JP3793549B2 - Dielectric porcelain composition and laminate - Google Patents
Dielectric porcelain composition and laminate Download PDFInfo
- Publication number
- JP3793549B2 JP3793549B2 JP26006197A JP26006197A JP3793549B2 JP 3793549 B2 JP3793549 B2 JP 3793549B2 JP 26006197 A JP26006197 A JP 26006197A JP 26006197 A JP26006197 A JP 26006197A JP 3793549 B2 JP3793549 B2 JP 3793549B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- parts
- containing compound
- terms
- dielectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、高周波領域で使用する電子回路基板や電子部品等に適用される、低温焼成可能な誘電体磁器組成物および、例えば、共振器、コンデンサ、フィルタ等の電子部品、またはこれらを内蔵した基板等の導体を有する積層体に関するものである。
【0002】
【従来の技術】
従来、誘電体材料として各種誘電体セラミックスが、共振器、コンデンサ、フィルタ等の電子部品やこれらを内蔵した基板に使用されている。そして、近年においては、携帯電話をはじめとする移動体通信等の発達および普及に伴い、電子回路基板や電子部品の材料として、誘電体セラミックスの需要が増大しつつある。
【0003】
電子回路基板や電子部品において、誘電体セラミックスと内部導体を同時焼成するに際しては、従来の誘電体セラミックスの焼成温度が1100℃以上という高温であったため、導体材料としては、比較的高融点であるPt、Pd、W、Mo等が使用されていた。これら高融点の導体材料は導通抵抗が大きいため、従来の電子回路基板や電子部品において、共振回路やインダクタンスのQ値が小さくなってしまい、導体線路の伝送損失が大きくなる等の問題があった。
【0004】
そこで、係る問題点を解決すべく、導通抵抗の小さいAg、Cu等と同時焼成可能な、低温焼成の誘電体セラミックスが提案されている。例えば、本出願人が先に出願した特開平8−208330号公報に開示された誘電体磁器組成物は、MgO、CaO、TiO2 とB2 O3 、Li2 CO3 からなるものであり、900〜1050℃の比較的低温でAgやCu等の内部導体と同時に焼成でき、誘電体磁器の比誘電率εrが18以上、測定周波数7GHzでのQ値が2000以上、かつ共振周波数の温度係数τfが±40以内の優れた特性を有し、高周波電子部品の小型化と高性能化を実現できるものであった。
【0005】
【発明が解決しようとする課題】
しかしながら、特開平8−208330号公報に開示された誘電体磁器組成物は、焼結における収縮開始温度が845〜960℃という高温であるため、導体材料との収縮挙動のマッチングが悪く、焼成された基板が反る、歪む等の問題があった。
【0006】
即ち、導体としては、Agおよび/またはCuを主成分とするもの、例えば、Ag、Cu、あるいはAg、Cuに対してガラス成分やセラミック成分、Pt、Pd等の金属を添加したものがあるが、これらの導体は、焼成時における収縮開始温度が高くとも650℃程度であるため、上記誘電体磁器組成物の収縮開始温度との差が大きく、これにより、基板が変形する等の問題があった。
【0007】
本発明は上記課題に鑑みなされたもので、誘電体磁器組成物の収縮開始温度を低くして、導体の収縮開始温度に近づけることができ、AgやCuを主成分とする導体と同時焼成した場合でも反りや歪みのない磁器を得ることができる誘電体磁器組成物および積層体を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の誘電体磁器組成物は、金属元素としてMg、CaおよびTiを含有する複合酸化物であって、これらの金属元素酸化物の重量比による組成式を、aMgO・bCaO・cTiO2と表した時、a、b、cが25.0≦a≦35.0、0.3≦b≦7.0、60.0≦c≦70.0、a+b+c=100を満足する主成分と、該主成分100重量部に対して、B含有化合物をB2O3換算で3〜20重量部、アルカリ金属含有化合物をアルカリ金属炭酸塩換算で1〜10重量部、Cu含有化合物およびSm含有化合物のうち少なくとも1種をそれぞれCuO、Sm2O3換算で合計0.5〜5重量部含有してなるものである。
【0009】
また、金属元素としてMg、CaおよびTiを含有する複合酸化物であって、その組成式が(100−x)MgTiO3・xCaTiO3(但し、式中xは重量比を表し、1≦x≦15)で表される主成分と、該主成分100重量部に対して、B含有化合物をB2O3換算で3〜20重量部、アルカリ金属含有化合物をアルカリ金属炭酸塩換算で1〜10重量部、Cu含有化合物およびSm含有化合物のうち少なくとも1種をそれぞれCuO、Sm2O3換算で合計0.5〜5重量部含有してなるものである。
【0010】
本発明の積層体は、誘電体層を複数積層してなる誘電基体の内部および/または表面に、Agおよび/またはCuを主成分とする導体を有する積層体であって、前記誘電体層が、上記誘電体磁器組成物からなるものである。
【0011】
【作用】
本発明の誘電体磁器組成物では、900〜1050℃の比較的低温で焼成できるとともに、比誘電率εrやQ値が高く、かつ共振周波数の温度係数τfを比較的小さくでき、積層体(高周波電子回路基板や電子部品)の小型化と高性能化を実現できる。
【0012】
そして、本発明の誘電体磁器組成物では、Cu含有化合物およびSm含有化合物のうち少なくとも1種をそれぞれCuO、Sm2O3換算で合計0.5〜5重量部含有せしめたので、焼結過程における収縮開始温度を820℃以下に低下させることができ、導体の収縮開始温度に近づけることができ、基板や電子部品において、Ag、Cuを主成分とする導体と同時焼成した場合でも基板等の反り、歪み等の発生を抑制することができる。
【0013】
【発明の実施の形態】
本発明の誘電体磁器組成物は、金属元素としてMg、CaおよびTiを含有する複合酸化物であって、これらの金属元素酸化物の重量比による組成式を、aMgO・bCaO・cTiO2と表した時、a、b、cが25.0≦a≦35.0、0.3≦b≦7.0、60.0≦c≦70.0、a+b+c=100で表される主成分100重量部に対して、B含有化合物をB2O3換算で3〜20重量部、アルカリ金属含有化合物をアルカリ金属炭酸塩換算で1〜10重量部、Cu含有化合物およびSm含有化合物のうち少なくとも1種をそれぞれCuO、Sm2O3換算で合計0.5〜5重量部含有してなるものである
【0014】
本発明において、組成式におけるMgOの重量比aを25≦a≦35、CaOの重量比bを、0.3≦b≦7としたのは、MgOの重量比aが25重量%未満の場合やCaOの重量比bが7重量%を超える場合には、共振周波数の温度係数τfが正に大きくなりすぎてしまうからである。逆に、MgOの重量比aが35重量%を超える場合やCaOの重量比bが0.3重量%未満の場合には、共振周波数の温度係数τfが負に大きくなりすぎてしまうからである。よって、MgOの重量比aとCaOの重量比bは、25.0≦a≦35.0、0.3≦b≦7.0に特定され、とりわけ誘電体磁器の共振周波数の温度係数τfの観点からは28.0≦a≦34.0、0.4≦b≦6.5が好ましい。
【0015】
さらに、TiO2 の重量比cを60≦c≦70としたのは、TiO2 の重量比cが60重量%未満あるいは70重量%を超える場合にはQ値が低下するからである。よって、TiO2 の重量比cは60≦c≦70に特定され、とりわけ誘電体磁器のQ値の観点から64≦c≦68が好ましい。
【0016】
また、出発原料をMgTiO3とCaTiO3にすることにより、さらにQ値を向上させ、温度係数の制御が容易となる。つまり、(100−x)MgTiO3・xCaTiO3(但し、式中xは重量比を表し、1≦x≦15)で表される主成分100重量部に対して、B含有化合物をB2O3換算で3〜20重量部、アルカリ金属含有化合物をアルカリ金属炭酸塩換算で1〜10重量部、Cu含有化合物およびSm含有化合物のうち少なくとも1種をそれぞれCuO、Sm2O3換算で合計0. 5〜5重量部含有した場合である。
【0017】
ここで、主成分中のCaTiO3 の重量比を1≦x≦15としたのは、CaTiO3 の重量比が1重量%未満の場合には、共振周波数の温度係数τfがマイナス側に大きくずれ、また、前記重量比が15重量%を越える場合には共振周波数の温度係数τfがプラス側に大きくずれるからである。よって、CaTiO3 の重量比xは1〜15重量%に特定され、とりわけ、誘電体磁器の共振周波数の温度係数τfの観点からは1〜10重量%が好ましい。
【0018】
また、本発明では、上記主成分に対して、B含有化合物をB2O3換算で3〜20重量部、アルカリ金属含有化合物をアルカリ金属炭酸塩換算で1〜10重量部、Cu含有化合物およびSm含有化合物のうち少なくとも1種をそれぞれCuO、Sm2O3換算で合計0.5〜5重量部含有するものである。
【0019】
このように主成分100重量部に対して、B含有化合物をB2 O3 換算で3〜20重量部添加したのは、B2 O3 の添加量が3重量部未満の場合には1100℃でも焼結せず、AgまたはCuとの同時焼成ができなくなり、逆に20重量部を超える場合には結晶相が変化し、Q値が低下するからである。よってB含有化合物の添加量は、主成分に対してB2 O3 換算で3〜20重量部に特定され、とりわけ誘電体磁器のQ値の観点からは3〜9重量部が望ましい。B含有化合物としては、金属硼素、B2 O3 、コレマナイト、CaB2 O4 等がある。
【0020】
また、アルカリ金属含有化合物をアルカリ金属炭酸塩換算で1〜10重量部添加したのは、アルカリ金属含有化合物、例えばLi含有化合物の添加量が1重量部未満の場合には1100℃でも焼結せず、AgまたはCuとの同時焼成ができなくなり、逆に、10重量部を超える場合には結晶相が変化し、Q値が低下するからである。よって、アルカリ金属含有化合物の添加量は、主成分100重量部に対してアルカリ金属炭酸塩換算、例えばLi2 CO3 換算で1〜10重量部に特定され、特に誘電体磁器のQ値の観点からは3〜7重量部が望ましい。
【0021】
アルカリ金属としては、Li、Na、Kを例示することができ、この中でもLiが特に望ましい。アルカリ金属含有化合物としては、上記アルカリ金属の炭酸塩、酸化物等を例示することができる。
【0022】
本発明の誘電体磁器組成物では、主成分100重量部に対して、Cu含有化合物およびSm含有化合物のうち少なくとも1種をそれぞれCuO、Sm2O3換算で合計0.5〜5重量部含有するものである。これらが、0.5重量部未満の場合には、誘電体磁器の焼結過程における収縮開始温度が820℃よりも高く、添加の効果が得られないからである。一方、該添加物が5重量部を超えると、誘電体磁器の比誘電率εrあるいはQ値が低下するからである。誘電体磁器の比誘電率εrあるいはQ値の観点からは、合計1〜4重量部が望ましい。
【0023】
尚、本発明においては、誘電特性に悪影響を及ぼさない範囲でSi、Zn、Mn、Zr等の酸化物を添加含有しても良く、この場合さらに低温焼成が可能となる。
【0024】
本発明の誘電体磁器組成物は、ボール成分や、不可避不純物として、Al、Fe、Hf、Snが混入する場合がある。また、結晶相としては、MgTiO3 、CaTiO3 を主結晶相とし、(Mg,Ti)2 (BO3 )Oが析出する場合がある。また、本発明の誘電体磁器組成物では、その平均結晶粒径は2〜3μmである。
【0025】
本発明の誘電体磁器組成物は、例えば、MgCO3、CaCO3、TiO2の各原料粉末を所定量となるように秤量し、混合粉砕し、これを1100〜1300℃の温度で大気中で1〜3時間仮焼する。得られた仮焼物に、例えばB2O3とLi2CO3の各粉末、およびCuO、Sm2O3のうち少なくとも1種の粉末を所定量となるように秤量し、混合粉砕し、プレス成形やドクターブレード法等の周知の方法により所定形状に成形した後、大気中等の酸化性雰囲気または窒素雰囲気中等の非酸化性雰囲気において、900〜1050℃において0.5〜2.0時間焼成することにより得られる。
【0026】
また、本発明の積層体は、誘電体層を複数積層してなる誘電基体の内部および/または表面に、Agおよび/またはCuを主成分とする導体を有するものであり、誘電体層として、上記した誘電体磁器組成物を用いたものである。
【0027】
導体としては、Agおよび/またはCuを主成分とするもの、例えば、Ag、Cu、あるいはAg、Cuに対してガラス成分やセラミック成分、Pt、Pd等の金属を添加したものも含まれる。これらの金属に対してガラス成分やセラミック成分を添加した導体は内部導体として、また、PtやPdを添加した導体は表面導体として好適に用いられる。このような導体は、焼成時における収縮開始温度は高くとも650℃程度である。
【0028】
本発明の誘電体磁器組成物は、Cu含有化合物およびSm含有化合物のうち少なくとも1種をそれぞれCuO、Sm2O3換算で合計0.5〜5重量部含有することにより、収縮開始温度を820℃以下にすることができるため、導体の収縮開始温度に近づけることができる。
【0029】
【実施例】
実施例1
先ず、純度99%以上のMgCO3 、CaCO3 、TiO2 の各原料粉末を表1、2に示す量となるように秤量し、該原料粉末に媒体として純水を加えて24時間、ZrO2 ボールを用いたボールミルにて混合した後、該混合物を乾燥し、次いで該乾燥物を大気中において1200℃の温度で1時間仮焼した。
【0030】
得られた仮焼物にB2 O3 、Li2 CO3 、Nb2 O5 、CuO、Sm2 O3 の粉末を表1、2に示す割合となるように秤量し、上記ボールミルにて24時間、混合した後、バインダーとしてポリビニルアルコールを1重量%加えてから造粒し、該造粒物を約1t/cm2 の加圧力でプレス成形して直径約12mm、高さ10mmの円柱状の成形体を成形した。
【0031】
その後、前記成形体を大気中、400℃の温度で4時間加熱して脱バインダー処理し、引き続き大気中において表1、2に示す各温度で60分間焼成した。かくして得られた円柱体の両端面を平面研磨し、誘電体特性評価用試料を作製した。
【0032】
誘電体特性の評価は、前記評価用試料を用いて誘電体円柱共振器法により、共振周波数を6〜8GHzに設定して各試料の比誘電率εrと7GHzにおける1/tanδ、即ちQ値を測定するとともに、−40〜+85℃の温度範囲における共振周波数の温度係数τfを測定した。これらの結果を表1、2に記載した。尚、表1、2における試料No.25〜29は参考試料を示す。
【0033】
【表1】
【0034】
【表2】
【0035】
表1、2によれば、本発明の誘電体磁器組成物では、焼結過程における収縮の開始温度が800〜820℃、焼成温度が900〜1050℃と比較的低温であり、さらに、比誘電率εrが18以上、7GHzにおけるQ値が2000以上、かつ共振周波数の温度係数τfが±40ppm/℃以内の優れた特性を有することができることがわかる。
【0036】
尚、試料No.13、14はLi2 CO3 の代わりにNa2 CO3 を用いた。
【0037】
実施例2
先ず、純度99%以上のMgTiO3 、CaTiO3 の各原料粉末を表3、4に示す量となるように秤量し、該原料粉末に媒体として純水を加えて24時間、ZrO2 ボールを用いたボールミルにて混合した後、該混合物を乾燥し、次いで該乾燥物を大気中1200℃の温度で1時間仮焼した。
【0038】
得られた仮焼物にB2 O3 、Li2 CO3 、Nb2 O5 、CuO、Sm2 O3 の粉末を表3、4に示す割合となるように秤量し、上記ボールミルにて24時間、混合した後、バインダーとしてポリビニルアルコールを1重量%加えてから造粒し、該造粒物を約1t/cm2 の加圧力でプレス成形して直径約12mm、高さ10mmの円柱状の成形体を作製した。
【0039】
その後、前記成形体を大気中、400℃の温度で4時間加熱して脱バインダー処理し、引き続き表3、4に示す各温度で大気中60分間焼成した。かくして得られた円柱体の両端面を平面研磨し、誘電体特性評価用試料を作製した。誘電体特性の評価は、上記と同様にして求め、その結果を表3、4に記載した。尚、表3、4における試料No.21〜25は参考試料を示す。
【0040】
【表3】
【0041】
【表4】
【0042】
表3、4によれば、本発明の誘電体磁器組成物では、焼結過程における収縮の開始温度が800〜820℃、焼成温度が1050℃以下と比較的低温であり、さらに、比誘電率εrが18以上、Q値が3000以上、かつ共振周波数の温度係数τfが±30ppm/℃以内の優れた特性を有することがわかる。
【0043】
【発明の効果】
本発明の誘電体磁器組成物では、焼結過程における収縮の開始温度を820℃以下と導体の収縮開始温度に近づけることができ、また焼成温度も1050℃以下と比較的低温であるため、AgやCu等と同時に焼成でき、かつ同時焼成したとしても反りや歪みのない積層体(基板や電子部品)を得ることができる。
【0044】
さらに、高周波領域において高い比誘電率(18以上)を有するとともに、Q値(2000以上)も高く、かつ共振周波数の温度特性(±40以内)にも優れているため、高周波電子回路基板や電子部品のより一層の小型化と高性能化を実現できる。[0001]
BACKGROUND OF THE INVENTION
The present invention is a dielectric ceramic composition that can be fired at a low temperature and is applied to an electronic circuit board or electronic component used in a high frequency region, and an electronic component such as a resonator, a capacitor, or a filter, or the like. The present invention relates to a laminate having a conductor such as a substrate.
[0002]
[Prior art]
Conventionally, various dielectric ceramics have been used as dielectric materials for electronic parts such as resonators, capacitors, filters, etc., and substrates incorporating them. In recent years, with the development and spread of mobile communications such as mobile phones, the demand for dielectric ceramics as materials for electronic circuit boards and electronic components is increasing.
[0003]
In the simultaneous firing of dielectric ceramics and internal conductors in electronic circuit boards and electronic parts, the firing temperature of conventional dielectric ceramics is as high as 1100 ° C. or higher, so the conductor material has a relatively high melting point. Pt, Pd, W, Mo, etc. were used. Since these high melting point conductor materials have high conduction resistance, there have been problems such as a decrease in the Q value of the resonance circuit and inductance in a conventional electronic circuit board and electronic component, and an increase in transmission loss of the conductor line. .
[0004]
Thus, in order to solve such problems, low-temperature fired dielectric ceramics that can be fired simultaneously with Ag, Cu, etc. having a low conduction resistance have been proposed. For example, the dielectric ceramic composition disclosed in Japanese Patent Application Laid-Open No. 8-208330 filed earlier by the present applicant is composed of MgO, CaO, TiO 2 and B 2 O 3 , Li 2 CO 3 . It can be fired simultaneously with an inner conductor such as Ag or Cu at a relatively low temperature of 900 to 1050 ° C., the dielectric constant εr of the dielectric ceramic is 18 or more, the Q value at a measurement frequency of 7 GHz is 2000 or more, and the temperature coefficient of the resonance frequency It has excellent characteristics with τf within ± 40, and can realize miniaturization and high performance of high-frequency electronic components.
[0005]
[Problems to be solved by the invention]
However, since the dielectric ceramic composition disclosed in Japanese Patent Laid-Open No. 8-208330 has a high shrinkage start temperature in sintering of 845 to 960 ° C., the matching of the shrinkage behavior with the conductor material is poor, and it is fired. There were problems such as warping and distortion of the substrate.
[0006]
That is, as a conductor, there is a conductor mainly composed of Ag and / or Cu, for example, a conductor obtained by adding a metal such as a glass component, a ceramic component, Pt, or Pd to Ag, Cu, or Ag, Cu. Since these conductors have a shrinkage start temperature of about 650 ° C. at the highest, the difference from the shrinkage start temperature of the dielectric ceramic composition is large, thereby causing problems such as deformation of the substrate. It was.
[0007]
The present invention has been made in view of the above problems, and can reduce the shrinkage start temperature of the dielectric ceramic composition to approach the shrinkage start temperature of the conductor, and is simultaneously fired with a conductor mainly composed of Ag or Cu. It is an object of the present invention to provide a dielectric porcelain composition and a laminate capable of obtaining a porcelain free from warpage or distortion.
[0008]
[Means for Solving the Problems]
The dielectric ceramic composition of the present invention is a composite oxide containing Mg, Ca, and Ti as metal elements, and the composition formula based on the weight ratio of these metal element oxides is represented as aMgO · bCaO · cTiO 2. And a main component satisfying a, b, c satisfying 25.0 ≦ a ≦ 35.0, 0.3 ≦ b ≦ 7.0, 60.0 ≦ c ≦ 70.0, a + b + c = 100, 3 to 20 parts by weight of B-containing compound in terms of B 2 O 3 , 1 to 10 parts by weight in terms of alkali metal carbonate, Cu-containing compound and Sm-containing compound with respect to 100 parts by weight of the main component Among them, at least one kind is contained in a total amount of 0.5 to 5 parts by weight in terms of CuO 2 and Sm 2 O 3 .
[0009]
Further, Mg as the metal element, a composite oxide containing Ca and Ti, its composition formula (100-x) MgTiO 3 · xCaTiO 3 ( however, where x represents the weight ratio, 1 ≦ x ≦ 15) The B-containing compound is 3 to 20 parts by weight in terms of B 2 O 3 and the alkali metal-containing compound is 1 to 10 in terms of alkali metal carbonate with respect to 100 parts by weight of the main component represented by 15) A total of 0.5 to 5 parts by weight in terms of CuO 3 and Sm 2 O 3 is contained in at least one of the parts by weight, the Cu-containing compound and the Sm-containing compound.
[0010]
The laminate of the present invention is a laminate having a conductor mainly composed of Ag and / or Cu inside and / or on the surface of a dielectric substrate formed by laminating a plurality of dielectric layers, wherein the dielectric layer comprises: The dielectric ceramic composition.
[0011]
[Action]
The dielectric ceramic composition of the present invention can be fired at a relatively low temperature of 900 to 1050 ° C., can have a high relative dielectric constant εr and Q value, and can have a relatively low temperature coefficient τf of a resonance frequency, and can be a laminated body (high frequency Electronic circuit boards and electronic components) can be reduced in size and performance.
[0012]
In the dielectric ceramic composition of the present invention, since at least one of the Cu-containing compound and the Sm-containing compound is contained in a total amount of 0.5 to 5 parts by weight in terms of CuO 2 and Sm 2 O 3 , the sintering process The shrinkage start temperature can be lowered to 820 ° C. or less, and it can be brought close to the shrinkage start temperature of the conductor. Even when the substrate or electronic component is simultaneously fired with the conductor mainly composed of Ag and Cu, Generation of warpage, distortion, and the like can be suppressed.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The dielectric ceramic composition of the present invention is a composite oxide containing Mg, Ca, and Ti as metal elements, and the composition formula based on the weight ratio of these metal element oxides is represented as aMgO · bCaO · cTiO 2. 100% by weight of main components represented by a, b, c: 25.0 ≦ a ≦ 35.0, 0.3 ≦ b ≦ 7.0, 60.0 ≦ c ≦ 70.0, a + b + c = 100 3 to 20 parts by weight of the B-containing compound in terms of B 2 O 3 and 1 to 10 parts by weight of the alkali metal-containing compound in terms of alkali metal carbonate with respect to parts, at least one of the Cu-containing compound and the Sm-containing compound Are contained in a total of 0.5 to 5 parts by weight in terms of CuO 2 and Sm 2 O 3 , respectively.
In the present invention, the MgO weight ratio a is 25 ≦ a ≦ 35 and the CaO weight ratio b is 0.3 ≦ b ≦ 7 when the MgO weight ratio a is less than 25 wt%. This is because, if the weight ratio b of CaO and CaO exceeds 7% by weight, the temperature coefficient τf of the resonance frequency becomes too large. Conversely, when the MgO weight ratio a exceeds 35% by weight or the CaO weight ratio b is less than 0.3% by weight, the temperature coefficient τf of the resonance frequency becomes too negative. . Therefore, the weight ratio a of MgO and the weight ratio b of CaO are specified as 25.0 ≦ a ≦ 35.0 and 0.3 ≦ b ≦ 7.0, and in particular, the temperature coefficient τf of the resonance frequency of the dielectric ceramic. From the viewpoint, 28.0 ≦ a ≦ 34.0 and 0.4 ≦ b ≦ 6.5 are preferable.
[0015]
The reason why the weight ratio c of TiO 2 is set to 60 ≦ c ≦ 70 is that the Q value decreases when the weight ratio c of TiO 2 is less than 60% by weight or more than 70% by weight. Therefore, the weight ratio c of TiO 2 is specified as 60 ≦ c ≦ 70, and 64 ≦ c ≦ 68 is particularly preferable from the viewpoint of the Q value of the dielectric ceramic.
[0016]
Further, by using MgTiO 3 and CaTiO 3 as starting materials, the Q value can be further improved and the temperature coefficient can be easily controlled. That, (100-x) MgTiO 3 · xCaTiO 3 ( however, where x represents the weight ratio, 1 ≦ x ≦ 15) with respect to 100 parts by weight of the main component represented by the B-containing compound B 2 O 3 to 3 parts by weight in terms of 3, 1 to 10 parts by weight in terms of alkali metal carbonates in terms of alkali metal carbonate , and at least one of Cu-containing compounds and Sm-containing compounds is 0 in total in terms of CuO 2 and Sm 2 O 3 , respectively. When 5 to 5 parts by weight are contained.
[0017]
Here, the weight ratio of CaTiO 3 in the main component was set to 1 ≦ x ≦ 15 because when the weight ratio of CaTiO 3 is less than 1% by weight, the temperature coefficient τf of the resonance frequency is greatly shifted to the minus side. In addition, when the weight ratio exceeds 15% by weight, the temperature coefficient τf of the resonance frequency is greatly shifted to the plus side. Therefore, the weight ratio x of CaTiO 3 is specified as 1 to 15% by weight, and in particular, 1 to 10% by weight is preferable from the viewpoint of the temperature coefficient τf of the resonance frequency of the dielectric ceramic.
[0018]
In the present invention, the B-containing compound is 3 to 20 parts by weight in terms of B 2 O 3 , the alkali metal-containing compound is 1 to 10 parts by weight in terms of alkali metal carbonate, Cu-containing compounds and A total of 0.5 to 5 parts by weight of at least one Sm-containing compound in terms of CuO 2 and Sm 2 O 3 is contained.
[0019]
Thus with respect to 100 parts by weight of the main component, B for containing compounds were added 3 to 20 parts by weight terms of B 2 O 3 is, 1100 ° C. in the case the addition amount of B 2 O 3 is less than 3 parts by weight However, it is not sintered and co-firing with Ag or Cu becomes impossible. Conversely, when it exceeds 20 parts by weight, the crystal phase changes and the Q value decreases. Therefore, the addition amount of the B-containing compound is specified as 3 to 20 parts by weight in terms of B 2 O 3 with respect to the main component, and particularly 3 to 9 parts by weight is desirable from the viewpoint of the Q value of the dielectric ceramic. B-containing compounds include metallic boron, B 2 O 3 , colemanite, CaB 2 O 4 and the like.
[0020]
In addition, 1 to 10 parts by weight of the alkali metal-containing compound was added in terms of alkali metal carbonate because the alkali metal-containing compound, for example, the Li-containing compound was added in an amount of less than 1 part by weight, even if sintered at 1100 ° C. In other words, co-firing with Ag or Cu becomes impossible, and conversely, when the amount exceeds 10 parts by weight, the crystal phase changes and the Q value decreases. Therefore, the addition amount of the alkali metal-containing compound is specified to be 1 to 10 parts by weight in terms of alkali metal carbonate, for example, Li 2 CO 3 with respect to 100 parts by weight of the main component, particularly in terms of the Q value of the dielectric ceramic. Is preferably 3 to 7 parts by weight.
[0021]
Examples of the alkali metal include Li, Na, and K. Among these, Li is particularly desirable. Examples of the alkali metal-containing compound include carbonates and oxides of the above alkali metals.
[0022]
In the dielectric ceramic composition of the present invention, a total of 0.5 to 5 parts by weight of CuO and Sm 2 O 3 in terms of at least one of the Cu-containing compound and the Sm-containing compound is contained with respect to 100 parts by weight of the main component. To do. When these are less than 0.5 parts by weight, the shrinkage start temperature in the sintering process of the dielectric ceramic is higher than 820 ° C., and the effect of addition cannot be obtained. On the other hand, if the additive exceeds 5 parts by weight, the dielectric constant εr or Q value of the dielectric ceramic decreases. From the viewpoint of the relative dielectric constant εr or Q value of the dielectric ceramic, a total of 1 to 4 parts by weight is desirable.
[0023]
In the present invention, an oxide such as Si, Zn, Mn, Zr, etc. may be added and contained within a range that does not adversely affect the dielectric properties. In this case, further low temperature firing is possible.
[0024]
The dielectric ceramic composition of the present invention may contain Al, Fe, Hf, and Sn as ball components and inevitable impurities. As the crystal phase, MgTiO 3 and CaTiO 3 are the main crystal phases, and (Mg, Ti) 2 (BO 3 ) O may precipitate. In the dielectric ceramic composition of the present invention, the average crystal grain size is 2 to 3 μm.
[0025]
In the dielectric ceramic composition of the present invention, for example, each raw material powder of MgCO 3 , CaCO 3 , and TiO 2 is weighed so as to be a predetermined amount, mixed and pulverized, and this is heated in the atmosphere at a temperature of 1100 to 1300 ° C. Calcinate for 1-3 hours. For example, each powder of B 2 O 3 and Li 2 CO 3 and at least one powder of CuO 2 and Sm 2 O 3 are weighed to a predetermined amount, mixed and pulverized, and pressed into the obtained calcined product. After forming into a predetermined shape by a known method such as molding or a doctor blade method, firing is performed at 900 to 1050 ° C. for 0.5 to 2.0 hours in an oxidizing atmosphere such as the air or a non-oxidizing atmosphere such as a nitrogen atmosphere. Can be obtained.
[0026]
The laminate of the present invention has a conductor mainly composed of Ag and / or Cu inside and / or on the surface of a dielectric substrate formed by laminating a plurality of dielectric layers. The dielectric ceramic composition described above is used.
[0027]
Examples of the conductor include those containing Ag and / or Cu as a main component, for example, Ag, Cu, or those obtained by adding a glass component, a ceramic component, or a metal such as Pt or Pd to Ag or Cu. A conductor in which a glass component or a ceramic component is added to these metals is preferably used as an inner conductor, and a conductor to which Pt or Pd is added is preferably used as a surface conductor. Such a conductor has a shrinkage start temperature at the time of firing of about 650 ° C. at the highest.
[0028]
The dielectric ceramic composition of the present invention, respectively CuO at least one kind of of the Cu-containing compound and Sm-containing compound, by containing total 0.5 to 5 parts by weight Sm 2 O 3 in terms of the shrinkage starting temperature 820 Since the temperature can be set to ° C. or lower, it is possible to approach the shrinkage start temperature of the conductor.
[0029]
【Example】
Example 1
First, MgCO of 99% pure 3, CaCO 3, each raw material powder of TiO 2 were weighed so that the amounts shown in Tables 1 and 2, 24 hours of pure water was added as a medium raw material powder, ZrO 2 After mixing with a ball mill using a ball, the mixture was dried, and then the dried product was calcined in the atmosphere at a temperature of 1200 ° C. for 1 hour.
[0030]
The resulting calcined product into B 2 O 3, Li 2 CO 3, Nb 2 O 5, CuO, a powder of Sm 2 O 3 were weighed so that the ratio shown in Table 1, 24 hours at the ball mill After mixing, 1% by weight of polyvinyl alcohol is added as a binder and granulated, and the granulated product is press-molded with a pressurizing force of about 1 t / cm 2 to form a cylindrical shape having a diameter of about 12 mm and a height of 10 mm. The body was molded.
[0031]
Thereafter, the molded body was heated in the atmosphere at a temperature of 400 ° C. for 4 hours to remove the binder, and subsequently fired in the atmosphere at each temperature shown in Tables 1 and 2 for 60 minutes. Both end surfaces of the cylindrical body thus obtained were polished to prepare a dielectric property evaluation sample.
[0032]
The evaluation of the dielectric characteristics is performed by using the evaluation sample by the dielectric cylindrical resonator method, setting the resonance frequency to 6-8 GHz, and setting the relative dielectric constant εr of each sample and 1 / tan δ at 7 GHz, that is, the Q value. In addition to the measurement, the temperature coefficient τf of the resonance frequency in the temperature range of −40 to + 85 ° C. was measured. These results are shown in Tables 1 and 2. In Tables 1 and 2, Sample No. Reference numerals 25 to 29 denote reference samples.
[0033]
[Table 1]
[0034]
[Table 2]
[0035]
According to Tables 1 and 2, in the dielectric ceramic composition of the present invention, the shrinkage start temperature in the sintering process is 800 to 820 ° C., the firing temperature is 900 to 1050 ° C., and the relative dielectric constant is further reduced. It can be seen that the ratio εr is 18 or more, the Q value at 7 GHz is 2000 or more, and the temperature coefficient τf of the resonance frequency is excellent within ± 40 ppm / ° C.
[0036]
Samples No. 13 and 14 used Na 2 CO 3 instead of Li 2 CO 3 .
[0037]
Example 2
First, each raw material powder of MgTiO 3 and CaTiO 3 having a purity of 99% or more is weighed so as to have the amounts shown in Tables 3 and 4, and pure water is added to the raw material powder as a medium, and ZrO 2 balls are used for 24 hours. After mixing in a ball mill, the mixture was dried, and then the dried product was calcined in the atmosphere at a temperature of 1200 ° C. for 1 hour.
[0038]
The resulting calcined product into B 2 O 3, Li 2 CO 3, Nb 2 O 5, CuO, a powder of Sm 2 O 3 were weighed so that the ratio shown in Table 3 and 4, for 24 hours at the ball mill After mixing, 1% by weight of polyvinyl alcohol is added as a binder and granulated, and the granulated product is press-molded with a pressurizing force of about 1 t / cm 2 to form a cylindrical shape having a diameter of about 12 mm and a height of 10 mm. The body was made.
[0039]
Thereafter, the molded body was heated in the atmosphere at a temperature of 400 ° C. for 4 hours to remove the binder, and subsequently fired in the atmosphere at each temperature shown in Tables 3 and 4 for 60 minutes. Both end surfaces of the cylindrical body thus obtained were polished to prepare a dielectric property evaluation sample. Dielectric properties were evaluated in the same manner as described above, and the results are shown in Tables 3 and 4. In Tables 3 and 4, Sample No. 21-25 show a reference sample.
[0040]
[Table 3]
[0041]
[Table 4]
[0042]
According to Tables 3 and 4, in the dielectric ceramic composition of the present invention, the shrinkage start temperature during the sintering process is 800 to 820 ° C., the firing temperature is 1050 ° C. or less, and the relative dielectric constant is further reduced. It can be seen that εr is 18 or more, the Q value is 3000 or more, and the temperature coefficient τf of the resonance frequency is within ± 30 ppm / ° C.
[0043]
【The invention's effect】
In the dielectric ceramic composition of the present invention, the shrinkage start temperature in the sintering process can be brought to 820 ° C. or less, which is close to the conductor shrinkage start temperature, and the firing temperature is 1050 ° C. or less. It is possible to obtain a laminate (substrate or electronic component) that can be fired simultaneously with Cu, Cu, and the like, and does not warp or distort even if fired simultaneously.
[0044]
Furthermore, it has a high relative dielectric constant (18 or more) in the high frequency region, a high Q value (2000 or more), and excellent temperature characteristics (within ± 40) of the resonance frequency. Further downsizing and high performance of parts can be realized.
Claims (3)
aMgO・bCaO・cTiO2
と表した時、前記a、b、cが
25.0≦a≦35.0
0.3≦b≦ 7.0
60.0≦c≦70.0
a+b+c=100
を満足する主成分と、該主成分100重量部に対して、B含有化合物をB2O3換算で3〜20重量部、アルカリ金属含有化合物をアルカリ金属炭酸塩換算で1〜10重量部、Cu含有化合物およびSm含有化合物のうち少なくとも1種をそれぞれCuO、Sm2O3換算で合計0.5〜5重量部含有してなることを特徴とする誘電体磁器組成物。A composite oxide containing Mg, Ca, and Ti as metal elements, and the composition formula according to the weight ratio of these metal element oxides is aMgO · bCaO · cTiO 2
When a, b, c are 25.0 ≦ a ≦ 35.0
0.3 ≦ b ≦ 7.0
60.0 ≦ c ≦ 70.0
a + b + c = 100
The B-containing compound is 3 to 20 parts by weight in terms of B 2 O 3 and the alkali metal-containing compound is 1 to 10 parts by weight in terms of alkali metal carbonate, A dielectric ceramic composition comprising a total of 0.5 to 5 parts by weight of at least one of a Cu-containing compound and an Sm-containing compound in terms of CuO 2 and Sm 2 O 3 , respectively.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26006197A JP3793549B2 (en) | 1997-09-25 | 1997-09-25 | Dielectric porcelain composition and laminate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26006197A JP3793549B2 (en) | 1997-09-25 | 1997-09-25 | Dielectric porcelain composition and laminate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11100262A JPH11100262A (en) | 1999-04-13 |
JP3793549B2 true JP3793549B2 (en) | 2006-07-05 |
Family
ID=17342772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26006197A Expired - Fee Related JP3793549B2 (en) | 1997-09-25 | 1997-09-25 | Dielectric porcelain composition and laminate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3793549B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001151568A (en) * | 1999-11-26 | 2001-06-05 | Kyocera Corp | Dielectric porcelain composition for high frequency and dielectric resonator using the same |
US7378363B2 (en) * | 2005-05-20 | 2008-05-27 | Skyworks Solutions, Inc. | Dielectric ceramic composition having wide sintering temperature range and reduced exaggerated grain growth |
JP5197559B2 (en) * | 2009-12-11 | 2013-05-15 | 京セラ株式会社 | High frequency dielectric ceramic composition and dielectric resonator using the same |
-
1997
- 1997-09-25 JP JP26006197A patent/JP3793549B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11100262A (en) | 1999-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5076907B2 (en) | Method for producing forsterite powder, forsterite powder, forsterite sintered body, insulator ceramic composition, and multilayer ceramic electronic component | |
JP4632534B2 (en) | Dielectric porcelain and manufacturing method thereof | |
JP4535592B2 (en) | Laminated body | |
JP4482939B2 (en) | Dielectric ceramic composition, dielectric ceramic, and multilayer ceramic component using the same | |
JP2001130952A (en) | Dielectric porcelain and laminated body | |
JP3793549B2 (en) | Dielectric porcelain composition and laminate | |
US5629252A (en) | Method for manufacturing a dielectric ceramic composition dielectric ceramic and multilayer high frequency device | |
JP3631589B2 (en) | Dielectric porcelain composition and laminate | |
JP3793550B2 (en) | Dielectric porcelain and laminate | |
JP3754827B2 (en) | High frequency dielectric ceramic composition and laminate | |
JP4249690B2 (en) | High frequency dielectric ceramics and laminates | |
JP3631607B2 (en) | High frequency dielectric ceramics and laminates | |
JP3839868B2 (en) | Dielectric ceramic composition and electronic component | |
JP4325920B2 (en) | Dielectric porcelain composition and method for producing dielectric porcelain | |
JP4618856B2 (en) | Low temperature fired porcelain | |
JP4534413B2 (en) | Method for producing low dielectric constant porcelain composition for high frequency component | |
JP3215004B2 (en) | Dielectric porcelain composition | |
JP3215012B2 (en) | Dielectric porcelain composition | |
JP3420430B2 (en) | Dielectric porcelain composition and electronic component | |
JP3193157B2 (en) | Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them | |
JP3439959B2 (en) | Dielectric porcelain composition | |
JP3411190B2 (en) | Dielectric porcelain composition | |
JP3377903B2 (en) | Dielectric porcelain composition | |
JP3405634B2 (en) | Dielectric porcelain composition | |
JP3404220B2 (en) | Dielectric porcelain composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050329 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050518 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060404 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060408 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090414 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100414 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110414 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110414 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120414 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120414 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140414 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |