JP4632534B2 - Dielectric porcelain and manufacturing method thereof - Google Patents

Dielectric porcelain and manufacturing method thereof Download PDF

Info

Publication number
JP4632534B2
JP4632534B2 JP2000396622A JP2000396622A JP4632534B2 JP 4632534 B2 JP4632534 B2 JP 4632534B2 JP 2000396622 A JP2000396622 A JP 2000396622A JP 2000396622 A JP2000396622 A JP 2000396622A JP 4632534 B2 JP4632534 B2 JP 4632534B2
Authority
JP
Japan
Prior art keywords
weight
parts
crystal phase
dielectric ceramic
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000396622A
Other languages
Japanese (ja)
Other versions
JP2002193662A (en
Inventor
辰治 古瀬
誠一郎 平原
秀司 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000396622A priority Critical patent/JP4632534B2/en
Publication of JP2002193662A publication Critical patent/JP2002193662A/en
Application granted granted Critical
Publication of JP4632534B2 publication Critical patent/JP4632534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ波、ミリ波等の高周波領域において、5〜90の範囲の誘電率と高いQ値及び従来のガラスセラミックスと同等の低い収縮開始温度を有する誘電体磁器に関するものであり、例えば、マイクロ波やミリ波などの高周波領域において使用される種々の共振器用材料やMIC用誘電体基板材料、誘電体導波路用材料や積層型セラミックコンデンサ等に好適に用いることができる誘電体磁器及びその製造方法に関する。
【0002】
【従来技術】
従来、誘電体磁器は、マイクロ波やミリ波等の高周波領域において、誘電体共振器、MIC用誘電体基板や導波路等に広く利用されている。そして、近年においては、携帯電話をはじめとする移動体通信等の発達および普及に伴い、電子回路基板や電子部品の材料として、誘電体セラミックスの需要が増大しつつある。
【0003】
電子回路基板や電子部品において、誘電体セラミックスと内部導体を同時焼成するに際しては、従来の誘電体セラミックスの焼成温度が1100℃以上という高温であったため、導体材料としては、比較的高融点であるPt、Pd、W、Mo等が使用されていた。これら高融点の導体材料は導通抵抗が大きいため、従来の電子回路基板において、共振回路やインダクタンスのQ値が小さくなってしまい、導体線路の伝送損失が大きくなる等の問題があった。
【0004】
そこで、この問題点を解決するために、導通抵抗の小さいAg、Cu等と同時焼成可能な低温焼成の誘電体セラミックスが提案されている。例えば、特開平8−208330号公報に開示された誘電体磁器は、MgO、CaO、TiO2とB23、Li2CO3からなるものであり、900〜1050℃の比較的低温でAg、Cu等の内部導体と同時に焼成でき、誘電体磁器の比誘電率εrが18以上、測定周波数7GHzでのQ値が2000以上の優れた特性を有し、高周波電子部品の小型化と多機能化を実現できるものであった。
【0005】
【発明が解決しようとする課題】
しかしながら、特開平8−208330号公報に記載された誘電体磁器は、焼結温度がまだ高く、さらに焼結における収縮開始温度が845〜960℃と高温であるため、収縮開始温度が低温であるAgやCuを主成分とする導体材料との収縮挙動のマッチングが悪く、焼成された基板が反る、歪む等の問題があった。
【0006】
また、この誘電体磁器は、共振回路やインダクタンスのQ値を向上させるために、4000以上が要求されており、Q値が十分ではないという問題があった。
【0007】
従って、本発明は、導体材料と同時焼成しても反りや歪みが無く、Q値の高い誘電体磁器及びその製造方法を実現することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、Si、B及びLiを含むガラス相により同時焼成が可能な焼成温度を達成するとともに、ガラス相を結晶化させ、LTiSiO 晶相を形成することにより、Q値を改善できるという知見に基づく。
【0009】
即ち、本発明の誘電体磁器は、主結晶である第1の結晶相としてのMg SiO を構成する原料粉末と、MgTiO 、CaTiO 及びBaTi のうち少なくとも1種を構成する原料粉末と、Li及びSiを含有する焼結助剤とを混合し、焼成してなる誘電体磁器であって、MgSiO らなる第1の結晶相と、LTiSiO らなる第2の結晶相とを含むとともに、測定周波数2GHzでのQ値が4000以上であることを特徴とするものでる。
【0010】
さらに、X線回折において回折角2θ=34〜35°にピークを有する(Mg,Ti)(BO)Oで表される結晶相をさらに含むことが好ましい。これにより、更に高Q値化することができる。
【0011】
また、本発明の誘電体磁器の製造方法は、第1の結晶相としてのMg SiO を構成する原料粉末と、MgTiO、CaTiO びBaTiのうち少なくとも1種を構成する原料粉末との合量100重量部に対して、Bを3〜20重量部、LiCOを1〜10重量部、SiO〜30重量部の割合で含む成形体を、870〜920℃で焼成し、Mg SiO からなる第1の結晶相を有する誘電体磁器中に、LiTiSiO らなる第2の結晶相を析出させることを特徴とし、これにより、低温焼成が可能となるため、Ag、Cuを主成分とする導体と同時焼成しても、反りや歪み等を防止できる。
【0012】
特に、第1の結晶相としてのMg SiO を構成する原料粉末と、MgTiO、CaTiO びBaTiのうち少なくとも1種を構成する原料粉末との合量100重量部に対して、さらにアルカリ土類元素酸化物を1〜5重量部、酸化マンガンを0.1〜15重量部含有することが好ましい。これにより、焼成温度を低温化、かつ安定化ができる。
【0013】
また、前記焼成を、2時間以上行うこと、又は前記焼成の後に、700〜900℃で熱処理することが好ましい。これにより、前記第2結晶相をより析出しやすくできる。
【0014】
【発明の実施の形態】
本発明の誘電体磁器は、MSiO らなる第1の結晶相とともに、LTiSiO らなる第2の結晶相を含有することが重要である。第1の結晶相が主結晶相として存在し、第2の結晶相と組み合わせることにより、比誘電率を5〜90、測定周波数2GHzでのQ値を4000以上にすることができる。なお、この誘電体磁器には、MgTiO 、CaTiO 、BaTi 、Mg TiO 、Mg の結晶相が含有されていてもなんら差し支えない。
【0015】
また、後述するように、ガラス成分を調整し、製造方法を制御することによって、焼成温度を870〜920℃とすることが可能となり、さらに特性を改善できる。従って、基板や電子部品において、Ag、Cuを主成分とする導体と同時焼成した場合でも、反りや歪み等の発生を抑制することができ、かつ高機能な高周波回路部品の設計が可能となる。
【0016】
また、本発明によれば、さらに(Mg,Ti)2(BO3)Oが含有されていることが好ましい。この結晶は、磁器に含まれることにより、Q値を高める効果があり、その結果、2GHzでのQ値を更に高めることができる。
【0017】
なお、この結晶相は、X線回折により同定されるもので、JCPDSの19−0775に示される結晶である。そして、少なくともメインピークである(201)面のピーク(面間隔2.59Å)がCuをX線源に用いた場合に、34〜35°に認められるものである。
【0018】
上記のように構成された本発明の誘電体磁器は、比誘電率が5〜90、測定周波数2GHzでのQ値が4000以上になり、また、焼成温度も870〜920℃と、AgやCuを主成分とする導体との同時焼成が可能な温度範囲に設定できる。従って、同時焼成でも反りや歪み等の発生を抑制することができる。
【0019】
次に、本発明の誘電体磁器を製造する方法について、以下に説明する。
【0020】
まず、原料粉末を用意する。第1の結晶相のために、Mg SiO の組成を含む原料粉末と、MgTiO、CaTiO びBaTiのうち少なくとも1種の組成を含む原料粉末を準備する。例えば、各金属元素、MgO、SiO TiO、CaO、BaO等の酸化物、及びMg SiO MgTiO、CaTiO 、BaTiの複合酸化物等の粉末を用いることができる。
【0021】
ここで、第1の結晶相の組み合わせとしては、MgTiO−MgSiOCaTiO −Mg SiO MgTiO−CaTiO−MgSiO がある。
【0022】
本発明によれば、助剤成分として、B、Li及びSiからなるガラス成分を用いることが必要である。即ち、MgTiO3、CaTiO3、Mg2SiO4及びBaTi49のうち少なくとも1種を構成する原料粉末100重量部に対して、B23を3〜20重量部、Li2CO3を1〜10重量部、SiO2を0〜30重量部の割合で含有することが重要である。
【0023】
Bを第1の結晶相100重量部に対してB23換算で3〜20重量部含有したのは、B23の含有量が3重量部未満の場合には1100℃でも焼結せず、AgまたはCuを主成分とする導体と同時焼成ができなくなり、逆に20重量部を越える場合には、焼結体中のガラス相の割合が増加して、Q値が低下するからである。
【0024】
従って、特に、焼結性を維持し、高いQ値を得るという観点から、Bの含有量はB23換算で5〜15重量部が望ましい。なお、添加する際の硼素源である硼素含有化合物としては、B23の他に、金属硼素、コレマイト、CaB24、ホウケイ酸ガラス、ホウケイ酸アルカリガラス、ホウケイ酸アルカリ土類ガラス等がある。
【0025】
また、LiをLi2CO3換算で1〜10重量部添加したのは、添加量が1重量部未満の場合には1100℃でも焼結せず、AgまたはCuを主成分とする導体と同時焼成ができなくなり、逆に10重量部を越える場合には、Q値が低下するからである。従って、焼結性と誘電体磁器のQ値の観点から、特に4〜9重量部が望ましい。
【0026】
さらに、SiをSiO2換算で0〜30重量部添加したのは、30重量部を越えると、誘電体磁器中のガラス相の割合が増加してQ値が低下するからである。誘電体磁器のQ値の観点からは、SiO2は0〜10重量部が望ましい。
【0027】
また、さらに焼結助剤として、MgO、CaO、SrO及びBaO等のアルカリ土類元素酸化物粉末及びMnO2粉末を加えることが好ましい。
【0028】
即ち、第1の結晶相としてのMg SiO を構成する原料粉末と、MgTiO、CaTiO びBaTiのうち少なくとも1種を構成する原料粉末との合量100重量部に対して、さらにアルカリ土類元素のうち少なくとも1種を酸化物換算で1〜5重量部含むことが好ましい。これにより、焼成温度をさらに低下でき、かつ誘電体磁器のQ値を高める効果がある。とりわけ、焼結性とQ値の点でアルカリ土類元素の含有量は、酸化物換算で1.5〜3.5重量部が好ましい。なお、アルカリ土類元素酸化物とは、周期律表2a族元素の酸化物であり、MgO、CaO、SrO及びBaO等を例示できる。
【0029】
さらに、MnをMnO2換算で0.1〜15重量部含むことが好ましい。このMnも、焼結性を高め、Q値を高める効果があり、特に、3〜9重量部が望ましい。
【0030】
なお、上記の元素以外であっても、Q値が高く維持され、同時焼成をしたときに、基板に反りや歪みが発生しない範囲であれば、含有していても差し支えない。
【0031】
これらの原料粉末を含む混合粉末を作製する。例えば、原料粉末を上記組成となるように秤量して、ZrO2ボールにより粉砕混合し、粉砕粒径が2.0μm以下となった粉末を650〜850℃で仮焼した後、再度ZrO2ボールにより粉砕粒径が2.5μm以下になるまで粉砕混合し、混合粉末を作製する。
【0032】
得られた粉末は、各種の公知の成形方法、例えばプレス法、ドクターブレード法、射出成形法、テープ成形等により任意の形状に成形する。これらの方法の中で、ドクターブレード法、及びテープ成形が積層体形成のために特に好ましい。
【0033】
得られた成形体は、大気中または酸素雰囲気中または窒素雰囲気等の非酸化性雰囲気において870〜920℃で焼成することにより得られる。特に、第2結晶相を析出させるため、焼成時間を2時間以上、特に3時間以上、さらには4時間以上とすることが好ましい。また、焼成時間を例えば0.5〜2時間で行った後、焼成後に500〜900℃、特に650〜800℃で後処理を行って、ガラス相の結晶化を促進しても同様の効果が得られる。
【0034】
従って、本発明によれば、焼結助剤成分として加えられた酸化物は、焼成時に第1の結晶相のために加えられた原料粉末と反応し、第2の結晶相であるLTiSiO 形成することができる。
【0035】
なお、原料粉末は、焼成により酸化物を生成する水酸化物、炭酸塩、硝酸塩等の金属塩を用いても良い。また、本発明の誘電体磁器中には、不可避不純物として、Al、Fe、Hf、Sn等が含まれることもあるが、特性及び焼結性に影響が無ければ差し支えない。
【0036】
【実施例】
原料として純度99%以上の、MgTiO3、CaTiO3、Mg2SiO4、BaTi49粉末、およびB23、Li2CO3、SiO2、アルカリ土類元素酸化物(MgO、CaO、BaO)、MnO2粉末を含むガラスフリットを、表1に示す割合となるように秤量し、純水を媒体とし、ZrO2ボールを用いたボールミルにて20時間湿式混合し、粉砕粒径を2.0μm以下とした。
【0037】
次に、この混合物を乾燥して脱水し、800℃で1時間仮焼した。この仮焼物を、粉砕粒径が1.4μm以下になるように粉砕し、誘電特性評価用の試料として直径60mm高さ2mmの円柱状に100MPaの圧力でプレス成形し、表1に示す焼成条件で焼成し、直径50mm、高さ1mmの円柱状の試料を得た。次いで、所望により、850℃で2時間の熱処理を行った。
【0038】
誘電特性の評価は、上記の試料を用いて誘電体円柱共振器法にて周波数2GHzにおける比誘電率とQ値を測定した。なお、表1の試料No.14〜17、21は参考例である。
【0039】
【表1】

Figure 0004632534
【0040】
本発明の試料No.1〜5、7〜13、18〜20は、比誘電率が5.8〜90、Q値が4000以上の優れた誘電特性を有し、920℃以下で同時焼結が可能で反りや歪みが見られなかった。
【0041】
一方、第2の結晶相がなく、本発明の範囲外の試料No.6は、Q値が2900であった。
【0042】
【発明の効果】
本発明は、MSiO らなる第1の結晶相に対して、LTiSiO からなる第2の結晶を含有させることにより、比誘電率を5〜90、測定周波数2GHzでのQ値を4000以上にすることができるとともに、Si、B及びLiの酸化物を含有させることにより、870〜920℃の温度でAgやCu等の導体金属との同時焼成を行っても、基板の反りや歪みが抑制でき、高周波領域において高いQ値を有するため、電子部品や基板の高性能化が実現できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dielectric ceramic having a dielectric constant in the range of 5 to 90, a high Q value, and a low shrinkage starting temperature equivalent to that of conventional glass ceramics in a high frequency region such as a microwave and a millimeter wave. Dielectric ceramics that can be suitably used for various resonator materials used in high frequency regions such as microwaves and millimeter waves, dielectric substrate materials for MICs, dielectric waveguide materials, multilayer ceramic capacitors, etc. It relates to the manufacturing method.
[0002]
[Prior art]
Conventionally, dielectric ceramics are widely used for dielectric resonators, dielectric substrates for MICs, waveguides, and the like in a high frequency region such as microwaves and millimeter waves. In recent years, with the development and spread of mobile communications such as mobile phones, the demand for dielectric ceramics as materials for electronic circuit boards and electronic components is increasing.
[0003]
In the simultaneous firing of dielectric ceramics and internal conductors in electronic circuit boards and electronic parts, the firing temperature of conventional dielectric ceramics is as high as 1100 ° C. or higher, so the conductor material has a relatively high melting point. Pt, Pd, W, Mo, etc. were used. Since these high melting point conductor materials have a large conduction resistance, the conventional electronic circuit board has a problem that the Q value of the resonance circuit and the inductance is reduced, and the transmission loss of the conductor line is increased.
[0004]
In order to solve this problem, low-temperature fired dielectric ceramics that can be fired simultaneously with Ag, Cu, etc. having a low conduction resistance have been proposed. For example, the dielectric ceramic disclosed in Japanese Patent Laid-Open No. 8-208330 is made of MgO, CaO, TiO 2 and B 2 O 3 , Li 2 CO 3 , and is made of Ag at a relatively low temperature of 900 to 1050 ° C. It can be fired at the same time as an internal conductor such as Cu, and has excellent characteristics such as a dielectric ceramic having a relative dielectric constant εr of 18 or more and a Q value of 2000 or more at a measurement frequency of 7 GHz. Can be realized.
[0005]
[Problems to be solved by the invention]
However, the dielectric ceramic described in JP-A-8-208330 has a high sintering temperature, and the shrinkage start temperature in sintering is as high as 845 to 960 ° C., so the shrinkage start temperature is low. Matching of the shrinkage behavior with the conductor material containing Ag or Cu as a main component is poor, and there is a problem that the fired substrate is warped or distorted.
[0006]
Further, the dielectric ceramic is required to have a value of 4000 or more in order to improve the Q value of the resonance circuit and the inductance, and there is a problem that the Q value is not sufficient.
[0007]
Accordingly, an object of the present invention is to realize a dielectric ceramic having a high Q value without warping or distortion even when fired simultaneously with a conductor material, and a method for manufacturing the same.
[0008]
[Means for Solving the Problems]
The present invention, Si, as well as achieving a sintering temperature can be simultaneously fired glass phase containing B and Li, glass phase is crystallized by forming a L i 2 TiSiO 5 binding phase, the Q value Based on the knowledge that it can be improved.
[0009]
That is, the dielectric ceramic of the present invention constitutes at least one of the raw material powder constituting Mg 2 SiO 4 as the first crystal phase which is the main crystal, and MgTiO 3 , CaTiO 3 and BaTi 4 O 9. and the raw material powder and a sintering aid containing Li and Si are mixed, a dielectric ceramic obtained by firing a Ranaru first crystalline phase or Mg 2 SiO 4, or L i 2 TiSiO 5 together and a Ranaru second crystal phase, Q value at a measuring frequency of 2GHz is Ru Oh characterized in that at more than 4,000.
[0010]
Furthermore, it is preferable to further include a crystal phase represented by (Mg, Ti) 2 (BO 3 ) O having a peak at a diffraction angle 2θ = 34 to 35 ° in X-ray diffraction . As a result, the Q value can be further increased.
[0011]
Further, the production method of the dielectric ceramic of the present invention constitutes a raw material powder constituting the Mg 2 SiO 4 as a first crystal phase, the MgTiO 3, CaTiO 3 beauty BaTi 4 at least one of O 9 relative to the total amount 100 parts by weight of the raw material powder, B 2 O 3 3 to 20 parts by weight, 1 to 10 parts by weight of Li 2 CO 3, the molded body containing SiO 2 in a proportion of 1 - 30 parts by weight and then calcined at 870 to 920 ° C., in the dielectric ceramic having a first crystal phase comprising a Mg 2 SiO 4, characterized in that to precipitate Li 2 TiSiO 5 or Ranaru second crystal phase, thereby Since low-temperature firing is possible, warping, distortion, and the like can be prevented even when co-firing with a conductor mainly composed of Ag and Cu.
[0012]
In particular, a raw material powder constituting the Mg 2 SiO 4 as a first crystal phase, relative to the total amount 100 parts by weight of the raw material powder constituting at least one of MgTiO 3, CaTiO 3 beauty BaTi 4 O 9 Further, it is preferable to contain 1 to 5 parts by weight of alkaline earth element oxide and 0.1 to 15 parts by weight of manganese oxide. Thereby, the firing temperature can be lowered and stabilized.
[0013]
Moreover, it is preferable to perform the said baking for 2 hours or more, or to heat-process at 700-900 degreeC after the said baking. Thereby, the second crystal phase can be more easily precipitated.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The dielectric ceramic of the present invention, as well as M g 2 SiO 4 or Ranaru first crystal phase, it is important to contain L i 2 TiSiO 5 or Ranaru second crystal phase. When the first crystal phase exists as the main crystal phase and is combined with the second crystal phase, the relative dielectric constant can be 5 to 90, and the Q value at a measurement frequency of 2 GHz can be 4000 or more. Incidentally, this dielectric ceramic, MgTiO 3, CaTiO 3, BaTi 4 O 9, Mg 2 TiO 4, Mg 2 B 2 O 5 crystalline phase no problem any be contained.
[0015]
In addition, as described later, by adjusting the glass component and controlling the production method, the firing temperature can be set to 870 to 920 ° C., and the characteristics can be further improved. Therefore, even when a substrate or an electronic component is fired at the same time as a conductor containing Ag and Cu as main components, it is possible to suppress the occurrence of warpage and distortion and to design a high-performance high-frequency circuit component. .
[0016]
Further, according to the present invention, it is preferable that (Mg, Ti) 2 (BO 3 ) O is further contained. This crystal has the effect of increasing the Q value by being included in the porcelain, and as a result, the Q value at 2 GHz can be further increased.
[0017]
This crystal phase is identified by X-ray diffraction and is a crystal shown in JCPDS 19-0775. Then, at least the peak of the (201) plane (plane spacing of 2.59 mm), which is the main peak, is observed at 34 to 35 ° when Cu is used for the X-ray source.
[0018]
The dielectric ceramic of the present invention configured as described above has a relative dielectric constant of 5 to 90, a Q value of 4000 or more at a measurement frequency of 2 GHz, and a firing temperature of 870 to 920 ° C., such as Ag and Cu. Can be set to a temperature range in which co-firing with a conductor containing as a main component is possible. Accordingly, the occurrence of warpage or distortion can be suppressed even in simultaneous firing.
[0019]
Next, a method for manufacturing the dielectric ceramic according to the present invention will be described below.
[0020]
First, raw material powder is prepared. For the first crystal phase, prepared a raw material powder containing a composition of Mg 2 SiO 4, and a raw material powder containing at least one composition of the MgTiO 3, CaTiO 3 beauty BaTi 4 O 9. For example, powders such as various metal elements, oxides such as MgO, SiO 2 , TiO 2 , CaO, and Ba 2 O , and composite oxides of Mg 2 SiO 4 , MgTiO 3 , CaTiO 3 , and BaTi 4 O 9 are used. Can do.
[0021]
Here, the combination of the first crystal phase, M gTiO 3 -Mg 2 SiO 4 , CaTiO 3 -Mg 2 SiO 4, MgTiO 3 -CaTiO 3 is -Mg 2 SiO 4 and the like.
[0022]
According to the present invention, it is necessary to use a glass component composed of B, Li and Si as an auxiliary component. That is, 3 to 20 parts by weight of B 2 O 3 and 3 to 20 parts by weight of Li 2 CO 3 with respect to 100 parts by weight of raw material powder constituting at least one of MgTiO 3 , CaTiO 3 , Mg 2 SiO 4 and BaTi 4 O 9. It is important to contain 1 to 10 parts by weight and SiO 2 in a proportion of 0 to 30 parts by weight.
[0023]
The reason why B is contained in an amount of 3 to 20 parts by weight in terms of B 2 O 3 with respect to 100 parts by weight of the first crystal phase is that sintering is performed even at 1100 ° C. when the content of B 2 O 3 is less than 3 parts by weight. Without simultaneous firing with a conductor mainly composed of Ag or Cu, conversely, when it exceeds 20 parts by weight, the ratio of the glass phase in the sintered body increases and the Q value decreases. It is.
[0024]
Therefore, in particular, from the viewpoint of maintaining sinterability and obtaining a high Q value, the content of B is preferably 5 to 15 parts by weight in terms of B 2 O 3 . The boron-containing compound which is a boron source at the time of addition includes, in addition to B 2 O 3 , metallic boron, collimite, CaB 2 O 4 , borosilicate glass, borosilicate alkali glass, borosilicate alkaline earth glass, etc. There is.
[0025]
In addition, 1 to 10 parts by weight of Li in terms of Li 2 CO 3 was added when the added amount was less than 1 part by weight, and sintering was not performed even at 1100 ° C., and at the same time as the conductor mainly composed of Ag or Cu. This is because when the firing becomes impossible and the amount exceeds 10 parts by weight, the Q value decreases. Accordingly, 4 to 9 parts by weight is particularly desirable from the viewpoint of sinterability and the Q value of the dielectric ceramic.
[0026]
Further, the reason why Si is added in an amount of 0 to 30 parts by weight in terms of SiO 2 is that when the amount exceeds 30 parts by weight, the ratio of the glass phase in the dielectric ceramic increases and the Q value decreases. From the viewpoint of the Q value of the dielectric ceramic, 0 to 10 parts by weight of SiO 2 is desirable.
[0027]
Further, it is preferable to add alkaline earth element oxide powders such as MgO, CaO, SrO and BaO and MnO 2 powder as sintering aids.
[0028]
That is, a raw material powder constituting the Mg 2 SiO 4 as a first crystal phase, relative to the total amount 100 parts by weight of the raw material powder constituting at least one of MgTiO 3, CaTiO 3 beauty BaTi 4 O 9 In addition, it is preferable that 1 to 5 parts by weight of at least one alkaline earth element in terms of oxide is included. As a result, the firing temperature can be further lowered and the Q value of the dielectric ceramic can be increased. In particular, the alkaline earth element content in terms of sinterability and Q value is preferably 1.5 to 3.5 parts by weight in terms of oxide. The alkaline earth element oxide is an oxide of group 2a element of the periodic table, and examples thereof include MgO, CaO, SrO, and BaO.
[0029]
Furthermore, it is preferable to contain 0.1 to 15 parts by weight of Mn in terms of MnO 2 . This Mn also has the effect of increasing the sinterability and increasing the Q value, and 3 to 9 parts by weight is particularly desirable.
[0030]
Note that elements other than the above elements may be contained as long as the Q value is maintained high and co-firing does not cause warping or distortion of the substrate.
[0031]
A mixed powder containing these raw material powders is prepared. For example, the raw material powder was weighed so that the composition, after mixing pulverized by ZrO 2 balls were calcined powder pulverized particle diameter became 2.0μm or less at 650 to 850 ° C., again ZrO 2 balls The mixture is pulverized and mixed until the pulverized particle size becomes 2.5 μm or less to produce a mixed powder.
[0032]
The obtained powder is molded into an arbitrary shape by various known molding methods, for example, a press method, a doctor blade method, an injection molding method, a tape molding and the like. Among these methods, the doctor blade method and tape molding are particularly preferable for forming a laminate.
[0033]
The obtained molded body is obtained by firing at 870 to 920 ° C. in a non-oxidizing atmosphere such as air, oxygen atmosphere or nitrogen atmosphere. In particular, in order to precipitate the second crystal phase, the firing time is preferably 2 hours or more, particularly 3 hours or more, and more preferably 4 hours or more. Moreover, after performing baking time for 0.5 to 2 hours, for example, even if it post-processes at 500-900 degreeC after baking, especially 650-800 degreeC, and the crystallization of a glass phase is accelerated | stimulated, the same effect is obtained. can get.
[0034]
Therefore, according to the present invention, oxides added as sintering aid components, the first to react with the raw material powder was added to the crystalline phase during firing, Ru second crystal phase Der L i it is possible to form the 2 TiSiO 5.
[0035]
Note that the raw material powder may be a metal salt such as a hydroxide, carbonate, or nitrate that generates an oxide by firing. In addition, the dielectric ceramic of the present invention may contain Al, Fe, Hf, Sn, etc. as inevitable impurities, but there is no problem as long as the characteristics and sinterability are not affected.
[0036]
【Example】
MgTiO 3 , CaTiO 3 , Mg 2 SiO 4 , BaTi 4 O 9 powder, and B 2 O 3 , Li 2 CO 3 , SiO 2 , alkaline earth element oxides (MgO, CaO, BaO), a glass frit containing MnO 2 powder was weighed so as to have the ratio shown in Table 1, and wet-mixed for 20 hours in a ball mill using ZrO 2 balls using pure water as a medium, and the pulverized particle size was 2 0.0 μm or less.
[0037]
Next, this mixture was dried and dehydrated, and calcined at 800 ° C. for 1 hour. This calcined product was pulverized so that the pulverized particle size was 1.4 μm or less, and was press-molded at a pressure of 100 MPa into a cylindrical shape having a diameter of 60 mm and a height of 2 mm as a sample for dielectric property evaluation. And a cylindrical sample having a diameter of 50 mm and a height of 1 mm was obtained. Then, if desired, heat treatment was performed at 850 ° C. for 2 hours.
[0038]
For the evaluation of dielectric characteristics, the relative permittivity and Q value at a frequency of 2 GHz were measured by the dielectric cylindrical resonator method using the above sample. In Table 1, sample No. Reference numerals 14 to 17 and 21 are reference examples.
[0039]
[Table 1]
Figure 0004632534
[0040]
Sample No. of the present invention. 1-5, 7-13 , 18-20 have excellent dielectric properties with a relative dielectric constant of 5.8-90 and a Q value of 4000 or more, and can be simultaneously sintered at 920 ° C. or lower, warping and distortion Was not seen.
[0041]
On the other hand, there is no second crystal phase, and sample No. 6 had a Q value of 2900.
[0042]
【The invention's effect】
The present invention is, with respect to M g 2 SiO 4 or Ranaru first crystal phase, by containing the second crystalline phase consisting of L i 2 TiSiO 5, the relative dielectric constant of 5 to 90, measurement frequency 2GHz In addition, the Q value at 4000 can be 4000 or more, and by containing oxides of Si, B and Li, even when co-firing with a conductor metal such as Ag or Cu at a temperature of 870 to 920 ° C. Since the warpage and distortion of the substrate can be suppressed and the Q value is high in the high frequency region, high performance of the electronic component and the substrate can be realized.

Claims (6)

主結晶である第1の結晶相としてのMg SiO を構成する原料粉末と、MgTiO 、CaTiO 及びBaTi のうち少なくとも1種を構成する原料粉末と、Li及びSiを含有する焼結助剤とを混合し、焼成してなる誘電体磁器であって、MgSiO らなる第1の結晶相と、LTiSiO らなる第2の結晶相とを含むとともに、測定周波数2GHzでのQ値が4000以上であることを特徴とする誘電体磁器。 Contains raw material powder constituting Mg 2 SiO 4 as the first crystal phase as the main crystal, raw material powder constituting at least one of MgTiO 3 , CaTiO 3 and BaTi 4 O 9 , and Li and Si mixing a sintering aid, a dielectric ceramic obtained by firing, including a Ranaru first crystal phase or Mg 2 SiO 4, and L i 2 TiSiO 5 or Ranaru second crystal phase A dielectric ceramic having a Q value of 4000 or more at a measurement frequency of 2 GHz . X線回折において回折角2θ=34〜35°にピークを有する(Mg,Ti)(BO)Oで表される結晶相をさらに含むことを特徴とする請求項1記載の誘電体磁器。The dielectric ceramic according to claim 1, further comprising a crystal phase represented by (Mg, Ti) 2 (BO 3 ) O having a peak at a diffraction angle 2θ = 34 to 35 ° in X-ray diffraction . 第1の結晶相としてのMg SiO を構成する原料粉末と、MgTiO、CaTiO びBaTiのうち少なくとも1種を構成する原料粉末との合量100重量部に対して、Bを3〜20重量部、LiCOを1〜10重量部、SiO〜30重量部の割合で含む成形体を、870〜920℃で焼成し、Mg SiO からなる前記第1の結晶相を有する誘電体磁器中に、LiTiSiO らなる第2の結晶相を析出させることを特徴とする誘電体磁器の製造方法。 A raw material powder constituting the Mg 2 SiO 4 as a first crystal phase, relative to the total amount 100 parts by weight of the raw material powder constituting the MgTiO 3, CaTiO 3 beauty BaTi 4 at least one of O 9, B 2 O 3 3 to 20 parts by weight, 1 to 10 parts by weight of Li 2 CO 3, the molded body containing SiO 2 in a proportion of 1 - 30 parts by weight, calcined at 870~920 ℃, Mg 2 SiO 4 wherein in the dielectric ceramic having a first crystal phase, the production method of the dielectric ceramic, characterized in that to precipitate Li 2 TiSiO 5 or Ranaru second crystal phase comprising a. 第1の結晶相としてのMg SiO を構成する原料粉末と、MgTiO、CaTiO びBaTiのうち少なくとも1種を構成する原料粉末との合量100重量部に対して、さらにアルカリ土類元素酸化物を1〜5重量部、酸化マンガンを0.1〜15重量部含有することを特徴とする請求項3記載の誘電体磁器の製造方法。 A raw material powder constituting the Mg 2 SiO 4 as a first crystal phase, relative to the total amount 100 parts by weight of the raw material powder constituting the MgTiO 3, CaTiO 3 beauty BaTi 4 at least one of O 9, The method for producing a dielectric ceramic according to claim 3, further comprising 1 to 5 parts by weight of an alkaline earth element oxide and 0.1 to 15 parts by weight of manganese oxide. 前記焼成を、2時間以上行うことを特徴とする請求項3又は4記載の誘電体磁器の製造方法。  5. The method for manufacturing a dielectric ceramic according to claim 3, wherein the firing is performed for 2 hours or more. 前記焼成の後に、500〜900℃で熱処理することを特徴とする請求項3又は4記載の誘電体磁器の製造方法。  5. The method for manufacturing a dielectric ceramic according to claim 3, wherein heat treatment is performed at 500 to 900 [deg.] C. after the firing.
JP2000396622A 2000-12-27 2000-12-27 Dielectric porcelain and manufacturing method thereof Expired - Fee Related JP4632534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000396622A JP4632534B2 (en) 2000-12-27 2000-12-27 Dielectric porcelain and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000396622A JP4632534B2 (en) 2000-12-27 2000-12-27 Dielectric porcelain and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002193662A JP2002193662A (en) 2002-07-10
JP4632534B2 true JP4632534B2 (en) 2011-02-16

Family

ID=18861880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000396622A Expired - Fee Related JP4632534B2 (en) 2000-12-27 2000-12-27 Dielectric porcelain and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4632534B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106904960A (en) * 2017-03-14 2017-06-30 电子科技大学 A kind of Mg2SiO4‑Li2TiO3Compound system LTCC materials and preparation method thereof

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100474249B1 (en) * 2002-03-19 2005-03-09 삼화콘덴서공업주식회사 Dielectric ceramic composition and manufacture method
JP4004046B2 (en) * 2003-03-17 2007-11-07 Tdk株式会社 Dielectric ceramic composition and dielectric resonator using the same
CN1826299B (en) * 2004-03-01 2010-06-16 株式会社村田制作所 Insulating ceramic composition, insulating ceramic sintered body, and multilayer ceramic electronic component
JP4594021B2 (en) * 2004-09-28 2010-12-08 京セラ株式会社 Dielectric ceramic composition, method for producing the same, and wiring board
JP2008069056A (en) * 2006-09-15 2008-03-27 Toko Inc Dielectric porcelain composition
US8067324B2 (en) * 2007-11-26 2011-11-29 Elizaveta Arkadievna Nenasheva Low dielectric loss ceramic ferroelectric composite material
JP2011162417A (en) * 2010-02-15 2011-08-25 Ube Industries Ltd Dielectric ceramic for high frequency, method for producing the same, and high frequency circuit element using the same
CN103360056A (en) * 2012-03-31 2013-10-23 深圳光启创新技术有限公司 Dielectric ceramic
JP2014192454A (en) * 2013-03-28 2014-10-06 Hitachi Metals Ltd Manufacturing method of composite coated soft magnetic metal powder, composite coated soft magnetic metal powder, and powder magnetic core using the same
CN109133912B (en) * 2017-06-27 2022-09-16 深圳光启高等理工研究院 Microwave dielectric ceramic and preparation method thereof
CN110668795B (en) * 2019-11-15 2021-07-09 山东国瓷功能材料股份有限公司 Microwave dielectric ceramic material, preparation method and application thereof, microwave dielectric ceramic body, preparation method and application thereof, and microwave device
CN111925190B (en) * 2020-07-02 2022-06-10 杭州电子科技大学 Mg3B2O6-CaTiO3Composite microwave dielectric ceramic material and preparation method thereof
CN112521129A (en) * 2020-12-25 2021-03-19 无锡鑫圣慧龙纳米陶瓷技术有限公司 Low-dielectric-constant ceramic dielectric material for low-temperature sintered MLCC and preparation method thereof
CN114804857B (en) * 2021-01-28 2023-03-14 山东国瓷功能材料股份有限公司 Low-temperature co-fired ceramic material and preparation method thereof
CN114804858B (en) * 2021-01-28 2023-07-04 山东国瓷功能材料股份有限公司 Low-temperature co-fired ceramic material for filter and preparation method and application thereof
CN113321496B (en) * 2021-07-01 2023-07-25 宜宾红星电子有限公司 Composite microwave dielectric ceramic material and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4249690B2 (en) * 1997-09-26 2009-04-02 京セラ株式会社 High frequency dielectric ceramics and laminates
JP3860687B2 (en) * 1999-10-29 2006-12-20 京セラ株式会社 Dielectric porcelain and laminate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106904960A (en) * 2017-03-14 2017-06-30 电子科技大学 A kind of Mg2SiO4‑Li2TiO3Compound system LTCC materials and preparation method thereof
CN106904960B (en) * 2017-03-14 2020-01-14 电子科技大学 Mg2SiO4-Li2TiO3Composite system LTCC material and preparation method thereof

Also Published As

Publication number Publication date
JP2002193662A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
JP4632534B2 (en) Dielectric porcelain and manufacturing method thereof
JP4535592B2 (en) Laminated body
JP3860687B2 (en) Dielectric porcelain and laminate
JPWO2006109465A1 (en) Dielectric ceramic composition and high frequency device using the same
CN106587991B (en) Low-temperature sintered composite microwave dielectric ceramic material and preparation method thereof
JP2012012252A (en) Dielectric ceramic, method for producing the same and electronic component
JP3898560B2 (en) Dielectric porcelain
JP2002121066A (en) Alumina-based sintered compact and method of producing the same
JP4325920B2 (en) Dielectric porcelain composition and method for producing dielectric porcelain
JP4249690B2 (en) High frequency dielectric ceramics and laminates
JP3909366B2 (en) Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition
JP2003146752A (en) Dielectric ceramic composition
JP3754827B2 (en) High frequency dielectric ceramic composition and laminate
JP3793549B2 (en) Dielectric porcelain composition and laminate
JP3839868B2 (en) Dielectric ceramic composition and electronic component
JP4618856B2 (en) Low temperature fired porcelain
JP3793550B2 (en) Dielectric porcelain and laminate
JP3631607B2 (en) High frequency dielectric ceramics and laminates
JP3631589B2 (en) Dielectric porcelain composition and laminate
JP4442077B2 (en) Porcelain composition for high frequency components
JP3699598B2 (en) Dielectric porcelain composition
JP3420430B2 (en) Dielectric porcelain composition and electronic component
JPH11100258A (en) Wiring substrate for high frequency application
CN104193324A (en) ZnO-MgO-TiO2 serial LTCC (low temperature co-fired ceramic) material
JP3439959B2 (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101116

R150 Certificate of patent or registration of utility model

Ref document number: 4632534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees