JP3754827B2 - High frequency dielectric ceramic composition and laminate - Google Patents

High frequency dielectric ceramic composition and laminate Download PDF

Info

Publication number
JP3754827B2
JP3754827B2 JP27689898A JP27689898A JP3754827B2 JP 3754827 B2 JP3754827 B2 JP 3754827B2 JP 27689898 A JP27689898 A JP 27689898A JP 27689898 A JP27689898 A JP 27689898A JP 3754827 B2 JP3754827 B2 JP 3754827B2
Authority
JP
Japan
Prior art keywords
dielectric
dielectric ceramic
weight
ceramic composition
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27689898A
Other languages
Japanese (ja)
Other versions
JP2000103673A (en
Inventor
誠一郎 平原
秀司 中澤
辰治 古瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP27689898A priority Critical patent/JP3754827B2/en
Publication of JP2000103673A publication Critical patent/JP2000103673A/en
Application granted granted Critical
Publication of JP3754827B2 publication Critical patent/JP3754827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ波、ミリ波等の高周波領域において、高いQ値を有する高周波用誘電体磁器組成物および積層体に関するものであり、例えば、マイクロ波やミリ波などの高周波領域において使用される種々の共振器用材料やMIC用誘電体基板材料、誘電体導波路用材料、積層型セラミックコンデンサの誘電体層等に用いることができる高周波用誘電体磁器組成物および積層体に関する。
【0002】
【従来技術】
従来、誘電体磁器は、マイクロ波やミリ波等の高周波領域において誘電体共振器、MIC用誘電体基板や導波路等に広く利用されている。そして、近年においては、携帯電話をはじめとする移動体通信等の発達および普及に伴い、電子回路基板や電子部品の材料として、誘電体磁器の需要が増大しつつある。
【0003】
電子回路基板や電子部品において、誘電体磁器と内部導体を同時焼成するに際しては、従来の誘電体磁器の焼成温度が1100℃以上という高温であったため、導体材料としては、比較的高融点であるPt、Pd、W、Mo等が使用されていた。これら高融点の導体材料は導通抵抗が大きいため、従来の電子回路基板において、共振回路のQ値が小さくなってしまい、導体線路の伝送損失が大きくなる等の問題があった。
【0004】
そこで、係る問題点を解決すべく、導通抵抗の小さいAg、Cu等と同時焼成可能な低温焼成の誘電体磁器が提案されている。例えば、本出願人が先に出願した特開平8−208330号公報に開示された誘電体磁器組成物は、MgO、CaO、TiO2 とB2 3 、Li2 CO3 からなるものであり、900〜1050℃の比較的低温でAg、Cu等の内部導体と同時に焼成でき、誘電体磁器の比誘電率εrが18以上、測定周波数7GHzでのQ値が2000以上、かつ共振周波数の温度係数τfが±40ppm/℃以内の優れた特性を有し、高周波電子部品の小型化と高性能化を実現できるものであった。
【0005】
また、特開平9−315859号公報に開示された誘電体磁器組成物はCaO、ZrO2 とB2 3 、アルカリ金属化合物からなり、1200℃以下の比較的低温で焼成できるものであった。
【0006】
【発明が解決しようとする課題】
しかしながら、特開平8−208330号公報に開示された誘電体磁器組成物では焼結温度がまだ高く、さらに焼結における収縮開始温度が845〜960℃と高温であるため、導体材料との収縮挙動のマッチングが悪く、焼成された基板や電子部品が反る、歪む等の問題があった。また、特開平9−315859号公報に開示された誘電体磁器組成物も同様の問題があった。
【0007】
即ち、導体としては、Agおよび/またはCuを主成分とするもの、例えば、Ag、Cu、あるいはAg、Cuに対してガラス成分やセラミック成分、Pt、Pd等の金属を添加したものがあるが、これらの導体は、焼成時における収縮開始温度が高くとも650℃程度であるため、上記誘電体磁器組成物の収縮開始温度との差が大きく、これにより、基板等が変形する等の問題があった。
【0008】
本発明は、収縮開始温度を低くして、導体の収縮開始温度に近づけることができ、AgやCuを主成分とする導体と同時焼成した場合でも反りや歪みを抑制できる高周波用誘電体磁器組成物および積層体を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の高周波用誘電体磁器組成物は、金属元素としてCa、Zrからなる複合酸化物であって、これらのモル比による組成式をxCaO・ZrOと表した時、前記xが0.87≦x≦1.36を満足する主成分と、該主成分100重量部に対して、B、アルカリ金属、Siおよびアルカリ土類金属を含有する粒界相形成成分5〜30重量部とからなるとともに、該粒界相形成成分は、重量比による組成式を、
aB ・bA O・cSiO ・dRO
と表した時、前記a、b、cおよびdが、
40≦a≦90
8≦b≦20
1≦c≦20
1≦d≦20
a+b+c+d=100
Aはアルカリ金属のうち少なくとも一種
Rはアルカリ土類金属のうち少なくとも一種を満足するものである。Q値とその測定周波数でとの積で表されるQf値は20000[GHz]以上であることが望ましい。
【0011】
本発明の積層体は、誘電体層を複数積層してなる基体の内部および/または表面に、Agおよび/またはCuを主成分とする導体を有する積層体であって、前記誘電体層が上記高周波用誘電体磁器組成物からなるものである。
【0012】
【作用】
本発明の高周波用誘電体磁器組成物は、B、アルカリ金属、Siおよびアルカリ土類金属を含有する粒界相形成成分により、低損失セラミックフィラーxCaO・ZrO2 自体のQf値をそれほど低下させることなく、940℃以下の焼成温度で焼成できるとともに、収縮開始温度を830℃以下にでき、Ag、Cu等の内部導体と同時焼成しても変形することがなく、さらに、Q値とその測定周波数との積で表される磁器のQf値が15000〔GHz〕以上となり、共振器用材料やMIC用誘電体基板材料、誘電体導波路用材料、積層型セラミックコンデンサの誘電体層等に好適に用いることができる。
【0013】
また、粒界相形成成分が、重量比による組成式をaB2 3 ・bA2 O・cSiO2 ・dRO(Aはアルカリ金属のうち少なくとも一種、Rはアルカリ土類金属のうち少なくとも一種)と表した時、a、b、cおよびdが、40≦a≦90、8≦b≦20、1≦c≦20、1≦d≦20、a+b+c+d=100を満足することにより、920℃以下の焼成温度で焼成できるとともに、焼成収縮開始温度を830℃以下、特には800℃以下にすることができ、Agおよび/またはCuを主成分とする導体の収縮開始温度に近づけることができ、Ag、Cuを主成分とする導体と同時焼成した場合でも、基板や電子部品の反りや歪み等の発生を抑制することができ、さらに、共振周波数の温度係数τfを±40ppm/℃の範囲内とすることが可能となる。
【0014】
本発明の積層体では、上記したような誘電体磁器組成物を用いることにより、Ag、Cuを主成分とする導体と同時焼成した場合でも、積層体の反り、歪み等の発生を抑制でき、マイクロ波やミリ波等の高周波領域において、共振器、MIC用基板、導波路用として好適に使用できる。
【0015】
【発明の実施の形態】
本発明の高周波用誘電体磁器組成物は、金属元素としてCa、Zrからなる複合酸化物であって、これらのモル比による組成式を、xCaO・ZrOと表した時、前記xが0.87≦x≦1.36を満足する主成分と、該主成分100重量部に対して、B、アルカリ金属、Siおよびアルカリ土類金属を含有する粒界相形成成分5〜30重量部とからなるものである。
【0016】
ここで、上記組成式において、0.87≦x≦1.36としたのは、xが0.87未満の場合にはQf値が低下し、xが1.36を越える場合にはQf値と焼結性が低下するからである。高いQf値を得るという観点から0.95≦x≦1.28が望ましい。
【0017】
B、アルカリ金属、Siおよびアルカリ土類金属を含有する粒界相形成成分を用いたのは、これらの成分を用いることにより、焼成温度を940℃以下とすることができるとともに、焼成収縮開始温度を830℃以下とでき、Qf値を15000〔GHz〕以上とすることができるからである。
【0018】
粒界相形成成分量を、主成分100重量部に対して5〜30重量部としたのは、5重量部未満の場合には、焼成温度を低下させる効果が小さく、AgまたはCuを主成分とする導体と同時焼成ができなくなり、逆に30重量部を越える場合には、Qf値が低下してしまう。上記理由から、粒界相形成成分量は、主成分100重量部に対して10〜20重量部が望ましい。
【0019】
粒界相形成成分としては、重量比による組成式をaB・bAO・cSiO・dRO(Aはアルカリ金属の少なくとも一種、Rはアルカリ土類金属の少なくとも一種)と表した時、a、b、cおよびdが、40≦a≦90、8≦b≦20、1≦c≦20、1≦d≦20、a+b+c+d=100を満足するものである。
【0020】
ここで、B2 3 量aを40≦a≦90としたのは、aが40重量%未満の場合は焼成温度を低下させる効果が小さく、AgまたはCuを主成分とする導体と同時焼成が困難になり、逆に90重量%を越える場合には、焼結体中のガラス相の割合が増加してQf値が低下するからである。よって、焼結性を維持し、高いQf値を得るという観点から50≦a≦70重量%が望ましい。
【0021】
また、A2 O量bを8≦b≦20重量%としたのは、bが8重量%未満の場合には、焼成温度を低下させる効果が小さく、AgまたはCuを主成分とする導体と同時焼成が困難になり、逆に20重量%を越える場合には、結晶相が変化してQf値が低下したり、焼成温度が高くなるからである。誘電体磁器のQf値の観点から12≦b≦20重量%が望ましい。ここで、Aはアルカリ金属のうち少なくとも一種であり、アルカリ金属としてはLi、Na、Kがあるが、特にLiが望ましい。
【0022】
さらに、SiO2 量cを1≦c≦20重量%としたのは、cが1重量%未満の場合には誘電体磁器の焼結過程における収縮開始温度が高くなり、添加効果が得られないからである。一方、20重量%を越えると誘電体磁器の比誘電率εrあるいはQf値が低下するからである。誘電体磁器の比誘電率εrあるいはQf値の観点からは、cは5≦c≦15重量%が望ましい。
【0023】
さらにまた、RO量dを1≦d≦20重量%としたのは、dが1重量%未満の場合には誘電体磁器の焼結過程における収縮開始温度が高くなり、添加効果が得られない。一方、20重量%を越えると誘電体磁器の比誘電率εrあるいはQf値が低下するからである。とりわけ誘電体磁器の焼結性とQf値の観点からはdは、5≦d≦15重量%が好ましい。ここで、Rはアルカリ土類金属のうち少なくとも一種であり、アルカリ土類金属としてはBe、Mg、Ca、Sr、Ba等があるが、このうちBaが望ましい。
【0024】
本発明の高周波用誘電体磁器は、原料粉末として、CaCO3 粉末、ZrO2 粉末を所定量秤量し、該原料粉末をZrO2 等のボールにより混合・粉砕した後、該混合物を乾燥し、次いで該乾燥物を大気中等の酸化性雰囲気において1100〜1400℃の温度で1〜4時間仮焼する。
【0025】
得られた仮焼粉に、例えばB2 3 粉末、Li2 CO3 粉末、SiO2 粉末、さらにアルカリ土類金属含有化合物(炭酸塩、水酸化物等)粉末を所定量秤量添加し、ZrO2 ボールにより混合・粉砕し、この混合粉末を650〜850℃で仮焼した後、再度ZrO2 ボールにより粉砕粒径が2.5μm以下になるまで粉砕、乾燥して得た粉末を、プレス成形やドクターブレード法等の公知の方法により所定形状に成形し、大気中または酸素雰囲気中または窒素雰囲気等の非酸化性雰囲気において940℃以下、特に870〜920℃で0.5〜2時間焼成することにより得られる。原料粉末は、焼成により酸化物を生成する水酸化物、炭酸塩、硝酸塩等の金属塩を用いても良い。
【0026】
アルカリ土類金属は、B、Li、Siを含むガラスフリットとして添加することが焼結性向上の点から望ましい。この場合には、B、Li、Si量は、ガラスフリットに含有される量と、粉末として添加される量の合計量となる。
【0027】
本発明の高周波用誘電体磁器では、原料の混合粉砕工程等の製造過程で、Al等が混入したり、原料の不可避不純物として、Al、Fe、Hf、Sn等が含まれることもある。
【0028】
【実施例】
先ず、純度99%以上のCaCO3 、ZrO2 の各原料粉末を表1に示す割合で秤量し、該原料粉末に媒体として純水を加えてZrO2 ボールを用いたボールミルにて20時間粉砕・混合した後、該混合物を乾燥し、次いで乾燥物を大気中で1200℃の温度で2時間仮焼した。
【0029】
得られた仮焼物と純度99%以上の、B2 3 、Li2 CO3 、Na2 CO3 、K2 CO3 、SiO2 粉末、さらにアルカリ土類金属含有化合物として炭酸塩粉末を用い、表1に示す割合となるように秤量添加し、純水を媒体とし、ZrO2 ボールを用いたボールミルにて20時間湿式混合した。次にこの混合物を乾燥し、800℃で1時間仮焼した。
【0030】
この仮焼物を、粉砕粒径が1.0μm以下になるように粉砕し、誘電特性評価用の試料として直径約10mm高さ約8mmの円柱状に1ton/cm2 の圧力でプレス成形し、これを表1に示す温度で2時間焼成し、直径約8mm、高さ約6mmの円柱状の試料を得た。この際、熱収縮の測定により、収縮開始温度を測定した。
【0031】
誘電特性の評価は、前記円柱試料の両端面を平面研削した後、誘電体円柱共振器法にて周波数8〜10GHzにおける比誘電率とQ値を測定した。Q値と測定周波数fとの積で表されるQf値を表1に記載した。
【0032】
尚、共振周波数の温度係数τfは、25℃での共振周波数を基準にして−40℃および+85℃における共振周波数の温度係数τfを算出した結果、すべての試料の共振周波数の温度係数τfが±40〔ppm/℃〕の範囲内であった。尚、試料No.14、16、18、19、20は参考試料である。
【0033】
【表1】

Figure 0003754827
【0034】
この表1から、本発明の誘電体磁器組成物は、比誘電率が18〜29、Qf値が15000〔GHz〕以上、かつ、共振周波数の温度係数τfが±40ppm/℃以内の優れた誘電特性を有するとともに、770〜830℃で焼結収縮が開始し、940℃以下で焼成が可能な優れた焼結性を有していることが判る。
【0035】
特に、粒界相形成成分が、上記組成範囲を満足する場合には、比誘電率が22〜29、Qf値が20000〔GHz〕以上、かつ、共振周波数の温度係数τfが±40ppm/℃以内の優れた誘電特性を有するとともに、770〜830℃で焼結収縮が開始し、920℃以下で焼成が可能な優れた焼結性を有していることが判る。
【0036】
尚、アルカリ金属Aとしては、試料No.6でKを、No.22でNaを用い、その他はLiを用いた。また、アルカリ土類金属Rとしては、試料No.2でMgを、No.8でBaを、No.11でSrを用い、その他ではBaとCaを用いた。この際BaOとCaOの重量比を1:1とした。
【0037】
また、SiO2 およびアルカリ土類金属を含有していない試料No.25は、焼結開始温度は850℃と高温であることが判る。
【0038】
【発明の効果】
本発明によれば、焼成温度を940℃以下に、収縮開始温度を830℃以下とすることが可能となるため、AgやCu等の導体金属と同時に焼成でき、その際導体金属の収縮挙動のミスマッチから発生する基板の反りや歪みが抑制されるとともに、高周波領域において15000〔GHz〕以上のQf値を有するため、電子部品や基板の小型・高性能化が実現できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dielectric ceramic composition for high frequency and a laminate having a high Q value in a high frequency region such as microwaves and millimeter waves, and is used in, for example, a high frequency region such as microwaves and millimeter waves. The present invention relates to high-frequency dielectric ceramic compositions and laminates that can be used for various resonator materials, MIC dielectric substrate materials, dielectric waveguide materials, dielectric layers of multilayer ceramic capacitors, and the like.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, dielectric ceramics are widely used for dielectric resonators, MIC dielectric substrates, waveguides, and the like in high frequency regions such as microwaves and millimeter waves. In recent years, with the development and popularization of mobile communications such as mobile phones, the demand for dielectric ceramics as materials for electronic circuit boards and electronic components is increasing.
[0003]
In electronic circuit boards and electronic components, when firing dielectric ceramics and internal conductors at the same time, the firing temperature of conventional dielectric ceramics is as high as 1100 ° C. or higher, so the conductor material has a relatively high melting point. Pt, Pd, W, Mo, etc. were used. Since these high melting point conductor materials have a high conduction resistance, the conventional electronic circuit board has a problem that the Q value of the resonance circuit is reduced and the transmission loss of the conductor line is increased.
[0004]
Therefore, in order to solve such problems, low-temperature fired dielectric ceramics that can be fired simultaneously with Ag, Cu or the like having a low conduction resistance have been proposed. For example, the dielectric ceramic composition disclosed in Japanese Patent Application Laid-Open No. 8-208330 filed earlier by the present applicant is composed of MgO, CaO, TiO 2 and B 2 O 3 , Li 2 CO 3 . It can be fired simultaneously with the inner conductors such as Ag and Cu at a relatively low temperature of 900 to 1050 ° C., the dielectric constant εr of the dielectric ceramic is 18 or more, the Q value at the measurement frequency of 7 GHz is 2000 or more, and the temperature coefficient of the resonance frequency It has excellent characteristics with τf within ± 40 ppm / ° C., and can realize miniaturization and high performance of high-frequency electronic components.
[0005]
Moreover, the dielectric ceramic composition disclosed in Japanese Patent Application Laid-Open No. 9-315859 is made of CaO, ZrO 2 and B 2 O 3 , and an alkali metal compound, and can be fired at a relatively low temperature of 1200 ° C. or lower.
[0006]
[Problems to be solved by the invention]
However, since the dielectric ceramic composition disclosed in JP-A-8-208330 has a high sintering temperature and the shrinkage start temperature in sintering is as high as 845 to 960 ° C., the shrinkage behavior with the conductor material. There are problems such as poor matching, and the fired substrate and electronic parts are warped and distorted. The dielectric ceramic composition disclosed in JP-A-9-315859 also has the same problem.
[0007]
That is, as a conductor, there is a conductor mainly composed of Ag and / or Cu, for example, a conductor obtained by adding a metal such as a glass component, a ceramic component, Pt, or Pd to Ag, Cu, or Ag, Cu. Since these conductors have a shrinkage start temperature of about 650 ° C. at the highest at the time of firing, there is a large difference from the shrinkage start temperature of the dielectric ceramic composition, thereby causing problems such as deformation of the substrate and the like. there were.
[0008]
The present invention can reduce the shrinkage start temperature to approach the shrinkage start temperature of the conductor, and can suppress warpage and distortion even when co-fired with a conductor mainly composed of Ag or Cu. It aims at providing a thing and a layered product.
[0009]
[Means for Solving the Problems]
The dielectric ceramic composition for high frequency of the present invention is a composite oxide composed of Ca and Zr as metal elements, and when the composition formula by these molar ratios is expressed as xCaO · ZrO 2 , the x is 0.87. ≦ x ≦ 1.36 and a grain boundary phase forming component containing B, alkali metal, Si and alkaline earth metal with respect to 100 parts by weight of the main component, and 5 to 30 parts by weight In addition, the grain boundary phase forming component has a composition formula by weight ratio,
aB 2 O 3 · bA 2 O · cSiO 2 · dRO
Where a, b, c and d are
40 ≦ a ≦ 90
8 ≦ b ≦ 20
1 ≦ c ≦ 20
1 ≦ d ≦ 20
a + b + c + d = 100
A is at least one of alkali metals
R satisfies at least one of the alkaline earth metals . The Qf value represented by the product of the Q value and its measurement frequency is preferably 20000 [GHz] or more.
[0011]
The laminate of the present invention is a laminate having a conductor mainly composed of Ag and / or Cu inside and / or on the surface of a substrate formed by laminating a plurality of dielectric layers, wherein the dielectric layer is the above It consists of a high frequency dielectric ceramic composition.
[0012]
[Action]
The dielectric ceramic composition for high frequency of the present invention reduces the Qf value of the low-loss ceramic filler xCaO · ZrO 2 itself by the grain boundary phase forming component containing B, alkali metal, Si and alkaline earth metal. In addition, it can be fired at a firing temperature of 940 ° C. or lower, the shrinkage start temperature can be 830 ° C. or lower, and is not deformed even when simultaneously fired with an internal conductor such as Ag, Cu, and the Q value and its measurement frequency The Qf value of the porcelain expressed by the product of 1 is 15000 [GHz] or more, and it is suitably used for resonator materials, MIC dielectric substrate materials, dielectric waveguide materials, dielectric layers of multilayer ceramic capacitors, etc. be able to.
[0013]
Further, the grain boundary phase forming component, aB 2 O 3 · bA 2 O · cSiO 2 · dRO the formula by weight ratio (A is at least one of an alkali metal, R represents at least one kind of alkaline earth metal) and When a, b, c and d satisfy 40 ≦ a ≦ 90, 8 ≦ b ≦ 20, 1 ≦ c ≦ 20, 1 ≦ d ≦ 20, a + b + c + d = 100, In addition to firing at the firing temperature, the firing shrinkage start temperature can be made 830 ° C. or lower, particularly 800 ° C. or lower, and can approach the shrinkage start temperature of a conductor mainly composed of Ag and / or Cu. Even when co-fired with a conductor containing Cu as a main component, it is possible to suppress the occurrence of warping, distortion, etc. of the substrate and electronic parts, and the temperature coefficient τf of the resonance frequency is in the range of ± 40 ppm / ° C. Can It becomes a function.
[0014]
In the laminate of the present invention, by using the dielectric ceramic composition as described above, even when simultaneously fired with a conductor mainly composed of Ag and Cu, it is possible to suppress the occurrence of warpage, distortion, etc. of the laminate, In high frequency regions such as microwaves and millimeter waves, it can be suitably used for resonators, MIC substrates, and waveguides.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The high-frequency dielectric ceramic composition of the present invention is a composite oxide composed of Ca and Zr as metal elements. When the composition formula based on these molar ratios is expressed as xCaO · ZrO 2 , the x is 0.00. A main component satisfying 87 ≦ x ≦ 1.36, and 5 to 30 parts by weight of a grain boundary phase forming component containing B, alkali metal, Si and alkaline earth metal with respect to 100 parts by weight of the main component It will be.
[0016]
Here, in the above composition formula, 0.87 ≦ x ≦ 1.36 is set because the Qf value decreases when x is less than 0.87, and the Qf value when x exceeds 1.36. This is because the sinterability decreases. From the viewpoint of obtaining a high Qf value, 0.95 ≦ x ≦ 1.28 is desirable.
[0017]
The grain boundary phase forming component containing B, alkali metal, Si and alkaline earth metal was used, and by using these components, the firing temperature could be 940 ° C. or lower and the firing shrinkage start temperature This is because the Qf value can be 15000 [GHz] or more.
[0018]
The amount of the grain boundary phase forming component is 5 to 30 parts by weight with respect to 100 parts by weight of the main component. When the amount is less than 5 parts by weight, the effect of lowering the firing temperature is small, and Ag or Cu is the main component. When it exceeds 30 parts by weight, the Qf value decreases. For the above reasons, the grain boundary phase forming component amount is desirably 10 to 20 parts by weight with respect to 100 parts by weight of the main component.
[0019]
When a grain boundary phase-forming components, aB 2 O 3 · bA 2 O · cSiO 2 · dRO the formula by weight ratio (A is at least one alkali metal, R represents at least one alkaline earth metal) expressed as , A, b, c and d satisfy 40 ≦ a ≦ 90, 8 ≦ b ≦ 20, 1 ≦ c ≦ 20, 1 ≦ d ≦ 20, and a + b + c + d = 100 .
[0020]
Here, the B 2 O 3 amount a is set to 40 ≦ a ≦ 90 because the effect of lowering the firing temperature is small when a is less than 40% by weight, and co-firing with a conductor mainly composed of Ag or Cu. This is because, if it exceeds 90% by weight, the ratio of the glass phase in the sintered body increases and the Qf value decreases. Therefore, 50 ≦ a ≦ 70 wt% is desirable from the viewpoint of maintaining sinterability and obtaining a high Qf value.
[0021]
Further, the amount of A 2 O b is set to 8 ≦ b ≦ 20% by weight because when b is less than 8% by weight, the effect of lowering the firing temperature is small, and the conductor mainly composed of Ag or Cu This is because simultaneous firing becomes difficult and, on the contrary, when the content exceeds 20% by weight, the crystal phase changes to lower the Qf value or increase the firing temperature. From the viewpoint of the Qf value of the dielectric ceramic, 12 ≦ b ≦ 20% by weight is desirable. Here, A is at least one of alkali metals, and examples of the alkali metal include Li, Na, and K. Li is particularly desirable.
[0022]
Furthermore, the SiO 2 amount c is set to 1 ≦ c ≦ 20% by weight. When c is less than 1% by weight, the shrinkage start temperature in the sintering process of the dielectric ceramic becomes high and the effect of addition cannot be obtained. Because. On the other hand, if the content exceeds 20% by weight, the dielectric constant εr or Qf value of the dielectric ceramic decreases. From the viewpoint of the dielectric constant εr or Qf value of the dielectric ceramic, c is preferably 5 ≦ c ≦ 15% by weight.
[0023]
Furthermore, the RO amount d is set to 1 ≦ d ≦ 20% by weight. When d is less than 1% by weight, the shrinkage start temperature in the sintering process of the dielectric ceramic becomes high and the effect of addition cannot be obtained. . On the other hand, if the content exceeds 20% by weight, the dielectric constant εr or Qf value of the dielectric ceramic decreases. In particular, from the viewpoint of the sinterability of the dielectric ceramic and the Qf value, d is preferably 5 ≦ d ≦ 15% by weight. Here, R is at least one of alkaline earth metals, and examples of alkaline earth metals include Be, Mg, Ca, Sr, Ba, and the like, among which Ba is desirable.
[0024]
In the dielectric ceramic for high frequency of the present invention, a predetermined amount of CaCO 3 powder and ZrO 2 powder are weighed as raw material powder, the raw material powder is mixed and pulverized with balls such as ZrO 2 , the mixture is then dried, The dried product is calcined at a temperature of 1100 to 1400 ° C. for 1 to 4 hours in an oxidizing atmosphere such as air.
[0025]
To the obtained calcined powder, for example, a predetermined amount of B 2 O 3 powder, Li 2 CO 3 powder, SiO 2 powder, and alkaline earth metal-containing compound (carbonate, hydroxide, etc.) powder is weighed and added. After mixing and pulverizing with two balls, this mixed powder was calcined at 650 to 850 ° C., and then again pulverized and dried with a ZrO 2 ball until the pulverized particle size became 2.5 μm or less. Formed into a predetermined shape by a known method such as a doctor blade method or the like, and fired at 940 ° C. or less, particularly at 870 to 920 ° C. for 0.5 to 2 hours in a non-oxidizing atmosphere such as air, oxygen atmosphere or nitrogen atmosphere Can be obtained. The raw material powder may be a metal salt such as a hydroxide, carbonate, nitrate, etc. that generates an oxide upon firing.
[0026]
The alkaline earth metal is preferably added as a glass frit containing B, Li, and Si from the viewpoint of improving the sinterability. In this case, the amounts of B, Li, and Si are the total amount of the amount contained in the glass frit and the amount added as a powder.
[0027]
In the dielectric ceramic for high frequency of the present invention, Al or the like may be mixed in a manufacturing process such as a raw material mixing and pulverizing process, or Al, Fe, Hf, Sn, or the like may be included as an inevitable impurity of the raw material.
[0028]
【Example】
First, each raw material powder of CaCO 3 and ZrO 2 having a purity of 99% or more is weighed in the proportions shown in Table 1, and pure water is added to the raw material powder as a medium, followed by grinding for 20 hours in a ball mill using ZrO 2 balls. After mixing, the mixture was dried and then the dried product was calcined in the atmosphere at a temperature of 1200 ° C. for 2 hours.
[0029]
The resulting calcined product with a purity of 99% or more, B 2 O 3, Li 2 CO 3, Na 2 CO 3, K 2 CO 3, SiO 2 powder, further using a carbonate powder as the alkaline earth metal-containing compound, Weighed and added so that the ratio shown in Table 1 was achieved, and wet-mixed for 20 hours in a ball mill using ZrO 2 balls using pure water as a medium. The mixture was then dried and calcined at 800 ° C. for 1 hour.
[0030]
This calcined product is pulverized so that the pulverized particle size is 1.0 μm or less, and is press-molded at a pressure of 1 ton / cm 2 into a cylindrical shape having a diameter of about 10 mm and a height of about 8 mm as a sample for dielectric property evaluation. Were fired at the temperature shown in Table 1 for 2 hours to obtain a cylindrical sample having a diameter of about 8 mm and a height of about 6 mm. At this time, the shrinkage start temperature was measured by measuring heat shrinkage.
[0031]
The dielectric properties were evaluated by measuring the relative dielectric constant and the Q value at a frequency of 8 to 10 GHz using a dielectric cylindrical resonator method after surface grinding of both end faces of the cylindrical sample. Table 1 shows the Qf value represented by the product of the Q value and the measurement frequency f.
[0032]
The temperature coefficient τf of the resonance frequency is calculated by calculating the temperature coefficient τf of the resonance frequency at −40 ° C. and + 85 ° C. with reference to the resonance frequency at 25 ° C. As a result, the temperature coefficient τf of the resonance frequency of all the samples is ± It was within the range of 40 [ppm / ° C.]. Sample No. Reference numerals 14, 16, 18, 19, and 20 are reference samples.
[0033]
[Table 1]
Figure 0003754827
[0034]
From Table 1, the dielectric ceramic composition of the present invention has an excellent dielectric constant with a relative dielectric constant of 18 to 29, a Qf value of 15000 [GHz] or more, and a temperature coefficient τf of resonance frequency within ± 40 ppm / ° C. It can be seen that it has properties and has excellent sinterability which starts sintering shrinkage at 770-830 ° C. and can be fired at 940 ° C. or less.
[0035]
In particular, when the grain boundary phase forming component satisfies the above composition range, the relative dielectric constant is 22 to 29, the Qf value is 20000 [GHz] or more, and the temperature coefficient τf of the resonance frequency is within ± 40 ppm / ° C. It can be seen that it has excellent dielectric properties, and sintering shrinkage starts at 770 to 830 ° C., and has excellent sinterability capable of firing at 920 ° C. or lower.
[0036]
As the alkali metal A, K was used for sample No. 6, Na was used for No. 22, and Li was used for the others. As the alkaline earth metal R, Mg was used in sample No. 2, Ba was used in No. 8, Sr was used in No. 11, and Ba and Ca were used in the other cases. At this time, the weight ratio of BaO and CaO was 1: 1.
[0037]
Sample No. 2 containing no SiO 2 or alkaline earth metal was used. No. 25 shows that the sintering start temperature is as high as 850 ° C.
[0038]
【The invention's effect】
According to the present invention, since the firing temperature can be set to 940 ° C. or less and the shrinkage start temperature can be set to 830 ° C. or less, it can be fired simultaneously with a conductor metal such as Ag or Cu. The warpage and distortion of the substrate caused by the mismatch are suppressed, and the Qf value is 15000 [GHz] or higher in the high frequency region, so that the electronic components and the substrate can be reduced in size and performance.

Claims (2)

金属元素としてCa、Zrからなる複合酸化物であって、これらのモル比による組成式を
xCaO・ZrO
と表した時、前記xが
0.87≦x≦1.36
を満足する主成分と、該主成分100重量部に対して、B、アルカリ金属、Siおよびアルカリ土類金属を含有する粒界相形成成分5〜30重量部とからなるとともに、該粒界相形成成分は、重量比による組成式を、
aB ・bA O・cSiO ・dRO
と表した時、前記a、b、cおよびdが、
40≦a≦90
8≦b≦20
1≦c≦20
1≦d≦20
a+b+c+d=100
Aはアルカリ金属のうち少なくとも一種
Rはアルカリ土類金属のうち少なくとも一種を満足することを特徴とする高周波用誘電体磁器組成物。
It is a complex oxide composed of Ca and Zr as metal elements, and the composition formula by these molar ratios is expressed as xCaO · ZrO 2
Where x is 0.87 ≦ x ≦ 1.36.
And a grain boundary phase forming component containing B, alkali metal, Si and alkaline earth metal with respect to 100 parts by weight of the main component, and the grain boundary phase The forming component has a composition formula by weight ratio,
aB 2 O 3 · bA 2 O · cSiO 2 · dRO
Where a, b, c and d are
40 ≦ a ≦ 90
8 ≦ b ≦ 20
1 ≦ c ≦ 20
1 ≦ d ≦ 20
a + b + c + d = 100
A is at least one of alkali metals
R is a dielectric ceramic composition for high frequency, wherein R satisfies at least one of alkaline earth metals .
誘電体層を複数積層してなる基体の内部および/または表面に、Agおよび/またはCuを主成分とする導体を有する積層体であって、前記誘電体層が、請求項1記載の高周波用誘電体磁器組成物からなることを特徴とする積層体。 The high-frequency use according to claim 1, wherein the dielectric layer is a laminated body having a conductor mainly composed of Ag and / or Cu inside and / or on the surface of a substrate formed by laminating a plurality of dielectric layers. A laminate comprising a dielectric ceramic composition.
JP27689898A 1998-09-30 1998-09-30 High frequency dielectric ceramic composition and laminate Expired - Fee Related JP3754827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27689898A JP3754827B2 (en) 1998-09-30 1998-09-30 High frequency dielectric ceramic composition and laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27689898A JP3754827B2 (en) 1998-09-30 1998-09-30 High frequency dielectric ceramic composition and laminate

Publications (2)

Publication Number Publication Date
JP2000103673A JP2000103673A (en) 2000-04-11
JP3754827B2 true JP3754827B2 (en) 2006-03-15

Family

ID=17575936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27689898A Expired - Fee Related JP3754827B2 (en) 1998-09-30 1998-09-30 High frequency dielectric ceramic composition and laminate

Country Status (1)

Country Link
JP (1) JP3754827B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5040971B2 (en) 2009-08-12 2012-10-03 株式会社村田製作所 Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
JP6801517B2 (en) * 2017-03-02 2020-12-16 Tdk株式会社 Dielectric composition and electronic components

Also Published As

Publication number Publication date
JP2000103673A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
EP1331208A2 (en) Dielectric ceramic composition and dielectric ceramics
JP4535592B2 (en) Laminated body
JP4632534B2 (en) Dielectric porcelain and manufacturing method thereof
JP3860687B2 (en) Dielectric porcelain and laminate
JP3754827B2 (en) High frequency dielectric ceramic composition and laminate
JP4249690B2 (en) High frequency dielectric ceramics and laminates
JP3793550B2 (en) Dielectric porcelain and laminate
JP3631607B2 (en) High frequency dielectric ceramics and laminates
JP3793549B2 (en) Dielectric porcelain composition and laminate
JP4325920B2 (en) Dielectric porcelain composition and method for producing dielectric porcelain
JP3909366B2 (en) Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition
JP3631589B2 (en) Dielectric porcelain composition and laminate
JP3905993B2 (en) High frequency dielectric ceramic composition and laminated part using the same
JP3406787B2 (en) Manufacturing method of dielectric porcelain
JP4442077B2 (en) Porcelain composition for high frequency components
JP4618856B2 (en) Low temperature fired porcelain
JP3839868B2 (en) Dielectric ceramic composition and electronic component
JP4484297B2 (en) Dielectric porcelain composition
JPH10189828A (en) Low-temperature baked ceramic composition and manufacturing method of low-temperature baked ceramic
JP3420430B2 (en) Dielectric porcelain composition and electronic component
JPH11278925A (en) Dielectric porcelain composition and laminate
JP3411190B2 (en) Dielectric porcelain composition
JP3377903B2 (en) Dielectric porcelain composition
JPH10182223A (en) Porcelain composition for high frequency and production of porcelain for high frequency
JP2002037661A (en) Low temperature-burned ceramic composition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees