JP4618856B2 - Low temperature fired porcelain - Google Patents

Low temperature fired porcelain Download PDF

Info

Publication number
JP4618856B2
JP4618856B2 JP2000259676A JP2000259676A JP4618856B2 JP 4618856 B2 JP4618856 B2 JP 4618856B2 JP 2000259676 A JP2000259676 A JP 2000259676A JP 2000259676 A JP2000259676 A JP 2000259676A JP 4618856 B2 JP4618856 B2 JP 4618856B2
Authority
JP
Japan
Prior art keywords
weight
parts
low
terms
temperature fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000259676A
Other languages
Japanese (ja)
Other versions
JP2002068828A (en
Inventor
辰治 古瀬
誠一郎 平原
秀司 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000259676A priority Critical patent/JP4618856B2/en
Publication of JP2002068828A publication Critical patent/JP2002068828A/en
Application granted granted Critical
Publication of JP4618856B2 publication Critical patent/JP4618856B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ波,ミリ波等の高周波領域において、低い誘電率と高いQ値を有する低温焼成磁器に関するものであり、例えば、マイクロ波やミリ波などの高周波領域において使用される種々の共振器用材料やMIC用誘電体基板材料、誘電体導波路用材料や積層型セラミックコンデンサ等に好適な低温焼成磁器に関する。
【0002】
【従来技術】
従来、低温焼成磁器は、マイクロ波やミリ波等の高周波領域において、誘電体共振器、MIC用誘電体基板や導波路等に広く利用されている。そして、近年においては、携帯電話をはじめとする移動体通信等の発達および普及に伴い、電子回路基板や電子部品の材料として、誘電体セラミックスの需要が増大しつつある。
【0003】
電子回路や電子部品において、誘電体セラミックスと内部導体を同時焼成するに際しては、従来の誘電体セラミックスの焼成温度が1100℃以上という高温であったため、導体材料としては、比較的高融点であるPt、Pd、W、Mo等が使用されていた。これら高融点の導体材料は導通抵抗が大きいため、従来の電子回路基板において、共振回路やインダクタンスのQ値が小さくなってしまい、導体線路の伝送損失が大きくなる等の問題があった。
【0004】
そこで、係る問題点を解決すべく、導通抵抗の小さいAg、Cu等と同時焼成可能な低温焼成の誘電体セラミックスが提案されている。例えば、特開平8−208330号公報に開示された低温焼成磁器組成物は、MgO、CaO、TiO2とからなる誘電体成分と、B23、Li2CO3とからなる助剤成分とからなるものであり、900〜1050℃の比較的低温でAg、Cu等の内部導体と同時に焼成でき、焼成後の低温焼成磁器の比誘電率εrが18以上、測定周波数7GHzでのQ値が2000以上の優れた特性を有し、高周波電子部品の小型化と多機能化を実現できるものであった。
【0005】
【発明が解決しようとする課題】
しかしながら特開平8−208330号公報に開示された低温焼成磁器組成物は、焼結温度がまだ高く、さらに焼結における収縮開始温度が845〜960℃と高温であるため、収縮開始温度が500〜700℃程度であるAgやCuを主成分とする導体材料との焼成時の収縮挙動のマッチングが悪く、焼成された誘電体基板が反る、歪む等の問題があった。また、誘電率εrが高いため高周波用途では寄生容量が発生する等の回路上の制約が起こるという問題があった。
【0006】
したがって、本発明は、高周波領域において適切な誘電率とQ値、良好な耐湿性を有する低温焼成磁器を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明者等は、上記問題点を解決すべく鋭意検討した結果、誘電体フィラー成分として、Al18433とMgTiO3を用いて、これに特定のガラス成分を添加混合することによって、上記目的が達成できることを見いだし、本発明に至った。
【0009】
本発明の低温焼成磁器は、重量比率による組成式を(1−x)Al 18 33 −xMgTiO と表した時、前記xが、0.1≦x≦0.6を満足する主成分100重量部に対して、BをB 換算で5〜20重量部、LiをLi CO 換算で5〜8重量部、SiをSiO 換算で0〜30重量部、Baまたは、CaおよびBaを酸化物換算で1〜5重量部、MnをMnO 換算で1〜15重量部の割合で含有し、少なくともAl1833結晶相を含む誘電体結晶相と、少なくともLi、B、アルカリ土類元素を含有するガラス相とから構成され、さらに(Mg,Ti)(BO)O結晶相とを含むことを特徴とする。これによってQ値をさらに高めることができる。
また、上記誘電体磁器では、比誘電率が5〜12で、測定周波数2GHzでのQ値が500以上であることが望ましい。
【0010】
【発明の実施の形態】
本発明の低温焼成磁器を得るための低温焼成磁器組成物は、重量比率による組成式を
(1−x)Al1833−xMgTiOと表した時、前記xが、0.1≦x≦0.6を満足する主成分100重量部に対して、BをB換算で〜20重量部、LiをLiCO換算で重量部、SiをSiO換算で0〜30重量部、Bまたは、CaおよびBaを酸化物換算で1〜5重量部、MnをMnO換算で1〜15重量部添加含有してなるものである。
これにより、焼成温度を870〜920℃に、収縮開始温度を680〜780℃とすることが可能となるため、AgやCu等の導体金属と同時に焼成でき、その際、導体金属の収縮挙動のミスマッチから発生する基板の反りや歪みを抑制できる。
【0011】
上記主成分組成において、xを0.1≦x≦0.6としたのは、xが0.6を越える場合には、誘電率が12を超えるためである。とりわけ低温焼成磁器の誘電率を低くするためにはxは0.1≦x≦0.が好ましい。
【0012】
また、上記のガラス成分において、BをB換算で〜20重量部添加したのは、Bの添加量が重量部未満の場合には1100℃でも焼結が難しく、AgまたはCuを主成分とする導体と同時焼成ができなくなり、逆に20重量部を越える場合には、焼結体中のガラス相の割合が増加して、Q値が低下するからである。よって、焼結性を維持し、高いQ値を得るという観点からB換算で5〜15重量部が望ましい。B(硼素)を組成物中に導入するには、B を用いる。
【0013】
またLiをLiCO換算で1〜10重量部添加したのは、添加量が1重量部未満の場合には1100℃でも焼結が難しく、AgまたはCuを主成分とする導体と同時焼成ができなくなり、逆に10重量部を越える場合には、Q値が低下するからである。焼結性と低温焼成磁器のQ値の観点から重量部とする
【0014】
さらにSiをSiO2換算で0〜30重量部添加したのは、30重量部を越えると、低温焼成磁器中の結晶相(Mg,Ti)2(BO3)Oの割合が減少してQ値が低下するからである。低温焼成磁器のQ値の観点からは、SiO2は0〜10重量部が望ましい。
【0015】
本発明の低温焼成磁器を得るための低温焼成磁器組成物では、主成分100重量部に対して、さらにBaOまたは、CaOおよびBaOを1〜5重量部添加含有するものである。これらが1重量部未満の場合には、低温焼成磁器の焼結過程における収縮開始温度が約850℃と高く目的が達成されず、5重量部を越えると、低温焼成磁器のQ値が低下する。とりわけ低温焼成磁器の焼結性とQ値の観点からBaOまたは、CaOおよびBaOは、合計1.5〜3.5重量部が好ましい。
【0016】
またMnをMnO2換算で1〜15重量部添加したのは、添加量が1重量部未満の場合には過程における収縮開始温度が約850℃と高く目的が達成されず、逆に15重量部を越える場合には、Q値が低下するからである。焼結性と低温焼成磁器のQ値の観点から3〜9重量部が望ましい。
【0017】
本発明の低温焼成磁器を得るための低温焼成磁器組成物は、原料粉末として、Al1833、MgTiO粉末、およびB LiCO、SiO 、BaOまたは、CaOおよびBaOの各粉末、もしくはこれらを含むガラスフリットを準備し、これらを上記した組成比となるように秤量し、ZrOボール等によって粉砕混合し、この混合粉末を650〜850℃で仮焼した後、再度ボールミルで粉砕粒径が2.5μm以下になるまで粉砕混合する。
【0018】
その後、この仮焼粉末をプレス成形やドクターブレード法等の公知の方法により所定形状に成形し、大気中または酸素雰囲気中または窒素雰囲気等の非酸化性雰囲気において870〜920℃で0.5〜2時間焼成することにより得られる。
【0019】
なお、原料粉末は、上記以外に、焼成により酸化物を生成する水酸化物、炭酸塩、硝酸塩等の金属塩を用いても良い。本発明の低温焼成磁器中には、不可避不純物としてAl,Fe,Hf,Sn,Zr等が含まれることもあるが、それらは0.1重量%以下であれば特に問題はない。
【0020】
本発明の低温焼成磁器は、少なくともAl1833結晶相を含む誘電体結晶相と、少なくともLiと硼素(B)を含有するガラス相とから構成され、さらには誘電体結晶相として、(Mg,Ti)(BO)O結晶相を含むものである。また、ガラス相中には、硼素(B)以外に、Li、Si、アルカリ土類元素、およびMnを含有する場合もある。
【0021】
また、本発明による低温焼成磁器は、磁器の誘電体特性として、比誘電率が5.1〜12で、測定周波数2GHzでのQ値が500以上、特に600以上の優れた特性を有するものである。
【0022】
【実施例】
原料として純度99%以上の、Al18433粉末、MgTiO3粉末、およびB23、Li2CO3、SiO2、アルカリ土類酸化物(MgO,CaO,SrO,BaO)、MnO2粉末を含むガラスフリットを、表1に示す割合となるように秤量し、純水を媒体とし、ZrO2ボールを用いたボ−ルミルにて20時間湿式混合した。次にこの混合物を乾燥(脱水)し、800℃で1時間仮焼した。この仮焼物を、粉砕粒径が1.4μm以下になるように粉砕し、誘電特性評価用の試料として直径60mm、高さ2mmの円柱状に1ton/cm2の圧力でプレス成形し、これを900℃で2時間焼成し、直径50mm、高さ1mmの円柱状の試料を得た。
【0023】
誘電特性の評価は、前記試料を用いて誘電体円柱共振器法にて周波数2GHzにおける比誘電率(εr)とQ値を測定した。
【0024】
なお、上記の焼結過程における収縮開始温度を測定した。この収縮開始温度は、プレス成形した試料をTMA(熱機械分析)にて分析を行い、その収縮カーブから測定した。
【0025】
また、得られた低温焼成磁器について、X線回折測定を行い、検出結晶相の同定を行なった。また、結晶相の粒界に存在するガラス相を純水による煮沸によって溶出し、ガラス中の金属成分をICP分析によって同定した。
【0026】
さらに各組成物を用いてドクターブレード法によってグリーンシートを作製するとともに、各シートの表面にCuペーストまたはAgペーストを印刷塗布し、7層積層して、Cuでは窒素雰囲気中で、Agでは大気中で表2の温度で焼成して、外径サイズが、50×50mmの多数個取りの配線基板を作製した。得られた配線基板の凹面側を平坦面に接するように載せ、平坦面との間に形成された最大高さを反り量として測定した。
【0027】
【表1】

Figure 0004618856
【0028】
【表2】
Figure 0004618856
【0029】
この表1,2から明らかなように、本発明の組成範囲を満足する試料No.1、3、410、11、15、17〜20は、いずれも比誘電率が5.1〜12、Q値が500以上の優れた誘電特性を有するとともに、680〜780℃で焼結収縮が開始し、920℃以下での焼結が可能で優れた焼結性を有していた。また、CuやAgとの同時焼結性においても、反り量が100μm以下の非常に平坦性に優れた配線基板を作製することができた。
【0030】
【発明の効果】
以上詳述した通り、本発明によれば、高周波領域において適切な誘電率とQ値、良好な耐湿性を有するため、電子部品や基板の小型・高性能化実現できる。[0001]
BACKGROUND OF THE INVENTION
The present invention is a microwave, in a high frequency region such as a millimeter wave, which relates to low-temperature firing porcelain having a low dielectric constant and a high Q value, for example, various used in a high frequency region such as microwave and millimeter wave of resonator materials and MIC dielectric substrate materials, relates to a suitable low-temperature fired porcelain in the dielectric waveguide materials and laminated ceramic capacitors and the like.
[0002]
[Prior art]
Conventionally, low-temperature fired ceramics are widely used for dielectric resonators, dielectric substrates for MICs, waveguides, and the like in high-frequency regions such as microwaves and millimeter waves. In recent years, with the development and spread of mobile communications such as mobile phones, the demand for dielectric ceramics as materials for electronic circuit boards and electronic components is increasing.
[0003]
In the simultaneous firing of dielectric ceramics and internal conductors in electronic circuits and electronic parts, the firing temperature of conventional dielectric ceramics is as high as 1100 ° C. or higher, so that Pt, which has a relatively high melting point, is used as a conductor material. , Pd, W, Mo and the like have been used. Since these high melting point conductor materials have a large conduction resistance, the conventional electronic circuit board has a problem that the Q value of the resonance circuit and the inductance is reduced, and the transmission loss of the conductor line is increased.
[0004]
Therefore, in order to solve such problems, low-temperature fired dielectric ceramics that can be fired simultaneously with Ag, Cu, etc. having a low conduction resistance have been proposed. For example, low-temperature fired ceramic composition disclosed in Japanese Patent Laid-Open No. 8-208330 is, MgO, CaO, and a dielectric component comprising TiO 2 Prefecture, and auxiliary component consisting of B 2 O 3, Li 2 CO 3 Metropolitan Can be fired at the same time as an internal conductor such as Ag and Cu at a relatively low temperature of 900 to 1050 ° C., and the low-temperature fired ceramic after firing has a relative dielectric constant εr of 18 or more and a Q value at a measurement frequency of 7 GHz. It has excellent characteristics of 2000 or more and can realize miniaturization and multi-functionalization of high-frequency electronic components.
[0005]
[Problems to be solved by the invention]
However, the low-temperature fired porcelain composition disclosed in Japanese Patent Application Laid-Open No. 8-208330 has a high sintering temperature, and the shrinkage start temperature in sintering is as high as 845 to 960 ° C. There was a problem that the shrinkage matching at the time of firing with a conductor material mainly composed of Ag or Cu at about 700 ° C. was poor, and the fired dielectric substrate was warped or distorted. In addition, since the dielectric constant εr is high, there is a problem in that restrictions on the circuit such as generation of parasitic capacitance occur in high frequency applications.
[0006]
Therefore, an object of the present invention is to provide a low-temperature fired ceramic having an appropriate dielectric constant, Q value, and good moisture resistance in a high frequency region .
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have used Al 18 B 4 O 33 and MgTiO 3 as dielectric filler components, and by adding and mixing specific glass components thereto, The inventors have found that the above object can be achieved, and have reached the present invention.
[0009]
The low-temperature fired ceramic according to the present invention is such that when the composition formula by weight ratio is expressed as (1-x) Al 18 B 4 O 33 -xMgTiO 3 , the x satisfies 0.1 ≦ x ≦ 0.6. With respect to 100 parts by weight of the component, B is 5 to 20 parts by weight in terms of B 2 O 3 , Li is 5 to 8 parts by weight in terms of Li 2 CO 3 , Si is 0 to 30 parts by weight in terms of SiO 2 , Ba or A dielectric crystal phase containing at least 1 to 15 parts by weight of Ca and Ba in terms of oxide, 1 to 15 parts by weight of Mn in terms of MnO 2 , and including at least an Al 18 B 4 O 33 crystal phase, li, B, is composed of a glass phase containing an alkaline-earth element, further (Mg, Ti) characterized in that it comprises a 2 (BO 3) O crystalline phase. As a result, the Q value can be further increased.
In the dielectric ceramic, it is desirable that the relative dielectric constant is 5 to 12, and the Q value at a measurement frequency of 2 GHz is 500 or more.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The low-temperature fired ceramic composition for obtaining the low-temperature fired ceramic according to the present invention has a composition formula by weight ratio expressed as (1-x) Al 18 B 4 O 33 -xMgTiO 3, and the x is 0 . B is 5 to 20 parts by weight in terms of B 2 O 3 , Li is 5 to 8 parts by weight in terms of Li 2 CO 3 , and Si is SiO with respect to 100 parts by weight of the main component satisfying 1 ≦ x ≦ 0.6 0 to 30 parts by weight in terms of 2 , 1 to 5 parts by weight of Ba or Ca and Ba in terms of oxide, and 1 to 15 parts by weight of Mn in terms of MnO 2 are added.
As a result, the firing temperature can be set to 870 to 920 ° C., and the shrinkage start temperature can be set to 680 to 780 ° C., so that the conductor metal such as Ag or Cu can be fired simultaneously. It is possible to suppress the warpage and distortion of the substrate caused by the mismatch.
[0011]
In the above main component composition, x is 0 . The reason why 1 ≦ x ≦ 0.6 is that when x exceeds 0.6, the dielectric constant exceeds 12. In particular, in order to reduce the dielectric constant of low-temperature fired ceramics, x is 0 . 1 ≦ x ≦ 0. 3 is preferred.
[0012]
Further, the glass component of the, B and B 2 O 3 was added 5 to 20 wt parts in terms of, B 2 amount of O 3 is in the case of less than 5 parts by weight are difficult 1100 ° C. even sintering, This is because simultaneous firing with a conductor containing Ag or Cu as a main component becomes impossible and, on the contrary, when it exceeds 20 parts by weight, the ratio of the glass phase in the sintered body increases and the Q value decreases. Therefore, 5 to 15 parts by weight in terms of B 2 O 3 is desirable from the viewpoint of maintaining sinterability and obtaining a high Q value. To introduce B (boron) in the composition, Ru with B 2 O 3.
[0013]
Also, Li was added in an amount of 1 to 10 parts by weight in terms of Li 2 CO 3. When the added amount was less than 1 part by weight, sintering was difficult even at 1100 ° C., and co-firing with a conductor mainly composed of Ag or Cu. This is because the Q value decreases when the amount exceeds 10 parts by weight. From the viewpoint of sinterability and the Q value of the low-temperature fired porcelain, the content is 5 to 8 parts by weight.
[0014]
Furthermore, 0 to 30 parts by weight of Si in terms of SiO 2 is added. If the amount exceeds 30 parts by weight, the ratio of the crystalline phase (Mg, Ti) 2 (BO 3 ) O in the low-temperature fired porcelain decreases, resulting in a Q value. This is because of a decrease. From the viewpoint of the Q value of the low-temperature fired ceramic, 0 to 10 parts by weight of SiO 2 is desirable.
[0015]
The low temperature fired porcelain composition to obtain a low-temperature fired porcelain of the present invention, with respect to 100 parts by weight of the main component, further, BaO or one in which the CaO and BaO containing added 5 parts by weight. When these are less than 1 part by weight, the shrinkage start temperature in the sintering process of the low-temperature fired ceramic is as high as about 850 ° C., and the purpose is not achieved. . Especially in view of sinterability and Q values of the low-temperature fired porcelain, BaO or, CaO and BaO, the total 1.5 to 3.5 parts by weight is preferred.
[0016]
In addition, Mn was added in an amount of 1 to 15 parts by weight in terms of MnO 2. When the amount added was less than 1 part by weight, the shrinkage start temperature in the process was as high as about 850 ° C., and the purpose was not achieved. This is because the Q value decreases when the value exceeds. From the viewpoint of sinterability and the Q value of the low-temperature fired porcelain, 3 to 9 parts by weight is desirable.
[0017]
The low-temperature fired porcelain composition for obtaining the low-temperature fired porcelain of the present invention includes, as a raw material powder, Al 18 B 4 O 33 , MgTiO 3 powder, and B 2 O 3 , Li 2 CO 3 , SiO 2 , BaO or Each powder of CaO and BaO or a glass frit containing them is prepared, weighed so as to have the above composition ratio, pulverized and mixed with a ZrO 2 ball or the like, and this mixed powder was calcined at 650 to 850 ° C. After that, the mixture is pulverized and mixed again with a ball mill until the pulverized particle size becomes 2.5 μm or less.
[0018]
Thereafter, the calcined powder is molded into a predetermined shape by a known method such as press molding or a doctor blade method, and is 0.5 to 920 ° C. in a non-oxidizing atmosphere such as the air, an oxygen atmosphere, or a nitrogen atmosphere. It is obtained by baking for 2 hours.
[0019]
In addition to the above, the raw material powder may use a metal salt such as a hydroxide, carbonate, nitrate, etc. that generates an oxide by firing. The low-temperature fired porcelain of the present invention may contain Al, Fe, Hf, Sn, Zr, etc. as inevitable impurities, but there is no particular problem as long as they are 0.1% by weight or less.
[0020]
The low-temperature fired ceramic of the present invention is composed of a dielectric crystal phase including at least an Al 18 B 4 O 33 crystal phase, a glass phase containing at least Li and boron (B), and further, as a dielectric crystal phase, It includes (Mg, Ti) 2 (BO 3 ) O crystal phase. The glass phase may contain Li, Si, alkaline earth elements, and Mn in addition to boron (B).
[0021]
The low-temperature fired porcelain according to the present invention has a dielectric constant of 5 . 1 to 12, and a Q value at a measurement frequency of 2 GHz is 500 or more, particularly 600 or more.
[0022]
【Example】
Al 18 B 4 O 33 powder, MgTiO 3 powder, B 2 O 3 , Li 2 CO 3 , SiO 2 , alkaline earth oxides (MgO, CaO, SrO, BaO), MnO having a purity of 99% or more as raw materials The glass frit containing 2 powders was weighed so as to have the ratio shown in Table 1, and wet-mixed for 20 hours in a ball mill using ZrO 2 balls using pure water as a medium. The mixture was then dried (dehydrated) and calcined at 800 ° C. for 1 hour. This calcined product is pulverized so that the pulverized particle size is 1.4 μm or less, and is press-molded at a pressure of 1 ton / cm 2 into a cylindrical shape having a diameter of 60 mm and a height of 2 mm as a sample for dielectric property evaluation. Firing at 900 ° C. for 2 hours gave a columnar sample having a diameter of 50 mm and a height of 1 mm.
[0023]
For the evaluation of the dielectric characteristics, the relative permittivity (εr) and the Q value at a frequency of 2 GHz were measured by the dielectric cylindrical resonator method using the sample.
[0024]
The shrinkage start temperature in the above sintering process was measured. The shrinkage start temperature was measured from a shrinkage curve obtained by analyzing a press-molded sample by TMA (thermomechanical analysis).
[0025]
Moreover, about the obtained low-temperature baking ceramic, the X-ray-diffraction measurement was performed and the detection crystal phase was identified. Further, the glass phase present at the grain boundary of the crystal phase was eluted by boiling with pure water, and the metal component in the glass was identified by ICP analysis.
[0026]
Further, a green sheet is prepared by a doctor blade method using each composition, and a Cu paste or an Ag paste is printed and applied on the surface of each sheet, and seven layers are laminated. Cu is in a nitrogen atmosphere, and Ag is in the atmosphere. And firing at the temperature shown in Table 2 to produce a multi-piece wiring board having an outer diameter of 50 × 50 mm. The concave side of the obtained wiring board was placed in contact with the flat surface, and the maximum height formed between the flat surface and the flat surface was measured as the amount of warpage.
[0027]
[Table 1]
Figure 0004618856
[0028]
[Table 2]
Figure 0004618856
[0029]
As can be seen from Tables 1 and 2, Sample Nos. Satisfying the composition range of the present invention. 1 , 3, 4, 10 , 11 , 15 , 17-20 all have a relative dielectric constant of 5 . 1-12, along with the Q value has more than 500 excellent dielectric properties, sintering shrinkage begins at six hundred and eighty to seven hundred eighty ° C., had excellent sinterability can be sintered at 920 ° C. or less . In addition, in terms of co-sinterability with Cu and Ag, it was possible to produce a wiring board with excellent flatness with a warpage amount of 100 μm or less.
[0030]
【The invention's effect】
As described above, according to the present invention, to have a suitable dielectric constant and Q value, good moisture resistance in a high frequency region, it is possible to realize a compact and high performance of electronic components and the substrate.

Claims (2)

重量比率による組成式を(1−x)Al 18 33 −xMgTiO と表した時、前記xが、0.1≦x≦0.6を満足する主成分100重量部に対して、BをB 換算で5〜20重量部、LiをLi CO 換算で5〜8重量部、SiをSiO 換算で0〜30重量部、Baまたは、CaおよびBaを酸化物換算で1〜5重量部、MnをMnO 換算で1〜15重量部の割合で含有し、少なくともAl1833結晶相を含む誘電体結晶相と、少なくともLi、B、アルカリ土類元素を含有するガラス相とから構成され、さらに誘電体結晶相として、(Mg,Ti)(BO)O結晶相を含むことを特徴とする低温焼成磁器。 When the composition formula by weight ratio is expressed as (1-x) Al 18 B 4 O 33 -xMgTiO 3 , the x is 100 parts by weight of the main component satisfying 0.1 ≦ x ≦ 0.6. B is 5 to 20 parts by weight in terms of B 2 O 3 , Li is 5 to 8 parts by weight in terms of Li 2 CO 3 , Si is 0 to 30 parts by weight in terms of SiO 2 , Ba or Ca and Ba are in terms of oxides 1 to 5 parts by weight, Mn in a proportion of 1 to 15 parts by weight in terms of MnO 2 , and a dielectric crystal phase including at least an Al 18 B 4 O 33 crystal phase, and at least Li, B, and an alkaline earth element A low-temperature fired porcelain characterized by comprising a (Mg, Ti) 2 (BO 3 ) O crystal phase as a dielectric crystal phase. 比誘電率が5〜12で、測定周波数2GHzでのQ値が500以上であることを特徴とする請求項1記載の低温焼成磁器。  The low-temperature fired ceramic according to claim 1, wherein the dielectric constant is 5 to 12, and the Q value at a measurement frequency of 2 GHz is 500 or more.
JP2000259676A 2000-08-29 2000-08-29 Low temperature fired porcelain Expired - Fee Related JP4618856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000259676A JP4618856B2 (en) 2000-08-29 2000-08-29 Low temperature fired porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000259676A JP4618856B2 (en) 2000-08-29 2000-08-29 Low temperature fired porcelain

Publications (2)

Publication Number Publication Date
JP2002068828A JP2002068828A (en) 2002-03-08
JP4618856B2 true JP4618856B2 (en) 2011-01-26

Family

ID=18747813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000259676A Expired - Fee Related JP4618856B2 (en) 2000-08-29 2000-08-29 Low temperature fired porcelain

Country Status (1)

Country Link
JP (1) JP4618856B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880426A (en) * 2021-11-11 2022-01-04 广东省科学院新材料研究所 Microcrystalline glass brazing filler metal for ceramic connection, preparation method thereof and ceramic connection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130052A (en) * 1990-06-13 1992-05-01 Mitsui Mining Co Ltd Starting material composition for ceramic substrate and production of substrate using the same
JPH11157931A (en) * 1997-09-26 1999-06-15 Kyocera Corp High frequency dielectric ceramic and laminate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130052A (en) * 1990-06-13 1992-05-01 Mitsui Mining Co Ltd Starting material composition for ceramic substrate and production of substrate using the same
JPH11157931A (en) * 1997-09-26 1999-06-15 Kyocera Corp High frequency dielectric ceramic and laminate

Also Published As

Publication number Publication date
JP2002068828A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
JP4535592B2 (en) Laminated body
JP4632534B2 (en) Dielectric porcelain and manufacturing method thereof
JP3860687B2 (en) Dielectric porcelain and laminate
JP4618856B2 (en) Low temperature fired porcelain
JP2000239061A (en) Dielectric porcelain composition
KR100444225B1 (en) Dielectric ceramic composition, ceramic capacitor using the same and process of producing thereof
JP4249690B2 (en) High frequency dielectric ceramics and laminates
KR100444221B1 (en) Dielectric ceramic composition, ceramic capacitor using the same and process of producing thereof
JP3085625B2 (en) Dielectric porcelain composition
JP3909366B2 (en) Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition
JP3793550B2 (en) Dielectric porcelain and laminate
JP3793549B2 (en) Dielectric porcelain composition and laminate
JP3631607B2 (en) High frequency dielectric ceramics and laminates
JP2001284807A (en) Circuit board
JP3754827B2 (en) High frequency dielectric ceramic composition and laminate
JP3631589B2 (en) Dielectric porcelain composition and laminate
JP4442077B2 (en) Porcelain composition for high frequency components
JP3839868B2 (en) Dielectric ceramic composition and electronic component
KR100452817B1 (en) Dielectric ceramic composition, ceramic capacitor using the same and process of producing thereof
KR100444220B1 (en) Dielectric ceramic composition, ceramic capacitor using the same and process of producing thereof
JP3905993B2 (en) High frequency dielectric ceramic composition and laminated part using the same
JP3085618B2 (en) Dielectric porcelain composition
JP3909367B2 (en) Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition
JP2892203B2 (en) Dielectric circuit board
JPH11278925A (en) Dielectric porcelain composition and laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees