JP3839868B2 - Dielectric ceramic composition and electronic component - Google Patents

Dielectric ceramic composition and electronic component Download PDF

Info

Publication number
JP3839868B2
JP3839868B2 JP13518096A JP13518096A JP3839868B2 JP 3839868 B2 JP3839868 B2 JP 3839868B2 JP 13518096 A JP13518096 A JP 13518096A JP 13518096 A JP13518096 A JP 13518096A JP 3839868 B2 JP3839868 B2 JP 3839868B2
Authority
JP
Japan
Prior art keywords
dielectric ceramic
weight
dielectric
parts
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13518096A
Other languages
Japanese (ja)
Other versions
JPH09315863A (en
Inventor
浩文 戸田
信一 榎並
伸治 磯山
信二郎 下
善裕 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP13518096A priority Critical patent/JP3839868B2/en
Publication of JPH09315863A publication Critical patent/JPH09315863A/en
Application granted granted Critical
Publication of JP3839868B2 publication Critical patent/JP3839868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ波領域で使用され、電子回路基板や電子部品等に適用される誘電体磁器組成物及び、例えば内部および/または表面に導体を有する共振器、コンデンサ、フィルタ等の電子部品に関する。
【0002】
【従来の技術】
従来より誘電体材料として各種誘電体セラミックスが電子回路基板や電子部品等に広く使用されており、近年、携帯電話に代表される移動体通信等の高周波機器の発展と普及に伴い、高周波領域で使用する電子回路基板や電子部品として誘電体セラミックスが積極的に利用されるようになってきた。
【0003】
このような誘電体セラミックスからなる電子回路基板等と導体を同時焼成するに際しては、導体が誘電体セラミックスの焼成温度で溶融することがないように、該導体には誘電体セラミックスの焼成温度よりも高い融点を有する、例えば、Pt、Pd、W、Mo等の金属が用いられていた。
【0004】
しかしながら、前記金属は導通抵抗が大きいことから、従来の電子回路基板では、共振回路のQ値が小さくなってしまい、導体線路の伝送損失が大きくなる等の問題があった。
【0005】
そこで係る問題を解消するために導通抵抗の小さいAgやCu等の金属を導体として採用し、低温で同時焼成できる誘電体セラミックスが種々提案されている。更に、最近の高周波電子回路基板や電子部品に対する小型化と高性能化の要求に応えるために、特定の周波数領域で比誘電率εrを高くすることにより共振器の小型化を可能とし、また、誘電体セラミックスのQ値を高くすることにより、共振器のQ値も高くすることができて低損失となることから、各種の複合誘電体が提案されている。
【0006】
従来、例えば、特開平4−292460号公報に開示された誘電体磁器組成物は、アノーサイト−チタン酸カルシウム系のガラスとTiO2 からなるもので、低温焼成できるため導体としてAgやCu等の金属と同時焼成ができるものであった。
【0007】
【発明が解決しようとする課題】
しかしながら、前記複合誘電体は、導体として使用するAgやCu等の金属と同時焼成できるものの、誘電体セラミックスのQ値は6GHzの測定周波数で最大330程度(1GHz換算では2000程度)と低く、比誘電率εrが4〜6GHzの高周波領域の測定では16未満と低く、高周波電子回路基板や電子部品の小型化、高性能化には限界があるという課題があった。
【0008】
本願出願人は、aBaO・bZnO・cNb2 5 ・dMgO・eWO3 ・fTa2 5 と表わされる誘電体磁器組成物を既に出願しており、この誘電体磁器組成物は、6〜10GHzにおいて比誘電率が19〜38で、Q値が50000〜230000と高Q値を示すものの、焼成温度が1400〜1600℃と高く、一方ガラス等を添加して低温焼成化を図った場合は、Q値等の特性が大きく劣化するという課題があった。
【0009】
【発明の目的】
本発明は上記課題に鑑みなされたもので、誘電体セラミックスの比誘電率εrが高く、高Q値を有するとともに、900〜1050℃の比較的低温でAgやCu等の導体金属と同時に焼成でき、高周波電子回路基板や電子部品の小型化と高性能化を実現できる誘電体磁器組成物の提供を目的とするものである。
【0010】
【課題を解決するための手段】
本発明の誘電体磁器組成物は、金属元素として少なくともBa,Zn,Mg,WおよびTaを含有する複合酸化物であって、これらのモル比による組成式をaBaO・bZnO・cNb・dMgO・eWO・fTaと表した時、前記a、b、c、d、e、fが、0.43≦a≦0.68、0.01≦b≦0.30、0≦c≦0.30、0<d≦0.35、0<e≦0.35、0<f≦0.35、0.50≦(b+d)/(c+e+f)≦1.60、a+b+c+d+e+f=1を満足する主成分100重量部に対して、酸化ホウ素を1〜10重量部、アルカリ金属炭酸塩を1〜10重量部添加含有してなり、比誘電率が15以上、Q値が5000以上の誘電体磁器を得られるものである。
【0011】
また、本発明の電子部品は、誘電体磁器と、該誘電体磁器の内部および/または表面に形成された導体とを具備する電子部品であって、前記誘電体磁器が、上記した誘電体磁器組成物からなり、かつ、前記導体がAgまたはCuを主成分とするものである。
【0012】
【作用】
本発明の誘電体磁器組成物では、900〜1050℃の比較的低温でAgやCu等の導体金属と同時に焼成でき、誘電体セラミックスの比誘電率εrやQ値が高く、かつ共振周波数の温度係数τfを比較的小さくすることができ、高周波電子回路基板や電子部品の小型化と高性能化を実現できる。
【0013】
そして、本発明においては、硼素含有化合物とアルカリ金属含有化合物を同時に含有するものであるが、これは、上記主成分に対して硼素含有化合物のみを配合した場合には、その配合量が少ないと焼成温度を十分に低下させることができず、AgやCuの融点温度以下の温度で焼結させることができない。
【0014】
また、配合量が多いと焼結温度は低下するが、硼素含有化合物は、焼成時等の高温下で主成分からなる高Q値の結晶相と反応するので、配合量が多すぎた場合は、焼成後において高Q値の結晶相の残存量が少なくなり、高いQ値を維持することができない。従って、硼素含有化合物のみを添加した場合には、低い焼結温度と高周波領域における誘電特性が共に優れたものを得ることができないからである。
【0015】
即ち、硼素含有化合物のみを添加した場合は、その添加量がB2 3 換算で1重量部未満では焼結温度が1050℃以下にはならない。また、B2 3 換算で10重量部よりも多い場合には焼結温度を1050℃以下に低下できるが、硼素含有化合物は焼成時等高温下において上述したように高Q値の結晶相と反応するため、Q値が低下してしまうからである。
【0016】
この組成物の場合、硼素含有化合物の添加による組成物の焼結温度低下効果と焼成後の磁器組成物の誘電特性向上効果とは背反関係にあり、硼素含有化合物のみを添加した組成物では、低い焼結温度と高いQ値等の優れた誘電特性とを共に備えた組成物を得ることが困難である。
【0017】
一方、主成分にLi,Na等のアルカリ金属含有化合物のみを添加した場合には、たとえ添加量を増加させたとしても、組成物の焼結温度を低下させることが殆どできず、1050℃以下で焼結できる組成物を得ることができない。
【0018】
これに対して、硼素含有化合物とアルカリ金属含有化合物とを、各々特定量比で組み合わせ添加配合した本発明の組成物では、硼素含有化合物と高Q値の結晶相との過度の反応が抑制され、かつ、硼素含有化合物のみの添加の場合と比較してさらに焼結温度を低下させることができると同時にQ値の低下を抑制できるため、AgまたはCuを主成分とする金属導体との同時焼成が可能となる。
【0019】
【発明の実施の形態】
本発明の誘電体磁器組成物は、モル比による組成式をaBaO・bZnO・cNb2 5 ・dMgO・eWO3 ・fTa2 5 と表した時、前記a、b、c、d、e、fが、0.43≦a≦0.68、0.01≦b≦0.30、0≦c≦0.30、0<d≦0.35、0<e≦0.35、0<f≦0.35、0.50≦(b+d)/(c+e+f)≦1.60、a+b+c+d+e+f=1を満足する主成分に、硼素含有化合物とアルカリ金属含有化合物とを各々特定量比で組み合わせ添加配合したものである。
【0020】
BaOのモル比aを0.43≦a≦0.68に設定したのは、0.43よりも小さい場合、また0.68よりも大きい場合はQ値が低下するためである。特に、高Q値とするためには0.52≦a≦0.62とすることが好ましい。
【0021】
ZnOのモル比bを0.01≦b≦0.30に設定したのは、0.01よりも小さい場合はQ値が低下し、もしくは焼結性が悪く、また0.30よりも大きい場合はQ値が低下するためである。特に高Q値という観点から0.08≦b≦0.21とすることが好ましい。
【0022】
Nb2 5 のモル比cを0<c≦0.30に設定したのは、0.30よりも大きい場合はQ値が低下するためである。特に、高Q値とするためには0.001≦c≦0.11とすることが好ましい。
【0023】
MgOのモル比dを0<d≦0.35に設定したのは、0.35よりも大きい場合はQ値が低下するためである。特に、高Q値とするためには、0.001≦d≦0.150とすることが好ましい。
【0024】
WO3 のモル比eを0<e≦0.35に設定したのは、0.35よりも大きい場合はQ値が低下するためである。特に、高Q値とするためには、0.001≦a≦0.15とすることが好ましい。
【0025】
Ta2 5 のモル比fを0<f≦0.35に設定したのは、0.35よりも大きい場合はQ値が低下するためである。特に、高Q値とするためには、0.08≦f≦0.20が好ましい。
【0026】
また、0.50≦(b+d)/(c+e+f)≦1.60に設定したのは、この範囲外では、Q値が低下するためである。特に0.8〜1.5が望ましい。
【0027】
そして、本発明の誘電体磁器組成物は、主成分100重量部に対して、ホウ素含有化合物をB2 3 換算で1〜10重量部、アルカリ金属含有化合物をアルカリ金属炭酸塩換算で1〜10重量部添加含有してなるものであるが、このように主成分100重量部に対して、ホウ素含有化合物をB2 3 換算で1〜10重量部添加したのは、ホウ素含有化合物の添加量が1重量部未満の場合には1100℃でも焼結せず、AgまたはCuとの同時焼成ができなくなり、逆に10重量部を超える場合には結晶相が変化し、磁器特性が劣化するからである。よって、ホウ素含有化合物の添加量は、主成分100重量部に対してB2 3 換算で1〜10重量部に特定され、特に、誘電体磁器のQ値の観点からは3〜8重量部が望ましい。
【0028】
ホウ素含有化合物としては、 であることが重要である。
【0029】
また、アルカリ金属含有化合物をアルカリ金属炭酸塩換算で1〜10重量部添加含有したのは、アルカリ金属含有化合物の含有量が1重量部未満の場合には1100℃でも焼結せず、AgまたはCuとの同時焼成ができなくなり、逆に10重量部を超える場合には結晶相が変化し、磁器特性が劣化するからである。よって、アルカリ金属含有化合物の添加量は、主成分100重量部に対してアルカリ金属炭酸塩換算で1〜10重量部に特定され、とりわけ誘電体磁器のQ値の観点からは3〜8重量部が望ましい。
【0030】
アルカリ金属としては、Li、K、Naがあり、アルカリ金属化合物としては、アルカリ金属炭酸塩であることが重要であるが、このうちでも高Q値化および低温焼成化という観点からLiが望ましい。
【0031】
また、本発明においては、誘電体特性に悪影響を及ぼさない範囲でSi、Zn、Mn等の酸化物を添加しても良く、この場合、更に低温焼成が可能となる。
【0032】
本発明の電子部品は、誘電体磁器と、該誘電体磁器の内部および/または表面に形成された導体とを具備する電子部品であって、誘電体磁器が、上述した誘電体磁器組成物からなり、導体が、AgまたはCuを主成分とするものである。誘電体磁器と、該誘電体磁器の内部および/または表面に形成された導体とは同時焼成して形成することができる。また、電子部品だけでなく、誘電体磁器と、該誘電体磁器の内部および/または表面に形成された導体とを具備する基板においても、誘電体磁器として上述した誘電体磁器組成物を用いることができる。
【0033】
本発明の誘電体磁器組成物は、純度99%以上のBaO,ZnO,Nb2 5 ,MgO、WO3 及びTa2 5 の各原料粉末を所定量となるように秤量し、混合粉砕し、これを大気中等の酸化性雰囲気において1000〜1500℃の温度で1〜3時間仮焼する。得られた仮焼物に、例えば、B2 3 , Li2 CO3 の各粉末を所定量となるように秤量し、混合粉砕し、プレス成形等により成形した後、大気中または窒素雰囲気中、900〜1050℃において0.5〜2.0時間焼成することにより得られる。
【0034】
【実施例】
先ず、純度99%以上ののBaO,ZnO,Nb2 5 ,MgO、WO3 及びTa2 5 の各原料粉末を表1〜表3に示す組成となるように秤量し、該原料粉末に媒体として純水を加えて24時間、ZrO2 ボールを用いたボールミルにて混合した後、該混合物を乾燥し、次いで該乾燥物を大気中において1200℃の温度で1時間仮焼した。
【0035】
得られた仮焼物にB2 3 粉末とアルカリ金属化合物を表1〜表3に示す割合となるように秤量し、ZrO2 ボールを用いたボールミルにて24時間、混合した後、バインダーとしてポリビニルアルコールを1重量%加えてから造粒し、該造粒物を約1t/cm2 の加圧力でプレス成形して直径約12mm、高さ10mmの円柱状の成形体を成形した。
【0036】
【表1】

Figure 0003839868
【0037】
【表2】
Figure 0003839868
【0038】
【表3】
Figure 0003839868
【0039】
その後、前記成形体を大気中、400℃の温度で4時間加熱して脱バインダー処理し、引き続いて大気中において表1〜表3に示す各温度で60分間焼成した。かくして得られた円柱体の両端面を平面研磨し、直径10mm、高さ7mmの円柱状の誘電体特性評価用試料を作製した。
【0040】
誘電体特性の評価は、前記評価用試料を用いて誘電体円柱共振器法により、共振周波数を6〜8GHzに設定して各試料の比誘電率εrと1GHzにおける1/tanδ、即ちQ値(Qf値)を測定するとともに、−40〜+85℃の温度範囲における共振周波数の温度係数τfを測定した。これらの結果を表4〜6に記載する。
【0041】
尚、共振周波数の温度係数τfは、25℃の共振周波数を基準にして−40℃および+85℃における共振周波数の温度係数τfを算出した結果、本発明の試料についてはすべて0±30ppm/℃を満足していた。
【0042】
【表4】
Figure 0003839868
【0043】
【表5】
Figure 0003839868
【0044】
【表6】
Figure 0003839868
【0045】
これらの表4〜表6によれば、本発明の誘電体磁器組成物では、950〜1050℃の比較的低温で焼成でき、さらに、比誘電率εrが15以上、Qf値が5000以上の優れた特性を有することが判る。
【0046】
【発明の効果】
本発明の誘電体磁器組成物は、1050℃以下の比較的低温でAgやCu等の導体金属と同時に焼成でき、高周波領域において高い比誘電率を有するとともに、Q値も高く、かつ共振周波数の温度特性にも優れ、高周波電子回路基板や電子部品のより一層の小型化と高性能化が実現できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dielectric ceramic composition used in a microwave region and applied to an electronic circuit board, an electronic component, and the like, and an electronic component such as a resonator, a capacitor, and a filter having a conductor inside and / or on the surface. .
[0002]
[Prior art]
Various dielectric ceramics have been widely used as dielectric materials for electronic circuit boards and electronic parts. In recent years, with the development and popularization of high-frequency devices such as mobile communications represented by mobile phones, Dielectric ceramics have been actively used as electronic circuit boards and electronic parts to be used.
[0003]
When simultaneously firing an electronic circuit board or the like made of dielectric ceramics and a conductor, the conductor is not heated at the firing temperature of the dielectric ceramic so that the conductor does not melt at the firing temperature of the dielectric ceramic. For example, metals such as Pt, Pd, W, and Mo having a high melting point have been used.
[0004]
However, since the metal has a large conduction resistance, the conventional electronic circuit board has a problem that the Q value of the resonance circuit is reduced and the transmission loss of the conductor line is increased.
[0005]
In order to solve the problem, various dielectric ceramics that employ a metal such as Ag or Cu having a low conduction resistance as a conductor and can be fired simultaneously at a low temperature have been proposed. Furthermore, in order to meet the recent demands for miniaturization and high performance of high-frequency electronic circuit boards and electronic components, the resonator can be miniaturized by increasing the relative dielectric constant εr in a specific frequency region, By increasing the Q value of the dielectric ceramic, the Q value of the resonator can also be increased and the loss can be reduced. Therefore, various composite dielectrics have been proposed.
[0006]
Conventionally, for example, a dielectric ceramic composition disclosed in Japanese Patent Laid-Open No. 4-292460 is made of anorthite-calcium titanate glass and TiO 2 , and can be fired at a low temperature. It could be cofired with metal.
[0007]
[Problems to be solved by the invention]
However, although the composite dielectric can be fired simultaneously with a metal such as Ag or Cu used as a conductor, the dielectric ceramic has a low Q value of about 330 at the measurement frequency of 6 GHz (about 2000 in terms of 1 GHz), The measurement in the high frequency region where the dielectric constant εr is 4 to 6 GHz is as low as less than 16, and there is a problem that there is a limit to miniaturization and high performance of high frequency electronic circuit boards and electronic components.
[0008]
Applicant has the dielectric ceramic composition expressed as aBaO · bZnO · cNb 2 O 5 · dMgO · eWO 3 · fTa 2 O 5 have already filed, the dielectric ceramic composition, in 6~10GHz When the relative dielectric constant is 19 to 38 and the Q value is 50000 to 230,000, which is a high Q value, the firing temperature is as high as 1400 to 1600 ° C. There has been a problem that characteristics such as values are greatly deteriorated.
[0009]
OBJECT OF THE INVENTION
The present invention has been made in view of the above problems. The dielectric ceramic has a high dielectric constant εr, a high Q value, and can be fired simultaneously with a conductive metal such as Ag or Cu at a relatively low temperature of 900 to 1050 ° C. An object of the present invention is to provide a dielectric ceramic composition capable of realizing miniaturization and high performance of high-frequency electronic circuit boards and electronic components.
[0010]
[Means for Solving the Problems]
The dielectric ceramic composition of the present invention is a composite oxide containing at least Ba, Zn, Mg, W and Ta as metal elements, and the composition formula based on these molar ratios is expressed as aBaO.bZnO.cNb 2 O 5. When expressed as dMgO · eWO 3 · fTa 2 O 5 , the a, b, c, d, e, and f are 0.43 ≦ a ≦ 0.68, 0.01 ≦ b ≦ 0.30, and 0 ≦. c ≦ 0.30, 0 <d ≦ 0.35, 0 <e ≦ 0.35, 0 <f ≦ 0.35, 0.50 ≦ (b + d) / (c + e + f) ≦ 1.60, a + b + c + d + e + f = 1 1 to 10 parts by weight of boron oxide and 1 to 10 parts by weight of alkali metal carbonate are added to 100 parts by weight of a satisfactory main component, and the dielectric constant is 15 or more and the Q value is 5000 or more. A body porcelain can be obtained.
[0011]
The electronic component of the present invention is an electronic component comprising a dielectric ceramic and a conductor formed inside and / or on the surface of the dielectric ceramic, wherein the dielectric ceramic is the dielectric ceramic described above. It consists of a composition, and the said conductor has Ag or Cu as a main component.
[0012]
[Action]
The dielectric ceramic composition of the present invention can be fired simultaneously with a conductive metal such as Ag or Cu at a relatively low temperature of 900 to 1050 ° C., the dielectric ceramic has a high relative dielectric constant εr and Q value, and a resonance frequency temperature. The coefficient τf can be made relatively small, and the high-frequency electronic circuit board and electronic components can be reduced in size and performance.
[0013]
And, in the present invention, it contains a boron-containing compound and an alkali metal-containing compound at the same time. This is because when only the boron-containing compound is blended with respect to the main component, the blending amount is small. The firing temperature cannot be lowered sufficiently, and sintering cannot be performed at a temperature lower than the melting point temperature of Ag or Cu.
[0014]
In addition, if the amount is too large, the sintering temperature is lowered, but the boron-containing compound reacts with the high-Q crystal phase composed of the main component at a high temperature such as during firing, so if the amount is too large The residual amount of the crystal phase having a high Q value is reduced after firing, and a high Q value cannot be maintained. Therefore, when only a boron-containing compound is added, it is impossible to obtain a material having both a low sintering temperature and excellent dielectric characteristics in a high frequency region.
[0015]
That is, when only a boron-containing compound is added, if the amount added is less than 1 part by weight in terms of B 2 O 3 , the sintering temperature does not become 1050 ° C. or lower. Further, when the amount is more than 10 parts by weight in terms of B 2 O 3 , the sintering temperature can be lowered to 1050 ° C. or lower. However, as described above, the boron-containing compound has a high Q value crystal phase at a high temperature such as firing. This is because the Q value decreases due to the reaction.
[0016]
In the case of this composition, the sintering temperature reduction effect of the composition due to the addition of the boron-containing compound and the dielectric property improvement effect of the ceramic composition after firing are contradictory, and in the composition to which only the boron-containing compound is added, It is difficult to obtain a composition having both a low sintering temperature and excellent dielectric properties such as a high Q value.
[0017]
On the other hand, when only an alkali metal-containing compound such as Li or Na is added to the main component, the sintering temperature of the composition can hardly be lowered even if the addition amount is increased, and it is 1050 ° C. or less. It is not possible to obtain a composition that can be sintered at low temperatures.
[0018]
In contrast, in the composition of the present invention in which a boron-containing compound and an alkali metal-containing compound are added in combination at specific ratios, excessive reaction between the boron-containing compound and the high-Q crystal phase is suppressed. In addition, the sintering temperature can be further reduced as compared with the case of adding only a boron-containing compound, and at the same time, the decrease in the Q value can be suppressed, so that the co-firing with a metal conductor containing Ag or Cu as a main component is possible. Is possible.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The dielectric ceramic composition of the present invention, when expressed the composition formula by molar ratio aBaO · bZnO · cNb 2 O 5 · dMgO · eWO 3 · fTa 2 O 5, wherein a, b, c, d, e, f is 0.43 ≦ a ≦ 0.68, 0.01 ≦ b ≦ 0.30, 0 ≦ c ≦ 0.30, 0 <d ≦ 0.35, 0 <e ≦ 0.35, 0 <f ≦ 0.35, 0.50 ≦ (b + d) / (c + e + f) ≦ 1.60, a boron-containing compound and an alkali metal-containing compound were added in combination at specific ratios to the main components satisfying a + b + c + d + e + f = 1. Is.
[0020]
The reason why the molar ratio a of BaO is set to 0.43 ≦ a ≦ 0.68 is that the Q value decreases when it is smaller than 0.43 or larger than 0.68. In particular, in order to obtain a high Q value, it is preferable to satisfy 0.52 ≦ a ≦ 0.62.
[0021]
The reason why the molar ratio b of ZnO is set to 0.01 ≦ b ≦ 0.30 is that when it is smaller than 0.01, the Q value is lowered, or the sinterability is poor, and when it is larger than 0.30. Is because the Q value is lowered. In particular, from the viewpoint of a high Q value, 0.08 ≦ b ≦ 0.21 is preferable.
[0022]
The reason why the molar ratio c of Nb 2 O 5 is set to 0 <c ≦ 0.30 is that when it is larger than 0.30, the Q value decreases. In particular, in order to obtain a high Q value, it is preferable to satisfy 0.001 ≦ c ≦ 0.11.
[0023]
The reason why the molar ratio d of MgO is set to 0 <d ≦ 0.35 is that the Q value decreases when it is larger than 0.35. In particular, in order to obtain a high Q value, it is preferable to satisfy 0.001 ≦ d ≦ 0.150.
[0024]
The reason why the molar ratio e of WO 3 is set to 0 <e ≦ 0.35 is that when it is larger than 0.35, the Q value decreases. In particular, in order to obtain a high Q value, it is preferable to satisfy 0.001 ≦ a ≦ 0.15.
[0025]
The reason why the molar ratio f of Ta 2 O 5 is set to 0 <f ≦ 0.35 is that when it is larger than 0.35, the Q value decreases. In particular, in order to obtain a high Q value, 0.08 ≦ f ≦ 0.20 is preferable.
[0026]
The reason why 0.50 ≦ (b + d) / (c + e + f) ≦ 1.60 is set is that the Q value decreases outside this range. 0.8 to 1.5 is particularly desirable.
[0027]
The dielectric ceramic composition of the present invention is 1 to 10 parts by weight of the boron-containing compound in terms of B 2 O 3 and 1 to 10 parts of the alkali metal-containing compound in terms of alkali metal carbonate with respect to 100 parts by weight of the main component. Although 10 parts by weight is added and contained, 1 to 10 parts by weight of the boron-containing compound in terms of B 2 O 3 is added to 100 parts by weight of the main component as described above. When the amount is less than 1 part by weight, sintering does not occur even at 1100 ° C., and co-firing with Ag or Cu cannot be performed. Conversely, when the amount exceeds 10 parts by weight, the crystal phase changes and the ceramic characteristics deteriorate. Because. Therefore, the addition amount of the boron-containing compound is specified as 1 to 10 parts by weight in terms of B 2 O 3 with respect to 100 parts by weight of the main component, and particularly 3 to 8 parts by weight from the viewpoint of the Q value of the dielectric ceramic. Is desirable.
[0028]
It is important that the boron-containing compound is B 2 O 3 .
[0029]
In addition, the addition of 1 to 10 parts by weight of the alkali metal-containing compound in terms of alkali metal carbonate does not sinter even at 1100 ° C. when the content of the alkali metal-containing compound is less than 1 part by weight. This is because simultaneous firing with Cu is not possible, and conversely, when the amount exceeds 10 parts by weight, the crystal phase changes and the ceramic characteristics deteriorate. Therefore, the addition amount of the alkali metal-containing compound is specified as 1 to 10 parts by weight in terms of alkali metal carbonate with respect to 100 parts by weight of the main component, and particularly 3 to 8 parts by weight from the viewpoint of the Q value of the dielectric ceramic. Is desirable.
[0030]
Examples of the alkali metal include Li, K, and Na. As the alkali metal compound, it is important that the alkali metal compound is an alkali metal carbonate , and among these, Li is desirable from the viewpoint of high Q value and low temperature firing.
[0031]
In the present invention, oxides such as Si, Zn and Mn may be added as long as the dielectric properties are not adversely affected. In this case, further low-temperature firing is possible.
[0032]
The electronic component of the present invention is an electronic component comprising a dielectric ceramic and a conductor formed in and / or on the surface of the dielectric ceramic, wherein the dielectric ceramic is from the above-described dielectric ceramic composition. Thus, the conductor is mainly composed of Ag or Cu. The dielectric ceramic and the conductor formed inside and / or on the surface of the dielectric ceramic can be formed by simultaneous firing. In addition to electronic components, the dielectric ceramic composition described above is used as a dielectric ceramic in a substrate including a dielectric ceramic and a conductor formed in and / or on the surface of the dielectric ceramic. Can do.
[0033]
The dielectric ceramic composition of the present invention weighs each raw material powder of BaO, ZnO, Nb 2 O 5 , MgO, WO 3 and Ta 2 O 5 having a purity of 99% or more to a predetermined amount, and mixes and grinds them. This is calcined at a temperature of 1000 to 1500 ° C. for 1 to 3 hours in an oxidizing atmosphere such as air. In the obtained calcined product, for example, each powder of B 2 O 3 , Li 2 CO 3 is weighed so as to be a predetermined amount, mixed and pulverized, molded by press molding or the like, and then in the atmosphere or nitrogen atmosphere, It is obtained by baking at 900 to 1050 ° C. for 0.5 to 2.0 hours.
[0034]
【Example】
First, each raw material powder of BaO, ZnO, Nb 2 O 5 , MgO, WO 3 and Ta 2 O 5 with a purity of 99% or more is weighed to have the composition shown in Tables 1 to 3, After adding pure water as a medium and mixing with a ball mill using ZrO 2 balls for 24 hours, the mixture was dried, and then the dried product was calcined in the atmosphere at a temperature of 1200 ° C. for 1 hour.
[0035]
The resulting calcined product into B 2 O 3 powder and an alkali metal compound were weighed so that the ratio shown in Table 1 to Table 3 for 24 hours in a ball mill using ZrO 2 balls, after mixing, polyvinyl as a binder After adding 1% by weight of alcohol, the mixture was granulated, and the granulated product was press-molded with an applied pressure of about 1 t / cm 2 to form a cylindrical molded body having a diameter of about 12 mm and a height of 10 mm.
[0036]
[Table 1]
Figure 0003839868
[0037]
[Table 2]
Figure 0003839868
[0038]
[Table 3]
Figure 0003839868
[0039]
Thereafter, the molded body was heated in the atmosphere at a temperature of 400 ° C. for 4 hours to remove the binder, and subsequently fired in the atmosphere at each temperature shown in Tables 1 to 3 for 60 minutes. Both end surfaces of the cylindrical body thus obtained were polished to prepare a cylindrical dielectric characteristic evaluation sample having a diameter of 10 mm and a height of 7 mm.
[0040]
The evaluation of the dielectric characteristics is performed by using the evaluation sample by the dielectric cylindrical resonator method, setting the resonance frequency to 6-8 GHz, and the relative permittivity εr of each sample and 1 / tan δ at 1 GHz, that is, the Q value ( Qf value) and the temperature coefficient τf of the resonance frequency in the temperature range of −40 to + 85 ° C. were measured. These results are listed in Tables 4-6.
[0041]
The temperature coefficient τf of the resonance frequency was calculated as 0-40 ppm / ° C for all the samples of the present invention as a result of calculating the temperature coefficient τf of the resonance frequency at -40 ° C and + 85 ° C with reference to the resonance frequency of 25 ° C. I was satisfied.
[0042]
[Table 4]
Figure 0003839868
[0043]
[Table 5]
Figure 0003839868
[0044]
[Table 6]
Figure 0003839868
[0045]
According to Tables 4 to 6, the dielectric ceramic composition of the present invention can be fired at a relatively low temperature of 950 to 1050 ° C., and further has an excellent relative dielectric constant εr of 15 or more and Qf value of 5000 or more. It can be seen that it has the characteristics.
[0046]
【The invention's effect】
The dielectric ceramic composition of the present invention can be fired simultaneously with a conductor metal such as Ag or Cu at a relatively low temperature of 1050 ° C. or less, has a high relative dielectric constant in a high frequency region, has a high Q value, and has a resonance frequency. It also has excellent temperature characteristics and can achieve further miniaturization and higher performance of high-frequency electronic circuit boards and electronic components.

Claims (3)

金属元素として少なくともBa,Zn,Mg,WおよびTaを含有する複合酸化物であって、これらのモル比による組成式を
aBaO・bZnO・cNb・dMgO・eWO・fTa
と表した時、前記a、b、c、d、e、fが
0.43≦a≦0.68
0.01≦b≦0.30
0≦c≦0.30
0<d≦0.35
0<e≦0.35
0<f≦0.35
0.50≦(b+d)/(c+e+f)≦1.60
a+b+c+d+e+f=1
を満足する主成分100重量部に対して、酸化ホウ素を1〜10重量部、アルカリ金属炭酸塩を1〜10重量部添加含有してなり、比誘電率が15以上、Q値が5000以上の誘電体磁器を得られることを特徴とする誘電体磁器組成物。
A composite oxide containing at least Ba, Zn, Mg, W, and Ta as a metal element, and a composition formula based on a molar ratio thereof is aBaO · bZnO · cNb 2 O 5 · dMgO · eWO 3 · fTa 2 O 5
Where a, b, c, d, e, f are 0.43 ≦ a ≦ 0.68.
0.01 ≦ b ≦ 0.30
0 ≦ c ≦ 0.30
0 <d ≦ 0.35
0 <e ≦ 0.35
0 <f ≦ 0.35
0.50 ≦ (b + d) / (c + e + f) ≦ 1.60
a + b + c + d + e + f = 1
1 to 10 parts by weight of boron oxide and 1 to 10 parts by weight of alkali metal carbonate are added to 100 parts by weight of the main component satisfying the above, and the relative dielectric constant is 15 or more and the Q value is 5000 or more. A dielectric ceramic composition characterized in that a dielectric ceramic is obtained.
誘電体磁器と、該誘電体磁器の内部および/または表面に形成された導体とを具備する電子部品であって、前記誘電体磁器が、金属元素として少なくともBa,Zn,Mg,WおよびTaを含有する複合酸化物であって、これらのモル比による組成式を
aBaO・bZnO・cNb・dMgO・eWO・fTa
と表した時、前記a、b、c、d、e、fが
0.43≦a≦0.68
0.01≦b≦0.30
0≦c≦0.30
0<d≦0.35
0<e≦0.35
0<f≦0.35
0.50≦(b+d)/(c+e+f)≦1.60
a+b+c+d+e+f=1
を満足する主成分100重量部に対して、ホウ素を換算で1〜10重量部、アルカリ金属をアルカリ金属炭酸塩換算で1〜10重量部添加含有してなり、比誘電率が15以上、Q値が5000以上、かつ、前記導体がAgまたはCuを主成分とすることを特徴とする電子部品。
An electronic component comprising a dielectric ceramic and a conductor formed in and / or on the surface of the dielectric ceramic, wherein the dielectric ceramic contains at least Ba, Zn, Mg, W and Ta as metal elements. a composite oxide containing, 2 aBaO · bZnO · cNb the formula by these molar ratio O 5 · dMgO · eWO 3 · fTa 2 O 5
Where a, b, c, d, e, f are 0.43 ≦ a ≦ 0.68.
0.01 ≦ b ≦ 0.30
0 ≦ c ≦ 0.30
0 <d ≦ 0.35
0 <e ≦ 0.35
0 <f ≦ 0.35
0.50 ≦ (b + d) / (c + e + f) ≦ 1.60
a + b + c + d + e + f = 1
Relative to 100 parts by weight of the main component which satisfies, 1-10 parts by weight of boron in terms of B 2 O 3, becomes the alkali metals contained added to 10 parts by weight of an alkali metal carbonate terms, dielectric An electronic component having a rate of 15 or more, a Q value of 5000 or more, and the conductor containing Ag or Cu as a main component.
誘電体磁器と、該誘電体磁器の内部および/または表面に形成された導体とが同時焼成して形成されることを特徴とする請求項2記載の電子部品。3. The electronic component according to claim 2, wherein the dielectric porcelain and a conductor formed on and / or on the surface of the dielectric porcelain are fired simultaneously.
JP13518096A 1996-05-29 1996-05-29 Dielectric ceramic composition and electronic component Expired - Fee Related JP3839868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13518096A JP3839868B2 (en) 1996-05-29 1996-05-29 Dielectric ceramic composition and electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13518096A JP3839868B2 (en) 1996-05-29 1996-05-29 Dielectric ceramic composition and electronic component

Publications (2)

Publication Number Publication Date
JPH09315863A JPH09315863A (en) 1997-12-09
JP3839868B2 true JP3839868B2 (en) 2006-11-01

Family

ID=15145713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13518096A Expired - Fee Related JP3839868B2 (en) 1996-05-29 1996-05-29 Dielectric ceramic composition and electronic component

Country Status (1)

Country Link
JP (1) JP3839868B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524411B2 (en) 2001-06-20 2010-08-18 日本特殊陶業株式会社 Dielectric porcelain composition
KR100843012B1 (en) * 2001-07-16 2008-07-01 니혼도꾸슈도교 가부시키가이샤 Dielectric porcelain

Also Published As

Publication number Publication date
JPH09315863A (en) 1997-12-09

Similar Documents

Publication Publication Date Title
JP4632534B2 (en) Dielectric porcelain and manufacturing method thereof
EP0966002B1 (en) Dielectric material and process for producing the same
JPH05211007A (en) Dielectric porcelain composition for microwave
JP2781500B2 (en) Dielectric ceramic composition for low temperature firing
JP3839868B2 (en) Dielectric ceramic composition and electronic component
JP3002613B2 (en) Dielectric porcelain composition for producing dielectric resonator or filter for microwave, method for producing the same, dielectric resonator or filter for microwave obtained using the dielectric porcelain composition, and method for producing the same
JP3909366B2 (en) Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition
JP3793549B2 (en) Dielectric porcelain composition and laminate
JP2003146752A (en) Dielectric ceramic composition
JP3420430B2 (en) Dielectric porcelain composition and electronic component
JP4249690B2 (en) High frequency dielectric ceramics and laminates
JP3631589B2 (en) Dielectric porcelain composition and laminate
JP3754827B2 (en) High frequency dielectric ceramic composition and laminate
JP3631607B2 (en) High frequency dielectric ceramics and laminates
JP3793550B2 (en) Dielectric porcelain and laminate
JP4442077B2 (en) Porcelain composition for high frequency components
JP3411190B2 (en) Dielectric porcelain composition
JP3523413B2 (en) Dielectric porcelain composition
JP4618856B2 (en) Low temperature fired porcelain
JP4484297B2 (en) Dielectric porcelain composition
JP3085635B2 (en) Dielectric porcelain composition
JP3215004B2 (en) Dielectric porcelain composition
JP3439959B2 (en) Dielectric porcelain composition
JP3404220B2 (en) Dielectric porcelain composition
JP3377903B2 (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees