, or alkyl silicate, which is an organometallic compound dissolved in a solvent (for example, ethyl It is also possible to use methods such as impregnation with silicates (silicates, etc.), drying, thermal decomposition, heat treatment, etc.

本発明の六方晶窒化ホウ素と酸化ケイ素から構或される
セラミック複合体は、室温での誘電率が2.5〜5(周
波数IMHZ)で、熱伝導率が10W/m−K以上であ
るという優れた特性以外に、従来の進行波管支持体材料
である熱分解窒化ホウ素(PAN>より優れた圧縮強度
等の機械的特性も有する。すなわち、PBNの室温での
圧縮強度が2340 Kl/Cm2であるのに対して、
本発明のセラミック複合体は3000 〜10000N
g/cm2の優れた圧縮強度を有する。このため、PB
Nのように剥離および亀裂を生ずるなどの問題もない。
The ceramic composite composed of hexagonal boron nitride and silicon oxide of the present invention has a dielectric constant of 2.5 to 5 (frequency IMHZ) at room temperature and a thermal conductivity of 10 W/mK or more. In addition to its excellent properties, it also has mechanical properties such as compressive strength superior to that of pyrolytic boron nitride (PAN), which is a conventional traveling wave tube support material. That is, the compressive strength of PBN at room temperature is 2340 Kl/Cm2. Whereas,
The ceramic composite of the present invention is 3000 to 10000N
It has an excellent compressive strength of g/cm2. For this reason, P.B.
Unlike N, there is no problem of peeling or cracking.

また窒化ホウ素の含有量が10〜99%の場合、普通工
具で切削加工できる長所もある。さらに常圧焼結法で製
造した場合、大型で厚い製品を低コストで製造できるな
どの数多くの利点がある。
Moreover, when the content of boron nitride is 10 to 99%, it has the advantage that it can be cut with ordinary tools. Furthermore, when manufactured using the pressureless sintering method, there are many advantages such as the ability to manufacture large and thick products at low cost.

本発明を更に具体的に説明するため次に実施例を挙げて
説明するが、本発明はこれらの実施例に限定されるもの
ではない。
EXAMPLES In order to explain the present invention more specifically, Examples will be given below, but the present invention is not limited to these Examples.

[実施例] 実施例1 平均粒径5μs、純度99%の窒化ホウ素粉末60重量
%と平均粒径0.2llIn、純度99%の石英ガラス
粉末40重量%とを配合した粉末を用い、エタノールを
液体分敗媒としてボールミルで混合した。この混合粉末
を1000 Ky/cm2の圧力でプレス成形した後、
1500℃、常圧窒素ガス雰囲気、1時間の条件で加熱
処理した。得られたセラミック複合体の気孔率は10%
であり、室温での誘電率は3.5(周波数IMHZ)、
熱伝導率は20W/m−K,圧縮強度は8000 Ny
/cm2であり、進行波管支持体材料として優れた特性
を有していた。
[Example] Example 1 A powder containing 60% by weight of boron nitride powder with an average particle size of 5 μs and a purity of 99% and 40% by weight of a quartz glass powder with an average particle size of 0.2 lIn and a purity of 99% was used, and ethanol was used. It was mixed in a ball mill as a liquid separation medium. After press-molding this mixed powder at a pressure of 1000 Ky/cm2,
Heat treatment was performed at 1500° C. in a nitrogen gas atmosphere at normal pressure for 1 hour. The porosity of the obtained ceramic composite is 10%
, the dielectric constant at room temperature is 3.5 (frequency IMHZ),
Thermal conductivity is 20W/m-K, compressive strength is 8000 Ny
/cm2, and had excellent properties as a traveling wave tube support material.

このセラミック複合体を切断加工後、0.25 xO,
5X 100mmの長い直方体状の進行波管支持体を作
製して進行波管に実装した。第3図(a)はその断面図
、第3図(b)は(a)におけるA−A一による断面図
である。タングステンコイル6は3本の支持体5で3方
向からステンレス保護管9により圧縮保持ざれている。
After cutting this ceramic composite, 0.25 xO,
A traveling wave tube support in the shape of a long rectangular parallelepiped measuring 5×100 mm was prepared and mounted on a traveling wave tube. FIG. 3(a) is a sectional view thereof, and FIG. 3(b) is a sectional view taken along line A-A in FIG. 3(a). The tungsten coil 6 is compressed and held by stainless steel protective tubes 9 from three directions by three supports 5.

7はカソード、8はコレクターである。支持体5はタン
グステンコイル6とステンレス保護管9の内壁の3点か
ら圧縮およびせん断の応力を受けているが、熱分解窒化
ホウ素で生じる剥離や亀裂は発生しなかった。
7 is a cathode, and 8 is a collector. Although the support 5 was subjected to compressive and shear stress from three points: the tungsten coil 6 and the inner wall of the stainless steel protective tube 9, no peeling or cracking caused by pyrolytic boron nitride occurred.

実施例2 平均粒径10tlIn,純度99.5%の窒化ホウ素粉
末と平均粒径o. i仰、純度99,5%の石英ガラス
粉末を第1表に示す割合で配合して実施例1と同様に混
合、プレス成型した。このプレス混合粉体を第1表に示
す条件で加熱処理したところ、低誘電率と高熱伝導率が
共に実現された。これらの特性は進行波管の支持体材料
として良好な値を有するものであった。
Example 2 Boron nitride powder with an average particle size of 10 tlIn and a purity of 99.5% and an average particle size of o. Quartz glass powder with a purity of 99.5% was blended in the proportions shown in Table 1, mixed and press-molded in the same manner as in Example 1. When this pressed mixed powder was heat treated under the conditions shown in Table 1, both low dielectric constant and high thermal conductivity were achieved. These properties had good values as a support material for traveling wave tubes.

(以下余白〉 実施例3 平均粒径2珈、純度98%の窒化ホウ素粉末を2000
 Kg/cm2の圧力で冷間等方加圧戒形した後、常圧
窒素ガス雰囲気下で1900℃、2時間の条件で焼結し
て気孔率25%の多孔質窒化ホウ素セラミックを作製し
た。この多孔質窒化ホウ素セラミックを市販のエチルシ
リケート( Si(OEt)4)、エタノール、希塩酸
を含む水溶液に含浸した後、乾燥して1200℃、窒素
中で1時間加熱処理してセラミック複合体を得た。この
セラミック複合体の気孔率は15%であり、室温での誘
−電率は3.0〈周波数IMHZ)、熱伝導率は70 
W/m−K、圧縮強度は5000 Ng/Cm2である
などの進行波管支持体材料として優れた特性を有してい
た。
(Left below) Example 3 Boron nitride powder with an average particle size of 2 C and a purity of 98% was
After cold isostatic pressing at a pressure of Kg/cm2, sintering was performed at 1900° C. for 2 hours in a nitrogen gas atmosphere at normal pressure to produce a porous boron nitride ceramic with a porosity of 25%. This porous boron nitride ceramic was impregnated with an aqueous solution containing commercially available ethyl silicate (Si(OEt)4), ethanol, and diluted hydrochloric acid, then dried and heat-treated at 1200°C in nitrogen for 1 hour to obtain a ceramic composite. Ta. The porosity of this ceramic composite is 15%, the dielectric constant at room temperature is 3.0 (frequency IMHZ), and the thermal conductivity is 70.
It had excellent properties as a traveling wave tube support material, such as W/m-K and compressive strength of 5000 Ng/Cm2.

[発明の効果] 以上説明したように、本発明のセラミック複合材料は、
進行波管支持体として従来の支持体材料である石英、ス
テアタイト、サフ7イヤ、ベリリア、熱分解窒化ホウ素
よりも優れた低誘電率と高熱伝導率を兼ね備えた材料で
あり、熱分解窒化ホウ素のような特性の異方性も少なく
、しかも剥離や亀裂などの発生の問題もない。また窒化
ホウ素の量を10〜99重量%にすることにより、普通
工具で切削加工できる長所も存在する。さらに熱分解窒
化ホウ素では困難な、大型で厚い製品を多量に低コスト
で製造することが可能であるなど、工業的に多くの利点
を有するものである。
[Effects of the Invention] As explained above, the ceramic composite material of the present invention has the following effects:
Pyrolytic boron nitride is a material that has a lower dielectric constant and higher thermal conductivity that are superior to conventional support materials such as quartz, steatite, saph 7-year, beryllia, and pyrolytic boron nitride as a traveling wave tube support. There is little anisotropy in properties such as, and there is no problem of peeling or cracking. Further, by controlling the amount of boron nitride to 10 to 99% by weight, there is an advantage that cutting can be performed using ordinary tools. Furthermore, it has many industrial advantages, such as the ability to manufacture large, thick products in large quantities at low cost, which is difficult to do with pyrolytic boron nitride.

また本発明のセラミック複合材料は、進行波管の支持体
以外の用途である電子部品、絶縁基板などにも利用でき
る効果もある。
Furthermore, the ceramic composite material of the present invention can also be used for electronic components, insulating substrates, etc. other than as a support for traveling wave tubes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ本発明の一実施例の複合
構造を模型的に示す断面図、第3図は進行波管の断面図
(a)および(a)のA−A一線による断面図(b)で
ある。 1・・・セラミック複合材料 2・・・酸化ケイ素 3・・・六方晶窒化ホウ素 4・・・気孔 5・・・支持体 6・・・タングステンコイル 7・・・カソード 8・・・コレクター 9・・・ステンレス保護管
FIGS. 1 and 2 are cross-sectional views schematically showing a composite structure according to an embodiment of the present invention, and FIG. 3 is a cross-sectional view of a traveling wave tube (a), and a cross-sectional view taken along line A-A in (a). It is figure (b). 1... Ceramic composite material 2... Silicon oxide 3... Hexagonal boron nitride 4... Pores 5... Support 6... Tungsten coil 7... Cathode 8... Collector 9.・・Stainless steel protection tube

Claims (1)

【特許請求の範囲】[Claims] (1)六方晶窒化ホウ素と酸化ケイ素とを主成分として
構成されてなることを特徴とするセラミツク複合材料。
(1) A ceramic composite material comprising hexagonal boron nitride and silicon oxide as main components.
JP1159481A 1989-06-23 1989-06-23 Ceramic composition material Pending JPH0328171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1159481A JPH0328171A (en) 1989-06-23 1989-06-23 Ceramic composition material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1159481A JPH0328171A (en) 1989-06-23 1989-06-23 Ceramic composition material

Publications (1)

Publication Number Publication Date
JPH0328171A true JPH0328171A (en) 1991-02-06

Family

ID=15694714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1159481A Pending JPH0328171A (en) 1989-06-23 1989-06-23 Ceramic composition material

Country Status (1)

Country Link
JP (1) JPH0328171A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187768A (en) * 2000-12-20 2002-07-05 Nippon Electric Glass Co Ltd Low temperature sintering dielectric material for high frequency and sintered body of the same
CN114538933A (en) * 2020-11-24 2022-05-27 娄底市安地亚斯电子陶瓷有限公司 Method for manufacturing travelling wave tube clamping rod

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215261A (en) * 1985-03-20 1986-09-25 エレクトロシユメルツヴエルク・ケンプテン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Bo ron nitride base sintered polycrystal composite material
JPS63315537A (en) * 1987-06-16 1988-12-23 Asahi Glass Co Ltd Sintered compact
JPH01131066A (en) * 1987-11-14 1989-05-23 Denki Kagaku Kogyo Kk Boron nitride based compact calcined under ordinary pressure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215261A (en) * 1985-03-20 1986-09-25 エレクトロシユメルツヴエルク・ケンプテン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Bo ron nitride base sintered polycrystal composite material
JPS63315537A (en) * 1987-06-16 1988-12-23 Asahi Glass Co Ltd Sintered compact
JPH01131066A (en) * 1987-11-14 1989-05-23 Denki Kagaku Kogyo Kk Boron nitride based compact calcined under ordinary pressure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187768A (en) * 2000-12-20 2002-07-05 Nippon Electric Glass Co Ltd Low temperature sintering dielectric material for high frequency and sintered body of the same
JP4569000B2 (en) * 2000-12-20 2010-10-27 日本電気硝子株式会社 Low-frequency sintered dielectric material for high frequency and its sintered body
CN114538933A (en) * 2020-11-24 2022-05-27 娄底市安地亚斯电子陶瓷有限公司 Method for manufacturing travelling wave tube clamping rod

Similar Documents

Publication Publication Date Title
JP2002087878A (en) Plasma resistant member and its manufacturing method
CN101774826B (en) 99BeO ceramic metallizing slurry and preparation method thereof
CN111484330A (en) Diamond-enhanced silicon carbide substrate, preparation method thereof and electronic product
JPH0328171A (en) Ceramic composition material
JPH0333066A (en) Aluminum nitride structure and production thereof
CN107399972A (en) A kind of method that transparent aluminium nitride ceramic is prepared based on SPS methods
JP3018354B2 (en) Ceramic composite material and method for producing the same
JPH02296772A (en) Support for traveling-wave tube
CN110734290A (en) silicon nitride ceramic materials and preparation method thereof
US5968426A (en) Method of producing porous silicon nitride ceramics having high strength and low thermal conductivity
JPH0416563A (en) Ceramics composite material
JPH04275979A (en) Ceramic composite material
JP2920970B2 (en) Manufacturing method of ceramic composite material
JPH0881267A (en) Aluminum nitride sintered compact, its production, aluminum nitride circuit board and its production
JP3888766B2 (en) Electrostatic chuck and manufacturing method thereof
Wang et al. Thermal and microwave dielectric properties of Li–Si-based ceramics
JP2001316174A (en) Composite material and its manufacturing method
JP2587854B2 (en) Method for producing aluminum nitride sintered body with improved thermal conductivity
JPS6034515B2 (en) Manufacturing method of silicon carbide ceramic sintered body
CN113121252B (en) Preparation method of high-thermal-conductivity SiC-AlN composite ceramic
CN114538933B (en) Method for manufacturing travelling wave tube clamping rod
CN118388243A (en) High-performance Si3N4Ceramic substrate and preparation method thereof
JPH02307871A (en) Production of ceramic sintered compact
US5061664A (en) Preparation of sintered aluminum nitride
JPS61168570A (en) Boron nitride sintered body and manufacture