JP2002187768A - Low temperature sintering dielectric material for high frequency and sintered body of the same - Google Patents

Low temperature sintering dielectric material for high frequency and sintered body of the same

Info

Publication number
JP2002187768A
JP2002187768A JP2000386288A JP2000386288A JP2002187768A JP 2002187768 A JP2002187768 A JP 2002187768A JP 2000386288 A JP2000386288 A JP 2000386288A JP 2000386288 A JP2000386288 A JP 2000386288A JP 2002187768 A JP2002187768 A JP 2002187768A
Authority
JP
Japan
Prior art keywords
sintered body
dielectric
dielectric material
high frequency
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000386288A
Other languages
Japanese (ja)
Other versions
JP4569000B2 (en
Inventor
Yoshio Mayahara
芳夫 馬屋原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2000386288A priority Critical patent/JP4569000B2/en
Publication of JP2002187768A publication Critical patent/JP2002187768A/en
Application granted granted Critical
Publication of JP4569000B2 publication Critical patent/JP4569000B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dielectric material having a low relative dielectric constant and low dielectric loss which can be calcined at <=1000 deg.C and can be used as high frequency circuit parts, and to provide a dielectric material which shows not much difference in the coefficient of thermal expansion from that of alumina ceramics and which enables use of conventional overcoat glass. SOLUTION: The material consists of, by mass %, 50 to 90% borosilicate glass consisting of 70 to 85% SiO2, 10 to 25% B2O3, 0.5 to 5% K2O and 0.01 to 1% Al2O3 in terms of oxides, and 10 to 50% of one or more kinds of SiO2 fillers selected from the group of α-quartz, α-cistobalite and β-tridymite.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は配線基板や回路部品
の作製に用いられ、1000℃以下の低温で焼結できる
誘電体材料とその焼結体に関するものであり、特に携帯
電話、近距離無線通信、無線LAN等の用途に用いられ
る高周波回路に十分対応できる低い比誘電率と誘電損失
を有する誘電体材料と、その焼結体に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric material used for manufacturing wiring boards and circuit parts, which can be sintered at a low temperature of 1000.degree. C. or less, and a sintered body thereof. The present invention relates to a dielectric material having a low relative dielectric constant and a low dielectric loss that can sufficiently cope with a high-frequency circuit used for applications such as communication and wireless LAN, and a sintered body thereof.

【0002】[0002]

【従来の技術】配線基板や回路部品として従来広く使用
されてきたアルミナセラミックは比誘電率が10と高
く、信号処理の速度が遅いという欠点がある。また、導
体材料に高融点金属のタングステンを使用するため、導
体損失が高くなる。その欠点を補うために開発されたガ
ラスセラミックス誘電体材料は、ガラスとアルミナフィ
ラーの複合材料で比誘電率が6〜8とアルミナセラミッ
クスよりも低い。また、1000℃以下の温度で焼成で
きるので、導体損失の低い銀、銅を内部導体として使用
できるという長所がある。
2. Description of the Related Art Alumina ceramics, which have been widely used as wiring boards and circuit components, have a high relative dielectric constant of 10 and are disadvantageous in that signal processing is slow. In addition, since tungsten, which is a high melting point metal, is used as the conductor material, conductor loss increases. The glass-ceramic dielectric material developed to compensate for the disadvantage is a composite material of glass and alumina filler and has a relative dielectric constant of 6 to 8, which is lower than that of alumina ceramic. In addition, since firing can be performed at a temperature of 1000 ° C. or less, there is an advantage that silver or copper having low conductor loss can be used as the internal conductor.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、近年、
信号処理の周波数がさらに高くなってきており、誘電体
材料の誘電率をさらに下げたいという要求が高まってき
ている。
However, in recent years,
As the frequency of signal processing becomes higher, there is an increasing demand to further lower the dielectric constant of dielectric materials.

【0004】本発明の目的は1000℃以下の温度で焼
成でき、しかも高周波回路部品として使用可能な低比誘
電率、低誘電損失を有する誘電体材料を提供することで
ある。また、アルミナセラミックスの熱膨張係数と大差
がなく、既存のオーバーコートガラスが使用できる誘電
体材料を提供することである。
An object of the present invention is to provide a dielectric material which can be fired at a temperature of 1000 ° C. or less and has a low dielectric constant and a low dielectric loss which can be used as a high-frequency circuit component. Another object of the present invention is to provide a dielectric material which does not have a great difference from the thermal expansion coefficient of alumina ceramics and can use existing overcoat glass.

【0005】[0005]

【課題を解決するための手段】本発明の高周波用低温焼
結誘電体材料は、質量百分率で、酸化物に換算してSi
2 70〜85%、B23 10〜25%、K2O 0.
5〜5%、Al230.01〜1%からなるホウ珪酸ガ
ラス50〜90%とα−石英、α−クリストバライト、
β−トリジマイトの群から選ばれる1種以上のSiO2
フィラー10〜50%からなることを特徴とする。
The low-temperature sintered dielectric material for high frequency waves according to the present invention is expressed in terms of mass percentage as Si oxide in terms of oxide.
O 2 70~85%, B 2 O 3 10~25%, K 2 O 0.
50-90% of borosilicate glass composed of 5-5% and 0.01-1% of Al 2 O 3 , α-quartz, α-cristobalite,
at least one SiO 2 selected from the group of β-tridymite
It is characterized by comprising 10 to 50% of a filler.

【0006】また本発明の焼結体は、質量百分率で、酸
化物に換算してSiO2 70〜85%、B23 10〜
25%、K2O 0.5〜5%、Al23 0.01〜
1%からなるホウ珪酸ガラス50〜90%とα−石英、
α−クリストバライト、β−トリジマイトの群から選ば
れる1種以上のSiO2フィラー10〜50%からなる
原料粉末を焼結させてなることを特徴とする。
Further, the sintered body of the present invention has a mass percentage of 70 to 85% of SiO 2 and B 2 O 3 of 10 to 10% in terms of oxide.
25%, K 2 O 0.5~5% , Al 2 O 3 0.01~
1-% borosilicate glass 50-90% and α-quartz,
It is characterized by being obtained by sintering a raw material powder comprising 10 to 50% of at least one kind of SiO 2 filler selected from the group consisting of α-cristobalite and β-tridymite.

【0007】[0007]

【発明の実施の形態】本発明の高周波用低温焼結誘電体
材料は、1000℃以下の温度で銀もしくは銅の導体材
料と同時焼成できる。またその焼結体は、比誘電率が3
〜4、誘電失が0.003以下の特性を有する。
BEST MODE FOR CARRYING OUT THE INVENTION The low-frequency sintered dielectric material for high frequency waves of the present invention can be co-fired with a silver or copper conductor material at a temperature of 1000 ° C. or less. The sintered body has a relative dielectric constant of 3
-4, has a property of dielectric loss of 0.003 or less.

【0008】本発明の誘電体材料は、ホウ珪酸ガラスと
SiO2フィラーからなるガラスセラミックス複合材料
である。
The dielectric material of the present invention is a glass-ceramic composite material comprising borosilicate glass and SiO 2 filler.

【0009】ホウ珪酸ガラスの組成を上記のように限定
した理由を以下に述べる。
The reason why the composition of the borosilicate glass is limited as described above will be described below.

【0010】SiO2はホウ珪酸ガラスの主成分であ
る。SiO2が85%より多いと焼結温度が1000℃
以上となる。また、70%より少ないと誘電率が4以下
とならない。SiO2の好適な範囲は78〜83%であ
る。
[0010] SiO 2 is a main component of borosilicate glass. Sintering temperature of 1000 ° C when SiO 2 is more than 85%
That is all. If it is less than 70%, the dielectric constant does not become 4 or less. A preferred range of SiO 2 is 78 to 83%.

【0011】B23はガラスの粘度を下げる成分であ
る。B23が25%より多いと耐水性が劣化する。ま
た、10%より少ないと焼結温度が1000℃以上とな
る。B23の好適な範囲は16〜20%である。
B 2 O 3 is a component that lowers the viscosity of glass. If B 2 O 3 is more than 25%, the water resistance deteriorates. If less than 10%, the sintering temperature will be 1000 ° C. or higher. A preferred range of B 2 O 3 is 16 to 20%.

【0012】K2Oはガラスの溶融温度を下げるととも
に、銀を導体材料として選択した場合は、銀の拡散を抑
制する効果がある。K2Oが5%を超えると高周波の誘
電損失が高くなり、熱膨張係数も高くなる。また0.5
%より少ないと溶融温度を下げる効果がない。K2Oの
好適な範囲は1〜3%である。
K 2 O has the effect of lowering the melting temperature of glass and suppressing the diffusion of silver when silver is selected as the conductor material. If K 2 O exceeds 5%, high-frequency dielectric loss increases, and the coefficient of thermal expansion also increases. 0.5
%, There is no effect of lowering the melting temperature. Suitable ranges of K 2 O is 1-3%.

【0013】Al23はガラスの化学的耐久性を向上さ
せるとともに、絶縁耐電圧を向上させる成分である。A
23が0.01%より少ないと、化学的耐久性が悪く
なり、粉砕やシート成型時の湿式プロセス中でアルカリ
(K2O)が溶出しやすくなる。また、そのため絶縁耐
電圧も低下し、基板や部品の小型化に伴って誘電体層が
薄肉化されるとショートし易くなる。Al23が1%よ
りも多いとガラスの溶融温度が高くなりすぎる。Al2
3の好適な範囲は0.01〜0.5%である。
Al 2 O 3 is a component that improves the chemical durability of glass and also improves the dielectric strength voltage. A
When l 2 O 3 is less than 0.01%, chemical durability is deteriorated, and alkali (K 2 O) is easily eluted in a wet process at the time of pulverization or sheet molding. In addition, the insulation withstand voltage also decreases, and if the dielectric layer is made thinner with the downsizing of the substrate or the component, short-circuiting easily occurs. If the content of Al 2 O 3 is more than 1%, the melting temperature of the glass becomes too high. Al 2
Suitable range of O 3 is 0.01 to 0.5%.

【0014】また本発明の高周波用低温焼結誘電体材料
において使用するSiO2フィラーは、α−石英、α−
クリストバライト、β−トリジマイトの群から選ばれる
1種以上である。これらのフィラーを選択した理由は誘
電率、誘電損失が低いため、結果として複合材料の誘電
率、誘電損失を低くできるためである。
The SiO 2 filler used in the low-temperature sintered dielectric material for high frequency waves according to the present invention comprises α-quartz and α-quartz.
At least one selected from the group consisting of cristobalite and β-tridymite. The reason for selecting these fillers is that the dielectric constant and dielectric loss are low, and as a result, the dielectric constant and dielectric loss of the composite material can be reduced.

【0015】本発明において、ガラスとフィラーの割合
は、ガラス50〜90質量%、好ましくは60〜80重
量%、フィラー10〜50重量%、好ましくは20〜4
0質量%である。このように限定した理由は、フィラー
が50%より多いと緻密化しなくなり、10%よりも少
ないと曲げ強度が低くなり過ぎるとともに、低誘電損失
を達成し難くなるためである。
In the present invention, the ratio of the glass to the filler is 50 to 90% by weight, preferably 60 to 80% by weight, and the filler is 10 to 50% by weight, preferably 20 to 4% by weight.
0% by mass. The reason for such limitation is that if the filler content is more than 50%, the filler is not densified, and if the filler content is less than 10%, the bending strength becomes too low, and it is difficult to achieve low dielectric loss.

【0016】上記構成からなる本発明の材料は、例えば
グリーンシートの形態で使用することができる。
The material of the present invention having the above structure can be used, for example, in the form of a green sheet.

【0017】グリーンシートとして使用する場合、上記
組成を有するように調合されたガラスセラミックス原料
粉末の混合物からなる誘電体材料と共に、結合剤、可塑
剤及び溶剤を使用する。
When used as a green sheet, a binder, a plasticizer and a solvent are used together with a dielectric material comprising a mixture of glass ceramic raw material powders prepared to have the above composition.

【0018】誘電体材料のグリーンシート中の含有量
は、60〜80質量%程度が一般的である。
The content of the dielectric material in the green sheet is generally about 60 to 80% by mass.

【0019】結合剤は、乾燥後の膜強度を高め、また柔
軟性を付与する成分であり、その含有量は、5〜30質
量%程度が一般的である。結合剤としてはポリビニルブ
チラール、ポリブチルメタアクリレート、ポリビニルブ
チラール、ポリメチルメタアクリレート、ポリエチルメ
タアクリレート、エチルセルロース等が使用可能であ
り、これらを単独あるいは混合して使用する。
The binder is a component that increases the strength of the film after drying and imparts flexibility, and its content is generally about 5 to 30% by mass. As the binder, polyvinyl butyral, polybutyl methacrylate, polyvinyl butyral, polymethyl methacrylate, polyethyl methacrylate, ethyl cellulose and the like can be used, and these can be used alone or in combination.

【0020】可塑剤は、乾燥速度をコントロールすると
共に、乾燥膜に柔軟性を与える成分であり、その含有量
は0.1〜10質量%程度が一般的である。可塑剤とし
てはブチルベンジルフタレート、ジオクチルフタレー
ト、ジイソオクチルフタレート、ジカプリルフタレー
ト、ジブチルフタレート等が使用可能であり、これらを
単独あるいは混合して使用する。
The plasticizer is a component that controls the drying speed and imparts flexibility to the dried film. The content of the plasticizer is generally about 0.1 to 10% by mass. As the plasticizer, butylbenzyl phthalate, dioctyl phthalate, diisooctyl phthalate, dicapryl phthalate, dibutyl phthalate, and the like can be used, and these can be used alone or as a mixture.

【0021】溶剤としては、例えばトルエン、メチルエ
チルケトン等を使用することができる。
As the solvent, for example, toluene, methyl ethyl ketone and the like can be used.

【0022】グリーンシートを作製する一般的な方法と
しては、誘電体材料粉末、結合剤、可塑剤、及び溶剤か
らなるスラリーを、ドクターブレード法によってポリエ
チレンテレフタレート(PET)等のフィルムの上にシ
ート成形する。シート成形後、乾燥させることによって
溶媒や溶剤を除去し、グリーンシートとすることができ
る。
As a general method for producing a green sheet, a slurry composed of a dielectric material powder, a binder, a plasticizer, and a solvent is formed into a sheet on a film such as polyethylene terephthalate (PET) by a doctor blade method. I do. After forming the sheet, the solvent and the solvent are removed by drying to obtain a green sheet.

【0023】次に本発明の焼結体を説明する。Next, the sintered body of the present invention will be described.

【0024】本発明の焼結体は、上記グリーンシート等
の形態で提供される誘電体材料を900〜1000℃の
温度で20〜120分間焼成して焼結させたものであ
り、誘電率及び誘電損失が低いという特徴を有してい
る。
The sintered body of the present invention is obtained by sintering the dielectric material provided in the form of the above green sheet or the like at a temperature of 900 to 1000 ° C. for 20 to 120 minutes to obtain a dielectric constant and a dielectric constant. It has the characteristic of low dielectric loss.

【0025】本発明の焼結体は、種々の用途に適用可能
である。例えば多層基板の絶縁層用途の場合、乾燥させ
た上記グリーンシートを所定寸法に切断してから、機械
的加工を施してスルーホールを形成し、導体や電極とな
る低抵抗金属材料をスルーホール及びグリーンシート表
面に印刷する。続いてグリーンシートの複数枚を積層
し、熱圧着によって一体化する。さらに積層グリーンシ
ートを焼成することによって、ガラスセラミックスから
なる絶縁層(焼結体)を有する多層基板を得ることがで
きる。なお多層基板用途以外にも、半導体パッケージや
積層チップ部品等種々の電子部品の構成材として使用す
ることが可能である。
The sintered body of the present invention is applicable to various uses. For example, in the case of an insulating layer application of a multilayer substrate, the dried green sheet is cut into a predetermined size, and then subjected to mechanical processing to form a through-hole. Print on the green sheet surface. Subsequently, a plurality of green sheets are laminated and integrated by thermocompression bonding. Further, by firing the laminated green sheet, a multilayer substrate having an insulating layer (sintered body) made of glass ceramic can be obtained. It can be used as a constituent material of various electronic components such as a semiconductor package and a laminated chip component in addition to the use of a multilayer substrate.

【0026】[0026]

【実施例】以下、実施例に基づいて、本発明を詳述す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on embodiments.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】まず表に示す組成となるようにガラス原料
を調合した後、白金坩堝に入れて1500〜1600℃
で3〜6時間溶融してから、水冷ローラーによって薄板
状に成形した。次いでこの成形体をボールミルにより粗
砕した後、アルコールを加えて湿式粉砕し、平均粒径が
0.5〜3μmのガラス粉末とした。さらに表に示した
セラミック粉末(平均粒径2μm)を添加し、混合して
試料を得た。
First, a glass raw material was prepared so as to have a composition shown in the table, and then put in a platinum crucible at 1500 to 1600 ° C.
For 3 to 6 hours, and formed into a thin plate by a water-cooled roller. Next, the formed body was roughly crushed by a ball mill, and then wet-ground by adding alcohol to obtain a glass powder having an average particle diameter of 0.5 to 3 μm. Further, a ceramic powder (average particle size: 2 μm) shown in the table was added and mixed to obtain a sample.

【0030】次に各試料に、結合剤としてポリビニルブ
チラールを15質量%、可塑剤としてブチルベンジルフ
タレートを4質量%、及び溶剤としてトルエンを30質
量%添加してスラリーを調製した。次いで上記のスラリ
ーを、ドクターブレード法によってグリーンシートに成
形し、乾燥させ、所定寸法に切断した後、複数枚を積層
し、熱圧着によって一体化した。さらに積層グリーンシ
ートを、焼成することによって焼結体を得た。
Next, a slurry was prepared by adding 15% by mass of polyvinyl butyral as a binder, 4% by mass of butylbenzyl phthalate as a plasticizer, and 30% by mass of toluene as a solvent to each sample. Next, the slurry was formed into a green sheet by a doctor blade method, dried, cut into a predetermined size, and then a plurality of sheets were laminated and integrated by thermocompression bonding. Further, a sintered body was obtained by firing the laminated green sheet.

【0031】焼成温度は、種々の温度で焼成した焼結体
にインクを塗布した後に拭き取り、インクが残らない
(=緻密に焼結した)試料のうち最低の温度で焼成した
ものの焼成温度を記載した。また得られた焼結体につい
て、誘電率、誘電損失、熱膨張係数、アルカリ(K
2O)溶出量を評価した。結果を各表に示す。
The firing temperature is the firing temperature of a sample fired at the lowest temperature among samples in which ink is applied to a sintered body fired at various temperatures and then wiped off and no ink remains (= densely sintered). did. Further, regarding the obtained sintered body, dielectric constant, dielectric loss, thermal expansion coefficient, alkali (K
It was evaluated 2 O) elution. The results are shown in each table.

【0032】表から明らかなように、実施例No.1〜
4の各試料は、1000℃以下の温度で焼成可能であっ
た。また2.4GHzの周波数で誘電率が3.4〜3.
9、誘電損失が0.0010〜0.0029であった。
As is clear from the table, the example No. 1 to
Each sample of No. 4 could be fired at a temperature of 1000 ° C. or less. The dielectric constant is 3.4 to 3.0 at a frequency of 2.4 GHz.
9. Dielectric loss was 0.0010 to 0.0029.

【0033】一方、比較例であるNo.5の試料は、K
2Oの含有量が多いため、誘電損失が0.0035、膨
張係数が9.0ppmと大きくなった。No.6の試料
はフィラーとしてアルミナを使用したため、誘電率が
5.0と大きくなった。またNo.7の試料は、ガラス
組成中にAl23を含まないため、アルカリ溶出量が多
くなっていた。
On the other hand, in Comparative Example No. Sample No. 5 is K
Due to the large content of 2 O, the dielectric loss was increased to 0.0035 and the expansion coefficient was increased to 9.0 ppm. No. Sample No. 6 used alumina as a filler, and thus had a large dielectric constant of 5.0. No. Sample No. 7 contained a large amount of alkali elution because it did not contain Al 2 O 3 in the glass composition.

【0034】なお誘電損失および誘電率の測定は原料粉
末を7×7×70mmの大きさにプレス成形したものを
900〜1000℃で焼成したものを試料とした。測定
周波数2.4GHzで空洞共振器摂動法により測定し
た。
The dielectric loss and permittivity were measured by pressing a raw material powder to a size of 7 × 7 × 70 mm and firing it at 900 to 1000 ° C. as a sample. The measurement was performed by a cavity resonator perturbation method at a measurement frequency of 2.4 GHz.

【0035】熱膨張係数は、熱機械分析装置にて測定し
た。
The coefficient of thermal expansion was measured by a thermomechanical analyzer.

【0036】アルカリ溶出量はガラス粉末を純水に分散
し、121℃で60分間オートクレーブ処理したのち、
水分中のアルカリ量を原子吸光分析で評価した。
The alkali elution amount was determined by dispersing the glass powder in pure water, and autoclaving at 121 ° C. for 60 minutes.
The amount of alkali in water was evaluated by atomic absorption analysis.

【0037】[0037]

【発明の効果】本発明の高周波用低温焼結誘電体材料を
使用すれば、焼成温度が1000℃以下であるため、銀
や銅の導体材料と同時焼成できる。しかも比誘電率が3
〜4、誘電損失が0.003以下と低比誘電率、低誘電
損失の特性をもつガラスセラミックス焼結体となるた
め、高周波数帯域での信号処理を行う誘電体材料として
の機能を十分発揮し、多層配線基板や回路部品用途に好
適に使用できる。
When the low-temperature sintered dielectric material for high frequency waves of the present invention is used, since the firing temperature is 1000 ° C. or less, it can be fired simultaneously with silver or copper conductor material. Moreover, the relative dielectric constant is 3
-4.Since it is a glass-ceramic sintered body with low relative dielectric constant and low dielectric loss as dielectric loss of 0.003 or less, it fully demonstrates its function as a dielectric material for signal processing in a high frequency band. However, it can be suitably used for multilayer wiring boards and circuit component applications.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 質量百分率で、酸化物に換算してSiO
2 70〜85%、B 23 10〜25%、K2O 0.5
〜5%、Al23 0.01〜1%からなるホウ珪酸ガ
ラス50〜90%とα−石英、α−クリストバライト、
β−トリジマイトの群から選ばれる1種以上のSiO2
フィラー10〜50%からなることを特徴とする高周波
用低温焼結誘電体材料。
1. The method according to claim 1, wherein the mass percentage is SiO
Two 70-85%, B TwoOThree 10-25%, KTwoO 0.5
~ 5%, AlTwoOThree Borosilicate gas consisting of 0.01-1%
50-90% of lath and α-quartz, α-cristobalite,
at least one SiO selected from the group of β-tridymiteTwo
High frequency characterized by comprising 10 to 50% of filler
For low temperature sintered dielectric material.
【請求項2】 質量百分率で、酸化物に換算してSiO
2 70〜85%、B 23 10〜25%、K2O 0.
5〜5%、Al23 0.01〜1%からなるホウ珪酸
ガラス50〜90%とα−石英、α−クリストバライ
ト、β−トリジマイトの群から選ばれる1種以上のSi
2フィラー10〜50%からなる原料粉末を焼結させ
てなることを特徴とする焼結体。
2. In terms of mass percentage, converted to oxides,
Two 70-85%, B TwoOThree 10-25%, KTwoO 0.
5-5%, AlTwoOThree Borosilicate consisting of 0.01-1%
50-90% glass and α-quartz, α-Cristobaray
And at least one Si selected from the group of β-tridymite
OTwoSintering raw material powder consisting of 10-50% filler
A sintered body characterized by comprising:
【請求項3】 1〜20GHzでの比誘電率が3〜4、
誘電損失が0.003以下、熱膨張係数が4〜7.5p
pm/℃であることを特徴とする請求項2の焼結体。
3. The dielectric constant at 1 to 20 GHz is 3 to 4,
Dielectric loss is 0.003 or less, coefficient of thermal expansion is 4-7.5p
3. The sintered body according to claim 2, wherein the sintering temperature is pm / ° C.
JP2000386288A 2000-12-20 2000-12-20 Low-frequency sintered dielectric material for high frequency and its sintered body Expired - Lifetime JP4569000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000386288A JP4569000B2 (en) 2000-12-20 2000-12-20 Low-frequency sintered dielectric material for high frequency and its sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000386288A JP4569000B2 (en) 2000-12-20 2000-12-20 Low-frequency sintered dielectric material for high frequency and its sintered body

Publications (2)

Publication Number Publication Date
JP2002187768A true JP2002187768A (en) 2002-07-05
JP4569000B2 JP4569000B2 (en) 2010-10-27

Family

ID=18853408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000386288A Expired - Lifetime JP4569000B2 (en) 2000-12-20 2000-12-20 Low-frequency sintered dielectric material for high frequency and its sintered body

Country Status (1)

Country Link
JP (1) JP4569000B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621195B1 (en) * 2004-02-06 2006-09-13 주식회사 아이엠텍 LTCC Ceramic Powder Composition and Manufacturing Method Of The Same
KR101248913B1 (en) 2011-03-29 2013-04-01 순천향대학교 산학협력단 Synthesis of bio-active glass powders by the ultrasonic energy assisted hydrothermal method and their production method
WO2022191020A1 (en) * 2021-03-12 2022-09-15 株式会社村田製作所 Glass ceramic material, laminate, and electronic component
WO2022230475A1 (en) * 2021-04-30 2022-11-03 日本電気硝子株式会社 Glass ceramic dielectric material, sintered body, and circuit member for high-frequency use
US11760686B2 (en) 2018-12-20 2023-09-19 Murata Manufacturing Co., Ltd. Glass ceramic material, laminate, and electronic component
US11903126B2 (en) 2018-12-20 2024-02-13 Murata Manufacturing Co., Ltd. Laminate, electronic component, and laminate production method
US11924968B2 (en) 2018-12-21 2024-03-05 Murata Manufacturing Co., Ltd. Layered body and electronic component

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185921A1 (en) 2015-05-15 2016-11-24 株式会社村田製作所 Low-temperature-sintering ceramic material, ceramic sintered body, and ceramic electronic component
DE102018112069A1 (en) * 2018-05-18 2019-11-21 Schott Ag Use of a flat glass in electronic components

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328171A (en) * 1989-06-23 1991-02-06 Nec Corp Ceramic composition material
JPH03141153A (en) * 1989-10-25 1991-06-17 Nec Corp Inorganic composition having low-temperature sintering property and low dielectric constant
JPH0412639B2 (en) * 1982-12-13 1992-03-05 Hitachi Ltd
JPH11302075A (en) * 1998-04-17 1999-11-02 Fuji Elelctrochem Co Ltd Low temperature sintered dielectric porcelain composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412639B2 (en) * 1982-12-13 1992-03-05 Hitachi Ltd
JPH0328171A (en) * 1989-06-23 1991-02-06 Nec Corp Ceramic composition material
JPH03141153A (en) * 1989-10-25 1991-06-17 Nec Corp Inorganic composition having low-temperature sintering property and low dielectric constant
JPH11302075A (en) * 1998-04-17 1999-11-02 Fuji Elelctrochem Co Ltd Low temperature sintered dielectric porcelain composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621195B1 (en) * 2004-02-06 2006-09-13 주식회사 아이엠텍 LTCC Ceramic Powder Composition and Manufacturing Method Of The Same
KR101248913B1 (en) 2011-03-29 2013-04-01 순천향대학교 산학협력단 Synthesis of bio-active glass powders by the ultrasonic energy assisted hydrothermal method and their production method
US11760686B2 (en) 2018-12-20 2023-09-19 Murata Manufacturing Co., Ltd. Glass ceramic material, laminate, and electronic component
US11903126B2 (en) 2018-12-20 2024-02-13 Murata Manufacturing Co., Ltd. Laminate, electronic component, and laminate production method
US11924968B2 (en) 2018-12-21 2024-03-05 Murata Manufacturing Co., Ltd. Layered body and electronic component
WO2022191020A1 (en) * 2021-03-12 2022-09-15 株式会社村田製作所 Glass ceramic material, laminate, and electronic component
WO2022230475A1 (en) * 2021-04-30 2022-11-03 日本電気硝子株式会社 Glass ceramic dielectric material, sintered body, and circuit member for high-frequency use

Also Published As

Publication number Publication date
JP4569000B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP3240271B2 (en) Ceramic substrate
JP4569000B2 (en) Low-frequency sintered dielectric material for high frequency and its sintered body
JP3943341B2 (en) Glass ceramic composition
JP4228344B2 (en) Glass powder, glass ceramic dielectric material, sintered body, and circuit member for high frequency
JP3419291B2 (en) Low-temperature sintered ceramic composition and multilayer ceramic substrate using the same
JP3678260B2 (en) Glass ceramic composition
JP3890779B2 (en) Glass ceramic composition
JPH0758454A (en) Glass ceramic multilayered substrate
WO2000076938A1 (en) Glass ceramics composition and electronic parts and multilayered lc multiple component using the same
JPH1036167A (en) Low-temperature sintering inorganic composition
JP4288656B2 (en) Glass ceramic dielectric material
JP3494184B2 (en) Glass ceramic composition
JP4442077B2 (en) Porcelain composition for high frequency components
JP4047050B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board using the same
JP2000063182A (en) Production of ceramic raw material capable of being sintered at low temperature
JPH1160266A (en) Glass and glass ceramic material
JPS62252340A (en) Sintered glass and sintered glass ceramic
JP3560069B2 (en) Low-temperature sintering ceramic substrate, its material, and its manufacturing method
WO2022064906A1 (en) Glass ceramic dielectric material, sintered body, and circuit member for high-frequency use
JP2001348268A (en) Low temperature sintered dielectric material and dielectric
JP3336176B2 (en) Glass ceramic sintered body
JPH04359810A (en) Dielectric ceramic composition and dielectric filter using dielectric ceramic composition and its manufacture
JP3341782B2 (en) Ceramic substrate and method of manufacturing the same
JPH04130052A (en) Starting material composition for ceramic substrate and production of substrate using the same
KR20220044497A (en) Glass powder, dielectric material, sintered compact and circuit member for high frequency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4569000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term