JPH04130052A - Starting material composition for ceramic substrate and production of substrate using the same - Google Patents

Starting material composition for ceramic substrate and production of substrate using the same

Info

Publication number
JPH04130052A
JPH04130052A JP2326073A JP32607390A JPH04130052A JP H04130052 A JPH04130052 A JP H04130052A JP 2326073 A JP2326073 A JP 2326073A JP 32607390 A JP32607390 A JP 32607390A JP H04130052 A JPH04130052 A JP H04130052A
Authority
JP
Japan
Prior art keywords
material composition
powder
substrate
raw material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2326073A
Other languages
Japanese (ja)
Inventor
Takahisa Komata
孝久 小俣
Masaru Yanagimachi
柳町 賢
Toshio Matsuuchi
松内 敏夫
Yoshinori Koyanagi
小柳 善徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining Co Ltd
Original Assignee
Mitsui Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining Co Ltd filed Critical Mitsui Mining Co Ltd
Priority to JP2326073A priority Critical patent/JPH04130052A/en
Publication of JPH04130052A publication Critical patent/JPH04130052A/en
Priority to US07/899,938 priority patent/US5212121A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a ceramic substrate having a low dielectric constant and a coefft. of thermal expansion close to that of a semiconductor device by calcin ing at a low temp. by mixing borosilicate glass powder with aluminum borosilicate powder in a specified ratio. CONSTITUTION:A starting material compsn. for a ceramic substrate is obtd. by mixing 40-80wt.% borosilicate glass powder of <=3mum average particle size consisting of, by weight, 65-85% SiO2, 5-25% B2O2, 0.1-7% one or more among Li2O, Na2O and K2O, 0.1-5% MgO and/or CaO and 0.1-5% AlO3 with 20-60wt.% aluminum borosilicate powder of <=3mum average particle size. The compsn. is mixed with water and/or an org. vehicle and molded into green sheets of a prescribed thickness and these sheets are laminated and calcined 90-1,000 deg.C to obtain a substrate.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体素子、特に大規模集積回路素子が配設、
搭載されるための多層配線用の基板として有用なセラミ
ック基板用原料組成物に関し、特にアルミナが素材とさ
れる基板の製造時の焼成温度よりも低い焼成温度、具体
的には、1,000°C以下の低い温度で焼成が可能で
あり、誘電率か小さく、かつ熱膨張係数がシリコンの熱
膨張係数と近接したセラミック基板用原料組成物に関す
る。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to semiconductor devices, particularly large-scale integrated circuit devices arranged in
Regarding a raw material composition for a ceramic substrate that is useful as a substrate for multilayer wiring to be mounted, the firing temperature is lower than the firing temperature during manufacturing of a substrate made of alumina, specifically, 1,000°. The present invention relates to a raw material composition for a ceramic substrate that can be fired at a low temperature of C or less, has a small dielectric constant, and has a coefficient of thermal expansion close to that of silicon.

[従来の技術〕 一般に、LSIの高速化には信号伝達速度を大きくする
ことが必要であり、このためには基板自体の性質として
誘電率を小さくすることが必要とされる。また基板配線
と半導体素子との間の接続不良の発生率を小さくするた
めに、半導体素子の熱膨張係数に近接した熱膨張係数を
有する基板の提供が要求されている。また、配線用金属
を印刷等により付設した薄板状基板を積層し、焼成を行
なうことにより一体化させ立体配線を内蔵するセラミッ
ク基板を製造する方法か知られている。
[Prior Art] Generally, increasing the speed of LSI requires increasing the signal transmission speed, and for this purpose, it is necessary to reduce the dielectric constant as a property of the substrate itself. Furthermore, in order to reduce the incidence of poor connection between substrate wiring and semiconductor elements, it is required to provide a substrate having a coefficient of thermal expansion close to that of the semiconductor element. Furthermore, a method is known in which a ceramic substrate having three-dimensional wiring built therein is manufactured by laminating thin plate-like substrates to which metal for wiring is attached by printing or the like, and integrating the laminated substrates by firing them.

このような目的に応じた基板製造用原料としては、当初
アルミナか用いられていたが、アルミナの場合にはその
焼成温度か1,500℃と高いため、配線用金属として
、銀−パラジウム(AgPd) 、銀(Ag)、金(A
u)、銅(Cu)等の低融点で低抵抗の導体が使用でき
ず、高融点のモリブデン(Mo)、タングステン(W)
等の導体が使用されている。しかし、これらの高融点導
体は、導体抵抗が大きく、またアルミナ自体の誘電率も
9〜10と大きいためLSIの高速化に対応できなくな
ってきている。また、アルミナの熱膨張係数も75×1
0−6/°Cと半導体素子の熱膨張係数(例えばシリコ
ンの3.5X10″67℃)に比較して大きいため、半
導体素子との間の接続不良発生率が高くなる等の問題点
かあった。このような問題点を解決するために、低抵抗
導体であるAg−Pd、Ag、Au、Cu等の使用、積
層化および低温での同時焼成か可能な基板用原料組成物
の供給が強く要請されている。これらの要請に応えるも
のとして、酸化亜鉛ほう酸ガラス、酸化けい素、アルミ
ナよりなる、低い誘電率を有し、低温焼成が可能な組成
物(特開昭62−138357)、ガラス粉末とコージ
ェライト(2Mg0・2A1203 ・5Si○2)、
水晶あるいは石英ガラスの組成物(特開昭63−649
57、特開昭63−74957) 、焼成時に結晶化す
るガラス組成物とアルミナ、コージェライトの組成物(
特開平1−95402)等が知られている。
Initially, alumina was used as a raw material for manufacturing substrates for such purposes, but since the firing temperature of alumina is as high as 1,500°C, silver-palladium (AgPd) was used as a wiring metal. ), silver (Ag), gold (A
u), conductors with low melting point and low resistance such as copper (Cu) cannot be used, and high melting point conductors such as molybdenum (Mo) and tungsten (W) cannot be used.
Conductors such as are used. However, these high-melting-point conductors have a high conductor resistance, and the dielectric constant of alumina itself is as high as 9 to 10, so that they are no longer compatible with high-speed LSIs. Also, the thermal expansion coefficient of alumina is 75×1
0-6/°C, which is large compared to the thermal expansion coefficient of the semiconductor element (e.g., 3.5 x 10" 67°C for silicon), so there may be problems such as a high rate of connection failure with the semiconductor element. In order to solve these problems, the use of low-resistance conductors such as Ag-Pd, Ag, Au, and Cu, and the supply of raw material compositions for substrates that can be laminated and co-fired at low temperatures have been developed. In order to meet these demands, a composition comprising zinc oxide borate glass, silicon oxide, and alumina, which has a low dielectric constant and can be fired at a low temperature (Japanese Patent Application Laid-Open No. 138357/1982); Glass powder and cordierite (2Mg0・2A1203・5Si○2),
Compositions of crystal or quartz glass (Japanese Patent Application Laid-open No. 63-649
57, JP-A-63-74957), a glass composition that crystallizes during firing, and a composition of alumina and cordierite (
Japanese Unexamined Patent Publication No. 1-95402) is known.

しかし、上記従来の組成物は製品の誘電率が低い、低温
焼成が可能という条件は満足するものの、誘電率を低下
させるとともに、その熱膨張係数を半導体素子の熱膨張
係数に合致させるという要件を同時に満足させるものと
はなっていない。
However, although the above-mentioned conventional compositions satisfy the requirements that the product has a low dielectric constant and can be fired at low temperatures, they do not meet the requirements of lowering the dielectric constant and matching the coefficient of thermal expansion to that of the semiconductor element. At the same time, it is not satisfying.

(発明が解決すべき課題) 本発明は、上記の課題を解決するためになされたもので
、低抵抗導体であるAg−Pd 、Ag、Au、Cu等
が使用でき、低温焼成での基板製造が可能であり、その
製品か低い誘電率を有しかつ半導体素子の熱膨張係数に
近接した熱膨張係数を有する、セラミック基板用の原材
料組成物を提供するものである。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned problems, and allows the use of low-resistance conductors such as Ag-Pd, Ag, Au, Cu, etc., and enables substrate manufacturing by low-temperature firing. The present invention provides a raw material composition for a ceramic substrate, the product of which has a low dielectric constant and a coefficient of thermal expansion close to that of a semiconductor device.

[課題を解決するための手段] 本発明者らは、セラミック基板用の原料組成物について
、種々の組成物を調製し検討を重ねた結果、ほうけい酸
ガラス粉末と、ほう酸アルミニウム粉末を特定の比率で
混合した組成物が、またはほうけい酸ガラス粉末とほう
酸アルミニウム粉末および特定の酸化物を特定の比率で
混合した組成物が、低抵抗導体であるAg−Pd、Ag
、Au、Cu等を使用でき、低温焼成が可能で、低誘電
率かつ半導体素子の熱膨張係数に近い熱膨張係数を有す
るセラミック基板を製造できることを見いだし本発明を
完成した。
[Means for Solving the Problems] As a result of preparing and repeatedly studying various compositions for raw material compositions for ceramic substrates, the present inventors found that borosilicate glass powder and aluminum borate powder were combined into specific materials. A composition in which a borosilicate glass powder, an aluminum borate powder, and a specific oxide are mixed in a specific ratio is a low-resistance conductor such as Ag-Pd, Ag
, Au, Cu, etc., can be fired at low temperatures, and can produce a ceramic substrate having a low dielectric constant and a coefficient of thermal expansion close to that of a semiconductor element, and has completed the present invention.

即ち、本発明は、ほうけい酸ガラス粉末を40〜80重
量%の範囲内、およびほう酸アルミニウム粉末を20〜
60重量%の範囲内において含む混合物であることを特
徴とするセラミック基板用の原料組成物およびこの原料
組成物に水および/または有機ビヒクルを加えて混合し
、所定の厚みのグリーンシートに成形し、次いで目的と
する製品形状、性状に応じて回路を形成し積層したもの
を900〜1,000℃の温度で焼成することを特徴と
するセラミック基板の製造方法である。
That is, the present invention uses borosilicate glass powder in a range of 40 to 80% by weight and aluminum borate powder in a range of 20 to 80% by weight.
A raw material composition for a ceramic substrate, characterized in that it is a mixture containing within a range of 60% by weight, and this raw material composition is mixed with water and/or an organic vehicle, and formed into a green sheet of a predetermined thickness. This method of manufacturing a ceramic substrate is characterized in that a circuit is then formed in accordance with the desired product shape and properties, and the laminated product is fired at a temperature of 900 to 1,000°C.

本発明において、ほうけい酸ガラス粉末としては、次の
組成のものであることが好ましい。
In the present invention, the borosilicate glass powder preferably has the following composition.

即ち、重量基準において、(1)二酸化ケイ素(S 1
02 ) 65〜85%、(2)無水ほう酸(B20.
)5〜25%、(3)酸化リチウムLi20)、酸化ナ
トリウム(Na20)および酸化カリウム(K2 o)
からなる群から選ばれる1種以上の成分 0.1〜7%
、(4)酸化マグネシウム(MgO)、酸化カルシウム
(Cab)からなる群から選ばれる少なくとも1種の成
分0.1〜5%、および(5)アルミナ(Al□03)
01〜5%の組成を有するものである。
That is, on a weight basis, (1) silicon dioxide (S 1
02) 65-85%, (2) boric anhydride (B20.
) 5-25%, (3) Lithium oxide Li20), sodium oxide (Na20) and potassium oxide (K2 o)
One or more ingredients selected from the group consisting of 0.1-7%
, (4) 0.1 to 5% of at least one component selected from the group consisting of magnesium oxide (MgO) and calcium oxide (Cab), and (5) alumina (Al□03).
It has a composition of 0.01 to 5%.

これらのガラス成分は、当然それぞれが単独成分として
作用するのではないが、各成分の割合が上記のように限
定される理由は次の通りである。
Although these glass components naturally do not act as individual components, the reason why the ratio of each component is limited as described above is as follows.

S i 02は65重量%より少ないと誘電率、熱膨張
係数が大きくなりすぎ、85重量%をこえるとガラスの
軟化温度が高くなるため基板の焼成温度が高くなるので
いずれも好ましくない。
If S i 02 is less than 65% by weight, the dielectric constant and coefficient of thermal expansion will become too large, and if it exceeds 85% by weight, the softening temperature of the glass will become high and the firing temperature of the substrate will become high, so both are not preferred.

B203は融剤てあり、5重量%より少ないとガラスの
軟化温度が高くなりすぎ、25重量%より多いとガラス
の軟化点が低くなりすぎるとともに耐湿性が低下し、い
ずれの場合も好ましくない。
B203 is a fluxing agent, and if it is less than 5% by weight, the softening temperature of the glass will become too high, and if it is more than 25% by weight, the softening point of the glass will become too low and the moisture resistance will decrease, so either case is not preferable.

Li2O、Naz 01K20なとのアルカリ金属酸化
物はガラス製造時の溶融性の向上させるため添加される
が、7重量%をこえると誘電率や熱膨張係数が大きくな
り、また絶縁性が低下するなど電気的、熱的特性が悪く
なり好ましくない。
Alkali metal oxides such as Li2O and Naz 01K20 are added to improve the melting properties during glass production, but if it exceeds 7% by weight, the dielectric constant and coefficient of thermal expansion will increase, and the insulation properties will decrease. Electrical and thermal characteristics deteriorate, which is undesirable.

MgO1Ca○もアルカリ金属酸化物と同様にガラス製
造時の溶融性を向上させるため添加されるが、5%をこ
えると誘電率が大きくなりすぎ好ましくない。
Like alkali metal oxides, MgO1Ca◯ is also added to improve the melting properties during glass production, but if it exceeds 5%, the dielectric constant becomes too large, which is not preferable.

A 1203は基板の耐湿性を向上させるために添加さ
れるが、5重量%をこえるとガラス製造時に失透を生じ
る危険かあり好ましくない。
A1203 is added to improve the moisture resistance of the substrate, but if it exceeds 5% by weight, there is a risk of devitrification occurring during glass production, which is not preferable.

ほう酸アルミニウム粉末は基板の強度を発現させるため
に添加する。本発明においては、(=う酸アルミニウム
粉末として平均粒径て3μm以下に粉砕されたほう酸ア
ルミニウム微粉末、あるいは直径が05〜30μm、長
さか10〜200μm程度に調製されたホイスカーが使
用できる。
Aluminum borate powder is added to increase the strength of the substrate. In the present invention, aluminum borate fine powder pulverized to an average particle diameter of 3 μm or less, or whiskers prepared to have a diameter of 05 to 30 μm and a length of about 10 to 200 μm can be used in the present invention.

また、ほう酸アルミニウムの一般的な化学組成としては
、A1□8B4033、A1eBa○2□およびA 1
4 B20.か知られているが、本発明においてはこれ
らの化合物を、組成的あるいは形態的にそれぞれ単独て
、あるいは混合物の形で使用してもよい。基板の強度を
発現させるためには、ウィスカーが特に好ましく用いら
れる。
In addition, the general chemical composition of aluminum borate is A1□8B4033, A1eBa○2□, and A1
4 B20. However, in the present invention, these compounds may be used individually or in the form of a mixture in terms of composition or form. In order to develop the strength of the substrate, whiskers are particularly preferably used.

ほう酸アルミニウム粉末とほうけい酸ガラス粉末の混合
物の総量におけるほう酸アルミニウムの比率が20〜6
0重量%好ましくは30〜60重量%となるようにする
The ratio of aluminum borate in the total amount of the mixture of aluminum borate powder and borosilicate glass powder is 20 to 6
0% by weight, preferably 30-60% by weight.

ほう酸アルミニウム粉末の配合か60重量%をこえると
、ほうけい酸ガラス粉末の配合量か少なくなるため1.
000℃以下の温度で焼成した場合、ほう酸アルミニウ
ムを十分濡らすことができなくなり、焼成体に気孔が存
在し緻密体を得ることができない。また、ほう酸アルミ
ニウムの誘電率が概略6前後であるため基板の誘電率が
大きくなり好ましくない。ほう酸アルミニウムの配合が
20重量%未満では、焼成体強度が低下するので好まし
くない。なお、本発明の原料組成物においては、ほう酸
アルミニウムの一部をアルミナ(A1203)、スピネ
ル(MgO−Al□03)、コージェライト(2Mg0
・2A1203  ・5SiO2)、ムライト(3A1
□03 ・2Si○2)、フォルステライト(2Mgo
・5102)、アノーサイト(Ca O−A 1203
  ・2SiOz)、セルジアン(BaO−A1203
  ・2SiO2)よりなる群から選ばれた少なくとも
1種(以下、酸化物化合物という)で置換してもよい。
If the content of aluminum borate powder exceeds 60% by weight, the content of borosilicate glass powder will decrease.1.
When firing at a temperature of 000° C. or lower, the aluminum borate cannot be sufficiently wetted, and the fired body has pores, making it impossible to obtain a dense body. Further, since the dielectric constant of aluminum borate is approximately 6, the dielectric constant of the substrate increases, which is not preferable. If the content of aluminum borate is less than 20% by weight, the strength of the fired product decreases, which is not preferable. In addition, in the raw material composition of the present invention, a part of aluminum borate is alumina (A1203), spinel (MgO-Al□03), cordierite (2Mg0
・2A1203 ・5SiO2), Mullite (3A1
□03 ・2Si○2), forsterite (2Mgo
・5102), anorthite (Ca O-A 1203)
・2SiOz), Celsian (BaO-A1203
・2SiO2) (hereinafter referred to as an oxide compound) may be substituted.

ただし、ほう酸アルミニウム粉末の量が少なくなり過ぎ
ると、得られる基板の誘電率と熱膨張係数のバランスが
悪くなるので原料組成物中のほう酸アルミニウムの比率
は15重量%以上とすることが必要である。酸化物化合
物は、ほう酸アルミニウム粉末と同様、セラミック基板
の強度を発現させる効果を有し、それぞれ単独または2
種類以上を混合して用いることができる。
However, if the amount of aluminum borate powder becomes too small, the balance between the permittivity and thermal expansion coefficient of the resulting substrate will be poor, so the ratio of aluminum borate in the raw material composition needs to be 15% by weight or more. . Like aluminum borate powder, the oxide compound has the effect of developing the strength of the ceramic substrate, and each can be used alone or in combination.
More than one type can be mixed and used.

本発明のセラミック基板用原料組成物の一般的な製造法
としては、平均粒径て3μm以下に粉砕されたほうけい
酸ガラス粉末、平均粒径て3μm以下に粉砕されたほう
酸アルミニウム微粉末、あるいは直径が0.5〜3.0
JIII+、長さが10〜200μm程度に調製された
ほう酸アルミニウムウィスカ、平均粒径て3μm以下に
粉砕された酸化物化合物をそれぞれ、前記配合比率の範
囲内で、合計が100重量%となるように混合して調製
する。
Typical methods for producing the raw material composition for ceramic substrates of the present invention include borosilicate glass powder pulverized to an average particle size of 3 μm or less, aluminum borate fine powder pulverized to an average particle size of 3 μm or less, or Diameter is 0.5-3.0
JIII+, aluminum borate whiskers prepared to have a length of about 10 to 200 μm, and an oxide compound pulverized to an average particle size of 3 μm or less, respectively, within the above blending ratio so that the total is 100% by weight. Mix and prepare.

この原料組成物は低温で焼成が可能なので、低抵抗導体
であるAg−Pd、Ag、Au、Cu等を使用して同時
焼成、多層化が可能である。
Since this raw material composition can be fired at low temperatures, it can be fired simultaneously and multilayered using low resistance conductors such as Ag-Pd, Ag, Au, Cu, etc.

この原料組成物を焼結させて基板とするには、原料組成
物に水あるいは有機ビヒクルを加えて均一に混合したペ
ーストをドクターブレード法等により所定の厚みのグリ
ーンシートに成形し、次いで目的とする製品の形状・性
状などに応じて、回路その他を形成し積層化したものを
900〜]OOO℃の温度で焼成することで、低誘電率
かつ低熱膨張率を有するセラミック製基板を得ることか
できる。原料組成物の混合あるいは原料組成物と水また
は有機ビヒクルとの混合は、アルミナ製のボールを充填
したポリエチレン製のポット中に入れて回転させるなど
通常の、不純物の混合の恐れのない混合方法により行な
うことができる。また、原料組成物として予め混合して
おくことなく、ほうけい酸ガラス粉末、またはほう酸ア
ルミニウム粉末または酸化物化合物群より選ばれる少な
くとも1種の粉末を前もって水または有機ビヒクルと混
合しておき、これらを加えて混合しても良い。
In order to sinter this raw material composition into a substrate, water or an organic vehicle is added to the raw material composition and a uniformly mixed paste is formed into a green sheet of a predetermined thickness using a doctor blade method, etc. Depending on the shape and properties of the product, a ceramic substrate with a low dielectric constant and low coefficient of thermal expansion can be obtained by forming circuits and other layers and firing them at a temperature of 900~]OOOO℃. can. Mixing of the raw material composition or mixing of the raw material composition with water or an organic vehicle is carried out using a normal mixing method that does not cause the risk of mixing impurities, such as placing the raw material composition in a polyethylene pot filled with alumina balls and rotating the pot. can be done. Alternatively, at least one powder selected from borosilicate glass powder, aluminum borate powder, or oxide compound group may be mixed with water or an organic vehicle in advance, without being mixed in advance as a raw material composition. may be added and mixed.

ここで使用する有機ビヒクルとしては、アルコール類、
トルエン、メチルエチルケトン等の溶剤類、PVA (
ポリビニルアルコール)、PVB(ポリビニルブチラー
ル)、エチルセルロース、アクリル系樹脂等の成形助剤
類、フタル酸ジブチル、フタル酸ジブチル、フタル酸ベ
ンジルブチル等のフタル酸系あるいはその他の可塑剤類
、ジエチルアミン、水酸北門メチルアンモニウム等の解
膠剤などがあげられる。また、製品の性能に影響を与え
ない範囲内で燐酸ソーダなどの無機ビヒクルを使用して
もよい。本発明の原料組成物は1000℃以下の温度で
焼成か可能なので、グリーンシトの状態でAg−Pd、
Ag、Au、Cu等の低抵抗導体により回路等を形成さ
せ、必要により積層させた形で焼成することができる。
The organic vehicles used here include alcohols,
Solvents such as toluene and methyl ethyl ketone, PVA (
Molding aids such as polyvinyl alcohol), PVB (polyvinyl butyral), ethyl cellulose, acrylic resins, phthalic acid-based or other plasticizers such as dibutyl phthalate, dibutyl phthalate, benzyl butyl phthalate, diethylamine, hydroxyl Examples include peptizers such as Beimen methylammonium. Additionally, an inorganic vehicle such as sodium phosphate may be used within a range that does not affect the performance of the product. Since the raw material composition of the present invention can be fired at a temperature of 1000°C or lower, Ag-Pd and
A circuit or the like can be formed using a low-resistance conductor such as Ag, Au, or Cu, and if necessary, it can be fired in a laminated form.

また、この原料組成物を使用して得られるセラミック基
板は誘電率が小さくかつ半導体素子の熱膨張係数に近い
熱膨張係数を有するものである。
Furthermore, a ceramic substrate obtained using this raw material composition has a low dielectric constant and a coefficient of thermal expansion close to that of a semiconductor element.

[実施例] 以下、実施例により本発明をさらに具体的に説明する。[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

なお、本実施例において、各原料は次のように調製した
ものを使用した。
In this example, each raw material prepared as follows was used.

ほうけい酸ガラス粉末としては、重量基準で、8102
78.5%、B2O313,4%、A l 20..0
.11%、MgO0,39%、Ca0 0.03%、T
 i O20,007%および残部かに20である組成
のものを平均粒径3芦に調製した。ほう酸アルミニウム
粉末としては、微粉末状のほう酸アルミニウムは、Al
2O3とB2O3をそれぞれA I +aB4033ま
たはA14B209の組成となるように配合し、熱処理
したもの平均粒径2μmに調製し、またウィスカー状の
ほう酸アルミニウムは、その化学組成がA l 、8B
4033であるものを直径0.5〜1.0μm、長さ1
0〜30μmに調製した。酸化物化合物は、平均粒径2
μmに調製した。
As borosilicate glass powder, on a weight basis, 8102
78.5%, B2O3 13.4%, Al 20. .. 0
.. 11%, MgO0.39%, Ca00.03%, T
A sample having a composition of 20,007% iO and the balance 20% was prepared to have an average particle size of 3. As aluminum borate powder, fine powder aluminum borate is Al
2O3 and B2O3 were blended to have a composition of A I +aB4033 or A14B209, respectively, and heat treated to have an average particle size of 2 μm, and the whisker-shaped aluminum borate had a chemical composition of A I +aB4033 or A14B209.
4033 with a diameter of 0.5 to 1.0 μm and a length of 1
The thickness was adjusted to 0 to 30 μm. The oxide compound has an average particle size of 2
It was prepared in μm.

(実施例1〜15、比較例1〜8) 実施例1〜10および比較例1〜4は、ほうけい酸ガラ
ス粉末と多結晶状のほう酸アルミニウム微粉末を表1に
示す比率でそれぞれ所定量秤量して、アルミナ製ホール
ミルを用いて3時間溝式混合、成形したものを大気雰囲
気中で、950℃の温度で5時間焼成した。
(Examples 1 to 15, Comparative Examples 1 to 8) In Examples 1 to 10 and Comparative Examples 1 to 4, borosilicate glass powder and polycrystalline aluminum borate fine powder were used in predetermined amounts at the ratios shown in Table 1. The mixture was weighed, mixed in a groove for 3 hours using an alumina hole mill, and then molded.The resulting product was fired at a temperature of 950° C. for 5 hours in an air atmosphere.

また、実施例11〜15および比較例5.6においては
、ほうけい酸ガラス粉末とウィスカー状のほう酸アルミ
ニウムを表1に示す比率でそれぞれ所定量秤量し、ほう
けい酸ガラス粉末とウィスカー状のほう酸アルミニウム
の混合粉末100重量部に対して、アクリル系樹脂14
重量部、フタル酸ジブチル3重量部、トルエン32重量
部、エタノール68重量部およびソルビタンモノラウレ
ート1重量部を秤量し、これらをアルミナ製ホルを装填
したポリエチレン製ポットで24時時間溝して均質なス
ラリーを調整した。次いで、該スラリーを用いてドクタ
ーブレード法により厚さ02mmのグリーンシートを作
製し、得られたグリーンシートを20枚、(厚さ、約4
mm)重ねて圧着した後、50X50mmの寸法の試料
片とした。
In addition, in Examples 11 to 15 and Comparative Example 5.6, predetermined amounts of borosilicate glass powder and whisker-like aluminum borate were weighed at the ratios shown in Table 1, and the borosilicate glass powder and whisker-like boric acid 14 parts by weight of acrylic resin per 100 parts by weight of aluminum mixed powder
Weighed 3 parts by weight of dibutyl phthalate, 32 parts by weight of toluene, 68 parts by weight of ethanol, and 1 part by weight of sorbitan monolaurate, and heated them in a polyethylene pot equipped with an alumina hole for 24 hours to homogenize them. Adjusted the slurry. Next, using the slurry, green sheets with a thickness of 02 mm were produced by a doctor blade method, and 20 of the obtained green sheets (thickness, approximately 4 mm) were prepared using the slurry.
mm) After stacking and crimping, it was made into a sample piece with dimensions of 50 x 50 mm.

該試料片を大気雰囲気中で、950℃の温度で3時間焼
成した。このようにして得られた焼成体の特性を以下に
述へる方法で測定した結果を表1に示す。誘電率および
誘電正接はQメーターを用いて20℃、IMHzで測定
し、信号伝播遅延時間(Tpd)を次式により算出した
。なお、信号伝播遅延時間が短いほど即ち、誘電率(ε
)が小さいほど信号伝達速度が速いことを示す。
The sample piece was fired at a temperature of 950° C. for 3 hours in an air atmosphere. Table 1 shows the results of measuring the characteristics of the fired body thus obtained using the method described below. The dielectric constant and dielectric loss tangent were measured at 20° C. and IMHz using a Q meter, and the signal propagation delay time (Tpd) was calculated using the following formula. Note that the shorter the signal propagation delay time, the lower the dielectric constant (ε
) indicates that the signal transmission speed is faster.

Tpd=rτンC(ns/m) ここで、C:光速 n s / m  ナノ秒/メートル を表す。Tpd=rτnC(ns/m) Here, C: speed of light ns/m Represents nanoseconds/meter.

また熱膨張係数は石英示差式熱膨張計を用いて室温〜4
00℃間で測定した。曲げ強さは日本工業規格(JIS
)R1601に準じて測定した。
The coefficient of thermal expansion was measured using a quartz differential thermal dilatometer from room temperature to 4.
Measurements were made between 00°C. The bending strength is based on the Japanese Industrial Standards (JIS).
) Measured according to R1601.

表1の結果から明らかなように本発明の原料組成物から
得られた焼成体は、比較例7および8に示した従来のア
ルミナ基板あるいはアルミナ・ガラス複合基板に比へて
誘電率は30〜40%低下しており、これにともない信
号遅延時間も68〜7.5ns/mと短縮され、同時に
熱膨張係数も半導体素子の熱膨張係数に近似した特性を
示している。なお、このときの誘電正接は(11〜17
)XIO−’であった。
As is clear from the results in Table 1, the fired body obtained from the raw material composition of the present invention has a dielectric constant of 30-30 compared to the conventional alumina substrate or alumina-glass composite substrate shown in Comparative Examples 7 and 8. The signal delay time has been reduced by 40%, and accordingly, the signal delay time has been shortened to 68 to 7.5 ns/m, and at the same time, the thermal expansion coefficient has characteristics similar to that of a semiconductor element. Note that the dielectric loss tangent at this time is (11 to 17
)XIO-'.

比較例1.3および5は、ほうけい酸ガラス粉末の配合
量が多いため焼成体の特性はほうけい酸ガラス粉末の特
性の影響をうけ強度発現もよくない。また、比較例2.
4および6は得られた焼成体表面に気孔か認められ好ま
しくない。
In Comparative Examples 1.3 and 5, since the blended amount of borosilicate glass powder was large, the properties of the fired bodies were affected by the properties of the borosilicate glass powder, and the strength development was also poor. Also, Comparative Example 2.
Samples No. 4 and No. 6 are not preferred because pores are observed on the surface of the obtained fired product.

(実施例16〜30、比較例9〜14)ほうけい酸ガラ
ス粉末、ほう酸アルミニウム粉末(微粉末またはウィス
カー)、酸化物化合物をそれぞれ表2に示す比率で所定
量秤量し、以降は実施例11〜15と同様に操作、処理
した。表2から、得られる焼成体の各特性値は酸化物化
合物を使用しなかった例とほぼ同等であることかわかる
。また、比較例9〜14て分かるようにほう酸アルミニ
ウムの比率か15%より少ないと熱膨張係数が小さく、
曲げ強さも低下し、本発明の目的からはずれてくる。さ
らに、ほうけい酸ガラスの比率が40重量%より少ない
と、ほう酸アルミニウムや酸化物化合物の作用により曲
げ強さは太きいが、相対密度か低下してくる。
(Examples 16 to 30, Comparative Examples 9 to 14) Borosilicate glass powder, aluminum borate powder (fine powder or whiskers), and oxide compounds were each weighed in predetermined amounts at the ratios shown in Table 2. It was operated and treated in the same manner as in 15. From Table 2, it can be seen that each characteristic value of the obtained fired body is almost equivalent to that of the example in which no oxide compound was used. In addition, as can be seen from Comparative Examples 9 to 14, if the proportion of aluminum borate is less than 15%, the coefficient of thermal expansion is small;
The bending strength also decreases, which defeats the purpose of the present invention. Furthermore, if the proportion of borosilicate glass is less than 40% by weight, the bending strength will be high due to the action of aluminum borate and oxide compounds, but the relative density will decrease.

[発明の効果] 本発明の原料組成物は以上に述へたように、1000℃
以下の温度で焼成が可能なので低抵抗導体であるAg−
Pd、Ag、Au、Cu等の使用が可能である。またこ
の原料組成物から得られるセラミック基板は、誘電率が
小さくかつ熱膨張係数も半導体素子の熱膨張係数に近接
したものとなっているために、LSIの高速化、実装の
高密度化、信頼性の向上に寄与できるものである。
[Effect of the invention] As mentioned above, the raw material composition of the present invention can be heated at 1000°C.
Ag-
Pd, Ag, Au, Cu, etc. can be used. In addition, the ceramic substrate obtained from this raw material composition has a low dielectric constant and a coefficient of thermal expansion close to that of semiconductor elements, resulting in faster LSIs, higher density packaging, and higher reliability. It can contribute to improving sexual performance.

Claims (3)

【特許請求の範囲】[Claims] 1.ほうけい酸ガラス粉末を40〜80重量%の範囲内
、およびほう酸アルミニウム粉末を、20〜60重量%
の範囲内において含む混合物であることを特徴とするセ
ラミック基板用原料組成物。
1. Borosilicate glass powder in the range of 40 to 80% by weight and aluminum borate powder in the range of 20 to 60% by weight
A raw material composition for a ceramic substrate, characterized in that it is a mixture containing within the range of:
2.請求項1に記載の原料組成物において、ほう酸アル
ミニウム粉末の一部を、ほう酸アルミニウムの含有量が
15重量%以上となる範囲内でアルミナ、スピネル、コ
ージェライト、ムライト、フォルステライト、アノーサ
イト、セルジアンよりなる群より選ばれる1種以上で置
換したセラミック基板用原料組成物。
2. In the raw material composition according to claim 1, a part of the aluminum borate powder is mixed with alumina, spinel, cordierite, mullite, forsterite, anorthite, and celsian within a range where the aluminum borate content is 15% by weight or more. A raw material composition for a ceramic substrate substituted with one or more selected from the group consisting of:
3.請求項1または2に記載の原料組成物に、水および
/または有機ビヒクルを加えて混合し、所定の厚みのグ
リーンシートに成形し、次いで目的とする製品形状、性
状に応じて回路を形成し積層したものを900〜1,0
00℃の温度で焼成することを特徴とするセラミック基
板の製造方法。
3. The raw material composition according to claim 1 or 2 is mixed with water and/or an organic vehicle, formed into a green sheet of a predetermined thickness, and then a circuit is formed according to the desired product shape and properties. The laminated one is 900 to 1,0
A method for producing a ceramic substrate, characterized by firing at a temperature of 0.000C.
JP2326073A 1990-06-13 1990-11-29 Starting material composition for ceramic substrate and production of substrate using the same Pending JPH04130052A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2326073A JPH04130052A (en) 1990-06-13 1990-11-29 Starting material composition for ceramic substrate and production of substrate using the same
US07/899,938 US5212121A (en) 1990-06-13 1992-06-17 Raw batches for ceramic substrates, substrates produced from the raw batches, and production process of the substrates

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15260890 1990-06-13
JP2-152608 1990-06-13
JP2326073A JPH04130052A (en) 1990-06-13 1990-11-29 Starting material composition for ceramic substrate and production of substrate using the same

Publications (1)

Publication Number Publication Date
JPH04130052A true JPH04130052A (en) 1992-05-01

Family

ID=26481466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2326073A Pending JPH04130052A (en) 1990-06-13 1990-11-29 Starting material composition for ceramic substrate and production of substrate using the same

Country Status (1)

Country Link
JP (1) JPH04130052A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4618856B2 (en) * 2000-08-29 2011-01-26 京セラ株式会社 Low temperature fired porcelain
JP2013056784A (en) * 2011-09-07 2013-03-28 Nippon Electric Glass Co Ltd Material for glass ceramic dielectric and glass ceramic dielectric
KR20190138698A (en) * 2017-07-26 2019-12-13 광동 펑화 어드밴스드 테크놀로지 홀딩 컴퍼니., 리미티드. Aluminoborosilicate mineral materials, low temperature cofired ceramic composites, low temperature cofired ceramics, composite substrates and methods of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4618856B2 (en) * 2000-08-29 2011-01-26 京セラ株式会社 Low temperature fired porcelain
JP2013056784A (en) * 2011-09-07 2013-03-28 Nippon Electric Glass Co Ltd Material for glass ceramic dielectric and glass ceramic dielectric
KR20190138698A (en) * 2017-07-26 2019-12-13 광동 펑화 어드밴스드 테크놀로지 홀딩 컴퍼니., 리미티드. Aluminoborosilicate mineral materials, low temperature cofired ceramic composites, low temperature cofired ceramics, composite substrates and methods of manufacturing the same

Similar Documents

Publication Publication Date Title
US5212121A (en) Raw batches for ceramic substrates, substrates produced from the raw batches, and production process of the substrates
JP3240271B2 (en) Ceramic substrate
JP3387531B2 (en) Glass-based and glass-ceramic based composites
US5079194A (en) Crystal growth inhibitor for glassy low dielectric inorganic composition
JPH04231363A (en) Conductive composition containing iolite and glass
JPS63213948A (en) Integrated circuit composite substrate
JPH04275975A (en) Glass-ceramics composite body
JPH05211005A (en) Dielectric composition
JP2521124B2 (en) Glass-ceramics for electronic packing, thermally crystallizable glass used therefor, and substrates using the same glass-ceramics
JP3943341B2 (en) Glass ceramic composition
JPH02189813A (en) Electric part including metallized supporter and metallized paste
JPS63107838A (en) Glass-ceramic sintered body
JPS62278145A (en) Sintered material of glass ceramic
JPH01141837A (en) Material for dielectric body for circuit substrate
JP2002187768A (en) Low temperature sintering dielectric material for high frequency and sintered body of the same
JPH04130052A (en) Starting material composition for ceramic substrate and production of substrate using the same
JP3890779B2 (en) Glass ceramic composition
JPS6210940B2 (en)
US5270268A (en) Aluminum borate devitrification inhibitor in low dielectric borosilicate glass
JPS6350345A (en) Glass ceramic sintered body
JPS6379739A (en) Sintered glass ceramic body
US5312784A (en) Devitrification inhibitor in low dielectric borosilicate glass
JPH0232587A (en) Composite for circuit substrate and electronic parts using composite therefor
JPH01179740A (en) Glass-ceramic conjugate material
EP0494204A1 (en) Improved composite dielectric