KR100632393B1 - High-permittivity dielectric ceramic compositions for low-fire ceramic multilayer packages - Google Patents

High-permittivity dielectric ceramic compositions for low-fire ceramic multilayer packages Download PDF

Info

Publication number
KR100632393B1
KR100632393B1 KR1020040017149A KR20040017149A KR100632393B1 KR 100632393 B1 KR100632393 B1 KR 100632393B1 KR 1020040017149 A KR1020040017149 A KR 1020040017149A KR 20040017149 A KR20040017149 A KR 20040017149A KR 100632393 B1 KR100632393 B1 KR 100632393B1
Authority
KR
South Korea
Prior art keywords
dielectric
composition
range
ceramic
low
Prior art date
Application number
KR1020040017149A
Other languages
Korean (ko)
Other versions
KR20050091961A (en
Inventor
박재환
박재관
신동순
김윤호
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020040017149A priority Critical patent/KR100632393B1/en
Publication of KR20050091961A publication Critical patent/KR20050091961A/en
Application granted granted Critical
Publication of KR100632393B1 publication Critical patent/KR100632393B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

본 발명은 875oC 이하의 온도에서 소성이 가능한 유전체 세라믹 조성물에 관한 것으로서 특히, 유전율이 200~1000 범위에 있고, 유전손실값이 3% 미만인 것을 특징으로 한다. 조성물의 구성은 5~20 wt%의 Li2O-B2O3-SiO2계 유리 프리트와 80~95 wt%의 BaO-TiO2계 유전체 세라믹스의 조합으로 구성된다. 본 발명을 통해 개발된 조성물은, 내장 캐패시터 형태로서 세라믹 다층 패키징의 일부를 구성하는데 효과적으로 적용될 수 있다.The present invention relates to a dielectric ceramic composition capable of firing at a temperature of 875 ° C or less, in particular, the dielectric constant is in the range of 200 ~ 1000, characterized in that the dielectric loss value is less than 3%. The composition consists of a combination of 5-20 wt% Li 2 OB 2 O 3 -SiO 2 based glass frit and 80-95 wt% BaO-TiO 2 based dielectric ceramics. The compositions developed through the present invention can be effectively applied to form part of ceramic multilayer packaging in the form of embedded capacitors.

고유전율, 저온소성, 유전체, 유리프리트, LTCCHigh dielectric constant, low temperature baking, dielectric, glass frit, LTCC

Description

저온소성 세라믹 다층 패키지용 고유전율 유전체 세라믹 조성물{HIGH-PERMITTIVITY DIELECTRIC CERAMIC COMPOSITIONS FOR LOW-FIRE CERAMIC MULTILAYER PACKAGES}HIGH-PERMITTIVITY DIELECTRIC CERAMIC COMPOSITIONS FOR LOW-FIRE CERAMIC MULTILAYER PACKAGES

본 발명은 고유전율 유전체 세라믹 조성물에 관한 것으로, 특히 저온 소성이 가능하여 세라믹 다층 패키지 내부의 수동부품으로 활용이 가능한 유전체 세라믹 조성물에 관한 것이다.The present invention relates to a high-k dielectric ceramic composition, and more particularly, to a dielectric ceramic composition that can be baked at a low temperature and can be utilized as a passive component in a ceramic multilayer package.

오늘날 휴대전화 및 PC를 중심으로 하는 정보통신산업은 급격한 신장세를 나타내고 있으며 그 발전방향은 고속화, 다기능화, 무선화 (모바일화)가 강조되는 추세이다. 이러한 경향에 대응하기 위하여 정보통신 부품들도 고기능화 및 집적화의 필요성이 점점 더 부각되고 있다. 후막적층부품의 집적도 및 복합도를 향상시킴을 통해 기본적으로는 최종제품의 사이즈를 작게 할 수 있을 뿐 아니라, 가격이 낮아지며, 부품 및 솔더 조인트 갯수의 감소를 통해 신뢰성을 향상시킬 수 있으며, 수동부품 실장 갯수의 감소로 인하여 연결회로상에서 발생하는 기생성분의 저감을 통해 전기적 특성향상을 도모할 수 있는 등 여러가지 장점들이 있다. Today, the information and telecommunications industry centering on mobile phones and PCs is showing rapid growth, and the development direction is focused on high speed, multifunction, and wireless (mobile). In order to cope with this trend, the necessity of high functionalization and integration of information and communication components is also increasing. By improving the density and complexity of thick film laminated parts, not only the size of the final product can be basically reduced, but also the price is lowered, and reliability can be improved by reducing the number of parts and solder joints. Due to the reduction in the number of mounting, there are various advantages such as the improvement of electrical characteristics through the reduction of parasitic components generated on the connection circuit.

지금까지 다기능 복합모듈을 구현하는 방법으로서 낮은 유전손실 값을 갖는 세라믹 소재를 이용하여 다층 패키징을 구현하는 많은 기술들이 발명되어 왔다. 그러나 대부분의 세라믹 소재를 소성하기 위해서는 1300oC 이상의 고온에서의 소성과정이 필요하였다. 따라서 다층 적층구조를 갖는 세라믹 패키징의 내부에 전도체 라인을 형성하기 위해서는 Pt, W 등의 귀금속이 사용되어 왔다. 이러한 귀금속들은 가격이 높을 뿐 아니라 전기전도도가 낮아 전기적 특성이 나쁜 문제점이 있었다. Until now, as a method of implementing a multifunctional composite module, many techniques for implementing multilayer packaging using a ceramic material having a low dielectric loss value have been invented. However, the firing process at a high temperature of 1300 o C or more was required to fire most ceramic materials. Therefore, noble metals such as Pt and W have been used to form conductor lines in the ceramic packaging having a multilayered structure. These precious metals were not only high in price but also low in electrical conductivity, and thus had poor electrical characteristics.

한편, 저온동시소성 세라믹 (Low-Temperature C-fired Ceramic; LTCC) 기술은 전기전도도가 우수한 Ag나 Cu 등과 같은 내부전극과 유전체, 자성체, 저항체 등의 수동소자들을 3차원적인 다층구조로 구현하고 900oC 미만의 온도에서 동시에 소성하여 전자기 기능성 다층 복합 모듈을 구현하는 기술이다. 이 기술은 기판의 집적화와 수동부품의 모듈화를 동시에 구현할 수 있으며 초고주파에 대응할 수 있는 기술이어서 현재 많은 관심이 집중되고 있으며 또한 관련 모듈제품들이 개발되고 있다. On the other hand, Low-Temperature C-fired Ceramic (LTCC) technology implements internal electrodes such as Ag and Cu, which have excellent electrical conductivity, and passive devices such as dielectrics, magnetic materials, and resistors in a three-dimensional multilayer structure. It is a technology that realizes an electromagnetic functional multilayer composite module by firing simultaneously at a temperature below C. This technology can realize the integration of the board and the modularization of passive components at the same time, and is capable of coping with ultra-high frequency, which is attracting much attention and related module products are being developed.

LTCC 기술은 현재까지는 유전손실 값이 작은 유전체 소재를 사용하는 3차원 배선기판 개념으로서 주로 사용되어 오고 있다. 이러한 경우에는, 신호전달 지연 (Signal delay)을 최소화 하기 위해 세라믹 기판의 유전율은 낮은 것이 바람직하며, 전기적 손실을 최소화 하기 위해 유전손실 값 또한 작은 것이 바람직하다. (통상 유전율은 4~10 사이의 범위에 있고, 유전손실값은 0.2% 미만의 값을 갖는다) 또한, Ag 전극과 동시에 소성이 가능하기 위해 세라믹 조성물의 소성온도는 900oC 미만이 되는 것이 바람직하다. LTCC technology has been used mainly as a three-dimensional wiring board concept using a dielectric material having a low dielectric loss value. In this case, the dielectric constant of the ceramic substrate is preferably low to minimize signal delay, and the dielectric loss value is preferably small to minimize electrical loss. (Typically, the dielectric constant is in the range of 4 to 10, and the dielectric loss value is less than 0.2%.) In addition, the firing temperature of the ceramic composition is preferably less than 900 o C so that the firing can be performed simultaneously with the Ag electrode. Do.

그러나 근래에 이르기까지 다층 세라믹 패키징에서 단순한 배선기판이 아닌 다양한 형태의 수동부품을 패키징 내부에 구현함으로써 패키징에 다양한 기능을 부가하는 필요성이 대두되었다. 특히, 공진기 (resonator) 형태의 필터나 안테나 등을 다층 세라믹 패키징 내부에 구현할 수 있도록 하기 위해서는 다소 높은 유전율을 갖는 조성물이 필요하다. 공진기 (resonator) 형태의 필터나 안테나 등의 분산회로 (distributed circuit element)를 적절한 크기로 제어하기 위해서는 유효파장 (effective wavelength)의 길이를 줄여야 한다. 현재 마이크로파 대역의 범위는 1~300 GHz 정도가 되며, 이러한 주파수 범위에서 소자로 구현하기에 가장 적절한 유효파장의 길이를 얻기 위해 필요한 유전율 범위는 20~100 정도가 된다. 아울러서 품질계수 (Q×f)의 값은 1000 이상의 높은 값이 바람직하며 공진주파수의 온도계수 (temperature coefficient of resonant frequency)는 ±20 ppm/oC 이하가 바람직하다. However, until recently, the necessity of adding various functions to the packaging has been raised by implementing various types of passive components inside the packaging rather than a simple wiring board in the multilayer ceramic packaging. In particular, in order to be able to implement a resonator-type filter or antenna in a multilayer ceramic packaging, a composition having a relatively high dielectric constant is required. In order to control a distributed circuit element such as a resonator type filter or an antenna to an appropriate size, the effective wavelength must be reduced. Currently, the microwave band ranges from 1 to 300 GHz, and the permittivity range is about 20 to 100 to obtain the most effective wavelength for the device in this frequency range. In addition, the value of the quality factor (Q × f) is preferably a high value of 1000 or more, and the temperature coefficient of resonant frequency is preferably ± 20 ppm / o C or less.

패키징 내부에 구현 가능한 또 다른 형태의 수동부품으로서는 고용량의 캐패시터를 들 수 있는데, 향후에는 세라믹 다층패키징 내부에 고용량의 캐패시터를 구현함으로서 직접도를 더욱 높혀야 하는 필요성이 점차 부각될 것으로 예상된다. 이를 위해서는 종래에 공진기 용도로 사용되어왔던 유전율 범위인 20~100 범위 이상의 더욱 높은 유전율을 갖는 조성이 바람직하게 된다. 통상 캐패시터는 전원의 리플을 억제하거나, 신호의 커플링을 하기 위해서 전자회로의 구성상 반드시 필요한 수동부품이다. 종래의 LTCC 적층 복합모듈 기술에서는 유전율 100 이상의 조성을 구현하기 어려웠기 때문에 수 백 pF 이상의 고용량 캐패시터는 LTCC 다층모듈 내에 구현할 수 없었고, 외부에 표면실장 형태로서 MLCC 등과 같은 부품을 부가했어야만 하였다. Another type of passive component that can be implemented inside the packaging is a high-capacity capacitor. In the future, it is expected that the need to further increase the directness by implementing a high-capacitance capacitor in the ceramic multilayer packaging is expected. For this purpose, a composition having a higher dielectric constant of 20 to 100 or more, which is a dielectric constant range that has been conventionally used for resonator applications, is preferable. In general, capacitors are passive components that are essential in the construction of electronic circuits in order to suppress ripple of a power supply or to couple signals. In the conventional LTCC multilayer composite module technology, it was difficult to implement a composition of dielectric constant of 100 or more, a high capacity capacitor of more than several hundred pF could not be implemented in the LTCC multilayer module, and components such as MLCC had to be added to the outside as a surface mount type.

LTCC 내부에 유전율이 100 이상인 유전체 조성물을 구현할 수 있으면, 다층구조 내에 고용량의 캐패시터를 구현하는 것이 가능하며, 더욱 집적화되고 고기능화된 모듈을 구현할 수 있게 될 것이다. 또한, 소성온도가 1000oC를 넘게 되면 Ag, Cu 전극을 사용하기 어려워 LTCC 패키지에는 적용이 어려우므로 LTCC 패키지 내부에 구현되는 캐패시터는 낮은 소성온도가 요구된다. If a dielectric composition having a dielectric constant of 100 or more can be implemented inside the LTCC, it is possible to implement a high capacity capacitor in a multilayer structure, and to realize a more integrated and highly functional module. In addition, when the firing temperature exceeds 1000 ° C. Ag, Cu electrodes are difficult to use, so it is difficult to apply to the LTCC package, so the capacitor implemented inside the LTCC package requires a low firing temperature.

따라서, 본 발명에서는 Ag 전극을 사용할 수 있도록 900oC 미만에서 소성이 가능하면서, 유전율이 200~1000 사이 범위에 있는 LTCC용 고유전율 유전체 세라믹 조성물을 제공하고자 한다. Accordingly, the present invention is to provide a high dielectric constant dielectric ceramic composition for LTCC having a dielectric constant in the range of 200 ~ 1000, while firing at less than 900 ° C so that the Ag electrode can be used.

상기 목적을 달성하기 위하여, 본 발명은 BaO-TiO2계 유전체 80 ~ 95wt%와, Li2O-B2O3-SiO2계 유리 프리트 5 ~ 20wt%를 포함하여 구성되는 고유전율 유전체 세라믹 조성물을 제공한다.In order to achieve the above object, the present invention provides a high-k dielectric ceramic composition comprising 80 ~ 95wt% BaO-TiO 2- based dielectric, 5 ~ 20wt% Li 2 OB 2 O 3 -SiO 2 -based glass frit do.

상기 유전체 조성은 (1-x)BaO-(x)CaO-(1-y)TiO2-(y)ZrO2 이며, 여기서 x=0.0~0.06, y=0.0~0.12의 범위를 갖는다. The dielectric composition is (1-x) BaO- (x) CaO- (1-y) TiO 2- (y) ZrO 2 , where x = 0.0 to 0.06 and y = 0.0 to 0.12.

상기 유리 프리트는 몰비로 Li2O의 범위는 33~62%, B2O3의 범위는 23~43%, SiO2의 범위는 5~35%이며, 추가로 2~6%의 범위의 CaO와 2.5~7.5%의 범위의 Al2O3 를 포함할 수 있다. The glass frit has a molar ratio of Li 2 O in the range of 33 to 62%, B 2 O 3 in the range 23 to 43%, and SiO 2 in the range 5 to 35%, and further 2 to 6% of CaO. And Al 2 O 3 in the range of 2.5-7.5%.

본 발명에 따르면 900oC 미만, 특히 875oC 이하의 온도에서 소성이 가능하면서 유전율이 200 이상으로서 매우 높고, 유전손실값이 3% 미만으로 낮은 유전체를 제조할 수 있으며, 이러한 유전체 세라믹 조성물은 내장 캐패시터 형태로서 저온소성 세라믹 다층 패키징의 일부를 구성하는데 효과적으로 적용될 수 있다. 따라서, 본 발명은 상기 고유전율 세라믹 조성물을 이용한 저온소성 세라믹 다층 패키지를 포함한다. According to the present invention, it is possible to manufacture a dielectric material having a high dielectric constant of 200 or more and a low dielectric loss of less than 3%, which can be baked at a temperature of less than 900 ° C., in particular 875 ° C. or less, and the dielectric ceramic composition is It can be effectively applied to form part of low-temperature fired ceramic multilayer packaging in the form of embedded capacitors. Therefore, the present invention includes a low-temperature fired ceramic multilayer package using the high dielectric constant ceramic composition.

이하, 구체적인 실시예를 통하여 본 발명의 특징을 보다 상세히 설명한다.Hereinafter, the features of the present invention will be described in more detail with reference to specific examples.

본 발명에 따른 유전체 세라믹스는 다음과 같이, 고유전율 유전체 조성물을 합성하는 단계, 이것을 저온소결하기 위한 유리 프리트 조성물을 합성하는 단계, 이상의 두 가지 조성물을 혼합하는 단계, 혼합된 조성물을 저온소결하는 단계에 의하여 제조된다. The dielectric ceramic according to the present invention comprises the steps of: synthesizing a high dielectric constant dielectric composition, synthesizing a glass frit composition for low temperature sintering thereof, mixing two or more compositions, and low temperature sintering the mixed composition It is manufactured by.

먼저 고유전율 유전체 조성은 (1-x)BaO-(x)CaO-(1-y)TiO2-(y)ZrO2계 조성 (x=0.0~0.06, y=0.0~0.12)으로 선정하였다. 이 조성은 1350oC 이상의 온도에서 소성해야 치밀화 되며, 이 때 유전율이 1200 정도이고 유전손실 값은 1% 이상으로 측정되었다. First, the high dielectric constant dielectric composition was selected as (1-x) BaO- (x) CaO- (1-y) TiO 2- (y) ZrO 2 based composition (x = 0.0 ~ 0.06, y = 0.0 ~ 0.12). The composition was densified only when fired at a temperature of 1350 o C or higher. At this time, the dielectric constant was about 1200 and the dielectric loss value was measured to be 1% or more.

모재료인 유전체의 제조는 다음의 과정에 의한다. 일반적인 고상합성법 (solid state reaction)인 산화물 혼합법 (mixed oxide method)을 사용하여 분말을 제작하였다. 출발 원료로 BaCO3, TiO2, CaO, ZrO2 상용 세라믹 원료분말을 원하는 비의 (1-x)BaO-(x)CaO-(1-y)TiO2-(y)ZrO2계 조성 (x=0.0~0.06, y=0.0~0.12)이 되도록 계산한 후 칭량하여 볼밀링한다. 볼밀링된 혼합 분말은 1,000 ~ 1,200oC 범위에서 2~3 시간 공기 중에서 하소 (calcining) 과정을 시행함으로서 BaTiO3 또는 BaO-TiO2-CaO-ZrO2계를 합성하였다.The production of the dielectric, the parent material, is carried out by the following procedure. Powders were prepared using a mixed oxide method, which is a common solid state reaction. The composition of (1-x) BaO- (x) CaO- (1-y) TiO 2- (y) ZrO 2 based composition of BaCO 3 , TiO 2 , CaO, ZrO 2 commercial ceramic powder as the starting material (x = 0.0 ~ 0.06, y = 0.0 ~ 0.12), and then measure and ball mill. Ball milled mixed powder was calcined (calcining) in air for 2-3 hours in the range of 1,000 ~ 1,200 o C synthesized BaTiO 3 or BaO-TiO 2 -CaO-ZrO 2 system.

다음으로, BaO-TiO2계 유전체의 저온소성을 위하여, 표 1에 제시한 바와 같은, 유리 프리트를 합성하였다. Next, glass frit, as shown in Table 1, was synthesized for low temperature firing of the BaO-TiO 2 based dielectric.

[표 1]유리프리트 조성 및 특성Table 1 Glass frit composition and characteristics

Figure 112004010477074-pat00001
Figure 112004010477074-pat00001

유리 프리트 조성은 반복적인 예비실험을 통하여 유리전이온도 (glass transition temperature : Tg)가 낮으면서 유전손실이 작은 조성물들을 제조하였다. 표 1에 나타난 몰비로 각 원료분말을 칭량하여 건식 혼합한 후 백금도가니에 넣고 1,300oC의 온도에서 2시간 유지한 뒤에 용융액을 수냉조에서 급냉하였다. 이렇게 얻어진 유리를 마노유발에서 1차 조분쇄하고, 에탄올을 용매로 지르코니아볼과 함께 폴리에틸렌 병에서 24시간동안 2차로 미분쇄한 다음 다시 5시간동안 어트리션 밀링 (attrition milling) 하였다. 이와 같이 제조된 유리의 전기적 특성을 표 1에 함께 나타내었다. The glass frit composition was prepared through repeated preliminary experiments to prepare compositions having low glass transition temperature (T g ) and low dielectric loss. Each raw material powder was weighed and dry mixed in the molar ratio shown in Table 1, then placed in a platinum crucible and maintained at a temperature of 1,300 ° C. for 2 hours, and the melt was quenched in a water cooling bath. The glass thus obtained was first coarsely ground in agate oil, ethanol was pulverized secondly in a polyethylene bottle with zirconia ball as a solvent for 24 hours and then subjected to attrition milling for 5 hours. Table 1 shows the electrical properties of the glass thus prepared.

상기 방법으로 제조된 여러 형태의 조성배합을 갖는 유리 프리트를 BaO-TiO2계 조성과 혼합하였으며 첨가범위는 5~20wt%의 범위로 하였다. 준비된 유전체와 유리 프리트는 에탄올을 용매로 지르코니아볼과 함께 폴리에틸렌 병에서 각각 24시간동안 습식혼합하였다. 혼합된 분말에 성형성 부여하기 위해 결합제로서 2 wt%의 PVA (poly-vinyl alcohol) 수용액을 첨가하여 체가름 (sieving, 100 mesh)을 통해 조립화하였으며, 이렇게 얻어진 최종 복합체는 1,000 ㎏/㎤ 압력으로 직경 10 ㎜의 몰드에서 일축 가압하여 원통형태로 성형하였다. 이와 같이 성형된 시편을 전기로에서 5oC/min의 승온 속도로 승온한 후 800~950oC의 범위에서 2시간 동안 소결 후 로냉 (furnace-cool) 하였다. 이와 같이 얻어진 시편에 대한 소결 특성 및 전기적 특성을 표 2에 나타낸 바와 같다. Glass frits having various types of compositional formulations prepared by the above method were mixed with BaO-TiO 2 -based compositions and the addition range was 5-20 wt%. The prepared dielectric and glass frits were wet mixed for 24 hours in polyethylene bottles with zirconia ball as ethanol as a solvent. In order to impart moldability to the mixed powder, 2 wt% of a polyvinyl alcohol (PVA) aqueous solution was added as a binder and granulated through sieving (100 mesh), and the final composite obtained was 1,000 kg / cm 3 pressure. It was uniaxially pressed in a mold having a diameter of 10 mm to form a cylindrical shape. The specimen thus formed was heated at a heating rate of 5 o C / min in an electric furnace, and then sintered for 2 hours in the range of 800 to 950 o C, followed by furnace-cooling. The sintering characteristics and electrical characteristics of the specimens thus obtained are shown in Table 2.

[표 2]BaO-TiO2와 유리프리트 혼합 조성물의 소결특성 및 전기적 특성[Table 2] Sintering and Electrical Properties of BaO-TiO 2 and Glass Frit Mixing Compositions

Figure 112004010477074-pat00002
Figure 112004010477074-pat00002

유리 프리트의 특성Characteristics of Glass Frit

앞서 표 1에 물리적 및 전기적 특성을 나타낸 바와 같이, Li2O-B2O3-SiO 2계 유리의 특성을 광범위하게 조사한 결과, Li2O-B2O3-SiO2 유리조성의 경우는 G01~G12 에 표시된 조성범위에서 유전손실 값이 0.8% 미만으로서 전기적 특성이 양호한 것으로 조사되었다. 한편, Li2O-B2O3-SiO2 조성에 CaO와 Al2 O3 조성이 부가된 H01~H05의 경우 유전손실 값이 0.2% 미만으로서 매우 낮은 우수한 값을 나타내었다. 전체적으로 2.2~2.5 범위의 밀도가 얻어졌으며, 유전율은 6.3~8.5 범위로 나타났다. 유리전이온도 (Tg)는 350~510oC 범위로 나타났다. 유전손실 값은 0.1~0.8% 범위로 나타나고 있다. 또한, 열팽창계수 (TEC)를 측정해 본 결과 대체적으로 100~170×10-7 정도의 범위로 나타내었다.As shown in Table 1 above, physical and electrical characteristics of Li 2 OB 2 O 3 -SiO 2 glass were extensively investigated. As a result, Li 2 OB 2 O 3 -SiO 2 glass composition was found in G01 to G12. The dielectric loss value of less than 0.8% in the indicated composition range was found to be good electrical properties. Meanwhile, in the case of H01 to H05 having CaO and Al 2 O 3 added to Li 2 OB 2 O 3 -SiO 2 , the dielectric loss value was less than 0.2%, which was very low. Overall, density ranged from 2.2 to 2.5, and dielectric constants ranged from 6.3 to 8.5. The glass transition temperature (T g ) ranged from 350 to 510 o C. Dielectric loss values range from 0.1 to 0.8%. In addition, the coefficient of thermal expansion (TEC) was generally measured in the range of about 100 to 170 × 10 −7 .

유전체 / 유리 프리트 혼합체의 특성Characteristics of Dielectric / Glass Frit Mixtures

표 2에는 BaO-TiO2 (BaTiO3) 조성에 대하여 다양한 종류의 유리 프리트를 5~20 wt%의 범위로 첨가한 후 850~950oC의 온도범위에서 소결한 시편의 밀도 및 전기적 특성을 나타내었다. 전체적으로 900oC 미만에서 95% 이상의 상대밀도를 나타내는 우수한 저온소결 특성을 보여주고 있다. 특히 S18, S19, S36 혼합물의 경우는 10~15%의 프리트를 첨가하고 875oC 소결온도에서 99%의 소결밀도를 나타내어 양호한 치밀화가 이루어 졌음을 알 수 있다. 이러한 조성물들의 경우는 주사전자현미경 (Scanning Electron Microscope) 관찰을 통해서 살펴본 결과, 기공이 없는 치밀한 구조가 얻어졌음을 확인하였다. 전체적으로 유전율은 200~1000 정도의 범위로 나타 나고 있으며, 유전손실 값은 1.3~3.0% 정도의 값이 얻어지고 있다. Table 2 shows BaO-TiO 2 (BaTiO 3 ) For the composition, various kinds of glass frit were added in the range of 5 to 20 wt%, and the density and electrical characteristics of the specimens sintered at a temperature range of 850 to 950 ° C. were shown. Overall, it exhibits excellent low temperature sintering characteristics of more than 95% relative density below 900 o C. Particularly in the case of S18, S19, and S36 mixture, 10 ~ 15% frit was added and the sintered density was 99% at 875 ° C sintering temperature, indicating good densification. These compositions were examined through a scanning electron microscope (Scanning Electron Microscope) observation, it was confirmed that a compact structure without pores was obtained. Overall, the dielectric constant is shown in the range of 200 ~ 1000, and the dielectric loss value is about 1.3 ~ 3.0%.

Ag 전극과 동시소성에 가장 적합한 875oC 이하의 소성온도에서 99% 이상의 밀도를 보이는 조건으로 국한해서 살펴보면, G11의 유리 프리트를 15 wt% 정도로 첨가한 경우에 유전율은 270 이상, 유전손실 값은 3.0% 이하의 값을 보여주고 있다. 이러한 조성물은 LTCC 후막다층 패키지에서 고용량의 내장 캐패시터로 활용이 충분히 가능하다. G 시리즈의 프리트를 사용한 경우에 비해 H 시리즈의 프리트를 사용한 경우가, 전체적으로 유전손실 값이 낮은 특징을 나타내고 있다. In view of the density of 99% or more at the firing temperature of 875 o C or less, which is most suitable for co-firing with Ag electrodes, the dielectric constant is higher than 270 and the dielectric loss value is about 15 wt% of G11 glass frit. It shows less than 3.0%. Such compositions can be utilized as high capacity internal capacitors in LTCC thick film multilayer packages. Compared with the G series frit, the use of the H series frit exhibits a low dielectric loss value overall.

다른 형태의 유전체 조성물에 대한 결과Results for Different Forms of Dielectric Compositions

본 발명에서 주로 검토한 BaO-TiO2 조성의 경우 저온소결성 및 유전손실 값은 충분히 낮은 값을 나타내었으나, 유전율이 300 이하로서 다소 낮은 것이 단점으로 판단되었다. 따라서 CaO, ZrO2 조성을 더 첨가하여 전체적인 유전율을 향상시키고자 하였다. 즉, (1-x)BaO-(x)CaO-(1-y)TiO2-(y)ZrO2계 조성을 구현하였으며, x=0.0~0.06 및 y=0.0~0.12의 범위에서 조성을 변화시켜 보았다. 이 때, x 및 y의 값들이 증가하게 되면 전체적인 유전율이 크게 향상되었다. In the BaO-TiO 2 composition mainly examined in the present invention, low-temperature sintering and dielectric loss values were sufficiently low, but it was determined that the dielectric constant was 300 or less, which was rather low. Therefore, CaO and ZrO 2 were added to improve the overall dielectric constant. That is, (1-x) BaO- (x) CaO- (1-y) TiO 2- (y) ZrO 2 -based composition was implemented, and the composition was changed in the range of x = 0.0 ~ 0.06 and y = 0.0 ~ 0.12. . At this time, as the values of x and y increase, the overall dielectric constant is greatly improved.

조성을 변화시켜 본 결과 표 3에 나타낸 바와 같이 x=0.04 및 y=0.08의 조성에서 가장 저온소결 특성 및 유전손실 값이 양호하게 나타났으며, 유전상수 값은 전체적으로 500 이상의 매우 높은 값을 보여주고 있다. 더 이상의 범위로 x, y를 높이게 되면 유전상수 값은 다소 상승하지만 저온소결특성과 유전손실값이 증가하 여 바람직하지 않은 것으로 판단하였다. As a result of changing the composition, as shown in Table 3, the low temperature sintering characteristics and the dielectric loss value were good at the composition of x = 0.04 and y = 0.08, and the dielectric constant showed very high value over 500. . Increasing the x and y values in the range further increased the dielectric constant value but increased the low temperature sintering characteristics and the dielectric loss value.

[표 3]BCTZ 유전체와 유리프리트 혼합 조성물의 소결특성 및 전기적 특성[Table 3] Sintering and Electrical Properties of BCTZ Dielectric and Glass Frit Mixing Compositions

Figure 112004010477074-pat00003
Figure 112004010477074-pat00003

이상에서 살펴본 바와 같이, 본 발명은 5~20 wt%의 Li2O-B2O3-CaO-Al2 O3-SiO2계 유리 프리트와 80~95 wt%의 BaO-TiO2계 유전체 세라믹스를 혼합함으로써 875oC 이하의 온도에서 소성이 가능한 유전체 조성물을 제공한다. 상기 조성물에 의한 유전체의 유전율은 200~1000 범위에 있고 유전손실 값이 3.0% 이하로 나타났다. 본 발명을 통해 개발된 이러한 조성물은 내장 캐패시터 형태로서 세라믹 다층 패키지의 일부를 구성하는데 효과적으로 적용될 수 있다. As described above, the present invention mixes 5 to 20 wt% of Li 2 OB 2 O 3 -CaO-Al 2 O 3 -SiO 2 based glass frit and 80 to 95 wt% of BaO-TiO 2 based dielectric ceramics. This provides a dielectric composition capable of firing at a temperature of 875 ° C. or lower. Dielectric constant of the dielectric by the composition is in the range of 200 ~ 1000 and the dielectric loss value was found to be 3.0% or less. Such compositions developed through the present invention can be effectively applied to construct part of ceramic multilayer packages in the form of embedded capacitors.

Claims (6)

조성식 (1-x)BaO-(x)CaO-(1-y)TiO2-(y)ZrO2 으로 표현되며 x=0.0~0.06, y=0.0~0.12인 BaO-TiO2계 유전체 80 ~ 95wt%와, BaO-TiO 2 -based dielectric 80 ~ 95wt represented by composition formula (1-x) BaO- (x) CaO- (1-y) TiO 2- (y) ZrO 2 , x = 0.0 ~ 0.06, y = 0.0 ~ 0.12 %Wow, Li2O-B2O3-SiO2계 유리 프리트 5 ~ 20wt%를 포함하여 구성되는Consists of Li 2 OB 2 O 3 -SiO 2 -based glass frit 5 ~ 20wt% 고유전율 유전체 세라믹 조성물.High dielectric constant dielectric ceramic composition. 삭제delete 제1항에 있어서, 상기 유리 프리트는 몰비로 Li2O의 범위는 33~62%, B2O3의 범위는 23~43%, SiO2의 범위는 5~35%인 것을 특징으로 하는 고유전율 유전체 세라믹 조성물.According to claim 1, wherein the glass frit has a specific ratio of Li 2 O in the range of 33 to 62%, B 2 O 3 in the range 23 to 43%, and SiO 2 in the range 5 to 35%. Tremor dielectric ceramic composition. 제3항에 있어서, 상기 유리 프리트는 추가로 2~6%의 범위의 CaO와 2.5~7.5%의 범위의 Al2O3를 포함하는 것을 특징으로 하는 고유전율 유전체 세라믹 조성물. 4. The high dielectric constant ceramic composition of claim 3, wherein the glass frit further comprises CaO in the range of 2-6% and Al 2 O 3 in the range of 2.5-7.5%. 제1항에 있어서, 상기 유리 프리트는 10~20wt%로 상기 유전체와 혼합하며, 혼합된 조성물의 소결온도는 875oC 이하, 유전율은 200 ~ 750, 유전손실은 1 ~ 3%인 것을 특징으로 하는 고유전율 유전체 세라믹 조성물. According to claim 1, wherein the glass frit is mixed with the dielectric at 10 to 20wt%, the sintering temperature of the mixed composition is 875 ° C or less, dielectric constant is 200 ~ 750, dielectric loss is characterized in that 1 to 3% A high dielectric constant dielectric ceramic composition. 제1항, 제3항, 제4항 또는 제5항의 조성물을 이용한 세라믹 유전체. A ceramic dielectric using the composition of claim 1, 3, 4, or 5.
KR1020040017149A 2004-03-13 2004-03-13 High-permittivity dielectric ceramic compositions for low-fire ceramic multilayer packages KR100632393B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040017149A KR100632393B1 (en) 2004-03-13 2004-03-13 High-permittivity dielectric ceramic compositions for low-fire ceramic multilayer packages

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040017149A KR100632393B1 (en) 2004-03-13 2004-03-13 High-permittivity dielectric ceramic compositions for low-fire ceramic multilayer packages

Publications (2)

Publication Number Publication Date
KR20050091961A KR20050091961A (en) 2005-09-16
KR100632393B1 true KR100632393B1 (en) 2006-10-12

Family

ID=37273473

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040017149A KR100632393B1 (en) 2004-03-13 2004-03-13 High-permittivity dielectric ceramic compositions for low-fire ceramic multilayer packages

Country Status (1)

Country Link
KR (1) KR100632393B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100882922B1 (en) * 2007-11-01 2009-02-10 한국과학기술연구원 Low fired dielectric ceramic composition with high strength and high q-value
KR100916071B1 (en) 2007-11-16 2009-09-08 삼성전기주식회사 Glass composition, dielectric composition and multi layer capacitor embedded low temperature co-fired ceramic substrate using the same
KR100930184B1 (en) 2007-11-29 2009-12-07 삼성전기주식회사 Dielectric Composition and Multilayer Ceramic Capacitor Embedded Low Temperature Simultaneous Ceramic Substrate Using the Same

Also Published As

Publication number Publication date
KR20050091961A (en) 2005-09-16

Similar Documents

Publication Publication Date Title
KR100426219B1 (en) Dielectric Ceramic Compositions and Manufacturing Method of Multilayer components thereof
US8420560B2 (en) Dielectric ceramic, method for producing dielectric ceramic, and method for producing powder for producing dielectric ceramic
KR101161614B1 (en) Glass-free microwave dielectric ceramics and the manufacturing method thereof
US8575052B2 (en) Dielectric ceramic, method for producing dielectric ceramic, and electronic component
JP2002104870A (en) Dielectric porcelain and laminate
KR100522134B1 (en) Low-fire high-permittivity dielectric compositions
JP3737774B2 (en) Dielectric ceramic composition
KR100401942B1 (en) Dielectric Ceramic Compositions and Manufacturing Process the same
KR100557853B1 (en) Phosphate Ceramic Compositions with Low Dielectric Constant
KR100401943B1 (en) Dielectric Ceramic Compositions and Manufacturing Method using the same compositions
KR100632393B1 (en) High-permittivity dielectric ceramic compositions for low-fire ceramic multilayer packages
KR20200081774A (en) Dielectric ceramics composition for high frequency device, ceramic substrate thereby and manufacturing method thereof
KR101849470B1 (en) Low temperature co-fired microwave dielectric ceramics and manufacturing method thereof
KR100592585B1 (en) Low-fire High-permittivity Dielectric Compositions with Adjustable Temperature Coefficient
KR100359721B1 (en) Dielectric Ceramic Compositions able to be cofired with metal
KR100471651B1 (en) Dielectric ceramic compositions for low temperature co-fired ceramic substrate and method for preparation thereof
KR100478127B1 (en) Dielectric Ceramic Composition
JPH11209172A (en) Dielectric porcelain composition and composite dielectric porcelain composition
JP3978689B2 (en) Low-temperature fired porcelain composition and microwave component using the same
JPH07330427A (en) Dielectric porcelain composition
JP4618856B2 (en) Low temperature fired porcelain
KR100351711B1 (en) Method for Preparing Dielectric Ceramic Compositions for Low Temperature Co-fired Ceramic Substrate
JPH08239262A (en) Dielectric porcelain composition
KR100373694B1 (en) Dielectric Ceramic Compositions
JP2001015875A (en) Circuit board and its manufacture

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120910

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140213

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee