JP3943341B2 - Glass ceramic composition - Google Patents

Glass ceramic composition Download PDF

Info

Publication number
JP3943341B2
JP3943341B2 JP2001048991A JP2001048991A JP3943341B2 JP 3943341 B2 JP3943341 B2 JP 3943341B2 JP 2001048991 A JP2001048991 A JP 2001048991A JP 2001048991 A JP2001048991 A JP 2001048991A JP 3943341 B2 JP3943341 B2 JP 3943341B2
Authority
JP
Japan
Prior art keywords
glass
glass ceramic
powder
crystals
diopside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001048991A
Other languages
Japanese (ja)
Other versions
JP2001287984A (en
Inventor
芳夫 馬屋原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Nippon Electric Glass Co Ltd
Original Assignee
Kyocera Corp
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Nippon Electric Glass Co Ltd filed Critical Kyocera Corp
Priority to JP2001048991A priority Critical patent/JP3943341B2/en
Publication of JP2001287984A publication Critical patent/JP2001287984A/en
Application granted granted Critical
Publication of JP3943341B2 publication Critical patent/JP3943341B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明はガラスセラミックス組成物に関するものである。
【0002】
【従来の技術】
IC、LSI等が高密度実装されるセラミックス多層基板、厚膜回路部品、半導体パッケージ等の絶縁材料としてガラスセラミックスが知られている。ガラスセラミックスは、1000°C以下の温度で焼結させることができるため、導体抵抗の低いCu、Ag等の低融点の金属材料を内層導体として使用することが可能である。
【0003】
近年、通信機器の分野においては、利用される周波数帯域が0.1GHz以上の高周波となりつつあり、このような高周波帯域を利用する多層基板等の絶縁材料として使用できるガラスセラミックス組成物の開発が進められている。
【0004】
【発明が解決しようとする課題】
ところで内層導体として使用するCuやAgには、それぞれ一長一短がある。つまりCuを導体として使用する場合、Cuは酸化され易いため窒素雰囲気中で焼成しなければならず、プロセスコストが高くなる。一方、Agを使用する場合は、空気雰囲気中で焼成できるが、Agがガラスセラミックス内に拡散し、配線間隔が狭いとショートしてしまうという欠点がある。なお、ガラス組成中にアルカリ成分を含有させるとAgの拡散をかなり抑制できるが、高周波帯域での損失が高くなってしまうという問題がある。
【0005】
本発明の目的は、Agを内層導体に用いて同時焼成した場合でも、Agがガラスセラミックス中に拡散せず、しかも高周波回路に十分対応できる低い誘電損失を有する多層基板等を作製することが可能なガラスセラミックス組成物を提供することである。
【0006】
【課題を解決するための手段】
本発明者は種々の実験を行った結果、Agに電子を与えるCuOをガラス組成中に導入することによってAgの拡散が防止できること、及びディオプサイド(MgO・CaO・2SiO2 )結晶やディオプサイド固溶体結晶をガラス中に析出させることにより高周波での誘電損失の増加を抑制できることを見い出し、本発明として提案するものである。
【0007】
即ち、本発明のガラスセラミックス組成物は、重量百分率で50%以上の結晶性ガラス粉末と50%以下のクォーツ粉末との混合粉末からなり、該結晶性ガラス粉末が重量百分率で、SiO2:40〜65%、CaO:10〜20%(ただし20%を含まず)、MgO:11〜30%、Al23:0.5〜10%、CuO:0.01〜1%、SrO:0〜25%、BaO:0〜25%、ZnO:0〜25%の組成を有し、焼成すると、主結晶としてディオプサイド結晶及び/又はディオプサイド固溶体結晶を析出するすることを特徴とする。なお焼成後の組成物は、ガラス成分0〜20重量%、ディオプサイド結晶及び/又はディオプサイド固溶体結晶50〜100重量%、フィラーとしてのクォーツ成分0〜50重量%の焼成体となる。
【0008】
本発明において、ガラス粉末の組成を上記のように限定した理由を述べる。
【0009】
SiO2 はガラスのネットワークフォーマーであるとともに、結晶構成成分となり、その含有量は40〜65%、好ましくは45〜65%である。SiO2が40%より少ないとガラス化せず、65%より多いと1000°C以下で焼成することができないため、内層導体としてAgやCuを用いることができない。
【0010】
CaOは結晶構成成分となり、その含有量は10〜20%(ただし20%を含まず)、好ましくは13〜18%である。CaOが10%より少ないとディオプサイド系結晶が析出し難くなって誘電損失が高くなり、20%以上になるとガラスの流動性が悪くなる。
【0011】
MgOも結晶構成成分となり、その含有量は11〜30%、好ましくは12〜25%である。MgOが11%より少ないと結晶が析出し難くなり、30%より多いとガラス化しなくなる。
【0012】
Al23は結晶性を調節する成分であり、その含有量は0.5〜10%、好ましくは1〜5%である。Al23が0.5%より少ないと結晶性が強くなりすぎてガラス成形が困難になり、10%より多くなるとディオプサイド系結晶が析出しなくなる。
【0013】
CuOはAgに電子を与え、ガラスセラミックス中への拡散を抑える成分であり、0.01〜1.0%、好ましくは0.05〜0.2%含有する。CuOが0.01%より少ないとその効果がなく、1.0%よりも多いと誘電損失が大きくなりすぎる。
【0014】
SrO及びBaOはガラス化を容易にするとともに、ディオプサイド結晶に固溶されて結晶量を増大させる成分であり、その含有量はSrOが0〜25%、好ましくは2〜20%、BaOが0〜25%、好ましくは0〜15%である。しかしながらこれら成分が各々25%より多くなると結晶性が弱くなり、ディオプサイド結晶の析出量が少なくなって誘電損失が大きくなる。
【0015】
ZnOはガラス化を容易にするために添加する成分であり、その含有量は0〜20%、好ましくは0〜15%である。ZnOが20%より多くなると結晶性が弱くなり、ディオプサイド結晶の析出量が少なくなって誘電損失が大きくなる。
【0016】
また上記成分以外にも、誘電損失等の特性を損なわない範囲で他成分を添加してもよい。
【0017】
本発明のガラスセラミックス組成物は、熱膨張係数、靭性等の特性を改善する目的でフィラーとしてクォーツ粉末を混合する。クォーツ粉末の混合量は50重量%以下(ただし0%を含まず)である。クォーツ粉末の割合をこのように限定した理由は、クォーツ粉末が50%より多いと緻密化しなくなるためである。
【0018】
クォーツ粉末は、0.1〜10GHzでの誘電損失が10×10-4以下であるセラミック粉末である。なお0.1〜10GHzでの誘電損失が10×10-4を越えるセラミック粉末を使用するとガラスセラミックスの誘電損失が高くなり易く好ましくない。
【0019】
以上の組成を有する本発明のガラスセラミックス組成物は、焼成すると、上記したようなディオプサイド系結晶が50〜100重量%析出し、0.1GHz以上の高周波領域において誘電率が6〜8、誘電損失が10×10-4以下、30〜150°Cにおける熱膨張係数が80〜110×10-7/°Cの焼成体となる。
【0020】
次に本発明のガラスセラミックス組成物を用いた多層基板の製造方法を述べる。
【0021】
まず結晶性ガラス粉末とクォーツ粉末との混合粉末に、所定量の結合剤、可塑剤及び溶剤を添加してスラリーを調製する。結合剤としては例えばポリビニルブチラール樹脂、メタアクリル酸樹脂等、可塑剤としては例えばフタル酸ジブチル等、溶剤としては例えばトルエン、メチルエチルケトン等を使用することができる。
【0022】
次いで上記のスラリーを、ドクターブレード法によってグリーンシートに成形する。その後、このグリーンシートを乾燥させ、所定寸法に切断してから、機械的加工を施してスルーホールを形成し、導体や電極となる低抵抗金属材料をスルーホール及びグリーンシート表面に印刷する。続いてグリーンシートの複数枚を積層し、熱圧着によって一体化する。
【0023】
さらに積層グリーンシートを、焼成することによってガラス中からディオプサイド系結晶が析出し、ガラスセラミックスからなる絶縁層を有する多層基板を得ることができる。
【0024】
なおここでは多層基板として利用する方法を述べたが、本発明はこれに限定されるものではなく、例えば厚膜回路部品や半導体パッケージ等の電子部品材料として使用することも可能である。
【0025】
本発明のガラスセラミックス組成物は、焼成することによりガラス中からディオプサイド結晶やディオプサイド固溶体結晶が析出する。これらの結晶は低誘電損失であるため、得られるガラスセラミックス焼成体も0.1GHz以上の高周波領域で誘電損失が低いという特性を示す。またガラス組成中にCuOを含有するため、内層導体にAgを使用して同時焼成してもAgがイオン化しないため、ガラスセラミックス中にAgが拡散しない。
【0026】
【実施例】
以下、本発明のガラスセラミックス組成物を実施例に基づいて説明する。
【0027】
表1は本発明の実施例(試料No.1)及び比較例(試料No.2,3)を示すものである。
【0028】
【表1】

Figure 0003943341
【0029】
各試料は以下のように調製した。
【0030】
まず表1に示す組成となるようにガラス粉末を調合し、セラミック粉末(フィラー粉末:平均粒径2μm)を添加し、混合して試料とした。その後、試料を白金坩堝に入れて1400〜1500°Cで3〜6時間溶融してから、水冷ローラーによって薄板状に成形した。次いでこの成形体を粗砕した後、アルコールを加えてボールミルにより湿式粉砕し、平均粒径が1.5〜3μmの結晶性ガラス粉末とした。
【0031】
このようにして得られた各試料について、焼成温度、析出結晶、焼成体の構成成分割合、誘電率、誘電損失、熱膨張係数及びAg拡散距離を測定した。結果を表1に示す。
【0032】
表1から明らかなように、実施例である試料No.1は、900°Cの低温で焼成可能であり、焼成後にディオプサイド系結晶を析出していることが確認された。また2GHzの周波数で誘電率が6.8、誘電損失が4×10-4であり、しかもAg拡散距離は5μm以下であった。一方、比較例である試料No.2は、析出結晶としてディオプサイド系以外の結晶(アノーサイト)が析出したために、誘電損失が30×10-4と高かった。また、試料No.3は誘電損失が7×10-4と実施例である試料No.1とほぼ同等であったものの、Ag拡散距離が30μmと大きかった。
【0033】
なお析出結晶は、各試料を表に示す温度で焼成した後、X線回折によって求めた。焼成体の構成成分の割合は、既知の存在比の混合粉末より検量線を作成して求めた。誘電率と誘電損失は、焼成した試料を用い、空洞共振器(測定周波数2GHz)を使用して25°Cの温度での値を求めた。熱膨張係数は熱機械分析装置を用いて測定した熱膨張曲線から30〜150°Cにおける平均値を求めた。銀拡散距離は、各試料をグリーンシート成形し、Ag導体を印刷し、次いで空気雰囲気中850〜950°Cで10〜20分間同時焼成した後、焼成体の組成を分析し、Agが焼成体表面からどれ程の深さまで拡散したかを評価したものである。
【0034】
【発明の効果】
以上説明したように、本発明のガラスセラミックス組成物は、高周波帯域において誘電損失が小さい。また950°C以下の温度で焼成できるため、内層導体としてAgやCuが使用できる。特にAgを使用した場合、Agがガラスセラミックス中に拡散しないため、高密度配線を施しても、信頼性の高い多層基板、回路部品、パッケージ等を作製することができる。[0001]
[Industrial application fields]
The present invention relates to a glass ceramic composition.
[0002]
[Prior art]
Glass ceramics are known as insulating materials for ceramic multilayer substrates, thick film circuit components, semiconductor packages and the like on which ICs, LSIs and the like are mounted at high density. Since glass ceramics can be sintered at a temperature of 1000 ° C. or lower, it is possible to use a low melting point metal material such as Cu or Ag having a low conductor resistance as the inner layer conductor.
[0003]
In recent years, in the field of communication equipment, the frequency band used is becoming a high frequency of 0.1 GHz or more, and the development of glass ceramic compositions that can be used as an insulating material such as a multi-layer substrate using such a high frequency band has been advanced. It has been.
[0004]
[Problems to be solved by the invention]
By the way, Cu and Ag used as the inner layer conductor have advantages and disadvantages, respectively. That is, when Cu is used as a conductor, since Cu is easily oxidized, it must be fired in a nitrogen atmosphere, resulting in a high process cost. On the other hand, when Ag is used, it can be fired in an air atmosphere, but there is a disadvantage that Ag diffuses into the glass ceramic and shorts if the wiring interval is narrow. In addition, when an alkali component is contained in the glass composition, the diffusion of Ag can be suppressed considerably, but there is a problem that the loss in the high frequency band becomes high.
[0005]
The object of the present invention is to produce a multilayer substrate having a low dielectric loss that does not diffuse into the glass ceramic and has a sufficiently low dielectric loss even when co-fired using Ag as an inner layer conductor. Is to provide a glass ceramic composition.
[0006]
[Means for Solving the Problems]
As a result of various experiments, the present inventor has shown that it is possible to prevent the diffusion of Ag by introducing CuO that gives electrons to Ag into the glass composition, and diopside (MgO.CaO.2SiO 2 ) crystals and diops. The present inventors have found that the increase in dielectric loss at high frequencies can be suppressed by precipitating the side solid solution crystals in the glass, and propose the present invention.
[0007]
That is, the glass ceramic composition of the present invention comprises a mixed powder of 50% or more crystalline glass powder and 50% or less quartz powder by weight percentage, and the crystalline glass powder is SiO 2 : 40 by weight percentage. ~65%, CaO: 10~20% (but not including 20%), MgO: 11~30% , Al 2 O 3: 0.5~10%, CuO: 0.01~1%, SrO: 0 It has a composition of ˜25%, BaO: 0 to 25%, ZnO: 0 to 25%, and when fired, diopside crystals and / or diopside solid solution crystals are precipitated as main crystals. . The composition after firing becomes a fired body having a glass component of 0 to 20% by weight, diopside crystals and / or diopside solid solution crystals of 50 to 100% by weight, and a quartz component of 0 to 50% by weight as a filler.
[0008]
The reason why the composition of the glass powder is limited as described above in the present invention will be described.
[0009]
SiO 2 is a glass network former and a crystal component, and its content is 40 to 65%, preferably 45 to 65%. If SiO 2 is less than 40%, it will not vitrify, and if it is more than 65%, it cannot be fired at 1000 ° C. or less, so Ag or Cu cannot be used as the inner layer conductor.
[0010]
CaO becomes a crystal component, and its content is 10 to 20% (however, not including 20%), preferably 13 to 18%. If the CaO content is less than 10%, diopside crystals are difficult to precipitate and the dielectric loss becomes high. If the CaO content is 20% or more, the fluidity of the glass deteriorates.
[0011]
MgO is also a crystal component, and its content is 11 to 30%, preferably 12 to 25%. When MgO is less than 11%, crystals are difficult to precipitate, and when it is more than 30%, it does not vitrify.
[0012]
Al 2 O 3 is a component for controlling crystallinity, and its content is 0.5 to 10%, preferably 1 to 5%. If Al 2 O 3 is less than 0.5%, the crystallinity becomes too strong and glass molding becomes difficult, and if it exceeds 10%, diopside crystals will not precipitate.
[0013]
CuO is a component that gives electrons to Ag and suppresses diffusion into glass ceramics, and is contained in an amount of 0.01 to 1.0%, preferably 0.05 to 0.2%. If CuO is less than 0.01%, the effect is not obtained, and if it is more than 1.0%, the dielectric loss becomes too large.
[0014]
SrO and BaO are components that facilitate vitrification and increase the amount of crystals by being dissolved in diopside crystals. The content of SrO is 0 to 25%, preferably 2 to 20%. It is 0 to 25%, preferably 0 to 15%. However, if each of these components exceeds 25%, the crystallinity becomes weak, the amount of diopside crystals deposited decreases, and the dielectric loss increases.
[0015]
ZnO is a component added to facilitate vitrification, and its content is 0 to 20%, preferably 0 to 15%. If ZnO exceeds 20%, the crystallinity becomes weak, the amount of diopside crystals deposited decreases, and the dielectric loss increases.
[0016]
In addition to the above components, other components may be added as long as the characteristics such as dielectric loss are not impaired.
[0017]
The glass ceramic composition of the present invention is mixed with quartz powder as a filler for the purpose of improving characteristics such as thermal expansion coefficient and toughness. The mixing amount of the quartz powder is 50% by weight or less (excluding 0%). The reason for limiting the proportion of the quartz powder in this way is that when the amount of the quartz powder exceeds 50%, it does not become dense.
[0018]
The quartz powder is a ceramic powder having a dielectric loss of 10 × 10 −4 or less at 0.1 to 10 GHz. Use of ceramic powder having a dielectric loss exceeding 0.1 × 10 −4 at 0.1 to 10 GHz is not preferable because the dielectric loss of the glass ceramic tends to increase.
[0019]
When the glass ceramic composition of the present invention having the above composition is fired, 50 to 100% by weight of the diopside crystal as described above is precipitated, and the dielectric constant is 6 to 8 in a high frequency region of 0.1 GHz or more. A sintered body having a dielectric loss of 10 × 10 −4 or less and a thermal expansion coefficient of 80 to 110 × 10 −7 / ° C. at 30 to 150 ° C. is obtained.
[0020]
Next, a method for producing a multilayer substrate using the glass ceramic composition of the present invention will be described.
[0021]
First, a predetermined amount of a binder, a plasticizer and a solvent are added to a mixed powder of crystalline glass powder and quartz powder to prepare a slurry. Examples of the binder include polyvinyl butyral resin and methacrylic acid resin, examples of the plasticizer include dibutyl phthalate, and examples of the solvent include toluene and methyl ethyl ketone.
[0022]
Next, the slurry is formed into a green sheet by a doctor blade method. Thereafter, the green sheet is dried and cut to a predetermined size, and then mechanical processing is performed to form a through hole, and a low-resistance metal material that becomes a conductor or an electrode is printed on the surface of the through hole and the green sheet. Subsequently, a plurality of green sheets are laminated and integrated by thermocompression bonding.
[0023]
Further, by firing the laminated green sheet, diopside crystals are precipitated from the glass, and a multilayer substrate having an insulating layer made of glass ceramics can be obtained.
[0024]
Although the method used as a multilayer substrate has been described here, the present invention is not limited to this, and can also be used as an electronic component material such as a thick film circuit component or a semiconductor package.
[0025]
When the glass ceramic composition of the present invention is fired, diopside crystals and diopside solid solution crystals are precipitated from the glass. Since these crystals have a low dielectric loss, the obtained glass-ceramic fired body also exhibits a characteristic that the dielectric loss is low in a high frequency region of 0.1 GHz or more. In addition, since CuO is contained in the glass composition, Ag is not ionized even if co-fired using Ag for the inner layer conductor, so Ag does not diffuse into the glass ceramic.
[0026]
【Example】
Hereinafter, the glass-ceramic composition of this invention is demonstrated based on an Example.
[0027]
Table 1 shows an example (sample No. 1) and a comparative example (sample Nos. 2 and 3) of the present invention.
[0028]
[Table 1]
Figure 0003943341
[0029]
Each sample was prepared as follows.
[0030]
First, glass powder was prepared so as to have the composition shown in Table 1, ceramic powder (filler powder: average particle size 2 μm) was added, and mixed to prepare a sample. Thereafter, the sample was put in a platinum crucible and melted at 1400 to 1500 ° C. for 3 to 6 hours, and then formed into a thin plate with a water-cooled roller. Next, this compact was roughly crushed, then alcohol was added and wet pulverized by a ball mill to obtain a crystalline glass powder having an average particle size of 1.5 to 3 μm.
[0031]
With respect to each sample thus obtained, the firing temperature, the precipitated crystal, the constituent component ratio of the fired body, the dielectric constant, the dielectric loss, the thermal expansion coefficient, and the Ag diffusion distance were measured. The results are shown in Table 1.
[0032]
As is clear from Table 1, sample No. No. 1 can be fired at a low temperature of 900 ° C., and it was confirmed that diopside crystals were precipitated after firing. The dielectric constant was 6.8 at a frequency of 2 GHz, the dielectric loss was 4 × 10 −4 , and the Ag diffusion distance was 5 μm or less. On the other hand, sample No. which is a comparative example. No. 2 had a dielectric loss as high as 30 × 10 −4 because crystals other than diopside crystals (anocite) were precipitated as precipitated crystals. Sample No. 3 has a dielectric loss of 7 × 10 −4 and sample No. 3 as an example. Although it was almost equal to 1, the Ag diffusion distance was as large as 30 μm.
[0033]
The precipitated crystals were obtained by X-ray diffraction after firing each sample at the temperature shown in the table. The ratio of the constituent components of the fired body was determined by preparing a calibration curve from a mixed powder having a known abundance ratio. The dielectric constant and dielectric loss were determined at a temperature of 25 ° C. using a fired sample and using a cavity resonator (measurement frequency: 2 GHz). The thermal expansion coefficient was determined as an average value at 30 to 150 ° C. from a thermal expansion curve measured using a thermomechanical analyzer. The silver diffusion distance was determined by forming each sample into a green sheet, printing an Ag conductor, and then co-firing in an air atmosphere at 850 to 950 ° C. for 10 to 20 minutes, and then analyzing the composition of the fired body. It is an evaluation of how far it has diffused from the surface.
[0034]
【The invention's effect】
As described above, the glass ceramic composition of the present invention has a small dielectric loss in the high frequency band. Moreover, since it can bake at the temperature of 950 degrees C or less, Ag and Cu can be used as an inner layer conductor. In particular, when Ag is used, since Ag does not diffuse into the glass ceramic, a highly reliable multilayer substrate, circuit component, package, or the like can be manufactured even when high-density wiring is applied.

Claims (2)

重量百分率で50%以上の結晶性ガラス粉末と50%以下のクォーツ粉末との混合粉末からなり、該結晶性ガラス粉末が重量百分率で、SiO2:40〜65%、CaO:10〜20%(ただし20%を含まず)、MgO:11〜30%、Al23:0.5〜10%、CuO:0.01〜1%、SrO:0〜25%、BaO:0〜25%、ZnO:0〜25%の組成を有し、主結晶としてディオプサイド結晶及び/又はディオプサイド固溶体結晶を析出することを特徴とするガラスセラミックス組成物。It consists of a mixed powder of a crystalline glass powder of 50% or more by weight percentage and a quartz powder of 50% or less, and the crystalline glass powder is SiO 2 : 40 to 65%, CaO: 10 to 20% by weight percentage ( However not including 20%), MgO: 11~30% , Al 2 O 3: 0.5~10%, CuO: 0.01~1%, SrO: 0~25%, BaO: 0~25%, ZnO: A glass ceramic composition having a composition of 0 to 25%, wherein a diopside crystal and / or a diopside solid solution crystal is precipitated as a main crystal. 請求項1記載のガラスセラミックス組成物を焼成してなるガラスセラミックス焼成体。A glass ceramic fired body obtained by firing the glass ceramic composition according to claim 1.
JP2001048991A 2001-02-23 2001-02-23 Glass ceramic composition Expired - Lifetime JP3943341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001048991A JP3943341B2 (en) 2001-02-23 2001-02-23 Glass ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001048991A JP3943341B2 (en) 2001-02-23 2001-02-23 Glass ceramic composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP30429198A Division JP3890779B2 (en) 1998-10-26 1998-10-26 Glass ceramic composition

Publications (2)

Publication Number Publication Date
JP2001287984A JP2001287984A (en) 2001-10-16
JP3943341B2 true JP3943341B2 (en) 2007-07-11

Family

ID=18910161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001048991A Expired - Lifetime JP3943341B2 (en) 2001-02-23 2001-02-23 Glass ceramic composition

Country Status (1)

Country Link
JP (1) JP3943341B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4701761B2 (en) * 2005-03-15 2011-06-15 パナソニック株式会社 Ceramic multilayer substrate and power amplifier module using the same
JP4797534B2 (en) * 2005-09-16 2011-10-19 Tdk株式会社 Multilayer ceramic substrate
JP5655139B2 (en) * 2011-05-23 2015-01-14 新電元工業株式会社 Semiconductor device manufacturing method and semiconductor device
WO2012160632A1 (en) * 2011-05-23 2012-11-29 新電元工業株式会社 Glass composition for semiconductor junction protection, method for manufacturing semiconductor device, and semiconductor device
JP5655140B2 (en) * 2011-05-23 2015-01-14 新電元工業株式会社 Semiconductor device manufacturing method and semiconductor device
WO2012160962A1 (en) * 2011-05-23 2012-11-29 新電元工業株式会社 Semiconductor device production method and semiconductor device
CN102781861B (en) * 2011-05-26 2016-07-06 新电元工业株式会社 Semiconductor bond protection Glass composition, semiconductor device and manufacture method thereof
JP5184717B1 (en) * 2012-01-31 2013-04-17 新電元工業株式会社 Semiconductor junction protecting glass composition, semiconductor device manufacturing method, and semiconductor device
CN103518254B (en) 2012-05-08 2016-07-20 新电元工业株式会社 The manufacture method of semiconductor device and semiconductor device
CN108751971B (en) * 2018-07-24 2021-02-23 内蒙古科技大学 In-situ synthesized FeSix/diopside complex phase metal ceramic and preparation method thereof
JP2022052429A (en) * 2020-09-23 2022-04-04 日本電気硝子株式会社 Glass ceramic dielectric material, sintered body and high frequency circuit member
TW202308956A (en) * 2021-04-30 2023-03-01 日商日本電氣硝子股份有限公司 Glass ceramic dielectric material, sintered body, and circuit member for high-frequency use

Also Published As

Publication number Publication date
JP2001287984A (en) 2001-10-16

Similar Documents

Publication Publication Date Title
JP3240271B2 (en) Ceramic substrate
US7722732B2 (en) Thick film paste via fill composition for use in LTCC applications
US5024975A (en) Crystallizable, low dielectric constant, low dielectric loss composition
JP3943341B2 (en) Glass ceramic composition
US6649550B2 (en) Glass ceramics dielectric material and sintered glass ceramics
JP3890779B2 (en) Glass ceramic composition
JP3678260B2 (en) Glass ceramic composition
JPH11335162A (en) Composition for ceramic substrate and ceramic circuit part
JP4569000B2 (en) Low-frequency sintered dielectric material for high frequency and its sintered body
JP3721570B2 (en) Glass ceramic dielectric material
JP2010052953A (en) Glass ceramic composition for wiring board and glass ceramic sintered body
JPS62278145A (en) Sintered material of glass ceramic
JP2006256956A (en) Glass ceramic sintered compact and circuit member for microwave
JP3550270B2 (en) Low temperature fired porcelain composition and method for producing low temperature fired porcelain
JPH0758454A (en) Glass ceramic multilayered substrate
JPH0617249B2 (en) Glass ceramic sintered body
JPH0617250B2 (en) Glass ceramic sintered body
JP2003095740A (en) Glass ceramic dielectric material, and sintered compact
JP3494184B2 (en) Glass ceramic composition
JP4288656B2 (en) Glass ceramic dielectric material
JPH0232587A (en) Composite for circuit substrate and electronic parts using composite therefor
JP2005060171A (en) Lead-free glass, glass ceramic composition, green sheet and electronic circuit board
JPS62252340A (en) Sintered glass and sintered glass ceramic
JPH0738214A (en) Glass ceramic board and manufacturing method
JPH068189B2 (en) Oxide dielectric material

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term