KR100813601B1 - Method of manufacturing nano-glass powder for low temperature sintering - Google Patents

Method of manufacturing nano-glass powder for low temperature sintering Download PDF

Info

Publication number
KR100813601B1
KR100813601B1 KR1020060094572A KR20060094572A KR100813601B1 KR 100813601 B1 KR100813601 B1 KR 100813601B1 KR 1020060094572 A KR1020060094572 A KR 1020060094572A KR 20060094572 A KR20060094572 A KR 20060094572A KR 100813601 B1 KR100813601 B1 KR 100813601B1
Authority
KR
South Korea
Prior art keywords
starting material
barium
glass powder
powder
low
Prior art date
Application number
KR1020060094572A
Other languages
Korean (ko)
Inventor
안성용
조항규
송순모
손성범
Original Assignee
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전기주식회사 filed Critical 삼성전기주식회사
Priority to KR1020060094572A priority Critical patent/KR100813601B1/en
Application granted granted Critical
Publication of KR100813601B1 publication Critical patent/KR100813601B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/10Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances metallic oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

A preparation method of nano glass powder is provided to obtain high quality nano glass powder having homogeneous particle distribution by employing sol-gel method. A preparation method of nano glass powder comprises steps of: dissolving a starting material of Ba and other starting material of B in distilled water; adding acetic acid in the prepared solution; adding alcohols in the prepared solution; making a gel by reacting the prepared solution with a starting material of silicon; drying the obtained gel; and heating the resultant. The starting material of Ba is selected from a group consisting of barium acetate, barium chloride, barium hydroxide octahydrate and barium nitrate. The starting material of B is selected from a group consisting of boric acid and trimethyl borate. The rate, distilled water:acetic acid:alcohols is 0.7-1.3:0.0-0.2:0.5-1.3. The starting material of silicon is tetraethyl orthosilicate. The composition of glass powder is aBaO-bB2O3-cSiO2, wherein, a sum of a, b and c is 1, a is ranged from 0.05 to 0.35, b is ranged from 0.05 to 0.25, and c is ranged from 0.35 to 0.65 by mol%.

Description

저온 소결용 나노글라스 분말의 제조방법{Method of manufacturing nano-glass powder for low temperature sintering}Method for manufacturing nanoglass powder for low temperature sintering {Method of manufacturing nano-glass powder for low temperature sintering}

도 1은 종래기술에 따른 저온 소결용 글라스 분말의 제조방법을 설명하기 위한 공정 순서도.1 is a process flow chart illustrating a method for manufacturing a glass powder for low temperature sintering according to the prior art.

도 2는 본 발명에 따른 저온 소결용 나노글라스 분말의 제조방법을 설명하기 위한 공정 순서도.Figure 2 is a process flow chart for explaining a method for producing a low-temperature sintering nanoglass powder according to the present invention.

도 3은 본 발명에 따라 제조된 저온 소결용 나노글라스 분말을 보여주는 SEM 사진.Figure 3 is a SEM photograph showing the nanoglass powder for low temperature sintering prepared according to the present invention.

도 4는 도 3의 SEM 사진을 분석한 그래프.4 is a graph analyzing the SEM picture of FIG.

본 발명은 저온 소결용 나노글라스 분말의 제조방법에 관한 것으로서, 보다 상세하게는 졸겔(sol-gel)법을 이용하여 나노(nano)크기의 글라스 분말을 제조함으 로써, 저온 소성 유전체 세라믹 부품의 유전용량 및 품질계수 향상에 기여할 수 있도록 한 저온 소결용 나노글라스 분말의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing low temperature sintered nanoglass powder, and more particularly, by preparing a nano-sized glass powder using a sol-gel method, the dielectric properties of low-temperature fired dielectric ceramic component It relates to a method for producing low temperature sintered nanoglass powder to contribute to the capacity and quality factor improvement.

근래 휴대전화를 비롯한 이동통신 시장의 발달에 힘입어 전자회로기판이나 적층세라믹 전자부품의 재료로서 세라믹의 수요가 증대하고 있다. 내부배선 회로로서 저융점 고전도도 재료인 Ag 및 Cu 등을 사용하면서 세라믹 재료에서도 저온소성이 가능한 제품이 요구되고 있다.Recently, with the development of the mobile communication market including mobile phones, the demand for ceramics as a material for electronic circuit boards and laminated ceramic electronic parts is increasing. There is a demand for a product capable of low-temperature firing in ceramic materials while using Ag and Cu, which are low melting point high conductivity materials, as internal wiring circuits.

일반적으로, 적층형 세라믹 커패시터 등과 같은 저온 소성 유전체 세라믹 부품의 유전체 재료로 BaTiO3, Ba(Ca)TiO3 및 BaTi4O9 등이 주로 사용되고 있고, 상기 유전체의 소결제로서 글라스 분말이 사용되고 있다.In general, BaTiO 3 , Ba (Ca) TiO 3 , BaTi 4 O 9, and the like are mainly used as dielectric materials of low-temperature fired dielectric ceramic components such as multilayer ceramic capacitors, and glass powder is used as a sintering agent of the dielectric.

현재, 상기 글라스 분말은 대부분 3원계 이상으로 조성되고 있으며, 이러한 3원계 이상의 글라스 분말은 용융(melting)법에 의해 제조되는 바, 아래 도시된 도면을 참조하여 용융법을 이용한 종래의 저온 소결용 글라스 분말의 제조방법에 대하여 상세히 설명한다.Currently, the glass powder is mostly composed of a ternary system or more, and the ternary or more glass powder is manufactured by a melting method, the conventional low-temperature sintered glass using a melting method with reference to the drawings shown below The manufacturing method of powder is demonstrated in detail.

도 1은 종래기술에 따른 저온 소결용 글라스 분말의 제조방법을 설명하기 위한 공정 순서도이다.1 is a process flow chart for explaining a method for manufacturing a glass powder for low temperature sintering according to the prior art.

종래의 글라스 분말 제조방법은, 도 1에 도시된 바와 같이, 먼저 글라스 원료를 준비한다. 상기 글라스 원료로서 BaO(또는 BaCO3), B2O3(또는 H3BO3), 및 SiO2 를 각각 준비하고 이들을 칭량한다.In the conventional glass powder manufacturing method, as shown in Figure 1, first prepare a glass raw material. BaO (or BaCO 3 ), B 2 O 3 (or H 3 BO 3 ), and SiO 2 are respectively prepared and weighed as the glass raw materials.

그런 다음, 상기 재료를 약 1400℃ 이상의 온도에서 용융시킨 후, 용융된 재료를 급냉시킨다.The material is then melted at a temperature of about 1400 ° C. or higher, and then the molten material is quenched.

그 다음에, 상기 급냉된 재료를 밀링에 의해 분쇄시켜 최종적인 글라스 분말을 제조한다. 이와 같이 제조된 글라스 분말은 aBaO-bB2O3-cSiO2로 조성되고, 상기 a+b+c=1로서 mol%로 0.05≤a≤0.35, 0.05≤b≤0.25, 0.35≤c≤0.65를 만족한다.The quenched material is then ground by milling to produce the final glass powder. The glass powder thus prepared is composed of aBaO-bB 2 O 3 -cSiO 2 , and 0.05 ≦ a ≦ 0.35, 0.05 ≦ b ≦ 0.25, 0.35 ≦ c ≦ 0.65 in mol% as the a + b + c = 1. Satisfies.

이와 같이 제조된 글라스 분말은 유전체의 소결제로 사용되며, 유전체 분말과 상기 글라스 분말 등으로 유전체 박막을 제조하고, 내부 전극을 인쇄한 후 압착 및 절단 공정을 거치고 소성공정을 거쳐 적층형 세라믹 커패시터와 같은 저온 소성 유전체 세라믹 부품을 제조하게 된다.The glass powder thus prepared is used as a sintering agent of the dielectric material, and a dielectric thin film is manufactured from the dielectric powder and the glass powder, and the inner electrode is printed, followed by pressing and cutting processes, followed by a sintering process and a low temperature such as a multilayer ceramic capacitor. Plastic dielectric ceramic components are produced.

여기서, 종래의 방법으로 글라스 분말을 제조하면 밀링과 같은 물리적인 방법에 의해 분말을 제조하는 것으로 인해, 분말의 입자크기를 0.5㎛ 정도 이하로 줄이기가 어렵고 불균일한 입자 분포를 갖게 되는 단점이 있다.Here, when the glass powder is manufactured by the conventional method, it is difficult to reduce the particle size of the powder to about 0.5 μm or less due to the manufacture of the powder by a physical method such as milling, and has a disadvantage in that it has a nonuniform particle distribution.

그러나, 커패시터의 유전용량 및 품질계수 향상을 위해서는, 상기 글라스 분말의 입자크기를 나노크기로 줄일 필요가 있다.However, in order to improve the dielectric capacity and quality factor of the capacitor, it is necessary to reduce the particle size of the glass powder to nano size.

따라서, 본 발명은 종래 저온 소결용 글라스 분말의 제조방법에서 제기되고 있는 상기 제반 단점과 문제점을 해결하기 위하여 창안된 것으로서, 졸겔(sol-gel) 법을 이용하여 나노크기를 가지면서 균일한 입자분포도를 갖는 글라스 분말을 제조함으로써, 적층형 세라믹 커패시터와 같은 저온 소성 유전체 세라믹 부품의 유전용량 및 품질계수 향상에 기여할 수 있도록 한 저온 소결용 나노글라스 분말의 제조방법이 제공됨에 본 발명의 목적이 있다.Therefore, the present invention was devised to solve the above disadvantages and problems that have been raised in the conventional method for producing glass powder for low temperature sintering, and have uniform particle distribution with nano size using sol-gel method. It is an object of the present invention to provide a method for producing a low-temperature sintering nanoglass powder that can contribute to the improvement of the dielectric capacity and quality factor of low-temperature fired dielectric ceramic components, such as a multilayer ceramic capacitor, by producing a glass powder.

상기 목적을 달성하기 위한 본 발명에 의한 저온 소결용 나노글라스 분말의 제조방법은, 바륨(Ba)의 출발원료 및 보론(B)의 출발원료를 증류수에 녹이는 단계; 상기 바륨 및 보론의 출발원료가 녹아 있는 상기 증류수에 아세트산을 첨가하는 단계; 상기 아세트산이 첨가된 상기 증류수에 알코올류를 첨가하는 단계; 상기 알코올류가 첨가된 상기 증류수에 실리콘(Si)의 출발원료를 첨가한 후 일정시간 반응시켜 겔(gel)화시키는 단계; 상기 겔화된 결과물을 건조하는 단계; 및 상기 건조된 결과물을 열처리하여 나노크기의 글라스 분말을 제조하는 단계;를 포함한다.Method for producing a low-temperature sintering nanoglass powder according to the present invention for achieving the above object, the step of dissolving the starting material of barium (Ba) and the starting material of boron (B) in distilled water; Adding acetic acid to the distilled water in which the starting materials of the barium and boron are dissolved; Adding alcohols to the distilled water to which the acetic acid is added; Adding a starting material of silicon (Si) to the distilled water to which the alcohols are added and then reacting for a predetermined time to gelate the gel; Drying the gelled product; And heat-treating the dried result to produce a nano-sized glass powder.

여기서, 상기 바륨(Ba)의 출발원료는, 바륨 아세테이트(barium acetate), 바륨 클로라이드(barium chloride), 바륨 하이드록사이드 옥타하이드레이트(barium hydroxide octahydrate), 및 바륨 니트레이트(barium nitrate)로 구성된 군으로부터 선택되는 어느 하나를 사용하는 것을 특징으로 한다.Here, the starting material of the barium (Ba), from the group consisting of barium acetate (barium acetate), barium chloride (barium chloride), barium hydroxide octahydrate, and barium nitrate (barium nitrate) It is characterized by using any one selected.

또한 상기 보론(B)의 출발원료는, 보릭 에시드(boric acid) 또는 트리메틸 보레이트(trimethyl borate)를 사용하는 것을 특징으로 한다.In addition, the starting material of the boron (B), it characterized in that using boric acid (boric acid) or trimethyl borate (trimethyl borate).

또한 상기 실리콘(Si)의 출발원료는 TEOS(tetraethyl orthosilicate)를 사용 하는 것을 특징으로 한다.In addition, the starting material of the silicon (Si) is characterized in that using TEOS (tetraethyl orthosilicate).

또한 상기 알코올류는, 메탄올, 에탄올, 이소프로판올, 및 1-부탄올로 구성된 군으로부터 선택되는 어느 하나를 사용하는 것을 특징으로 한다.In addition, the alcohol is characterized by using any one selected from the group consisting of methanol, ethanol, isopropanol, and 1-butanol.

또한 상기 증류수:아세트산:알코올류은 0.7 내지 1.3 : 0.0 내지 0.2 : 0.5 내지 1.3의 중량비율로 사용되는 것을 특징으로 한다.In addition, the distilled water: acetic acid: alcohol is characterized in that it is used in a weight ratio of 0.7 to 1.3: 0.0 to 0.2: 0.5 to 1.3.

또한 상기 바륨 및 보론의 출발원료가 녹아 있는 상기 증류수에 아세트산을 첨가하는 단계에서, 상기 아세트산은 선택적으로 첨가되는 것을 특징으로 한다.In addition, in the step of adding acetic acid to the distilled water in which the starting materials of the barium and boron are dissolved, the acetic acid is optionally added.

또한 상기 글라스 분말은, aBaO-bB2O3-cSiO2로 조성되고, 상기 a+b+c=1로서 mol%로 0.05≤a≤0.35, 0.05≤b≤0.25, 0.35≤c≤0.65를 만족하는 것을 특징으로 한다.The glass powder is composed of aBaO-bB 2 O 3 -cSiO 2 , and satisfies 0.05 ≦ a ≦ 0.35, 0.05 ≦ b ≦ 0.25, 0.35 ≦ c ≦ 0.65 in mol% as the a + b + c = 1. Characterized in that.

본 발명에 따른 저온 소결용 나노글라스 분말의 제조방법의 상기 목적에 대한 기술적 구성을 비롯한 작용효과에 관한 사항은 본 발명의 바람직한 실시예가 도시된 도면을 참조한 아래의 상세한 설명에 의해서 명확하게 이해될 것이다.Matters concerning operational effects, including the technical configuration for the above object of the method for producing low-temperature sintering nanoglass powder according to the present invention will be clearly understood by the following detailed description with reference to the drawings showing preferred embodiments of the present invention. .

이제 본 발명의 실시예에 따른 저온 소결용 나노글라스 분말의 제조방법에 대하여 도 2 내지 도 4를 참고로 하여 상세하게 설명한다.Now, a method of manufacturing nanoglass powder for low temperature sintering according to an embodiment of the present invention will be described in detail with reference to FIGS. 2 to 4.

도 2는 본 발명에 따른 저온 소결용 나노글라스 분말의 제조방법을 설명하기 위한 공정 순서도이다.Figure 2 is a process flow chart for explaining a method for producing a low-temperature sintering nanoglass powder according to the present invention.

도 2에 도시한 바와 같이, 본 발명의 저온 소결용 나노글라스 분말의 제조방법에 따르면, 우선 바륨(Ba)의 출발원료 및 보론(B)의 출발원료를 준비한다.As shown in FIG. 2, according to the method for preparing low-temperature sintering nanoglass powder of the present invention, first, a starting material of barium (Ba) and a starting material of boron (B) are prepared.

상기 바륨의 출발원료는, 바륨 아세테이트(barium acetate), 바륨 클로라이드(barium chloride), 바륨 하이드록사이드 옥타하이드레이트(barium hydroxide octahydrate), 및 바륨 니트레이트(barium nitrate)로 구성된 군으로부터 선택되는 어느 하나를 사용하는 것이 바람직하고, 상기 보론의 출발원료는, 보릭 에시드(boric acide) 또는 트리메틸 보레이트(trimethyl borate)를 사용하는 것이 바람직하다.The starting material of barium is any one selected from the group consisting of barium acetate, barium chloride, barium hydroxide octahydrate, and barium nitrate. It is preferable to use, and it is preferable to use boric acid or trimethyl borate as a starting material of the boron.

상기 바륨(Ba) 및 보론(B)의 출발원료와 함께, 후술하는 실리콘(Si)의 출발원료, 예컨대 TEOS(tetraethyl orthosilicate)도 함께 준비하고, 본 발명에서 제조하고자 하는 글라스 분말의 조성을 만족하도록 상기 각각의 출발원료들을 칭량한다.Along with the starting materials of the barium (Ba) and boron (B), starting materials of silicon (Si), for example, TEOS (tetraethyl orthosilicate) are also prepared together with the starting materials of the barium (Ba) and boron (B) to satisfy the composition of the glass powder to be prepared in the present invention. Weigh each starting material.

그런 다음, 상기와 같이 준비된 바륨, 보론 및 실리콘의 출발원료 중에서, 바륨 및 보론의 출발원료를 먼저 증류수에 녹인다.Then, among the starting materials of barium, boron and silicon prepared as above, the starting materials of barium and boron are first dissolved in distilled water.

다음으로, 상기 바륨 및 보론의 출발원료가 녹아 있는 상기 증류수에 아세트산을 첨가한다. 상기 아세트산이 첨가됨에 따라 상기 바륨 및 보론의 용해가 매우 잘 일어나게 된다. 이 때, 상기 아세트산은 첨가되지 않을 수도 있다.Next, acetic acid is added to the distilled water in which the starting materials of the barium and boron are dissolved. As the acetic acid is added, the dissolution of the barium and boron occurs very well. At this time, the acetic acid may not be added.

그런 다음, 상기 아세트산이 첨가된 상기 증류수에 중축합반응을 촉진시키기 위해 에탄올과 같은 알코올류를 첨가한다. 여기서, 상기 알코올류로서, 상기한 에탄올 대신에 메탄올, 이소프로판올, 또는 1-부탄올 등을 사용할 수도 있다.Then, alcohols such as ethanol are added to the distilled water to which the acetic acid is added to promote the polycondensation reaction. Here, as the alcohols, methanol, isopropanol, 1-butanol or the like may be used instead of the ethanol.

한편, 상기 증류수:아세트산:알코올류는 0.7 내지 1.3 : 0.0 내지 0.2 : 0.5 내지 1.3의 중량비율로 사용되는 것이 바람직하고, 더욱 바람직한 비율은 0.9:0.1:1.0이다. 이와 같은 비율로 증류수, 아세트산 및 알코올류를 사용하면, 상기 바륨 및 보론의 출발원료가 침전되지 않으면서 잘 용해되도록 할 수 있다.On the other hand, the distilled water: acetic acid: alcohol is preferably used in a weight ratio of 0.7 to 1.3: 0.0 to 0.2: 0.5 to 1.3, more preferably is 0.9: 0.1: 1.0. By using distilled water, acetic acid and alcohols in such a ratio, the starting materials of the barium and boron can be dissolved well without precipitation.

다음으로, 상기 에탄올까지 첨가된 상기 증류수에, 앞서 준비한 실리콘(Si)의 출발원료, 즉 TEOS(tetraethyl orthosilicate)를 첨가한 후 약 1시간 이상 동안 반응시켜 겔(gel)화 시킨다.Next, a starting material of silicon (Si), that is, TEOS (tetraethyl orthosilicate) is added to the distilled water added to the ethanol, and then reacted for about 1 hour or more to gel.

그런 다음, 상기 겔화된 결과물을 건조 오븐에 넣고 50~250℃ 정도의 온도에서 건조한다.Then, the gelled product is placed in a drying oven and dried at a temperature of about 50 ~ 250 ℃.

마지막으로, 상기 결과물의 건조가 완료되면, 이를 소성로에서 250~1000℃ 정도의 온도에서 열처리하여 본 발명에서 얻고자 하는 최종 글라스 분말을 제조한다.Finally, when the drying of the resultant is completed, it is heat-treated at a temperature of about 250 ~ 1000 ℃ in a kiln to prepare the final glass powder to be obtained in the present invention.

이와 같이 제조되는 본 발명의 최종 글라스 분말은, aBaO-bB2O3-cSiO2로 조성되고, 상기 a+b+c=1로서 mol%로 0.05≤a≤0.35, 0.05≤b≤0.25, 0.35≤c≤0.65를 만족하며, 그 평균 입자크기는 100㎚ 이하이다.The final glass powder of the present invention prepared as described above is composed of aBaO-bB 2 O 3 -cSiO 2 , and 0.05 ≦ a ≦ 0.35, 0.05 ≦ b ≦ 0.25, 0.35 in mol% as the a + b + c = 1. ≤ c ≤ 0.65, and the average particle size is 100 nm or less.

즉, 본 발명에서는 기존의 용융법 대신에 졸겔법에 의한 합성방법을 이용하여 글라스 분말을 제조함으로써, 종래의 용융법에 의해 제조되는 글라스 분말과 그 조성이 같고 연화점 온도 또한 비슷하지만, 그 크기는 획기적으로 줄어든 나노크기의 글라스 분말을 얻을 수 있는 것이다.That is, in the present invention, the glass powder is prepared by using the sol-gel synthesis method instead of the conventional melting method, the composition is the same as the glass powder produced by the conventional melting method and the softening point temperature is similar, but the size is Nanoscale glass powders can be obtained dramatically reduced.

상기 나노크기의 글라스 분말은, 상술한 바와 같이 유전체의 소결제로 사용된다. 즉, BaTiO3 등과 같은 유전체 분말과, 상기 나노글라스 분말, 그리고 첨가제(MgO, BaO, Y2O3, MnO2 등)를 혼합하여 유전체 박막을 제조하고, 상기 박막에 내부 전극을 인쇄한 후 압착, 절단 및 소성공정을 거쳐 적층형 세라믹 커패시터와 같은 저온 소성 유전체 세라믹 부품을 제조하게 된다.The nano-sized glass powder is used as the sintering agent of the dielectric as described above. That is, a dielectric powder such as BaTiO 3 , the nanoglass powder, and additives (MgO, BaO, Y 2 O 3 , MnO 2, etc.) are mixed to prepare a dielectric thin film, and an internal electrode is printed on the thin film and then compressed. The low temperature calcined dielectric ceramic components, such as multilayer ceramic capacitors, are manufactured through the process of cutting, firing and firing.

일반적으로, 글라스 분말의 입자크기는 미세할수록 용융도가 증가하여 상기 부품 제조를 위한 소성온도를 낮출 수가 있는데, 본 발명에 의한 나노글라스 분말은 종래의 글라스 분말에 비해 훨씬 작은 크기를 가지므로 기존의 소성온도인 1150~1250℃에 비해 100℃ 정도 낮은 1050~1150℃의 온도에서 저온소성이 가능하다는 장점이 있다.In general, the finer the particle size of the glass powder is to increase the melting rate to lower the firing temperature for the manufacturing of the component, the nanoglass powder according to the present invention has a much smaller size than the conventional glass powder, so There is an advantage that low-temperature firing is possible at a temperature of 1050 ~ 1150 ℃ low about 100 ℃ compared to the calcination temperature of 1150 ~ 1250 ℃.

한편, 도 3은 본 발명에 따라 제조된 저온 소결용 나노글라스 분말을 보여주는 SEM 사진이고, 도 4는 도 3의 SEM 사진을 분석한 그래프이다.Meanwhile, FIG. 3 is a SEM photograph showing the nanoglass powder for low temperature sintering prepared according to the present invention, and FIG. 4 is a graph analyzing the SEM photograph of FIG.

도 3 및 도 4를 참조하면, 졸겔법에 의해 제조된 본 발명의 나노글라스 분말은, 평균 입자크기(Dave)가 38.5㎚ 정도로서, 종래의 용융법에 의해 제조되는 글라스 분말에 비해 훨씬 작은 크기를 가지며, 입자의 분포 역시 매우 균일하다는 것을 확인할 수가 있다.3 and 4, the nanoglass powder of the present invention prepared by the sol-gel method has an average particle size (D ave ) of about 38.5 nm, which is much smaller than the glass powder produced by the conventional melting method. It can be seen that the distribution of particles is also very uniform.

이와 같은 본 발명에 의한 나노글라스 분말은, 적층형 세라믹 커패시터와 같은 저온 소성 유전체 세라믹 부품의 제조에 적용되어 소성온도를 100℃ 정도 낮출 수 있을 뿐만 아니라, 칩의 유전용량 및 품질계수 향상에 기여할 수 있는 효과가 있다.The nanoglass powder according to the present invention can be applied to the manufacture of low-temperature calcined dielectric ceramic components such as multilayer ceramic capacitors, which can lower the firing temperature by about 100 ° C and contribute to the improvement of the dielectric capacity and quality coefficient of the chip. It works.

이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만, 당해 기술 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 권리 범위는 개시된 실시예에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. Accordingly, the scope of the present invention is not limited to the disclosed embodiments, but various modifications and improvements of those skilled in the art using the basic concept of the present invention as defined in the following claims also belong to the scope of the present invention.

이상에서 설명한 바와 같이, 본 발명의 저온 소결용 나노글라스 분말의 제조방법에 의하면, 졸겔법을 이용하여 나노크기를 가지면서 균일한 입자분포도를 갖는 글라스 분말을 제조할 수 있다.As described above, according to the method for producing the low-temperature sintering nanoglass powder of the present invention, it is possible to produce a glass powder having a uniform particle distribution while having a nano-size using the sol-gel method.

따라서, 본 발명은 상기 나노글라스 분말을 적층형 세라믹 커패시터와 같은 저온 소성 유전체 세라믹 부품의 제조시 유전체의 소결제로 이용하여, 소성온도를 100℃ 정도 낮출 수 있으며, 상기 부품의 유전용량 및 품질계수 향상에 기여할 수 있는 효과가 있다. Accordingly, the present invention uses the nanoglass powder as a sintering agent of the dielectric when manufacturing a low-temperature fired dielectric ceramic component such as a multilayer ceramic capacitor, the firing temperature can be lowered by about 100 ℃, to improve the dielectric capacity and quality factor of the component There is an effect that can contribute.

Claims (8)

바륨(Ba)의 출발원료 및 보론(B)의 출발원료를 증류수에 녹이는 단계;Dissolving the starting material of barium (Ba) and the starting material of boron (B) in distilled water; 상기 바륨 및 보론의 출발원료가 녹아 있는 상기 증류수에 아세트산을 첨가하는 단계;Adding acetic acid to the distilled water in which the starting materials of the barium and boron are dissolved; 상기 아세트산이 첨가된 상기 증류수에 알코올류를 첨가하는 단계;Adding alcohols to the distilled water to which the acetic acid is added; 상기 알코올류가 첨가된 상기 증류수에 실리콘(Si)의 출발원료를 첨가한 후 일정시간 반응시켜 겔(gel)화시키는 단계;Adding a starting material of silicon (Si) to the distilled water to which the alcohols are added and then reacting for a predetermined time to gelate the gel; 상기 겔화된 결과물을 건조하는 단계; 및Drying the gelled product; And 상기 건조된 결과물을 열처리하여 나노크기의 글라스 분말을 제조하는 단계;Heat-treating the dried result to prepare a nano-sized glass powder; 를 포함하는 저온 소결용 나노글라스 분말의 제조방법.Method for producing a low-temperature sintering nanoglass powder comprising a. 제1항에 있어서,The method of claim 1, 상기 바륨(Ba)의 출발원료는, 바륨 아세테이트(barium acetate), 바륨 클로라이드(barium chloride), 바륨 하이드록사이드 옥타하이드레이트(barium hydroxide octahydrate), 및 바륨 니트레이트(barium nitrate)로 구성된 군으로부터 선택되는 어느 하나를 사용하는 것을 특징으로 하는 저온 소결용 나노글라스 분말의 제조방법.The starting material of the barium (Ba) is selected from the group consisting of barium acetate, barium chloride, barium hydroxide octahydrate, and barium nitrate. Method for producing a low-temperature sintering nanoglass powder, characterized in that using any one. 제1항에 있어서,The method of claim 1, 상기 보론(B)의 출발원료는, 보릭 에시드(boric acid) 또는 트리메틸 보레이트(trimethyl borate)를 사용하는 것을 특징으로 하는 저온 소결용 나노글라스 분말의 제조방법.The starting material of the boron (B), boric acid (boric acid) or trimethyl borate (trimethyl borate) characterized in that the method for producing a low-temperature sintering nanoglass powder. 제1항에 있어서,The method of claim 1, 상기 실리콘(Si)의 출발원료는 TEOS(tetraethyl orthosilicate)를 사용하는 것을 특징으로 하는 저온 소결용 나노글라스 분말의 제조방법.The starting material of the silicon (Si) is a method for producing low temperature sintered nanoglass powder, characterized in that using TEOS (tetraethyl orthosilicate). 제1항에 있어서,The method of claim 1, 상기 알코올류는, 메탄올, 에탄올, 이소프로판올, 및 1-부탄올로 구성된 군으로부터 선택되는 어느 하나를 사용하는 것을 특징으로 하는 저온 소결용 나노글라스 분말의 제조방법.The alcohols are any one selected from the group consisting of methanol, ethanol, isopropanol, and 1-butanol, the method for producing low-temperature sintering nanoglass powder. 제1항에 있어서,The method of claim 1, 상기 증류수:아세트산:알코올류은 0.7 내지 1.3 : 0.0 내지 0.2 : 0.5 내지 1.3의 중량비율로 사용되는 것을 특징으로 하는 저온 소결용 나노글라스 분말의 제조방법.The distilled water: acetic acid: alcohol is a method for producing a low-temperature sintering nanoglass powder, characterized in that used in a weight ratio of 0.7 to 1.3: 0.0 to 0.2: 0.5 to 1.3. 삭제delete 제1항에 있어서,The method of claim 1, 상기 글라스 분말은, aBaO-bB2O3-cSiO2로 조성되고, 상기 a+b+c=1로서 mol%로 0.05≤a≤0.35, 0.05≤b≤0.25, 0.35≤c≤0.65를 만족하는 것을 특징으로 하는 저온 소결용 나노글라스 분말의 제조방법.The glass powder is composed of aBaO-bB 2 O 3 -cSiO 2 , and satisfies 0.05 ≦ a ≦ 0.35, 0.05 ≦ b ≦ 0.25, 0.35 ≦ c ≦ 0.65 in mol% as the a + b + c = 1. Method for producing a low-temperature sintering nanoglass powder, characterized in that.
KR1020060094572A 2006-09-28 2006-09-28 Method of manufacturing nano-glass powder for low temperature sintering KR100813601B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060094572A KR100813601B1 (en) 2006-09-28 2006-09-28 Method of manufacturing nano-glass powder for low temperature sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060094572A KR100813601B1 (en) 2006-09-28 2006-09-28 Method of manufacturing nano-glass powder for low temperature sintering

Publications (1)

Publication Number Publication Date
KR100813601B1 true KR100813601B1 (en) 2008-03-17

Family

ID=39410652

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060094572A KR100813601B1 (en) 2006-09-28 2006-09-28 Method of manufacturing nano-glass powder for low temperature sintering

Country Status (1)

Country Link
KR (1) KR100813601B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8618005B2 (en) 2011-01-18 2013-12-31 Samsung Electro-Mechanics Co., Ltd. Glass powder and method of manufacturing the same
CN108557836A (en) * 2018-04-28 2018-09-21 陕西师范大学 A kind of BaB8O11(OH)4Flame retardant nano-materials and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05254881A (en) * 1992-01-09 1993-10-05 Corning Inc Nanocrystalline material and its production
US5342809A (en) 1992-04-08 1994-08-30 France Telecom Etablissement Autonome De Droit Public Process for the synthesis of fluoride glass by the sol - gel method and optical fibre produced from the fluoride glass obtained according to this process
JP2002362932A (en) 2001-03-24 2002-12-18 Shinetsu Quartz Prod Co Ltd PROCESS FOR PRODUCTION OF SiO2-CONTAINING COMPOSITE MATERIAL, COMPOSITE MATERIAL OBTAINED BY THE PRODUCTION PROCESS AND USE OF THE COMPOSITE MATERIAL
US6516633B1 (en) 2000-08-28 2003-02-11 Nano-Tex, Llc Photochromic glass nanoparticles and methods of preparation
KR20060034145A (en) * 2004-10-18 2006-04-21 (주) 존인피니티 Glass-gel coating liquid composition for crystal rhinestone coloring, its manufacturing method and using method
KR20060087042A (en) * 2005-01-27 2006-08-02 한국과학기술연구원 Low temperature fired barium titanate capacitor and fabrication method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05254881A (en) * 1992-01-09 1993-10-05 Corning Inc Nanocrystalline material and its production
US5342809A (en) 1992-04-08 1994-08-30 France Telecom Etablissement Autonome De Droit Public Process for the synthesis of fluoride glass by the sol - gel method and optical fibre produced from the fluoride glass obtained according to this process
US6516633B1 (en) 2000-08-28 2003-02-11 Nano-Tex, Llc Photochromic glass nanoparticles and methods of preparation
JP2002362932A (en) 2001-03-24 2002-12-18 Shinetsu Quartz Prod Co Ltd PROCESS FOR PRODUCTION OF SiO2-CONTAINING COMPOSITE MATERIAL, COMPOSITE MATERIAL OBTAINED BY THE PRODUCTION PROCESS AND USE OF THE COMPOSITE MATERIAL
KR20060034145A (en) * 2004-10-18 2006-04-21 (주) 존인피니티 Glass-gel coating liquid composition for crystal rhinestone coloring, its manufacturing method and using method
KR20060087042A (en) * 2005-01-27 2006-08-02 한국과학기술연구원 Low temperature fired barium titanate capacitor and fabrication method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8618005B2 (en) 2011-01-18 2013-12-31 Samsung Electro-Mechanics Co., Ltd. Glass powder and method of manufacturing the same
CN108557836A (en) * 2018-04-28 2018-09-21 陕西师范大学 A kind of BaB8O11(OH)4Flame retardant nano-materials and preparation method thereof

Similar Documents

Publication Publication Date Title
CN102875159B (en) Method for preparing low-temperature cofired dielectric ceramic and material and sintering aid of low-temperature cofired dielectric ceramic
CN106927792B (en) Low-dielectric-constant low-loss near-zero-temperature-coefficient LTCC (Low temperature Co-fired ceramic) material and preparation method thereof
CN107176834B (en) LTCC (Low temperature Co-fired ceramic) ceramic material with medium and high dielectric constant and preparation method thereof
CN100457678C (en) Dielectric adjustable material of ceramics burned together at low temperature, and preparation method
CN107986774B (en) Low-temperature sintered high-dielectric-constant microwave dielectric ceramic material and preparation method thereof
JP3687443B2 (en) Low temperature fired ceramic composition and ceramic multilayer substrate
KR101483819B1 (en) Glass powder and method for preparing the same
KR101086804B1 (en) Low-temperature fired ceramic circuit board
KR101228694B1 (en) A nano glass powder for sintering additive and a fabricating method thereof
CN103896579A (en) Lithium-based low-temperature sintering microwave dielectric ceramic material and preparation method thereof
JP4535592B2 (en) Laminated body
CN103922725B (en) A kind of low-temperature sintering temperature-stabilized microwave medium ceramic material and preparation method thereof
JP4613826B2 (en) Ceramic substrate composition, ceramic substrate, method for producing ceramic substrate, and glass composition
KR100813601B1 (en) Method of manufacturing nano-glass powder for low temperature sintering
JP2947558B2 (en) Ceramic insulating material and method of manufacturing the same
KR101849470B1 (en) Low temperature co-fired microwave dielectric ceramics and manufacturing method thereof
CN108975913A (en) A kind of ZnO-TiO2-Nb2O5Base LTCC material and preparation method thereof
KR100907455B1 (en) Low temperature sintering nano-glass and manufacturing method the same
CN103146345B (en) Microwave dielectric materials capable of burning with copper electrodes together, preparation method and application thereof
JP3909366B2 (en) Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition
JP2000063182A (en) Production of ceramic raw material capable of being sintered at low temperature
KR100478127B1 (en) Dielectric Ceramic Composition
KR100632393B1 (en) High-permittivity dielectric ceramic compositions for low-fire ceramic multilayer packages
CN104129976B (en) A kind of low-temperature co-burning ceramic material and preparation method thereof
JP4097018B2 (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131224

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee