JP2000063182A - Production of ceramic raw material capable of being sintered at low temperature - Google Patents

Production of ceramic raw material capable of being sintered at low temperature

Info

Publication number
JP2000063182A
JP2000063182A JP10227222A JP22722298A JP2000063182A JP 2000063182 A JP2000063182 A JP 2000063182A JP 10227222 A JP10227222 A JP 10227222A JP 22722298 A JP22722298 A JP 22722298A JP 2000063182 A JP2000063182 A JP 2000063182A
Authority
JP
Japan
Prior art keywords
raw material
ceramic
ceramic raw
firing
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10227222A
Other languages
Japanese (ja)
Inventor
Etsuro Kato
加藤悦朗
Shiyuntei Ri
春廷 李
Masato Nakada
中田政人
Toshinori Akimatsu
秋松利典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARUWA CERAMIC KK
Original Assignee
MARUWA CERAMIC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARUWA CERAMIC KK filed Critical MARUWA CERAMIC KK
Priority to JP10227222A priority Critical patent/JP2000063182A/en
Publication of JP2000063182A publication Critical patent/JP2000063182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a ceramic raw material which can be sintered at a low temperature and is useful as a precursor for a sintered product, to provide a method for producing the ceramic sintered product using the same, and to provide a method for producing a multi-layered ceramic circuit board. SOLUTION: This method for producing a ceramic raw material comprises preparing starting raw materials satisfying the below conditions (1), (2) and (3), and subsequently calcining the starting raw materials in a temperature range of 800-900 deg.C. (1), The starting raw materials comprises (a) kaolinitic or halloysitic clay powder, (b) calcium carbonate powder, and (c) silica powder. (2), The mixture composition ratio (converted into the oxides after calcination) of the above raw materials (a), (b) and (c) is expressed by the inequalities: 0.15<=(x)<=0.45, 0.05<=(y)<=0.20, 0.45<=(z)<=0.75 [(x)+(V)+(z)=1.00], when a mol composition formula is xCaO.yAl2O3. zSiO2. (3). The starting raw materials are a fine particle mixture having an average particle diameter of <=2.0 μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は,セラミック原材料,セラミック
焼結体及び多層セラミック配線板の製造方法に関し,特
に電気部品用低温焼成セラミック基板,中でも多層配線
基板用セラミックやマイクロ波誘電体基板などとして有
用な,アルカリ,酸化ホウ素や酸化鉛をほとんど含ま
ず,かつ1000℃以下の低い温度で焼結化及び緻密化
が可能なセラミック原材料の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a ceramic raw material, a ceramic sintered body and a multilayer ceramic wiring board, and is particularly useful as a low temperature fired ceramic substrate for electric parts, especially as a ceramic for a multilayer wiring board or a microwave dielectric substrate. , A method for producing a ceramic raw material containing almost no alkali, boron oxide or lead oxide and capable of being sintered and densified at a low temperature of 1000 ° C. or lower.

【0002】[0002]

【従来技術】携帯電話に代表される電子機器の小型化に
伴い,電子部品を実装する基板に,磁器シートを複数枚
積層してなる多層配線基板が利用されている。また,機
器を構成する個々の部品についても小型化が要求され,
これまでの積層チップコンデンサーに加えて,高周波用
チップインダクターやチップLCフィルターなどのよう
な小型積層部品が開発されている。
2. Description of the Related Art With the miniaturization of electronic devices represented by mobile phones, a multilayer wiring board in which a plurality of porcelain sheets are laminated is used as a board on which electronic components are mounted. In addition, miniaturization is also required for individual parts that make up the equipment,
In addition to the conventional multilayer chip capacitors, small multilayer components such as high frequency chip inductors and chip LC filters have been developed.

【0003】従来,上記のような多層配線基板用材料と
して,アルミナセラミックが一般に使用される。しかし
ながら,アルミナセラミックは焼結温度が1500℃以
上と高いため,同時焼成の回路配線用導電材料としては
WやMoを使用する必要がある。この場合,非酸化雰囲
気での高温焼成が必要となるほか,回路配線の電気抵抗
による損失が高いという欠点があった。
Conventionally, alumina ceramics have been generally used as the material for the multilayer wiring board as described above. However, since the sintering temperature of alumina ceramics is as high as 1500 ° C. or higher, it is necessary to use W or Mo as a conductive material for co-firing circuit wiring. In this case, high temperature firing in a non-oxidizing atmosphere is required, and there is a drawback in that loss due to electric resistance of circuit wiring is high.

【0004】そこで,これらの問題を解決するために,
低温で焼結可能な基板用磁器組成物が開発された。その
1つとして,900℃以下の低温で焼結可能なセラミッ
ク原材料があげられる。この低温焼結セラミック原材料
は,多層配線基板に用いる場合には,内部配線用の金属
として導電性の高い銀が使用できる。このため,酸化雰
囲気での焼成が可能となるほか,金属配線の電気抵抗に
よる損失が大幅に低減される。
Therefore, in order to solve these problems,
A porcelain composition for substrates that can be sintered at low temperatures has been developed. One of them is a ceramic raw material that can be sintered at a low temperature of 900 ° C. or lower. When this low-temperature sintered ceramic raw material is used for a multilayer wiring board, highly conductive silver can be used as a metal for internal wiring. For this reason, firing in an oxidizing atmosphere is possible and loss due to the electrical resistance of the metal wiring is greatly reduced.

【0005】このような低温で焼結可能なセラミック材
料は,主として結晶化ガラス系及びガラスセラミック複
合系の2種類に大別できる。結晶化ガラス系のセラミッ
ク原材料の代表的製造方法は,コージェライトに近い組
成の原料に,P25やB23を添加し,高温で溶融させ
てガラスを作製した後,このガラスを微粉砕して粉末と
し,続いて成形して焼成,結晶化させる方法である。
Such low-temperature sinterable ceramic materials can be roughly classified into two types, that is, a crystallized glass type and a glass ceramic composite type. A typical method for producing a crystallized glass-based ceramic raw material is to add P 2 O 5 or B 2 O 3 to a raw material having a composition close to cordierite, melt the mixture at high temperature to prepare the glass, and then use this glass. It is a method of finely pulverizing to powder, followed by molding, firing and crystallization.

【0006】また,ガラスセラミック複合系の製造方法
は,例えば,アルミナ微粒子とガラス粉末とを混合し,
これを成形焼成する方法である。このガラスとして,ホ
ウ珪酸ガラスや鉛系ガラスを使用するのが一般的であ
る。
Further, a method for producing a glass-ceramic composite system is, for example, to mix alumina fine particles and glass powder,
This is a method of forming and firing. Borosilicate glass and lead-based glass are generally used as this glass.

【0007】[0007]

【解決しようとする課題】しかしながら,これらのセラ
ミック原材料はいずれも低温焼結できるが,以下のよう
な問題点がある。まず,いずれの方法においても,ガラ
ス化する必要があるため,原料を高温で溶融しなければ
ならず,しかも得られるガラスは粉砕困難であり,高コ
ストとなってしまう。
However, although all of these ceramic raw materials can be sintered at low temperature, they have the following problems. First of all, in any of the methods, it is necessary to vitrify, so the raw material must be melted at a high temperature, and the obtained glass is difficult to crush, resulting in high cost.

【0008】次に,セラミック原材料は,一価金属イオ
ンや,酸化ホウ素,酸化鉛を多く含有することが一般的
である。これらの化合物は焼成時に蒸発したり,導電材
料と反応したり,炉に損傷を与えたりすることが多い。
また,一価金属イオンを多く含有するセラミック原材料
を用いてセラミック配線板を作製すると,セラミック基
板の絶縁抵抗が低下したり,耐電圧が低下したりして,
信頼性の面においても問題である。
Next, the ceramic raw material generally contains a large amount of monovalent metal ions, boron oxide and lead oxide. These compounds often evaporate during firing, react with conductive materials, or damage the furnace.
In addition, when a ceramic wiring board is manufactured using a ceramic raw material that contains a large amount of monovalent metal ions, the insulation resistance of the ceramic substrate decreases and the withstand voltage decreases,
It is also a problem in terms of reliability.

【0009】そこで,発明者らは鋭意研究した結果,全
く新しい着想が得られ,本発明をなすに至った。即ち,
本発明はかかる従来の問題点に鑑み,低温で焼結可能
な,しかも一価アルカリ金属イオン,酸化ホウ素及び酸
化鉛を含まず,導電材料との反応がなく炉に損傷を与え
ない,焼結体の前駆体としてのセラミック原材料の製造
方法,及びこれを用いたセラミック焼結体の製造方法並
びに多層セラミック配線板の製造方法を提供しようとす
るものである。
Then, as a result of earnest research, the inventors have obtained a completely new idea and completed the present invention. That is,
In view of such conventional problems, the present invention is capable of sintering at a low temperature, does not contain monovalent alkali metal ions, boron oxide and lead oxide, does not react with a conductive material, and does not damage the furnace. A method of manufacturing a ceramic raw material as a precursor of a body, a method of manufacturing a ceramic sintered body using the same, and a method of manufacturing a multilayer ceramic wiring board.

【0010】[0010]

【課題の解決手段】本発明は,(1)(a)カオリナイ
ト質もしくはハローサイト質の粘土粉末,(b)炭酸カ
ルシウム粉末,及び(c)シリカ粉末からなり,(2)
上記(a),(b),及び(c)の混合組成比は,灼熱
後の酸化物換算で,モル組成式がxCaO・yAl23
・zSiO2で表したとき,0.15≦x≦0.45,
0.05≦y≦0.20,0.45≦z≦0.75(x
+y+z=1.00)の範囲内であり,かつ(3)平均
粒径が2.0μm以下の微粒子混合物であるという条件
(1),(2),(3)を満足する出発原料を準備する
工程と,該出発原料を,800〜900℃の温度範囲内
で仮焼する工程とからなることを特徴とするセラミック
原材料の製造方法である。
The present invention comprises (1) (a) kaolinite or halosite clay powder, (b) calcium carbonate powder, and (c) silica powder, and (2)
The mixed composition ratios of (a), (b), and (c) above have a molar composition formula of xCaO · yAl 2 O 3 in terms of oxides after burning.
・ When expressed by zSiO 2 , 0.15 ≦ x ≦ 0.45
0.05 ≦ y ≦ 0.20, 0.45 ≦ z ≦ 0.75 (x
+ Y + z = 1.00), and (3) prepare a starting material satisfying the conditions (1), (2), and (3) that is a mixture of fine particles having an average particle size of 2.0 μm or less. A method for producing a ceramic raw material, which comprises a step and a step of calcining the starting material within a temperature range of 800 to 900 ° C.

【0011】本発明において最も注目すべきことは,上
記所定の出発原料を上記所定の温度で仮焼することであ
る。この仮焼によって,(a)成分の粘土質及び(b)
炭酸カルシウムの分解が同時に進行し,これにより非常
に反応性の高い分解生成物が得られる。そして分解生成
物同士が反応して固溶体に近い状態の非晶質微粒子とな
る。これにより,低温焼結可能なセラミック原材料が得
られる。
What is most noticeable in the present invention is that the predetermined starting material is calcined at the predetermined temperature. By this calcination, (a) component clay and (b)
Decomposition of calcium carbonate proceeds at the same time, resulting in highly reactive decomposition products. Then, the decomposition products react with each other to form amorphous fine particles in a state close to a solid solution. As a result, a low temperature sinterable ceramic raw material is obtained.

【0012】本発明により得られたセラミック原材料
は,機械粉砕により容易に粉砕し微粒子化ができる。ま
た,該微粒子は非晶質相が主な構成相である。そのた
め,極めて焼結活性が高い。よって,セラミック原材料
は,1000℃以下の低温焼成によって,緻密化し,セ
ラミック焼結体を形成することができる。また,上記セ
ラミック原材料は,一価アルカリ金属イオン,酸化ホウ
素及び酸化鉛を含まないため,焼成によって,導電材料
との反応がなく焼成炉に損傷を与えないだけでなく,製
品の電気的な信頼性が向上する。
The ceramic raw material obtained by the present invention can be easily pulverized into fine particles by mechanical pulverization. The fine particles are mainly composed of an amorphous phase. Therefore, the sintering activity is extremely high. Therefore, the ceramic raw material can be densified by low-temperature firing at 1000 ° C. or less to form a ceramic sintered body. In addition, since the above ceramic raw material does not contain monovalent alkali metal ions, boron oxide and lead oxide, it does not react with the conductive material by firing and does not damage the firing furnace. The property is improved.

【0013】次に,本発明の詳細について説明する。 (出発原料)出発原料は,(a)カオリナイト質もしく
はハローサイト質の粘土粉末,(b)炭酸カルシウム粉
末,及び(c)シリカ粉末からなる。
Next, details of the present invention will be described. (Starting Material) The starting material is composed of (a) kaolinite or halosite clay powder, (b) calcium carbonate powder, and (c) silica powder.

【0014】上記組成式のxは,出発原料の灼熱後の酸
化物中CaOのモル比率を示している。xの範囲は0.
15≦x≦0.45である。これにより,仮焼により得
られるセラミック原材料は,1000℃以下の低温焼成
によっても,微粒子が緻密化し焼結する。そのため,低
温焼成前駆体としての効果を十分に発揮できるセラミッ
ク原材料を得ることができる。
The x in the above composition formula represents the molar ratio of CaO in the oxide of the starting material after burning. The range of x is 0.
15 ≦ x ≦ 0.45. As a result, in the ceramic raw material obtained by calcination, fine particles are densified and sintered even by low temperature firing at 1000 ° C. or less. Therefore, it is possible to obtain a ceramic raw material that can sufficiently exert the effect as a low temperature firing precursor.

【0015】一方,xが0.15より少ない場合には,
セラミック原材料の低温焼成用前駆体としての効果が十
分ではなく,緻密になる焼成温度が1000℃より高く
なってしまう。また,xが0.45より多い場合には,
セラミック原材料の焼成時にカルシウムシリケート(2
CaO・SiO2)が析出して焼結性が悪くなると共
に,耐水性が著しく悪くなる。
On the other hand, when x is less than 0.15,
The effect of the ceramic raw material as a precursor for low temperature firing is not sufficient, and the firing temperature at which it becomes dense becomes higher than 1000 ° C. If x is greater than 0.45,
Calcium silicate (2
CaO.SiO 2 ) precipitates and the sinterability deteriorates, and the water resistance also deteriorates significantly.

【0016】上記組成式中のyは,出発原料の灼熱後の
酸化物中のAl23のモル比率を示している。yの範囲
は0.05≦y≦0.20である。これにより,セラミ
ック原材料を焼成したときの焼結性が向上し耐水性が高
くなる。一方,yが0.05より少ない場合には,焼成
時にカルシウムシリケート(2CaO・SiO2)が析
出して焼結性が悪くなり,耐水性が悪くなる。また,y
が0.20を超える場合には,セラミック原材料の焼成
前駆体としての効果が低く,1000℃より高い温度で
焼成しても,十分に緻密化しない。
In the above composition formula, y represents the molar ratio of Al 2 O 3 in the oxide of the starting material after burning. The range of y is 0.05 ≦ y ≦ 0.20. As a result, the sinterability when firing the ceramic raw material is improved and the water resistance is increased. On the other hand, when y is less than 0.05, calcium silicate (2CaO.SiO 2 ) precipitates during firing, resulting in poor sinterability and poor water resistance. Also, y
When the value exceeds 0.20, the effect as a firing precursor of the ceramic raw material is low, and even if firing is performed at a temperature higher than 1000 ° C., the densification is not sufficient.

【0017】上記組成式中のzは,出発原料の灼熱後の
酸化物中のSiO2(シリカ)のモル比率を示してい
る。zの範囲は0.45 ≦z≦0.75である。これ
により,焼結性が高く緻密化しやすいセラミック原材料
が得られる。一方,zが0.45未満の場合には,仮焼
後の非晶質粒子,即ちセラミック原材料からゲーレナイ
トの結晶が析出する。そのため,かかるセラミック原材
料を焼成しても,十分緻密な焼結体は得られなくなる。
また,zが0.75より多い場合には,仮焼後の生成物
に,非結晶微粒子のほかにシリカ結晶粒子が多く存在す
る。そのため,焼結時の粘性流動が不十分となり,10
00℃より高い温度においても緻密な焼結体が得られな
い。
In the above composition formula, z represents the molar ratio of SiO 2 (silica) in the oxide of the starting material after burning. The range of z is 0.45 ≦ z ≦ 0.75. As a result, a ceramic raw material having high sinterability and easily densified can be obtained. On the other hand, if z is less than 0.45, amorphous grains after calcination, that is, crystals of gerenite are precipitated from the ceramic raw material. Therefore, even if such a ceramic raw material is fired, a sufficiently dense sintered body cannot be obtained.
Further, when z is more than 0.75, many silica crystal particles are present in the product after calcination in addition to the non-crystalline fine particles. Therefore, viscous flow during sintering becomes insufficient, and
A dense sintered body cannot be obtained even at a temperature higher than 00 ° C.

【0018】また,出発原料は平均粒径2.0μm以下
の微粒子混合物である。これにより,仮焼時の分解生成
物間の固溶化が短時間で完了し,低温で焼結可能な,主
に非結晶質微粒子からなるセラミック原材料が得られ
る。一方,2.0μmを超える場合には,仮焼時の分解
生成物間の固溶化が完了するのに極めて時間がかかり,
その間,生成した非結晶質微粒子から結晶化が始まる。
このため,微粒子は焼成プロセスにおいて粘性流動が不
十分となり,また焼結し難くなり,低温焼成の前駆体と
しての効果が低くなる。
The starting material is a fine particle mixture having an average particle size of 2.0 μm or less. As a result, solid solution between decomposition products during calcination is completed in a short time, and a ceramic raw material mainly composed of amorphous fine particles, which can be sintered at low temperature, is obtained. On the other hand, when it exceeds 2.0 μm, it takes an extremely long time to complete the solid solution between the decomposition products during calcination,
During that time, crystallization starts from the generated amorphous fine particles.
Therefore, the viscous flow of the fine particles becomes insufficient in the firing process, and it becomes difficult to sinter, and the effect as a precursor for low temperature firing becomes low.

【0019】出発原料の平均粒径を2.0μm以下にす
るには,例えば,上記(a),(b),(c)の3成分
を混合しこれをボールミルなどで粉砕してもよいし,上
記3成分の混合物が上記平均粒径となる大きさのものを
用いてもよい。
In order to make the average particle size of the starting material 2.0 μm or less, for example, the three components (a), (b) and (c) may be mixed and pulverized with a ball mill or the like. It is also possible to use a mixture of the above three components having such a size that the above average particle diameter is obtained.

【0020】(仮焼)次に,上記出発原料を800〜9
00℃という狭い温度範囲内で仮焼を行なう。これによ
り,出発原料の分解及び固溶体化が十分に行われる。こ
のため,仮焼により得られたセラミック原材料を焼成し
たときに焼成収縮が小さく,クラックや欠陥を抑制でき
る。一方,仮焼温度が800℃より低い場合は,長時間
の仮焼によっても,出発原料の分解及び固溶体化が不十
分となる。このため,セラミック原材料の焼成収縮率が
高くなり,焼成時に成分分解が起こって焼結体にクラッ
クや欠陥を引き起こすことが多い。実際に,このような
問題が起こらないようにするためには,仮焼によって得
られるセラミック原材料における未分解物の比率を10
%以下にする必要がある。本発明の製造方法では,セラ
ミック原材料の未分解物の比率は10%以下になるた
め,焼結体のクラックなどの欠陥は生じ難い。また,仮
焼温度が900℃より高い場合には,仮焼段階において
アノーサイトやゲーレナイトの結晶化が始まり,この仮
焼後のセラミック原材料は前駆体の役割を果たせず,1
000℃以下の低温では緻密化しない(図1参照)。
(Calcination) Next, the above starting materials are added in the range of 800 to 9
Calcination is performed within a narrow temperature range of 00 ° C. As a result, the decomposition and solid solution of the starting material are sufficiently performed. Therefore, when the ceramic raw material obtained by calcination is fired, the firing shrinkage is small and cracks and defects can be suppressed. On the other hand, when the calcination temperature is lower than 800 ° C., the decomposition and solid solution of the starting materials become insufficient even after a long time calcination. For this reason, the firing shrinkage rate of the ceramic raw material becomes high, and the components are often decomposed during firing to cause cracks and defects in the sintered body. Actually, in order to prevent such a problem from occurring, the ratio of undecomposed material in the ceramic raw material obtained by calcination is set to 10
Must be less than or equal to%. In the manufacturing method of the present invention, the ratio of the undecomposed material of the ceramic raw material is 10% or less, so that defects such as cracks in the sintered body are hard to occur. Further, when the calcination temperature is higher than 900 ° C, crystallization of anorthite and grenite starts at the calcination stage, and the ceramic raw material after the calcination does not play the role of the precursor.
It does not densify at low temperatures below 000 ° C (see Fig. 1).

【0021】(セラミック焼結体の製造方法)上記セラ
ミック原材料を用いてセラミック焼結体を製造するにあ
たっては,例えば,上記セラミック原材料に,機能性酸
化物粉末を5〜35wt%の割合で添加混合し,成形し
て成形体を得る工程と,該成形体を1000℃以下の低
温で焼成する工程とからなることを特徴とするセラミッ
ク焼結体の製造方法がある。
(Manufacturing Method of Ceramic Sintered Body) In manufacturing a ceramic sintered body using the above-mentioned ceramic raw material, for example, functional oxide powder is added to and mixed with the above-mentioned ceramic raw material at a ratio of 5 to 35 wt%. Then, there is provided a method for producing a ceramic sintered body, which comprises a step of molding and obtaining a molded body and a step of firing the molded body at a low temperature of 1000 ° C. or lower.

【0022】本発明においては,セラミック原材料に機
能性酸化粉末を所定量添加してこれを焼成している。そ
のため,低温で焼結する特性を維持しながら,セラミッ
ク焼結体の機械的特性,熱的特性,または電気的特性を
改善,付与することが可能である。また,機械的強度が
高くなり,熱伝導率も高くなる。本発明によれば,10
00℃以下の温度で焼成することによって,安価に安定
して均質な機能性セラミック焼結体を容易に製造でき,
大量生産を実現できる。また,上記セラミック原材料
は,一価アルカリ金属イオン,酸化ホウ素及び酸化鉛を
含まないため,焼成によって,導電材料との反応がなく
焼成炉に損傷を与えない。
In the present invention, a predetermined amount of the functional oxide powder is added to the ceramic raw material and the ceramic raw material is fired. Therefore, it is possible to improve and impart mechanical properties, thermal properties, or electrical properties of the ceramic sintered body while maintaining the property of sintering at a low temperature. In addition, the mechanical strength increases and the thermal conductivity also increases. According to the invention, 10
By firing at a temperature below 00 ° C, a stable and homogeneous functional ceramic sintered body can be easily manufactured at low cost,
Mass production can be realized. In addition, since the ceramic raw material does not contain monovalent alkali metal ions, boron oxide and lead oxide, the firing does not react with the conductive material and does not damage the firing furnace.

【0023】また,セラミック原材料は,上記のごとく
反応活性な非晶質焼結前駆体である。このため,セラミ
ック原材料に機能性酸化物粉末を添加混合しこれを焼成
すると,非晶質前駆体の結晶化が機能性酸化物粒子の表
面から始まり,非晶質相は液相のようにふるまう。その
ため,900℃以下の低い温度で液相焼結が進み,緻密
化するという効果が得られる。
Further, the ceramic raw material is a reaction-active amorphous sintering precursor as described above. Therefore, when the functional oxide powder is added to the ceramic raw material and mixed and fired, crystallization of the amorphous precursor starts from the surface of the functional oxide particles, and the amorphous phase behaves like a liquid phase. . Therefore, the effect that the liquid phase sintering proceeds at a low temperature of 900 ° C. or lower and becomes denser is obtained.

【0024】一方,5wt%未満の場合には,焼結体に
ガラス質相が多くなり,脆くなる上,上記諸特性を十分
に発揮するセラミック焼結体が得られない。また,35
wt%を超える場合には,低温での緻密化が困難とな
る。
On the other hand, if it is less than 5 wt%, the sintered body will have a large amount of glassy phase and become brittle, and a ceramic sintered body that fully exhibits the above-mentioned properties cannot be obtained. Also, 35
When it exceeds wt%, it becomes difficult to densify at low temperature.

【0025】上記機能性酸化物粉末は,例えば,低誘電
率酸化物,高熱伝導性酸化物,強誘電体酸化物,及び強
磁性酸化物のグループから選ばれる1種または2種以上
である。上記低誘電率酸化物としては,例えば,シリ
カ,コーディエライト,ステアタイト,フォルステライ
ト等がある。また,上記高熱伝導性酸化物としては,例
えば,アルミナ等がある。また,上記強誘電体酸化物と
しては,例えば,チタン酸バリウム等がある。また強磁
性酸化物としては,例えば,フェライト等がある。
The above-mentioned functional oxide powder is, for example, one kind or two or more kinds selected from the group of low dielectric constant oxide, high thermal conductivity oxide, ferroelectric oxide, and ferromagnetic oxide. Examples of the low dielectric constant oxide include silica, cordierite, steatite, and forsterite. Further, examples of the high thermal conductive oxide include alumina. The ferroelectric oxide may be barium titanate, for example. The ferromagnetic oxide may be ferrite, for example.

【0026】次に,上記機能性酸化物粉末を添加した上
記セラミック原材料を成形して成形体を得る。成形方法
としては,例えば,スリップキャスティング法,ドクタ
ーブレード法などがあるが,これらに限定されない。
Next, the ceramic raw material to which the functional oxide powder is added is molded to obtain a molded body. Examples of the molding method include, but are not limited to, a slip casting method and a doctor blade method.

【0027】次に,上記成形体を1000℃以下の低温
で焼成する。これにより,成形体は,緻密化し,焼結し
て,セラミック焼結体が得られる。焼成温度が1000
℃を超える場合には,焼成に要するエネルギーが大きく
なり,省エネが困難となる。また,AgやCuのような
導電率の高い材料は融点が低いため,高い焼成温度で
は,これらを電極として用いることができない。また,
焼成温度の下限は,800℃であることが好ましい。8
00℃未満の場合には,セラミック原材料の緻密化が不
十分となる。
Next, the compact is fired at a low temperature of 1000 ° C. or lower. As a result, the compact is densified and sintered to obtain a ceramic sintered body. Firing temperature is 1000
If the temperature exceeds ℃, the energy required for firing becomes large and it becomes difficult to save energy. In addition, since materials with high conductivity such as Ag and Cu have low melting points, they cannot be used as electrodes at high firing temperatures. Also,
The lower limit of the firing temperature is preferably 800 ° C. 8
If the temperature is lower than 00 ° C, the densification of the ceramic raw material becomes insufficient.

【0028】(セラミック焼結体の用途)本発明の製造
方法は,電気部品用低温焼成セラミック基板,特に多層
配線基板用セラミックやマイクロ波誘電体基板などの新
規な製造方法として極めて有用である。また,その他に
も,皿,置物,コーティング用の材料などの用途があ
る。
(Use of Ceramic Sintered Body) The manufacturing method of the present invention is extremely useful as a novel manufacturing method for low-temperature fired ceramic substrates for electric parts, particularly ceramics for multilayer wiring substrates and microwave dielectric substrates. There are other uses such as plates, figurines, and coating materials.

【0029】(多層セラミック配線板の製造方法)ま
た,上記セラミック焼結体の製造方法を利用して,多層
セラミック配線板を製造することもできる。例えば,上
記セラミック原材料に,機能性酸化物粉末を5〜35w
t%の割合で添加混合し,シート状に成形して生シート
を得る工程と,該生シートの表面に導体回路を印刷する
工程と,上記生シートを複数枚積層,圧着して積層体を
得る工程と,上記積層体を1000℃以下の低温で焼成
する工程とからなることを特徴とする多層セラミック配
線板の製造方法がある。
(Manufacturing Method of Multilayer Ceramic Wiring Board) A multilayer ceramic wiring board can also be manufactured by utilizing the above-mentioned manufacturing method of the ceramic sintered body. For example, 5 to 35w of functional oxide powder is added to the above ceramic raw material.
A step of adding and mixing at a ratio of t% to obtain a raw sheet by molding into a sheet shape, a step of printing a conductor circuit on the surface of the raw sheet, and laminating and pressing a plurality of the raw sheets to form a laminated body. There is a method for producing a multilayer ceramic wiring board, which comprises the steps of obtaining and the step of firing the laminate at a low temperature of 1000 ° C. or lower.

【0030】本製造方法においては,上記セラミック原
材料と機能性酸化物粉末とからなる生シートを1000
℃以下の低温で焼結できる。このため,安価で電気伝導
率の高い導体材料,例えばAg,Cuなどを電極として
用いることができる。そのため,1000℃の低温焼成
によって,生シートと導体回路材料とを同時焼結させる
ことができる。したがって,セラミック基板と導体回路
とが一体化した多層セラミック配線板を得ることができ
る。
In the present manufacturing method, 1000 sheets of green sheet made of the above ceramic raw material and functional oxide powder are used.
It can be sintered at low temperature below ℃. Therefore, it is possible to use an inexpensive conductive material having a high electric conductivity, such as Ag or Cu, as an electrode. Therefore, it is possible to simultaneously sinter the green sheet and the conductor circuit material by firing at a low temperature of 1000 ° C. Therefore, it is possible to obtain a multilayer ceramic wiring board in which the ceramic substrate and the conductor circuit are integrated.

【0031】焼成温度の下限は,上記セラミック焼結体
の製造方法の場合と同様であることが好ましい。また,
機能性酸化物粉末は,上記と同様のものを用いることが
好ましい。上記導体回路は,例えば,Ag,Cuからな
ることが好ましい。これらは,非常に導電率が高いため
である。また,その他にも,導体回路としては,Ag/
PdやAg/Ptのような導電性材料もある。
The lower limit of the firing temperature is preferably the same as in the case of the above-mentioned method for producing a ceramic sintered body. Also,
It is preferable to use the same functional oxide powder as that described above. The conductor circuit is preferably made of Ag or Cu, for example. These are because the conductivity is very high. In addition, as a conductor circuit, Ag /
There are also conductive materials such as Pd and Ag / Pt.

【0032】上記生シートには,導体回路のほか,ビア
ホールなど,種々の機能性回路を形成することもでき
る。Ag導電材料とした場合の焼成時の条件は,脱脂を
行ってから徐熱して850〜900℃で焼成することが
好ましい。一方,Cuを導電材料とした場合には,焼成
は還元雰囲気下で行う必要がある。
In addition to the conductor circuits, various functional circuits such as via holes can be formed on the green sheet. When the Ag conductive material is used, the firing conditions are preferably degreasing, gradual heating, and firing at 850 to 900 ° C. On the other hand, when Cu is used as a conductive material, firing must be performed in a reducing atmosphere.

【0033】[0033]

【発明の実施の形態】実施形態例1 (セラミック原材料の製造)出発原料として,ニュージ
ーランドカオリン,市販炭酸カルシウム及び市販微粒シ
リカを用いた。配合組成は灼熱後の酸化物換算で,組成
式がxCaO・yAl23・zSiO2としたとき,x
=0.25,y=0.15及びz=0.60であった。
上記配合物を湿式ボールミルにて24時間粉砕混合し,
得られた粉砕物の平均粒径は1.4μmであった。これ
を乾燥した後,700〜1000℃の温度範囲内の各温
度で仮焼した。これにより,セラミック原材料を得た。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1 (Production of Ceramic Raw Material) New Zealand kaolin, commercially available calcium carbonate and commercially available finely divided silica were used as starting materials. When the composition formula is xCaO · yAl 2 O 3 · zSiO 2 in terms of oxide after burning, x is
= 0.25, y = 0.15 and z = 0.60.
Pulverize and mix the above mixture in a wet ball mill for 24 hours,
The average particle size of the obtained pulverized product was 1.4 μm. After drying this, it was calcined at each temperature within the temperature range of 700 to 1000 ° C. As a result, a ceramic raw material was obtained.

【0034】仮焼物のX線回折結果によれば,850℃
以下では炭酸カルシウムが残存し,920℃以上では,
アノーサイトが結晶化した。しかし,820℃から90
0℃の温度範囲内で仮焼した試料中には,出発原料中の
シリカの結晶以外は結晶相が見られなかった。
According to the X-ray diffraction result of the calcined product, 850 ° C.
Below, calcium carbonate remains, and above 920 ° C,
Anorthite crystallized. However, from 820 ℃ to 90
In the sample calcined within the temperature range of 0 ° C., no crystal phase was observed except the crystals of silica in the starting material.

【0035】(セラミック焼結体の製造方法)上記各温
度で仮焼したセラミック原材料に対し,α−Al23
粒子粉末を5〜50wt%添加して,混合粉砕し,乾式
加圧成形(成形圧120MPa)して,それぞれ850
℃及び900℃において1時間焼成した。これにより,
セラミック焼結体を得た。
(Manufacturing Method of Ceramic Sintered Body) 5 to 50 wt% of α-Al 2 O 3 fine particle powder is added to the ceramic raw material calcined at each of the above temperatures, mixed and pulverized, and dry pressure molding ( Molding pressure 120MPa), 850 each
Baking was performed at 0 ° C and 900 ° C for 1 hour. By this,
A ceramic sintered body was obtained.

【0036】α−Al23添加量を20wt%と一定に
したときの,セラミック原材料の仮焼温度による成形密
度および焼成密度の変化を図1に示した。成形密度は成
形体の重量及び体積からもとめられ,焼成密度は焼結体
の重量と体積からもとめられる。これらの重量と体積は
それぞれ天秤とマイクロメータで測定した。また,仮焼
後のセラミック原材料中に出発原料の未分解物がどれだ
け残っているかについては熱重量分析法によって測定
し,算出した。
FIG. 1 shows changes in the molding density and firing density depending on the calcination temperature of the ceramic raw material when the amount of α-Al 2 O 3 added was kept constant at 20 wt%. The compacting density is determined from the weight and volume of the compact, and the firing density is determined from the weight and volume of the sintered compact. Their weight and volume were measured with a balance and a micrometer, respectively. The amount of undecomposed starting material remaining in the ceramic raw material after calcination was measured and calculated by thermogravimetric analysis.

【0037】これらの密度の変化を測定した結果,90
0℃より高い仮焼温度では,セラミック原材料からアノ
ーサイトが結晶化し,十分に緻密化した焼結体が得られ
なかった。800℃から900℃の間の温度で仮焼した
場合には,十分に緻密化していた。
As a result of measuring these changes in density, 90
At a calcination temperature higher than 0 ° C, anorthite was crystallized from the ceramic raw material and a sufficiently densified sintered body could not be obtained. When it was calcined at a temperature between 800 ° C and 900 ° C, it was sufficiently densified.

【0038】850℃で仮焼したセラミック原材料に対
し,α−Al23の添加量を変化させて,上記と同様に
成形体を作製し,そして,それぞれ850℃,900℃
で焼成した。得られた焼結体の焼成嵩密度の変化を図2
に示した。アルミナ添加量が35wt%を超えた組成に
おいては緻密化が不十分であった。
With respect to the ceramic raw material which was calcined at 850 ° C., the amount of α-Al 2 O 3 added was changed to prepare a molded body in the same manner as described above, and 850 ° C. and 900 ° C., respectively.
It was baked in. Fig. 2 shows changes in the firing bulk density of the obtained sintered body.
It was shown to. The densification was insufficient in the composition in which the amount of alumina added exceeded 35 wt%.

【0039】アルミナを20wt%添加して,900℃
で焼成した焼結体は吸水率がほぼ0であり,熱膨張係数
が5.2×10-6/℃で,シリコンのそれに近かった。
マイクロ波帯域の特性を評価したところ,誘電率が7.
8,Q・f値は10000以上と,マイクロ波誘電体積
層基板として非常に優れた特性であった。
20 wt% of alumina is added, and the temperature is 900 ° C.
The sintered body fired at No. 1 had a water absorption of almost 0 and a coefficient of thermal expansion of 5.2 × 10 −6 / ° C., which was close to that of silicon.
When the characteristics in the microwave band were evaluated, the dielectric constant was 7.
8. The Q · f value was 10,000 or more, which was a very excellent characteristic as a microwave dielectric laminated substrate.

【0040】実施形態例2 実施形態例1と同様に,セラミック原材料の出発原料と
して,ニュージーランドカオリン,市販炭酸カルシウム
及び市販微粒シリカを用いた。配合組成は灼熱後の酸化
物換算で,組成式がxCaO・yAl23・zSiO2
としたとき,x=0.30,y=0.05及びz=0.
65であった。上記配合物を湿式ボールミルにて24時
間粉砕混合した。得られた粉砕物の平均粒径は1.5μ
mであった。これを乾燥した後,850℃で仮焼した。
仮焼したセラミック原材料に対し,CaZrO3微粉末
を5〜50wt%添加して,混合粉砕し,バインダーを
加え,スリップキャスティング法によってシート成形し
た。
Embodiment 2 As in Embodiment 1, New Zealand kaolin, commercially available calcium carbonate and commercially available finely divided silica were used as starting materials for the ceramic raw materials. The composition of the compound is xCaO · yAl 2 O 3 · zSiO 2 in terms of oxide after burning.
, X = 0.30, y = 0.05 and z = 0.
It was 65. The above mixture was ground and mixed in a wet ball mill for 24 hours. The average particle size of the obtained pulverized product is 1.5μ.
It was m. This was dried and then calcined at 850 ° C.
5 to 50 wt% of CaZrO 3 fine powder was added to the calcined ceramic raw material, mixed and pulverized, a binder was added, and a sheet was formed by a slip casting method.

【0041】上記生シートを850℃及び900℃で焼
成した結果を図3に示した。CaZrO3微粉末の添加
量が35wt%を超えた組成においては緻密化が不十分
であった。CaZrO3を30wt%添加した組成の生
シートを,900℃で焼成したCaZrO3質基板の嵩
密度は2.8g/cm3で,吸水率が0.01%以下,
表面粗さRaが0.2μmと平滑で,変形や反りも小さ
く,回路基板として適したものであった。
The results of firing the above green sheet at 850 ° C. and 900 ° C. are shown in FIG. The densification was insufficient in the composition in which the addition amount of CaZrO 3 fine powder exceeded 35 wt%. A raw sheet having a composition containing 30 wt% of CaZrO 3 was fired at 900 ° C. The CaZrO 3 -based substrate had a bulk density of 2.8 g / cm 3 and a water absorption rate of 0.01% or less,
The surface roughness Ra was as smooth as 0.2 μm, and the deformation and warpage were small, and it was suitable as a circuit board.

【0042】実施形態例3 本例においては,実施形態例2の方法を用いて,多層セ
ラミック配線板を製造した。即ち,上記実施形態例2と
同様にセラミック原材料を得,これに対し,CaZrO
3微粉末を30wt%添加して,混合粉砕し,バインダ
ーを加え,スリップキャスティング法によってシート成
形した。生シートを成形した後に,図4(a)に示すご
とく,複数の生シート11にビアホール21を穿設し,
印刷法でその内部にAg導体ペーストを充填するととも
に生シートの表面にAgまたはCuからなる導体ペース
トを印刷して導体回路22を形成した。
Embodiment 3 In this embodiment, a multilayer ceramic wiring board was manufactured using the method of Embodiment 2. That is, a ceramic raw material was obtained in the same manner as in Embodiment 2 above, while CaZrO
3 % by weight of fine powder was added, mixed and pulverized, a binder was added, and a sheet was formed by a slip casting method. After forming the green sheets, as shown in FIG. 4 (a), a plurality of green sheets 11 are provided with via holes 21,
The conductor circuit 22 was formed by filling the inside with Ag conductor paste by a printing method and printing the conductor paste made of Ag or Cu on the surface of the green sheet.

【0043】次いで,上記生シート11を積層し,圧着
して多層シート1を得た(図4(b))。次いで,多層
シート1を900℃の低温にて焼成した(図4
(c))。これにより,図4(d)に示すごとく,セラ
ミック焼結体10と導体回路2とビアホール21とから
なる多層セラミック配線板5を得た。
Next, the green sheet 11 was laminated and pressure-bonded to obtain a multilayer sheet 1 (FIG. 4 (b)). Then, the multilayer sheet 1 was fired at a low temperature of 900 ° C. (FIG. 4).
(C)). Thereby, as shown in FIG. 4D, a multilayer ceramic wiring board 5 including the ceramic sintered body 10, the conductor circuit 2, and the via hole 21 was obtained.

【0044】本例においては,上記セラミック原材料と
機能性酸化物粉末とからなる生シートを900℃の低温
で焼成している。導体回路の材料にはAgのほかに,C
uも使用できる。Cuを用いる場合,焼成は還元雰囲気
下で行うことが必要である。1000℃の低温焼成によ
って,生シートと導体回路材料とが同時焼結され,セラ
ミック基板と導体回路とが一体化した多層セラミック配
線板を得ることができる。また,低温で焼成するため,
省エネにもなる。
In this example, a green sheet made of the ceramic raw material and the functional oxide powder is fired at a low temperature of 900 ° C. In addition to Ag, C is used as the material for the conductor circuit.
u can also be used. When using Cu, it is necessary to perform firing in a reducing atmosphere. By firing at a low temperature of 1000 ° C., the green sheet and the conductor circuit material are simultaneously sintered, and a multilayer ceramic wiring board in which the ceramic substrate and the conductor circuit are integrated can be obtained. Also, since it is fired at a low temperature,
It also saves energy.

【0045】[0045]

【発明の効果】本発明によれば,低温で焼結可能な,し
かも一価アルカリ金属イオン,酸化ホウ素及び酸化鉛を
含まず,導電材料との反応がなく炉に損傷を与えない,
焼結体の前駆体としてのセラミック原材料の製造方法,
及びこれを用いたセラミック焼結体の製造方法並びに多
層セラミック配線板の製造方法を提供することができ
る。
According to the present invention, it is possible to sinter at a low temperature, does not contain monovalent alkali metal ions, boron oxide and lead oxide, does not react with the conductive material, and does not damage the furnace.
A method for producing a ceramic raw material as a precursor of a sintered body,
It is also possible to provide a method for producing a ceramic sintered body using the same, and a method for producing a multilayer ceramic wiring board.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施形態例1の,セラミック原材料の仮焼温度
による成形密度及び焼成密度の変化を示す説明図。
FIG. 1 is an explanatory view showing changes in a molding density and a firing density according to a calcination temperature of a ceramic raw material according to a first embodiment.

【図2】実施形態例1における,出発原料中のα−Al
23の含有量及び焼成温度が,セラミック焼結体の嵩密
度に与える影響を示す説明図。
[FIG. 2] α-Al in a starting material in Embodiment 1
Content and baking temperature 2 O 3 is an explanatory diagram showing the effect of the bulk density of the ceramic sintered body.

【図3】実施形態例2における,セラミック原材料に添
加するCaZrO3の添加量及び生シートの焼成温度
が,セラミック焼結体の嵩密度に与える影響を示す説明
図。
FIG. 3 is an explanatory view showing the influence of the addition amount of CaZrO 3 added to the ceramic raw material and the firing temperature of the green sheet on the bulk density of the ceramic sintered body in the second embodiment.

【図4】実施形態例3における,多層セラミック配線板
の製造方法を示す説明図。
FIG. 4 is an explanatory view showing a method for manufacturing a multilayer ceramic wiring board according to the third embodiment.

【符号の説明】[Explanation of symbols]

1...積層シート, 10...セラミック焼結体, 11...生シート, 21...ビアホール, 22...導体回路, 5...多層セラミック配線板, 1. . . Laminated sheet, 10. . . Ceramic sintered body, 11. . . Raw sheet, 21. . . Beer hall, 22. . . Conductor circuit, 5. . . Multilayer ceramic wiring board,

フロントページの続き (72)発明者 中田政人 岐阜県土岐市鶴里町柿野広畑2322番地の3 株式会社丸和セラミック土岐工場内 (72)発明者 秋松利典 岐阜県土岐市鶴里町柿野広畑2322番地の3 株式会社丸和セラミック土岐工場内 Fターム(参考) 5G303 AA05 AB15 BA12 CA01 CB01 CB06 CB30 CB39 DA04 DA06Continued front page    (72) Inventor Masato Nakata             3 2232 2352 Kakino Hirohata, Tsuruzato-cho, Toki City, Gifu Prefecture               Maruwa Ceramic Co., Ltd. Toki Factory (72) Inventor Toshinori Akimatsu             3 2232 2352 Kakino Hirohata, Tsuruzato-cho, Toki City, Gifu Prefecture               Maruwa Ceramic Co., Ltd. Toki Factory F-term (reference) 5G303 AA05 AB15 BA12 CA01 CB01                       CB06 CB30 CB39 DA04 DA06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (1)(a)カオリナイト質もしくはハ
ローサイト質の粘土粉末,(b)炭酸カルシウム粉末,
及び(c)シリカ粉末からなり,(2)上記(a),
(b),及び(c)の混合組成比は,灼熱後の酸化物換
算で,モル組成式がxCaO・yAl23・zSiO2
で表したとき,0.15≦x≦0.45,0.05≦y
≦0.20,0.45≦z≦0.75(x+y+z=
1.00)の範囲内であり,かつ(3)平均粒径が2.
0μm以下の微粒子混合物であるという上記条件
(1),(2),(3)を満足する出発原料を準備する
工程と,該出発原料を,800〜900℃の温度範囲内
で仮焼する工程とからなることを特徴とするセラミック
原材料の製造方法。
1. (1) (a) Kaolinite or halosite clay powder, (b) calcium carbonate powder,
And (c) silica powder, (2) above (a),
The mixed composition ratios of (b) and (c) are calculated as oxides after burning, and the molar composition formula is xCaO · yAl 2 O 3 · zSiO 2
Is expressed as 0.15 ≦ x ≦ 0.45, 0.05 ≦ y
≦ 0.20, 0.45 ≦ z ≦ 0.75 (x + y + z =
1.00) and (3) the average particle size is 2.
A step of preparing a starting material satisfying the above conditions (1), (2) and (3) that is a fine particle mixture of 0 μm or less, and a step of calcining the starting material within a temperature range of 800 to 900 ° C. A method for producing a ceramic raw material, comprising:
【請求項2】 請求項1のセラミック原材料に,機能性
酸化物粉末を5〜35wt%の割合で添加混合し,成形
して成形体を得る工程と,該成形体を1000℃以下の
低温で焼成する工程とからなることを特徴とするセラミ
ック焼結体の製造方法。
2. A step of adding a functional oxide powder to the ceramic raw material according to claim 1 at a ratio of 5 to 35 wt% and molding the mixture to obtain a compact, and the compact at a low temperature of 1000 ° C. or lower. A method for producing a ceramic sintered body, which comprises a step of firing.
【請求項3】 請求項1のセラミック原材料に,機能性
酸化物粉末を5〜35wt%の割合で添加混合し,シー
ト状に成形して生シートを得る工程と,該生シートの表
面に導体回路を印刷する工程と,上記生シートを複数枚
積層,圧着して積層体を得る工程と,上記積層体を10
00℃以下の低温で焼成する工程とからなることを特徴
とする多層セラミック配線板の製造方法。
3. A step of adding a functional oxide powder to the ceramic raw material according to claim 1 at a ratio of 5 to 35 wt% and mixing the mixture to obtain a raw sheet, and a conductor on the surface of the raw sheet. A step of printing a circuit, a step of stacking a plurality of the above-mentioned green sheets and press-bonding to obtain a stack, and a step of stacking the stack 10
And a step of firing at a low temperature of 00 ° C. or lower.
JP10227222A 1998-08-11 1998-08-11 Production of ceramic raw material capable of being sintered at low temperature Pending JP2000063182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10227222A JP2000063182A (en) 1998-08-11 1998-08-11 Production of ceramic raw material capable of being sintered at low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10227222A JP2000063182A (en) 1998-08-11 1998-08-11 Production of ceramic raw material capable of being sintered at low temperature

Publications (1)

Publication Number Publication Date
JP2000063182A true JP2000063182A (en) 2000-02-29

Family

ID=16857421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10227222A Pending JP2000063182A (en) 1998-08-11 1998-08-11 Production of ceramic raw material capable of being sintered at low temperature

Country Status (1)

Country Link
JP (1) JP2000063182A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101880480A (en) * 2010-05-12 2010-11-10 广西象州联壮化工有限公司 Preparation method of calcinated argil
CN105272192A (en) * 2015-06-29 2016-01-27 福建火炬电子科技股份有限公司 Low-dielectric constant AG characteristic multilayer ceramic dielectric capacitor porcelain and preparation method thereof
JP2021075413A (en) * 2019-11-06 2021-05-20 昭和電工株式会社 Calcium zirconate-based powder and method for producing the same
CN115010489A (en) * 2022-05-18 2022-09-06 中国地质大学(武汉) Mineral-based microwave dielectric ceramic material and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101880480A (en) * 2010-05-12 2010-11-10 广西象州联壮化工有限公司 Preparation method of calcinated argil
CN105272192A (en) * 2015-06-29 2016-01-27 福建火炬电子科技股份有限公司 Low-dielectric constant AG characteristic multilayer ceramic dielectric capacitor porcelain and preparation method thereof
JP2021075413A (en) * 2019-11-06 2021-05-20 昭和電工株式会社 Calcium zirconate-based powder and method for producing the same
JP7484135B2 (en) 2019-11-06 2024-05-16 株式会社レゾナック Calcium zirconate powder and its manufacturing method
CN115010489A (en) * 2022-05-18 2022-09-06 中国地质大学(武汉) Mineral-based microwave dielectric ceramic material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP3240271B2 (en) Ceramic substrate
US20100170705A1 (en) Method for producing powder forsterite powder, forsterite powder, sintered forsterite, insulating ceramic composition, and multilayer ceramic electronic component
CN100457678C (en) Dielectric adjustable material of ceramics burned together at low temperature, and preparation method
US5145540A (en) Ceramic composition of matter and its use
JP3687443B2 (en) Low temperature fired ceramic composition and ceramic multilayer substrate
CN111848145B (en) Inorganic ceramic powder, preparation method thereof and LTCC (Low temperature Co-fired ceramic) green ceramic tape
JP2002104870A (en) Dielectric porcelain and laminate
JP3419291B2 (en) Low-temperature sintered ceramic composition and multilayer ceramic substrate using the same
JP2000143332A (en) Glass ceramic burned at low temperature
JP2000272960A (en) Dielectric ceramic composition for microwave use, its production and electronic part for microwave use produced by using the dielectric ceramic composition for microwave use
KR102189481B1 (en) Dielectric ceramics composition for high frequency device, ceramic substrate thereby and manufacturing method thereof
JP3624405B2 (en) Glass ceramic dielectric material
EP1509931B1 (en) Dielectric composition on the basis of barium titanate
JP2004256384A (en) Oxide ceramic material, and ceramic substrate, laminated ceramic device, and power amplifier module using the material
JPH11265837A (en) Laminated lc composite component
JP2000063182A (en) Production of ceramic raw material capable of being sintered at low temperature
JP2002187768A (en) Low temperature sintering dielectric material for high frequency and sintered body of the same
US7300897B2 (en) Low temperature sintering ceramic composition for high frequency, method of fabricating the same and electronic component
CN103146345B (en) Microwave dielectric materials capable of burning with copper electrodes together, preparation method and application thereof
JPH0483737A (en) Dielectric porcelain composition, production thereof and basal plate for distributing board using said composition
Chen et al. Barium titanate-based capacitors buried into ceramic substrates
WO2004103929A1 (en) Dielectric ceramic composition, process for producing the same, dielectric ceramic employing it and multilayer ceramic component
KR100813601B1 (en) Method of manufacturing nano-glass powder for low temperature sintering
JP2000327428A (en) Low temperature sintering glass ceramic and its production
JPH10297960A (en) Ceramic composition baked at low temperature and production of porcelain baked at low temperature

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070410