JP3905993B2 - High frequency dielectric ceramic composition and laminated part using the same - Google Patents

High frequency dielectric ceramic composition and laminated part using the same Download PDF

Info

Publication number
JP3905993B2
JP3905993B2 JP08997099A JP8997099A JP3905993B2 JP 3905993 B2 JP3905993 B2 JP 3905993B2 JP 08997099 A JP08997099 A JP 08997099A JP 8997099 A JP8997099 A JP 8997099A JP 3905993 B2 JP3905993 B2 JP 3905993B2
Authority
JP
Japan
Prior art keywords
dielectric ceramic
high frequency
point
dielectric
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08997099A
Other languages
Japanese (ja)
Other versions
JP2000281432A (en
Inventor
誠一郎 平原
辰治 古瀬
秀司 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP08997099A priority Critical patent/JP3905993B2/en
Publication of JP2000281432A publication Critical patent/JP2000281432A/en
Application granted granted Critical
Publication of JP3905993B2 publication Critical patent/JP3905993B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ波、ミリ波等の高周波領域において、高いQ値を有する高周波用誘電体磁器および積層体に関するものであり、例えばマイクロ波やミリ波などの高周波領域において使用される種々の共振器用材料やMIC用誘電体基板材料、誘電体導波路用材料、積層型セラミックコンデンサの誘電体層等に用いることができる高周波用誘電体磁器組成物及びそれを用いた積層部品に関する。
【0002】
【従来の技術】
従来、誘電体磁器は、マイクロ波やミリ波等の高周波領域において誘電体共振器、MIC用誘電体基板や導波路等に広く利用されている。そして、近年においては、携帯電話をはじめとする移動体通信等の発達および普及に伴い、電子回路基板や電子部品の材料として、誘電体セラミックスの需要が増大しつつある。
【0003】
電子回路基板や電子部品において、誘電体セラミックスと内部導体を同時焼成するに際しては、従来の誘電体セラミックスの焼成温度が1100℃以上という高温であったため、導体材料としては、比較的高融点であるPt、Pd、W、Mo等が使用されていた。これら高融点の導体材料は導通抵抗が大きいため、従来の電子回路基板において、共振回路やインダクタンスのQ値が小さくなってしまい、導体線路の伝送損失が大きくなる等の問題があった。
【0004】
そこで、このような問題点を解決すべく、導通抵抗の小さいAg、Cu等と同時焼成可能な低温焼成の誘電体セラミックスが提案されている。例えば、本出願人が先に出願した特開平8−208330号公報に開示された誘電体磁器組成物は、MgO、CaO、TiO2 とB2 3 、Li2 CO3 からなるものであり、900〜1050℃の比較的低温でAg、Cu等の内部導体と同時に焼成でき、誘電体磁器の比誘電率εrが18以上、測定周波数7GHzでのQ値が2000以上、かつ共振周波数の温度係数τfが±40ppm/℃以内の優れた特性を有し、高周波電子部品の小型化と高性能化を実現できるものであった。
【0005】
また、特開平9−315859号公報に開示された誘電体磁器組成物はCaO、ZrO2 とB2 3 、アルカリ金属化合物からなり、1200℃以下の比較的低温で焼成できるものであった。
【0006】
【発明が解決しようとする課題】
しかしながら、特開平8−208330号公報に開示された誘電体磁器組成物では焼結温度がまだ高く、さらに焼結における収縮開始温度が845〜960℃と高温であるため、導体材料との収縮挙動のマッチングが悪く、焼成された基板や電子部品が反る、歪む等の問題があった。
【0007】
また、特開平9−315859号公報に開示された誘電体磁器組成物も同様の問題があった。
【0008】
即ち、導体としては、Agおよび/またはCuを主成分とするもの、例えば、Ag、Cu、あるいはAg、Cuに対してガラス成分やセラミック成分、Pt、Pd等の金属を添加したものがあるが、これらの導体は、焼成時における収縮開始温度が高くとも650℃程度であるため、上記誘電体磁器組成物の収縮開始温度との差が大きく、これにより、基板等が変形する等の問題があった。
【0009】
本発明は上記課題に鑑みなされたもので、収縮開始温度を低くして、導体の収縮開始温度に近づけることができ、AgやCuを主成分とする導体と同時焼成した場合でも反りや歪みを抑制できる高周波用誘電体磁器および積層体を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の高周波用誘電体磁器は、金属元素として少なくともMg、La、Tiを含有する複合酸化物であって、これらのモル比による組成式をxMgO・yLa・zTiOと表した時、前記x、y、zが下記点a−b−c−d−e−aで囲まれる範囲内にあるとともにLaTi24、MgTi及びLa0.66TiO2.993のうち少なくとも一種を主結晶相とする主成分と、重量比による組成式をlB ・mA O・nSiO ・oROと表した時、前記l、m、n、およびoが、
40≦l≦90
8≦m≦20
1≦n≦20
1≦o≦20
l+m+n+o=100
A:アルカリ金属のうち少なくとも一種
R:アルカリ土類金属のうち少なくとも一種
からなる粒界相形成成分とからなり、前記主成分100重量部に対して、前記粒界相形成成分5〜30重量部である。ここで、a、b、c、d、eは、
点a(x=35.5,y=0.5,z=64.0)
点b(x=16.0,y=16.0,z=68.0)
点c(x=1.0,y=20.0,z=79.0)
点d(x=0.5,y=14.5,z=85.0)
点e(x=27.5,y=0.5,z=72.0)
x+y+z=100
である。このような高周波用誘電体磁器において、Q値とその測定周波数との積で表されるQf値が20000〔GHz〕以上であることが望ましい。
主成分100重量部に対して、ことを特徴とする高周波用誘電体磁器組成物。
【0011】
また、RはBaが望ましい。
【0012】
また、誘電体層を複数積層して成る基体の内部及び表面に、Ag及び/またはCuを主成分とする導体を有する積層部品であって、前記誘電体層が上述の高周波用誘電体磁器組成物からなる積層部品である。
【0013】
【作用】
本発明の高周波用誘電体磁器は、B、アルカリ金属、Siおよびアルカリ土類金属を含有する粒界相形成成分により、セラミックフィラー自体の誘電特性をそれほど劣化させることなく、940℃以下の焼成温度で焼成できるとともに、収縮開始温度を830℃以下とすることができ、Ag、Cu等の内部導体と同時焼成しても、基板の焼結挙動とAg、Cu等の内部導体との焼成挙動を近似させることができ、基板の反りを防止できるものとなる。
【0014】
さらに、Q値とその測定周波数との積で表される磁器のQf値が15000〔GHz〕以上となり、共振器用材料やMIC用誘電体基板材料、誘電体導波路用材料、積層型セラミックコンデンサの誘電体層等に好適に用いることができる。
【0015】
また、粒界相形成成分が、重量比による組成式をlB2 3 ・mA2 O・nSiO2 ・oRO(Aはアルカリ金属のうち少なくとも一種、Rはアルカリ土類金属のうち少なくとも一種)と表した時、l、m、nおよびoが、40≦l≦90、8≦m≦20、1≦n≦20、1≦o≦20、l+m+n+o=100を満足することにより、920℃以下の焼成温度で焼成できるとともに、焼成収縮開始温度を830℃以下にすることができ、Agおよび/またはCuを主成分とする導体の収縮開始温度に近づけることができ、Ag、Cuを主成分とする導体と同時焼成した場合でも、基板や電子部品の反りや歪み等の発生を抑制することができ、さらに、Qf値が20000(GHz)以上となる。
【0016】
また,積層部品において、上述の誘電体磁器組成物では、940℃以下の比較的低温で焼成することができるため、内部または表面の導体にAgやCuなどの導電率が優れ、高周波特性に優れた導体材料を用いることができ、しかも、一体的に焼成処理しても焼結挙動を近似させることができるため、基体にソリなどを発生させることなく積層部品が達成できる。
【0017】
【発明の実施の形態】
以下、本発明の高周波用誘電体磁器組成物及びそれを用いた積層部品を図面に基づいて詳説する。
【0018】
図1は、本発明にかかる積層部品の断面図を示すものであり、例えば、トリプレート型積層共振部品を例に示す。図中、1a〜1dは高周波用誘電体磁器(単に誘電体層という)であり、この誘電体層1a〜1dから成る積層体(基体)1の内部に内部導体2が、表面に表面導体3が形成されている。
【0019】
誘電体層1a〜1dは、金属元素として少なくともMg、La、Tiを含有する複合酸化物であって、La4 Ti9 24、MgTi2 5 及びLa0.66TiO2.993 のうち少なくとも一種を主結晶相とする主成分と、B、アルカリ金属、Siおよびアルカリ土類金属を含有する粒界相形成成分とからなる誘電体磁器である。
【0020】
内部導体2は、AgまたはCuを主成分とする導体膜からなり、誘電体層1a〜1dとの間及び誘電体層1a〜1dの厚みを貫く方向に内部導体2が形成されている。例えば、共振部品において、誘電体層1bと1cとの層間には、マイクロストリップ線路として動作し、その一端(短絡端)は誘電体層1aと1bとの層間及び1cと1dとの層間に形成されたグランド電位となる導体膜にビアホール導体によって互いに接続されている。また、マイクロストリップ線路の他端及びグランド電位の導体膜はそれぞれビアホール導体を介して基体1の表面に導出されている。ここで、ストリップ線路、グランド電位の導体膜及びビアホール導体は、誘電体層1a〜1dと一体的に焼成される内部導体2と言え、そのほかに所定配線網を形成する導体として用いることもできる。
【0021】
外部導体3は、AgまたはCuを主成分とする導体膜からなり、基体1の表面に例えば上述のビアホール導体と導通するように形成された導体膜である。このように内部導体2と接続する導体以外に、端子電極となる導体、所定配線網を形成する配線パターンにも用いることができる。なお、この外部導体3は、好ましくは内部導体2と同様の材料を用い、基体と一体的に焼成することが望ましいが、内部導体2を有する基体1に、別焼成で外部導体3を焼き付け処理しても構わない。
【0022】
上述の誘電体層1a〜1dは、例えば共振器として高周波特性、例えばQf値が求められるとともに、構造的には少なくともAgやCuを主成分とする内部導体2と一体的に焼成処理することから、誘電体層の焼成温度がAgやCuの融点以下の例えば940℃以下で焼成でき、しかも、焼結挙動を合わせるために、誘電体層1a〜1dの焼結開始温度(収縮開始温度)が830℃以下とすることが重要となる。
【0023】
誘電体層1a〜1dは、金属元素として少なくともMg、La、Tiを含有する複合酸化物であって、これらのモル比による組成式をxMgO・yLa2 3 ・zTiO3 と表した時、図2の各モル比率であるx、y、zの関係を示す三元図中の点a−b−c−d−e−aで囲まれる範囲(線分含む)内とすることが重要であり、B、アルカリ金属、Siおよびアルカリ土類金属を含有する粒界相形成成分5〜30重量部とから成ることが重要である。ここで、点a、b、c、d、eとは、各モル比率が点a(x=35.5,y=0.5 ,z=64.0)、点b(x=16.0,y=16.0,z=68.0),点c(x= 1.0,y=20.0,z=79.0)、点d(x= 0.5,y= 14.5 ,z=85.0)、点e(x=27.5,y= 0.5,z=72.0)としている。
【0024】
これは、焼成後、La4 Ti9 24、MgTi2 5 及びLa0.66TiO2.99 3 のうち少なくとも一種を主結晶相を形成されるためである。
【0025】
このように、図2の3元図中の点a−b−c−d−e−aで囲まれる多角形の領域(線分含む)では、良好のQf値が得られる。
【0026】
さらに、この領域に含まれるf−g−h−i−j−k−fで領域、点f(x=34.0,y=1.0 ,z=65.0)、点g(x=28.7,y= 5.3,z=65.9)、点h(x=23.4,y= 7.9,z=68.7)、点i(x=17.2,y=10.3,z=72.5)、点j(x=12.2,y=11.5,z=76.3)、点k(x=29.7,y= 2.0,z=68.3)内の組成では、共振周波数の温度係数τfが±50ppm/℃内となり、図1に示す共振器のような高周波部品において、温度に対して特性が非常に安定することから好適である。
【0027】
B、アルカリ金属、Siおよびアルカリ土類金属を含有する粒界相形成成分を用いたのは、これらの成分を用いることにより、焼成温度を940℃以下とすることができるとともに、焼成収縮開始温度を830℃以下とでき、Qf値を15000〔GHz〕以上とすることができるからである。
【0028】
粒界相形成成分量を、低損失セラミックフィラー100重量部に対して5〜30重量部としたのは、5重量部未満の場合には、焼成温度を低下させる効果が小さく、AgまたはCuを主成分とする導体と同時焼成ができなくなり、逆に30重量部を越える場合には、Qf値が低下してしまう。上記理由から、粒界相形成成分量は、主成分100重量部に対して10〜20重量部が望ましい。
【0029】
粒界相形成成分としては、重量比による組成式をlB・mAO・nSiO・oRO(Aはアルカリ金属の少なくとも一種、Rはアルカリ土類金属の少なくとも一種)と表した時、l、m、nおよびoが、40≦l≦90、8≦m≦20、1≦n≦20、1≦o≦20、l+m+n+o=100を満足することが重要である
【0030】
ここで、B2 3 量lを40≦l≦90としたのは、lが40重量%未満の場合は焼成温度を低下させる効果が小さく、融点が1000℃前後のAgまたはCuを主成分とする導体と同時焼成が困難になる。逆に90重量%を越える場合には、焼結体中のガラス相の割合が増加してQf値が低下するからである。よって、焼結性を維持し、高いQf値を得るという観点から50≦l≦70重量%が望ましい。
【0031】
また、A2 O量mを8≦m≦20重量%としたのは、mが8重量%未満の場合には、焼成温度を低下させる効果が小さく、AgまたはCuを主成分とする導体と同時焼成が困難になる。逆に20重量%を越える場合には、結晶相が変化してQf値が低下するからである。誘電体磁器のQf値の観点から12≦m≦20重量%が望ましい。ここで、Aはアルカリ金属のうち少なくとも一種であり、アルカリ金属としてはLi、Na、Kがあるが、特にLiが望ましい。
【0032】
さらに、SiO2 量nを1≦n≦20重量%としたのは、nが1重量%未満の場合には誘電体磁器の焼結過程における収縮開始温度が830℃よりも高くなり、導体の焼結挙動と近似させることが困難となり、基板の反りなどが発生し易い。一方、20重量%を越えると誘電体磁器のQf値が低下するからである。誘電体磁器のQf値の観点からは、cは5≦n≦15重量%が望ましい。
【0033】
さらにまた、RO量oを1≦o≦20重量%としたのは、oが1重量%未満の場合には誘電体磁器の焼結過程における収縮開始温度が830℃よりも高くなり、導体の焼結挙動と近似させることが困難となり、基板の反りなどが発生し易い。一方、20重量%を越えると誘電体磁器のQf値が低下するからである。とりわけ誘電体磁器の焼結性とQf値の観点からはdは、5≦o≦15重量%が好ましい。ここで、Rはアルカリ土類金属のうち少なくとも一種であり、アルカリ土類金属としてはBe、Mg、Ca、Sr、Ba等があるが、Qf値の観点からこのうちBaが望ましい。
【0034】
本発明の高周波用誘電体磁器組成物は、原料粉末として、MgCO3 粉末、La2 3 粉末、TiO2 粉末を所定量秤量し、該原料粉末をZrO2 等のボールにより混合、粉砕した後、該混合物を乾燥し、次いで該乾燥物を大気中等の酸化性雰囲気において950〜1200℃で1〜4時間仮焼する。
【0035】
得られた仮焼粉に、例えばB2 3 粉末、Li2 CO3 粉末、SiO2 粉末、さらにアルカリ土類金属含有化合物(炭酸塩、水酸化物等)粉末を所定量秤量添加し、ZrO2 ボールにより混合・粉砕し、この混合粉末を650〜850℃で仮焼した後、再度ZrO2 ボールにより粉砕粒径が2.5μm以下になるまで粉砕、乾燥して得た粉末を、プレス成形やドクターブレード法等の公知の方法により所定形状に成形し、大気中または酸素雰囲気中または窒素雰囲気等の非酸化性雰囲気において940℃以下、特に870〜920℃で0.5〜2時間焼成することにより得られる。原料粉末は、焼成により酸化物を生成する水酸化物、炭酸塩、硝酸塩等の金属塩を用いても良い。
【0036】
アルカリ土類金属は、B、Li、Siを含むガラスフリットとして添加することが焼結性向上の点から望ましい。この場合には、B、Li、Si量は、ガラスフリットに含有される量と、粉末として添加される量の合計量となる。
【0037】
こうして得られる誘電体磁器には、TiO2 、La4 Ti9 24、MgTi2 5 、La0.66TiO2.993 、La2 Ti2 7 の5つの結晶相のうち少なくとも1相を含む結晶が生成されるが、これらの結晶相のうちLa4 Ti9 24、MgTi2 5 或いはLa0.66TiO2.993 が主結晶相として存在することが望ましい。
【0038】
本発明の高周波用誘電体磁器では、MnO2 を添加含有してもよく、原料の混合粉砕工程等の製造過程で、Al等が混入したり、原料の不可避不純物として、Al、Fe、Hf、Sn等が含まれることもある。
【0039】
【実施例】
実施例1
先ず、純度99%以上のMgCO3 、La2 3 、TiO2 の各原料粉末を表1に示す割合で秤量し、該原料粉末に媒体として純水を加えてZrO2 ボールを用いたボールミルにて20時間粉砕・混合した後、該混合物を乾燥し、次いで乾燥物を大気中で1150℃の温度で3時間仮焼した。
【0040】
得られた仮焼物と純度99%以上のB2 3 、Li2 CO3 、Na2 CO3 、K2 CO3 、SiO2 粉末、さらにアルカリ土類金属含有化合物として炭酸塩粉末を用い、表1に示す割合となるように秤量し、純水を媒体とし、ZrO2 ボールを用いたボ−ルミルにて20時間湿式混合した。次にこの混合物を乾燥し、800℃で1時間仮焼した。この仮焼物を、粉砕粒径が1.0μm以下になるように粉砕し、誘電特性評価用の試料として直径約10mm高さ約8mmの円柱状に1ton/cm2 の圧力でプレス成形し、これを表1に示す温度で2時間焼成し、直径約8mm、高さ約6mmの円柱状の試料を得た。この際、熱収縮の測定により、収縮開始温度を測定した。
【0041】
誘電特性の評価は、前記円柱試料の両端面を平面研削した後、誘電体円柱共振器法にて周波数4〜10GHzにおける比誘電率とQ値を測定した。Q値と測定周波数fとの積で表されるQf値を表1に記載した。
【0042】
尚、共振周波数の温度係数τfは、25℃での共振周波数を基準にして−40℃および+85℃における共振周波数の温度係数τfを算出した結果、すべての試料の共振周波数の温度係数τfが±170〔ppm/℃〕の範囲内であった。
【0043】
また、図2中、点f−g−h−i−j−k−fで囲まれる組成範囲では、共振周波数の温度係数τfが±50ppm/℃内の優れた特性が得られた。
【0044】
【表1】

Figure 0003905993
【0045】
この表1から、本発明の誘電体磁器は、比誘電率が19〜52、Qf値が20000〔GHz〕以上の優れた誘電特性を有するとともに、770〜830℃で焼結収縮が開始し、920℃以下で焼成が可能な優れた焼結性を有していることが判る。
【0047】
尚、アルカリ金属としては、試料番号8でKを、試料番号10でNaを用い、その他はLiを用いた。また、アルカリ土類金属としては、試料番号40でBaを、試料番号41でSrを用い、その他ではBaとCaを用いた。この際BaOとCaOの重量比を1:1とした。特に、試料番号40(Ba)と試料番号18、41(Sr)との比較より、アルカリ土類金属にBaのみを用いた場合、Qf値が30000〔GHz〕と非常に良好な値が得られる。
【0048】
図2中の多角形の線分a−bの外の試料(試料番号21、22)あるいは、線分c−dの外の試料(試料番号23)では、Q値の低い結晶相であるLaTiが形成されてしまい、その結果、Qf値が2500、5000、5000〔GHz〕と非常に低下してしまう。
【0049】
また、図2中の多角形の線分d−eの外の試料(試料番号25、26)あるいは、線分e−aの外の試料(試料番号27)では、粒界形成成分と反応してしまい、収縮開始温度や焼結温度が高温化したり、Qf値が実用レベルに達しなくなる。
【0050】
また、図2中、多角形f、g、h、i、j、k、fで囲まれる領域(試料番号12、13、14、15、16、17、18、19、20)では、比誘電率が20〜30、Qf値が25000〔GHz〕以上の優れた誘電特性を有するとともに、770〜800℃で焼結収縮が開始し、900℃以下で焼成が可能な優れた焼結性を有する高周波用誘電体磁器を得ることができる。
【0051】
上述の高周波用誘電体磁器組成物からなる誘電体層を用いて、基体1を構成し、その内部にAgやCuなどの導電率に優れた導体材料でマイクロストリップライン、容量電極などの高周波動作を行なう内部導体2を形成することができる。
【0052】
しかも、内部導体2と誘電体層1a〜1dとを、AgやCuの融点に達することのない焼成温度(920℃以下)で同時に焼成処理でき、しかも、磁器の収縮開始温度も内部導体2の導体材料の焼結反応の開始と近似させることができるため、基体1にソリが発生しない積層部品が得られる。
【0053】
なお、外部導体3も、基体1と当然同時に焼成処理することも可能となる。
【0054】
【発明の効果】
本発明の高周波用誘電体磁器組成物によれば、高周波領域において20000〔GHz〕以上のQf値を有するため高周波部品や基板の小型・高性能化が実現できるとともに、焼成温度を920℃以下、収縮開始温度を830℃以下とすることが可能となる。
【0055】
このため、AgやCu等の導体材料と同時に焼成でき、その際導体金属の収縮挙動のミスマッチから発生する基板の反りや歪みが抑制される積層部品となる。
【図面の簡単な説明】
【図1】本発明にかかる積層部品の一例、たとえば共振器の断面図である。
【図2】本発明の高周波用誘電体磁器組成物のx、y、zの各モル比率の関係を示す三元図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high frequency dielectric ceramic having a high Q value in a high frequency region such as a microwave and a millimeter wave, and a laminated body. For example, the present invention relates to various resonances used in a high frequency region such as a microwave and a millimeter wave. The present invention relates to a dielectric ceramic composition for high frequency that can be used for a ceramic material, a dielectric substrate material for MIC, a dielectric waveguide material, a dielectric layer of a multilayer ceramic capacitor, and a multilayer component using the same.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, dielectric ceramics are widely used for dielectric resonators, MIC dielectric substrates, waveguides, and the like in high frequency regions such as microwaves and millimeter waves. In recent years, with the development and spread of mobile communications such as mobile phones, the demand for dielectric ceramics as materials for electronic circuit boards and electronic components is increasing.
[0003]
In the simultaneous firing of dielectric ceramics and internal conductors in electronic circuit boards and electronic parts, the firing temperature of conventional dielectric ceramics is as high as 1100 ° C. or higher, so the conductor material has a relatively high melting point. Pt, Pd, W, Mo, etc. were used. Since these high melting point conductor materials have a large conduction resistance, the conventional electronic circuit board has a problem that the Q value of the resonance circuit and the inductance is reduced, and the transmission loss of the conductor line is increased.
[0004]
Thus, in order to solve such problems, low-temperature fired dielectric ceramics that can be fired simultaneously with Ag, Cu, etc. having a low conduction resistance have been proposed. For example, the dielectric ceramic composition disclosed in Japanese Patent Application Laid-Open No. 8-208330 filed earlier by the present applicant is composed of MgO, CaO, TiO 2 and B 2 O 3 , Li 2 CO 3 . It can be fired simultaneously with the inner conductors such as Ag and Cu at a relatively low temperature of 900 to 1050 ° C., the dielectric constant εr of the dielectric ceramic is 18 or more, the Q value at the measurement frequency of 7 GHz is 2000 or more, and the temperature coefficient of the resonance frequency It has excellent characteristics with τf within ± 40 ppm / ° C., and can realize miniaturization and high performance of high-frequency electronic components.
[0005]
Moreover, the dielectric ceramic composition disclosed in Japanese Patent Application Laid-Open No. 9-315859 is made of CaO, ZrO 2 and B 2 O 3 , and an alkali metal compound, and can be fired at a relatively low temperature of 1200 ° C. or lower.
[0006]
[Problems to be solved by the invention]
However, since the dielectric ceramic composition disclosed in JP-A-8-208330 has a high sintering temperature and the shrinkage start temperature in sintering is as high as 845 to 960 ° C., the shrinkage behavior with the conductor material. There are problems such as poor matching, and the fired substrate and electronic parts are warped and distorted.
[0007]
The dielectric ceramic composition disclosed in JP-A-9-315859 also has the same problem.
[0008]
That is, as a conductor, there is a conductor mainly composed of Ag and / or Cu, for example, a conductor obtained by adding a metal such as a glass component, a ceramic component, Pt, or Pd to Ag, Cu, or Ag, Cu. Since these conductors have a shrinkage start temperature of about 650 ° C. at the highest at the time of firing, there is a large difference from the shrinkage start temperature of the dielectric ceramic composition, thereby causing problems such as deformation of the substrate and the like. there were.
[0009]
The present invention has been made in view of the above problems, and can lower the shrinkage start temperature to approach the shrinkage start temperature of the conductor. Even when co-fired with a conductor containing Ag or Cu as a main component, warping and distortion can be achieved. An object of the present invention is to provide a high-frequency dielectric ceramic and a laminate that can be suppressed.
[0010]
[Means for Solving the Problems]
The dielectric ceramic for high frequency of the present invention is a composite oxide containing at least Mg, La, and Ti as metal elements, and the composition formula based on these molar ratios is expressed as xMgO · yLa 2 O 3 · zTiO 2 the x, y, z of La 4 Ti 9 O 24, MgTi 2 O 5 and La 0.66 TiO 2.993 with in the range surrounded by the following points a-b-c-d- e-a When the main component having at least one of the main crystal phases and the composition formula by weight ratio are expressed as 1B 2 O 3 · mA 2 O · nSiO 2 · oRO, the l, m, n, and o are:
40 ≦ l ≦ 90
8 ≦ m ≦ 20
1 ≦ n ≦ 20
1 ≦ o ≦ 20
l + m + n + o = 100
A: At least one of alkali metals
R: At least one of alkaline earth metals
Consists of a grain boundary phase-forming component consisting of, with respect to the main component as 100 parts by weight, the grain boundary phase-forming component is 5 to 30 parts by weight. Where a, b, c, d, e are
Point a (x = 35.5, y = 0.5, z = 64.0)
Point b (x = 16.0, y = 16.0, z = 68.0)
Point c (x = 1.0, y = 20.0, z = 79.0)
Point d (x = 0.5, y = 14.5, z = 85.0)
Point e (x = 27.5, y = 0.5, z = 72.0)
x + y + z = 100
It is. In such a high-frequency dielectric ceramic, it is desirable that the Qf value represented by the product of the Q value and the measurement frequency be 20000 [GHz] or more.
A dielectric ceramic composition for high frequency, characterized by being based on 100 parts by weight of a main component.
[0011]
R is preferably Ba.
[0012]
Also, a laminated part having a conductor mainly composed of Ag and / or Cu on the inside and surface of a substrate formed by laminating a plurality of dielectric layers, wherein the dielectric layer is a dielectric ceramic composition for high frequency as described above It is a laminated part made of objects.
[0013]
[Action]
The dielectric ceramic for high frequency according to the present invention has a firing temperature of 940 ° C. or less without significantly deteriorating the dielectric properties of the ceramic filler itself due to the grain boundary phase forming component containing B, alkali metal, Si and alkaline earth metal. The sintering start temperature can be set to 830 ° C. or less, and the sintering behavior of the substrate and the sintering behavior of the inner conductor such as Ag and Cu can be achieved even when the inner conductor such as Ag and Cu is simultaneously fired. It can be approximated and the warpage of the substrate can be prevented.
[0014]
Furthermore, the Qf value of the porcelain represented by the product of the Q value and the measurement frequency becomes 15000 [GHz] or more, and the resonator material, the dielectric substrate material for MIC, the dielectric waveguide material, the multilayer ceramic capacitor It can be suitably used for a dielectric layer or the like.
[0015]
Further, the grain boundary phase forming component has a compositional formula by weight ratio of 1B 2 O 3 · mA 2 O · nSiO 2 · oRO (A is at least one of alkali metals, and R is at least one of alkaline earth metals). When l, m, n, and o satisfy 40 ≦ l ≦ 90, 8 ≦ m ≦ 20, 1 ≦ n ≦ 20, 1 ≦ o ≦ 20, l + m + n + o = 100, It can be fired at the firing temperature, the firing shrinkage start temperature can be 830 ° C. or less, can be close to the shrinkage start temperature of a conductor mainly composed of Ag and / or Cu, and Ag and Cu are the major components. Even when fired simultaneously with the conductor, the occurrence of warpage, distortion, etc. of the substrate and electronic components can be suppressed, and the Qf value becomes 20000 (GHz) or more.
[0016]
Further, in the above-described dielectric ceramic composition, since the above-mentioned dielectric ceramic composition can be fired at a relatively low temperature of 940 ° C. or lower, the inner or surface conductor has excellent conductivity such as Ag and Cu, and excellent high frequency characteristics. In addition, since the sintering behavior can be approximated even when integrally fired, a laminated part can be achieved without generating warp or the like on the substrate.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a high frequency dielectric ceramic composition of the present invention and a laminated part using the same will be described in detail with reference to the drawings.
[0018]
FIG. 1 is a cross-sectional view of a multilayer component according to the present invention. For example, a triplate multilayer resonant component is shown as an example. In the figure, reference numerals 1a to 1d denote dielectric ceramics for high frequency (simply referred to as dielectric layers). An inner conductor 2 is provided inside a laminate (base) 1 composed of the dielectric layers 1a to 1d, and a surface conductor 3 is provided on the surface. Is formed.
[0019]
The dielectric layers 1a to 1d are composite oxides containing at least Mg, La, and Ti as metal elements, and at least one of La 4 Ti 9 O 24 , MgTi 2 O 5, and La 0.66 TiO 2.993 is a main crystal. A dielectric ceramic comprising a main component as a phase and a grain boundary phase-forming component containing B, alkali metal, Si and alkaline earth metal.
[0020]
The inner conductor 2 is made of a conductor film containing Ag or Cu as a main component, and the inner conductor 2 is formed in a direction penetrating between the dielectric layers 1a to 1d and through the thickness of the dielectric layers 1a to 1d. For example, in a resonant component, a microstrip line operates between the dielectric layers 1b and 1c, and one end (short-circuited end) is formed between the dielectric layers 1a and 1b and between 1c and 1d. The conductor films having the ground potential are connected to each other by via-hole conductors. The other end of the microstrip line and the ground potential conductor film are led to the surface of the substrate 1 via via-hole conductors. Here, the strip line, the ground potential conductor film, and the via-hole conductor can be said to be the internal conductor 2 fired integrally with the dielectric layers 1a to 1d, and can also be used as a conductor forming a predetermined wiring network.
[0021]
The outer conductor 3 is a conductor film made of a conductor film containing Ag or Cu as a main component, and is formed on the surface of the base 1 so as to be electrically connected to the above-described via-hole conductor, for example. In this way, in addition to the conductor connected to the internal conductor 2, it can also be used for a conductor to be a terminal electrode and a wiring pattern for forming a predetermined wiring network. The outer conductor 3 is preferably made of the same material as that of the inner conductor 2 and fired integrally with the base body. However, the outer conductor 3 is baked on the base body 1 having the inner conductor 2 by separate firing. It doesn't matter.
[0022]
The above-described dielectric layers 1a to 1d are required to have a high frequency characteristic, for example, a Qf value as a resonator, for example, and are structurally fired integrally with the internal conductor 2 mainly composed of at least Ag or Cu. The firing temperature of the dielectric layers can be fired at, for example, 940 ° C. or lower, which is lower than the melting point of Ag or Cu, and the sintering start temperature (shrinkage start temperature) of the dielectric layers 1a to 1d is adjusted to match the sintering behavior. It is important that the temperature is 830 ° C. or lower.
[0023]
The dielectric layers 1a to 1d are composite oxides containing at least Mg, La, and Ti as metal elements. When the composition formula based on these molar ratios is expressed as xMgO · yLa 2 O 3 · zTiO 3 , It is important to be within the range (including line segments) surrounded by the points ab-c-d-a in the ternary diagram showing the relationship between x, y, and z which are the respective molar ratios of 2 And B, an alkali metal, Si and an alkaline earth metal, and 5 to 30 parts by weight of a grain boundary phase forming component. Here, the points a, b, c, d, and e are the molar ratios of point a (x = 35.5, y = 0.5, z = 64.0), point b (x = 16.0, y = 16.0, z = 68.0). ), Point c (x = 1.0, y = 20.0, z = 79.0), point d (x = 0.5, y = 14.5, z = 85.0), point e (x = 27.5, y = 0.5, z = 72.0) Yes.
[0024]
This is because the main crystal phase is formed from at least one of La 4 Ti 9 O 24 , MgTi 2 O 5 and La 0.66 TiO 2.99 3 after firing.
[0025]
Thus, a good Qf value can be obtained in a polygonal region (including a line segment) surrounded by the points ab-c-d-a in the ternary diagram of FIG.
[0026]
Further, an area fg-h-ijkf included in this area, a point f (x = 34.0, y = 1.0, z = 65.0), a point g (x = 28.7, y = 5.3, z = 65.9), point h (x = 23.4, y = 7.9, z = 68.7), point i (x = 17.2, y = 10.3, z = 72.5), point j (x = 12.2, y = 11.5, z = 76.3), in the composition within the point k (x = 29.7, y = 2.0, z = 68.3), the temperature coefficient τf of the resonance frequency is within ± 50 ppm / ° C. In a high-frequency component such as the resonator shown in FIG. This is preferable because the characteristics are very stable with respect to temperature.
[0027]
The grain boundary phase forming component containing B, alkali metal, Si and alkaline earth metal was used, and by using these components, the firing temperature could be 940 ° C. or lower and the firing shrinkage start temperature This is because the Qf value can be 15000 [GHz] or more.
[0028]
The amount of the grain boundary phase forming component is 5 to 30 parts by weight with respect to 100 parts by weight of the low-loss ceramic filler. When the amount is less than 5 parts by weight, the effect of lowering the firing temperature is small. When the conductor as the main component cannot be fired simultaneously, on the contrary, when it exceeds 30 parts by weight, the Qf value decreases. For the above reasons, the grain boundary phase forming component amount is desirably 10 to 20 parts by weight with respect to 100 parts by weight of the main component.
[0029]
When a grain boundary phase-forming components, lB 2 O 3 · mA 2 O · nSiO 2 · oRO the formula by weight ratio (A is at least one alkali metal, R represents at least one alkaline earth metal) expressed as , l, m, n and o are, it is important to satisfy the 40 ≦ l ≦ 90,8 ≦ m ≦ 20,1 ≦ n ≦ 20,1 ≦ o ≦ 20, l + m + n + o = 100.
[0030]
Here, the amount of B 2 O 3 is set to 40 ≦ l ≦ 90 because when l is less than 40% by weight, the effect of lowering the firing temperature is small, and the main component is Ag or Cu having a melting point of around 1000 ° C. Simultaneous firing with the conductor becomes difficult. Conversely, when it exceeds 90% by weight, the ratio of the glass phase in the sintered body increases and the Qf value decreases. Therefore, 50 ≦ l ≦ 70 wt% is desirable from the viewpoint of maintaining sinterability and obtaining a high Qf value.
[0031]
Also, the reason the 8 ≦ m ≦ 20% by weight of A 2 O amount m, if m is less than 8% by weight, the effect of lowering the firing temperature is low, a conductor mainly composed of Ag or Cu Simultaneous firing becomes difficult. Conversely, if it exceeds 20% by weight, the crystal phase changes and the Qf value decreases. From the viewpoint of the Qf value of the dielectric ceramic, 12 ≦ m ≦ 20% by weight is desirable. Here, A is at least one of alkali metals, and examples of the alkali metal include Li, Na, and K. Li is particularly desirable.
[0032]
Furthermore, the SiO 2 amount n is set to 1 ≦ n ≦ 20% by weight because when n is less than 1% by weight, the shrinkage start temperature in the sintering process of the dielectric ceramic becomes higher than 830 ° C. It becomes difficult to approximate the sintering behavior, and the substrate is likely to warp. On the other hand, if it exceeds 20% by weight, the Qf value of the dielectric ceramic decreases. From the viewpoint of the Qf value of the dielectric ceramic, c is preferably 5 ≦ n ≦ 15% by weight.
[0033]
Furthermore, the RO amount o is set to 1 ≦ o ≦ 20% by weight because when o is less than 1% by weight, the shrinkage start temperature in the sintering process of the dielectric ceramic becomes higher than 830 ° C. It becomes difficult to approximate the sintering behavior, and the substrate is likely to warp. On the other hand, if it exceeds 20% by weight, the Qf value of the dielectric ceramic decreases. In particular, from the viewpoint of the sinterability of the dielectric ceramic and the Qf value, d is preferably 5 ≦ o ≦ 15% by weight. Here, R is at least one of the alkaline earth metals, and examples of the alkaline earth metal include Be, Mg, Ca, Sr, Ba, and the like. Of these, Ba is preferable from the viewpoint of the Qf value.
[0034]
The high frequency dielectric ceramic composition of the present invention is obtained by weighing a predetermined amount of MgCO 3 powder, La 2 O 3 powder, TiO 2 powder as raw material powder, and mixing and pulverizing the raw material powder with balls such as ZrO 2. The mixture is dried, and the dried product is calcined at 950 to 1200 ° C. for 1 to 4 hours in an oxidizing atmosphere such as the air.
[0035]
To the obtained calcined powder, for example, a predetermined amount of B 2 O 3 powder, Li 2 CO 3 powder, SiO 2 powder, and alkaline earth metal-containing compound (carbonate, hydroxide, etc.) powder is weighed and added. After mixing and pulverizing with two balls, this mixed powder was calcined at 650 to 850 ° C., and then again pulverized and dried with a ZrO 2 ball until the pulverized particle size became 2.5 μm or less. Formed into a predetermined shape by a known method such as a doctor blade method or the like, and baked at 940 ° C. or less, particularly at 870 to 920 ° C. for 0.5 to 2 hours in a non-oxidizing atmosphere such as air, oxygen atmosphere or nitrogen atmosphere Can be obtained. The raw material powder may be a metal salt such as a hydroxide, carbonate, nitrate, etc. that generates an oxide upon firing.
[0036]
The alkaline earth metal is preferably added as a glass frit containing B, Li, and Si from the viewpoint of improving the sinterability. In this case, the amounts of B, Li, and Si are the total amount of the amount contained in the glass frit and the amount added as a powder.
[0037]
In the dielectric ceramic thus obtained, crystals containing at least one of the five crystal phases of TiO 2 , La 4 Ti 9 O 24 , MgTi 2 O 5 , La 0.66 TiO 2.993 , and La 2 Ti 2 O 7 are formed. However, among these crystal phases, La 4 Ti 9 O 24 , MgTi 2 O 5 or La 0.66 TiO 2.993 is preferably present as the main crystal phase.
[0038]
In the dielectric ceramic for high frequency of the present invention, MnO 2 may be added and contained in the production process such as the mixing and pulverizing process of the raw material, or Al, Fe, Hf, Sn etc. may be included.
[0039]
【Example】
Example 1
First, each raw material powder of MgCO 3 , La 2 O 3 and TiO 2 with a purity of 99% or more is weighed in the ratio shown in Table 1, and pure water is added to the raw material powder as a medium to a ball mill using ZrO 2 balls. After pulverizing and mixing for 20 hours, the mixture was dried, and the dried product was calcined in the atmosphere at a temperature of 1150 ° C. for 3 hours.
[0040]
Using carbonate powder as obtained calcined product with a purity of 99% or more of B 2 O 3, Li 2 CO 3, Na 2 CO 3, K 2 CO 3, SiO 2 powder, further containing an alkaline earth metal compound, Table It was weighed so that the ratio shown in 1, pure water as a medium, ball using ZrO 2 balls - and mixed 20 hours wet in mill. The mixture was then dried and calcined at 800 ° C. for 1 hour. This calcined product is pulverized so that the pulverized particle size is 1.0 μm or less, and is press-molded at a pressure of 1 ton / cm 2 into a cylindrical shape having a diameter of about 10 mm and a height of about 8 mm as a sample for dielectric property evaluation. Were fired at the temperature shown in Table 1 for 2 hours to obtain a cylindrical sample having a diameter of about 8 mm and a height of about 6 mm. At this time, the shrinkage start temperature was measured by measuring heat shrinkage.
[0041]
The dielectric properties were evaluated by measuring the relative dielectric constant and the Q value at a frequency of 4 to 10 GHz using a dielectric cylindrical resonator method after surface grinding of both end faces of the cylindrical sample. Table 1 shows the Qf value represented by the product of the Q value and the measurement frequency f.
[0042]
The temperature coefficient τf of the resonance frequency is calculated by calculating the temperature coefficient τf of the resonance frequency at −40 ° C. and + 85 ° C. with reference to the resonance frequency at 25 ° C. As a result, the temperature coefficient τf of the resonance frequency of all the samples is ± It was within the range of 170 [ppm / ° C.].
[0043]
In FIG. 2, in the composition range surrounded by the point f-g-h-i-j-k-f, excellent characteristics with a temperature coefficient τf of the resonance frequency within ± 50 ppm / ° C. were obtained.
[0044]
[Table 1]
Figure 0003905993
[0045]
From Table 1, the dielectric ceramic according to the present invention has excellent dielectric properties of a dielectric constant of 19 to 52 and a Qf value of 20000 [GHz] or higher, and sintering shrinkage starts at 770 to 830 ° C. It turns out that it has the outstanding sinterability which can be baked at 920 degrees C or less.
[0047]
As the alkali metal, K was used for sample number 8, Na was used for sample number 10, and Li was used for the others. Moreover, as alkaline earth metal, Ba was used for sample number 40, Sr was used for sample number 41, and Ba and Ca were used for others. At this time, the weight ratio of BaO and CaO was 1: 1. In particular, from the comparison of sample number 40 (Ba) and sample numbers 18 and 41 (Sr), when only Ba is used as the alkaline earth metal, a very good value can be obtained with a Qf value of 30000 [GHz]. .
[0048]
In the sample outside the polygonal line segment ab in FIG. 2 (sample numbers 21 and 22) or the sample outside the line segment cd (sample number 23), La is a crystal phase having a low Q value. 2 Ti 2 O 7 is formed, and as a result, the Qf value is greatly reduced to 2500, 5000, 5000 [GHz] .
[0049]
Further, the sample outside the polygonal line segment de in FIG. 2 (sample numbers 25 and 26) or the sample outside the line segment ea (sample number 27) reacts with the grain boundary forming component. As a result, the shrinkage start temperature and sintering temperature increase, and the Qf value does not reach a practical level.
[0050]
Further, in FIG. 2, in the region surrounded by polygons f, g, h, i, j, k, f (sample numbers 12, 13, 14, 15, 16, 17, 18, 19, 20), the relative dielectric It has excellent dielectric properties such as a rate of 20 to 30 and a Qf value of 25000 [GHz] or higher, and sintering shrinkage starts at 770 to 800 ° C., and has excellent sinterability capable of firing at 900 ° C. or lower. A dielectric ceramic for high frequency can be obtained.
[0051]
The substrate 1 is formed using a dielectric layer made of the above-mentioned high frequency dielectric ceramic composition, and a high frequency operation such as a microstrip line or a capacitive electrode is made of a conductive material having excellent conductivity such as Ag or Cu inside the substrate 1. Can be formed.
[0052]
Moreover, the inner conductor 2 and the dielectric layers 1a to 1d can be simultaneously fired at a firing temperature ( 920 ° C. or less) that does not reach the melting point of Ag or Cu, and the shrinkage start temperature of the porcelain is also the same as that of the inner conductor 2. Since it can be approximated to the start of the sintering reaction of the conductor material, a laminated component in which no warp is generated in the substrate 1 can be obtained.
[0053]
The external conductor 3 can also be fired at the same time as the substrate 1.
[0054]
【The invention's effect】
According to the dielectric ceramic composition for high frequency of the present invention, since it has a Qf value of 20000 [GHz] or higher in the high frequency region, it is possible to realize high-frequency components and substrates with small size and high performance, and a firing temperature of 920 ° C. or lower. It becomes possible to make shrinkage start temperature 830 degrees C or less.
[0055]
For this reason, it can be fired at the same time as a conductor material such as Ag or Cu, and in this case, it becomes a laminated part in which warpage and distortion of the substrate caused by mismatch of the shrinkage behavior of the conductor metal are suppressed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an example of a laminated component according to the present invention, for example, a resonator.
FIG. 2 is a ternary diagram showing the relationship between x, y and z molar ratios of the high frequency dielectric ceramic composition of the present invention.

Claims (3)

金属元素として少なくともMg、La、Tiを含有する複合酸化物であって、これらのモル比による組成式をxMgO・yLa・zTiOと表した時、前記x、y、zを示す三元図において、下記点a−b−c−d−e−aで囲まれた多角形の範囲(線分含む)内にあるとともに、LaTi24、MgTi及びLa0.66TiO2.993のうち少なくとも一種を主結晶相とする主成分と、重量比による組成式をlB ・mA O・nSiO ・oROと表した時、前記l、m、n、およびoが、
40≦l≦90
8≦m≦20
1≦n≦20
1≦o≦20
l+m+n+o=100
A:アルカリ金属のうち少なくとも一種
R:アルカリ土類金属のうち少なくとも一種
である粒界相形成成分とからなり、前記主成分100重量部に対して、前記粒界相形成成分5〜30重量部であることを特徴とする高周波用誘電体磁器組成物。
点a(x=35.5,y=0.5,z=64.0)
点b(x=16.0,y=16.0,z=68.0)
点c(x=1.0,y=20.0,z=79.0)
点d(x=0.5,y=14.5,z=85.0)
点e(x=27.5,y=0.5,z=72.0)
x+y+z=100
A composite oxide containing at least Mg, La, and Ti as metal elements, and when the composition formula by these molar ratios is expressed as xMgO · yLa 2 O 3 · zTiO 2 , in the original figure, with in the range of polygon surrounded by the following points a-b-c-d- e-a ( including a line segment), La 4 Ti 9 O 24 , MgTi 2 O 5 and La 0. When a composition formula by weight ratio of a main component having at least one of 66 TiO 2.993 as a main crystal phase and a weight ratio is expressed as lB 2 O 3 · mA 2 O · nSiO 2 · oRO, the above-mentioned l, m, n, And o
40 ≦ l ≦ 90
8 ≦ m ≦ 20
1 ≦ n ≦ 20
1 ≦ o ≦ 20
l + m + n + o = 100
A: At least one of alkali metals
R: At least one of alkaline earth metals
Consists of a grain boundary phase-forming component is the major component relative to 100 parts by weight, high frequency dielectric ceramic composition wherein the grain boundary phase-forming component, characterized in that 5 to 30 parts by weight.
Point a (x = 35.5, y = 0.5, z = 64.0)
Point b (x = 16.0, y = 16.0, z = 68.0)
Point c (x = 1.0, y = 20.0, z = 79.0)
Point d (x = 0.5, y = 14.5, z = 85.0)
Point e (x = 27.5, y = 0.5, z = 72.0)
x + y + z = 100
前記粒界相形成成分のRがBaであることを特徴とする請求項記載の高周波用誘電体磁器組成物。Claim 1 high frequency dielectric ceramic composition according to R of the grain boundary phase-forming component characterized in that it is a Ba. 誘電体層を複数積層して成る基体の内部及び表面に、Ag及び/またはCuを主成分とする導体を有する積層部品であって、前記誘電体層が請求項1又は2に記載の高周波用誘電体磁器組成物からなることを特徴とする積層部品。Inside and surface of a substrate comprising a dielectric layer stacked, a laminated component having a conductor whose main component is Ag and / or Cu, for high frequency according the dielectric layer to claim 1 or 2 A laminated part comprising a dielectric ceramic composition.
JP08997099A 1999-03-30 1999-03-30 High frequency dielectric ceramic composition and laminated part using the same Expired - Fee Related JP3905993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08997099A JP3905993B2 (en) 1999-03-30 1999-03-30 High frequency dielectric ceramic composition and laminated part using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08997099A JP3905993B2 (en) 1999-03-30 1999-03-30 High frequency dielectric ceramic composition and laminated part using the same

Publications (2)

Publication Number Publication Date
JP2000281432A JP2000281432A (en) 2000-10-10
JP3905993B2 true JP3905993B2 (en) 2007-04-18

Family

ID=13985551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08997099A Expired - Fee Related JP3905993B2 (en) 1999-03-30 1999-03-30 High frequency dielectric ceramic composition and laminated part using the same

Country Status (1)

Country Link
JP (1) JP3905993B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995392A (en) * 2020-09-08 2020-11-27 中物院成都科学技术发展中心 Low-cost ceramic filter powder for 5G base station and preparation method thereof

Also Published As

Publication number Publication date
JP2000281432A (en) 2000-10-10

Similar Documents

Publication Publication Date Title
JP5056528B2 (en) Insulator ceramic composition and insulator ceramic using the same
JP4535592B2 (en) Laminated body
JP4632534B2 (en) Dielectric porcelain and manufacturing method thereof
JP3860687B2 (en) Dielectric porcelain and laminate
JP3905993B2 (en) High frequency dielectric ceramic composition and laminated part using the same
JP4249690B2 (en) High frequency dielectric ceramics and laminates
JP3754827B2 (en) High frequency dielectric ceramic composition and laminate
JP4409165B2 (en) Microwave dielectric ceramic composition and microwave dielectric ceramic composition for substrate
JP2001284807A (en) Circuit board
JP3406787B2 (en) Manufacturing method of dielectric porcelain
JP3631607B2 (en) High frequency dielectric ceramics and laminates
JP3793550B2 (en) Dielectric porcelain and laminate
JP3764605B2 (en) Circuit board manufacturing method
JP3373436B2 (en) Ceramic laminated electronic components
JP4618856B2 (en) Low temperature fired porcelain
JP3631589B2 (en) Dielectric porcelain composition and laminate
JPH11278925A (en) Dielectric porcelain composition and laminate
JP3406786B2 (en) Manufacturing method of dielectric porcelain
JPH11100262A (en) Dielectric ceramic composition and layered product
JP4895417B2 (en) High frequency electronic substrate
JPH10324565A (en) Porcelain composition for high frequency and production of porcelain for high frequency
JPH11100258A (en) Wiring substrate for high frequency application
JP2892203B2 (en) Dielectric circuit board
JP2001284818A (en) Circuit board and its manufacturing method
JPH11251755A (en) Multilayered wiring board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees