JPH0758454A - Glass ceramic multilayered substrate - Google Patents

Glass ceramic multilayered substrate

Info

Publication number
JPH0758454A
JPH0758454A JP5199499A JP19949993A JPH0758454A JP H0758454 A JPH0758454 A JP H0758454A JP 5199499 A JP5199499 A JP 5199499A JP 19949993 A JP19949993 A JP 19949993A JP H0758454 A JPH0758454 A JP H0758454A
Authority
JP
Japan
Prior art keywords
glass
component
thermal expansion
ceramic multilayer
multilayer substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5199499A
Other languages
Japanese (ja)
Other versions
JP2598872B2 (en
Inventor
Hiroshi Ochi
博 越智
Yasuyuki Baba
康行 馬場
Shigetoshi Segawa
茂俊 瀬川
Yasukazu Fukunaga
靖一 福永
Yoshio Mayahara
芳夫 馬屋原
Hiromitsu Watanabe
広光 渡邊
Kazuyoshi Shindo
和義 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Panasonic Holdings Corp
Original Assignee
Nippon Electric Glass Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP5199499A priority Critical patent/JP2598872B2/en
Publication of JPH0758454A publication Critical patent/JPH0758454A/en
Application granted granted Critical
Publication of JP2598872B2 publication Critical patent/JP2598872B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To realize a glass ceramic multilayer substrate to be manufactured by low temperature baking, to have a thermal expansion coefficient approximating to that of a silicon chip and to indicate a permittivity low enough to cope with a rapid operational processing, by a method wherein the glass component of the ceramic multilayer substrate comprising the glass component and a filler component has a specific composition. CONSTITUTION:The title glass ceramic multilayered substrate is composed of the glass component of 40-80wt.% and the filler components of 20-60wt.% while the glass components in details comprising SiO2; 20-50wt.%, Al2O3; 10-40wt.%, SrO; 11-25wt.%, MgO; 60-20wt.%, B2O3; 0.1-30wt.%, ZnO; 0.1-30wt.%. In such a composition, specific ratios of SrO and MgO are contained in the glass components to enable strotium feldspar and cordierite to be simultaneously deposited from the glass phase in the baking step so that a lower thermal expansion coefficient capable of directly mounting silicon chip as well as a low permittivity not exceeding seven capable of sufficiently coping with the rapid operational processing step may be realized simultaneously enabling the high mechanical strength to be gained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、厚膜回路部品、IC、
及びLSI等の高密度実装に好適なガラスセラミックス
多層基板に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to thick film circuit parts, ICs,
And a glass-ceramic multilayer substrate suitable for high-density mounting of LSI and the like.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来よ
り、セラミックス多層基板としては、機械的強度、熱伝
導性及び気密性に優れたアルミナセラミックスが主に用
いられている。しかしながら、アルミナセラミックスは
焼成温度が1500〜1600℃と極めて高いため、内
層導体の材料としては、Mo、W等の高融点の金属材料
を使用しなければならず、これらの材料は導体抵抗が高
いという欠点を有していた。従って、Au、Ag、Cu
等の低い融点を有する金属を内層導体として用いること
ができるように、1000℃以下の低い温度で焼成する
ことができるセラミックス材料が要望され検討されてい
る。
2. Description of the Related Art Conventionally, alumina ceramics excellent in mechanical strength, thermal conductivity and airtightness have been mainly used as a ceramic multilayer substrate. However, since alumina ceramics has an extremely high firing temperature of 1500 to 1600 ° C., a metal material having a high melting point such as Mo or W must be used as a material for the inner layer conductor, and these materials have high conductor resistance. It had a drawback. Therefore, Au, Ag, Cu
A ceramic material that can be fired at a low temperature of 1000 ° C. or lower has been desired and studied so that a metal having a low melting point such as the above can be used as the inner layer conductor.

【0003】またアルミナセラミックスは熱膨張係数が
70×10-7/℃と高いため、熱膨張係数が35×10
-7/℃であるシリコンチップを直接搭載することができ
ないという問題もあった。
Alumina ceramics has a high coefficient of thermal expansion of 70 × 10 −7 / ° C., so that the coefficient of thermal expansion is 35 × 10 7.
There was also a problem that a silicon chip with a temperature of -7 / ° C could not be mounted directly.

【0004】さらに、アルミナセラミックスは、誘電率
(ε)が約10と高いため、高速信号回路用の基板とし
て適さないという問題もあった。すなわち、導体中を伝
播する信号の速度は、その周囲を形成する材料の誘電率
が高いほど遅れることが一般的に知られており、アルミ
ナセラミックスは誘電率が高いため、演算処理の高速化
の要求に応えることができない。
Further, since alumina ceramics has a high dielectric constant (ε) of about 10, there is a problem that it is not suitable as a substrate for high-speed signal circuits. That is, it is generally known that the speed of a signal propagating in a conductor is delayed as the dielectric constant of the material forming the periphery thereof is delayed. I cannot meet the demand.

【0005】以上のような状況下において、近年、ガラ
ス粉末とフィラー成分とを混合してなり、1000℃以
下の低温焼成で作製できるガラスセラミック多層基板が
提案されている。例えば特開昭64−45743号、同
64−51346号、特開平1−179741号、同1
−252548号等には、SiO2 、Al2 3 、RO
を所定割合含むガラス粉末と、フィラー粉末、酸化剤、
ニオブの酸化物等を焼成してなるガラスセラミックス多
層基板が開示されている。これらのガラスセラミックス
多層基板は、機械的強度及び熱伝導率を大きくし、絶縁
抵抗及び絶縁破壊電圧の向上、及び導体のはんだ濡れ性
の向上等を目的として提案されているものであり、低温
焼成が可能な材料であるが、シリコンチップを直接搭載
できるような低い熱膨張係数を示すものではなく、また
高速信号回路用基板に用いることができる程度の低い誘
電率を有するものではなかった。
Under the above circumstances, in recent years, a glass ceramic multilayer substrate has been proposed which is made by mixing glass powder and a filler component and can be manufactured by low temperature firing at 1000 ° C. or lower. For example, JP-A-64-45743, JP-A-64-51346, JP-A-1-179741 and JP-A-1
No. 252548, etc., SiO 2 , Al 2 O 3 , RO
Glass powder containing a predetermined ratio, filler powder, oxidizer,
A glass-ceramic multilayer substrate formed by firing niobium oxide or the like is disclosed. These glass-ceramic multilayer substrates are proposed for the purpose of increasing mechanical strength and thermal conductivity, improving insulation resistance and dielectric breakdown voltage, and improving solder wettability of conductors. However, it does not have a low coefficient of thermal expansion such that a silicon chip can be directly mounted on it, and does not have a low dielectric constant that can be used for a substrate for high-speed signal circuits.

【0006】また、特開平1−132194号では、1
000℃以下の低温で焼結することができ、低誘電率
で、かつ高い強度を有するガラスセラミックス配線基板
が提案されているが、低誘電率を得ることを目的とする
ものの、その誘電率は7.3〜7.8の範囲であり、未
だ不十分なものであった。また低熱膨張率の点において
も、明細書中の記載では、熱膨張係数は60〜72×1
-7/℃の範囲が適当とされており、シリコンチップを
直接搭載するには不適当であった。
Further, in JP-A-1-132194, 1
A glass-ceramic wiring board that can be sintered at a low temperature of 000 ° C. or lower, has a low dielectric constant, and has high strength has been proposed. However, although it is intended to obtain a low dielectric constant, its dielectric constant is The range was 7.3 to 7.8, which was still insufficient. Also in terms of low coefficient of thermal expansion, the coefficient of thermal expansion is 60 to 72 × 1 in the description in the specification.
The range of 0 -7 / ° C is considered to be appropriate, which is not suitable for directly mounting a silicon chip.

【0007】本発明の目的は、このような従来の問題点
を解消し、1000℃以下の低温焼成で作製することが
でき、熱膨張係数がシリコンチップの熱膨張係数と近似
しており、高速演算処理に十分対応することができるよ
うな7以下の低い誘電率を有し、かつ高い機械的強度を
有するガラスセラミックス多層基板を提供することにあ
る。
The object of the present invention is to solve the above problems of the prior art, and it can be manufactured by low temperature firing at 1000 ° C. or lower. The coefficient of thermal expansion is close to that of silicon chips, and high speed is achieved. It is an object of the present invention to provide a glass-ceramic multilayer substrate having a low dielectric constant of 7 or less that can sufficiently cope with arithmetic processing and high mechanical strength.

【0008】[0008]

【課題を解決するための手段】本発明のガラスセラミッ
クス多層基板は、重量百分率で、ガラス成分40〜80
%、フィラー成分20〜60%からなり、該ガラス成分
がSiO2 20〜50%、Al2 3 10〜40
%、SrO 11〜25%、MgO 6〜20%、B2
3 0.1〜30%、ZnO 0.1〜30%の組成
を有することを特徴としている。
The glass-ceramic multilayer substrate of the present invention has a glass component of 40 to 80 in weight percentage.
%, The filler component is 20 to 60%, and the glass component is SiO 2 20 to 50%, Al 2 O 3 10 to 40%.
%, SrO 11-25%, MgO 6-20%, B 2
It is characterized by having a composition of 0.1 to 30% O 3 and 0.1 to 30% ZnO.

【0009】本発明に用いられるフィラー成分として
は、例えば、アルミナ、ムライト、コージエライト、ジ
ルコニア及びケイ酸ジルコニウムの群から選ばれる1種
以上を用いることができる。
As the filler component used in the present invention, for example, one or more selected from the group consisting of alumina, mullite, cordierite, zirconia and zirconium silicate can be used.

【0010】なお、本発明のガラスセラミックス多層基
板は、以下の方法で製造される。まず重量百分率で、S
iO2 20〜50%、Al2 3 10〜40%、S
rO 11〜25%、MgO 6〜20%、B2 3
0.1〜30%、ZnO0.1〜30%の組成を有する
ガラス粉末と、アルミナ、ムライト、コージエライト、
ジルコニア及びケイ酸ジルコニウムの群から選ばれる1
種以上のフィラー粉末とを所定の混合割合で秤取し、結
合剤、可塑剤及び溶剤等と混合してスラリーを調製す
る。結合剤としては、例えばポリビニルブチラール樹
脂、メタアクリル酸樹脂等を用いることができる。また
可塑剤としては、例えばフタル酸ジブチルを用いること
ができ、溶剤としては、例えばトルエン、メチルエチル
ケトン等を用いることができる。
The glass-ceramic multilayer substrate of the present invention is manufactured by the following method. First, in weight percentage, S
iO 2 20~50%, Al 2 O 3 10~40%, S
rO 11-25%, MgO 6-20%, B 2 O 3
Glass powder having a composition of 0.1 to 30% and ZnO of 0.1 to 30%, and alumina, mullite, cordierite,
1 selected from the group of zirconia and zirconium silicate
One or more kinds of filler powders are weighed at a predetermined mixing ratio and mixed with a binder, a plasticizer, a solvent and the like to prepare a slurry. As the binder, for example, polyvinyl butyral resin, methacrylic acid resin, or the like can be used. Further, as the plasticizer, for example, dibutyl phthalate can be used, and as the solvent, for example, toluene, methyl ethyl ketone or the like can be used.

【0011】このようにして得られたスラリーを、ポリ
エステルフィルム上にドクターブレード法により塗布
し、厚み0.2mm程度のグリーンシートを製造する。
これを乾燥し、所定の大きさに切断した後、各グリーン
シートに機械的加工によりスルーホールを形成し、導体
となる低抵抗金属材料をスルーホール及びグリーンシー
ト表面に印刷し形成する。これらのグリーンシートを複
数枚積層し、熱圧着により一体化する。
The slurry thus obtained is applied onto a polyester film by a doctor blade method to produce a green sheet having a thickness of about 0.2 mm.
After this is dried and cut into a predetermined size, a through hole is formed in each green sheet by mechanical processing, and a low resistance metal material to be a conductor is printed and formed on the surface of the through hole and the green sheet. A plurality of these green sheets are laminated and integrated by thermocompression bonding.

【0012】このようにして得た積層グリーンシート
を、毎分3℃の速度で昇温し、500℃の温度で30分
間保持し、グリーンシート中の有機物質を除去する。こ
の後、毎分10℃の速度で800〜1000℃まで昇温
し、10分〜1時間保持して焼結させ、本発明のガラス
セラミックス多層基板を得る。
The laminated green sheet thus obtained is heated at a rate of 3 ° C./min and held at a temperature of 500 ° C. for 30 minutes to remove the organic substances in the green sheet. Then, the temperature is raised to 800 to 1000 ° C. at a rate of 10 ° C./min, and the temperature is maintained for 10 minutes to 1 hour to be sintered to obtain the glass-ceramic multilayer substrate of the present invention.

【0013】[0013]

【作用】本発明のガラスセラミックス多層基板は、ガラ
ス成分中にSrO及びMgOを所定の割合で含有するこ
とを特徴としており、このようなSrO及びMgOの含
有により、焼成の際ガラス相よりストロンチウム長石及
びコージエライトを同時に析出させることができ、シリ
コンチップを直接搭載可能な低い熱膨張係数、及び高速
演算処理に十分対応できる低い誘電率を実現すると共
に、高い機械的強度を得ることができる。
The glass-ceramic multilayer substrate of the present invention is characterized by containing SrO and MgO in a predetermined ratio in the glass component. Due to the inclusion of such SrO and MgO, the strontium feldspar from the glass phase during firing. And, cordierite can be deposited at the same time, and a low thermal expansion coefficient capable of directly mounting a silicon chip and a low dielectric constant sufficient for high-speed arithmetic processing can be realized, and high mechanical strength can be obtained.

【0014】以下、本発明の数値限定の理由について説
明する。本発明のガラスセラミックス多層基板は、40
〜80%のガラス成分と20〜60%のフィラー成分と
からなる。ガラス成分の割合が40%未満であると、即
ちフィラー成分が60%を超えると、焼成の際に緻密化
せず、機械的強度が著しく低下する。またガラス成分の
割合が80%を超えると、即ちフィラー成分が20%未
満であると、結晶析出後、ガラス成分が基板表面から浮
き出し、表面に印刷した導体との接着強度が低下する。
The reason for limiting the numerical values of the present invention will be described below. The glass-ceramic multilayer substrate of the present invention comprises 40
It is composed of -80% glass component and 20-60% filler component. If the proportion of the glass component is less than 40%, that is, if the content of the filler component exceeds 60%, densification does not occur during firing and the mechanical strength remarkably decreases. Further, if the proportion of the glass component exceeds 80%, that is, if the filler component is less than 20%, the glass component is raised from the substrate surface after crystal precipitation, and the adhesive strength with the conductor printed on the surface is lowered.

【0015】また本発明のガラスセラミックス多層基板
において、ガラス成分中、SiO2は20〜50%、好
ましくは、25〜45%含まれる。SiO2 はガラスの
ネットワークフォーマーであり、またストロンチウム長
石及びコージエライトの結晶構成成分である。従って、
SiO2 が20%未満であると、結晶量が少なくなり、
低熱膨張係数、低誘電率及び十分な機械的強度を得るこ
とができない。また50%を超えると、ガラスの溶融性
が悪くなると共に、軟化点が高くなり、低温焼成が困難
になる。
In the glass-ceramic multilayer substrate of the present invention, SiO 2 is contained in the glass component in an amount of 20 to 50%, preferably 25 to 45%. SiO 2 is a glass network former and is also a crystal constituent of strontium feldspar and cordierite. Therefore,
If the SiO 2 content is less than 20%, the amount of crystals will decrease,
It is not possible to obtain a low coefficient of thermal expansion, a low dielectric constant and sufficient mechanical strength. On the other hand, if it exceeds 50%, the melting property of the glass tends to be poor and the softening point tends to be high, so that low temperature firing becomes difficult.

【0016】Al2 3 は10〜40%、好ましくは1
5〜35%、さらに好ましくは20〜35%含まれる。
Al2 3 もストロンチウム長石及びコージエライトの
結晶構成成分であり、その含有量が10%より少ないと
結晶量が少なくなり、また40%を超えると溶融性が悪
くなる。
Al 2 O 3 is 10 to 40%, preferably 1
5 to 35%, more preferably 20 to 35%.
Al 2 O 3 is also a crystal constituent of strontium feldspar and cordierite, and if its content is less than 10%, the amount of crystals will be small, and if it exceeds 40%, the meltability will be poor.

【0017】SrOは11〜25%含有され、好ましく
は11〜20%含有される。本発明においては、SrO
がガラス成分中の必須成分として含有されるが、これは
焼成の際にストロンチウム長石を析出させる必要がある
からである。SrOの含有量が11%未満であるとスト
ロンチウム長石が析出せず、機械的強度が低くなる。ま
た25%を超えると、熱膨張係数が大きくなり過ぎる。
SrO is contained in an amount of 11 to 25%, preferably 11 to 20%. In the present invention, SrO
Is contained as an essential component in the glass component because it is necessary to precipitate strontium feldspar during firing. If the SrO content is less than 11%, strontium feldspar will not precipitate and the mechanical strength will decrease. If it exceeds 25%, the coefficient of thermal expansion becomes too large.

【0018】MgOは、SrOと同様にガラス成分中の
必須成分であり、6〜20%、好ましくは6〜15%含
有される。本発明においては、MgOを含むことによ
り、焼成の際にコージエライトが析出し、シリコンチッ
プに近い熱膨張係数を示すと共に、誘電率を低くするこ
とができる。MgOの含有量が6%未満であると、コー
ジエライトが十分に析出せず、低熱膨張係数及び低誘電
率を達成することができない。またMgOの含有量が2
0%を超えると、失透が生成しやすくなる。
Like SrO, MgO is an essential component in the glass component, and is contained in 6 to 20%, preferably 6 to 15%. In the present invention, the inclusion of MgO allows cordierite to be deposited during firing, exhibiting a thermal expansion coefficient close to that of a silicon chip and lowering the dielectric constant. When the content of MgO is less than 6%, cordierite is not sufficiently precipitated and a low thermal expansion coefficient and a low dielectric constant cannot be achieved. In addition, the content of MgO is 2
If it exceeds 0%, devitrification tends to occur.

【0019】B2 3 及びZnOは、ガラスの溶融性を
向上させるためにガラス成分中に含まれる。B2 3
含有量は0.1〜30%であり、好ましくは1〜25%
である。ZnOの含有量は0.1〜30%であり、好ま
しくは1〜25%である。B 2 3 が30%を超えて含
まれると、ガラスの耐水性が悪化する。また、ZnOの
含有量が30%を超えると、異種結晶としてガーナイト
が析出し、熱膨張係数が高くなる。一方、B2 3 及び
ZnOは、前記したようにガラスの溶融性を改善する成
分であるので、それぞれ0.1%よりも少ない含有量で
ある場合には、その効果が十分に発揮されない。
B2O3And ZnO improve the meltability of glass.
Included in the glass component to improve. B2O3of
Content is 0.1-30%, preferably 1-25%
Is. The content of ZnO is 0.1 to 30%, which is preferable.
It is preferably 1 to 25%. B 2O3Is over 30%
If it gets wet, the water resistance of the glass deteriorates. In addition, ZnO
If the content exceeds 30%, garnite as heterogeneous crystals
Are deposited and the coefficient of thermal expansion becomes high. On the other hand, B2O3as well as
ZnO is a component that improves the meltability of glass as described above.
Therefore, if the content is less than 0.1%,
In some cases, the effect is not fully exerted.

【0020】本発明においては、上述のように、SrO
及びMgOがガラス粉末中の必須成分であり、これらの
酸化物を含むことにより、焼成の際にストロンチウム長
石及びコージエライトをガラス相より析出させ、これに
よってシリコンに近い低熱膨張係数、高速演算処理に十
分対応できる低い誘電率を示すと共に、高い機械的強度
を有することができる。
In the present invention, as described above, SrO
, And MgO are essential components in the glass powder, and by including these oxides, strontium feldspar and cordierite are precipitated from the glass phase during firing, which makes them have a low coefficient of thermal expansion close to that of silicon and is sufficient for high-speed arithmetic processing. It can have a correspondingly low dielectric constant and have high mechanical strength.

【0021】[0021]

【実施例】表1のガラス組成となるように、二酸化珪
素、酸化アルミニウム、酸化マグネシウム、炭酸ストロ
ンチウム、ホウ酸、及び酸化亜鉛の各原料を調合し、こ
れを白金ルツボ中に入れ、1500℃で2時間保持して
溶融した。次に、この溶融ガラスを急冷して薄板状に成
形した後、アルミナボールで粉砕し分級することによっ
て、平均粒径が約2μmのガラス粉末を得た。
[Examples] Raw materials of silicon dioxide, aluminum oxide, magnesium oxide, strontium carbonate, boric acid, and zinc oxide were prepared so that the glass compositions shown in Table 1 were obtained, and these were placed in a platinum crucible at 1500 ° C. Hold for 2 hours to melt. Next, this molten glass was rapidly cooled to form a thin plate, which was then crushed with an alumina ball and classified to obtain a glass powder having an average particle size of about 2 μm.

【0022】このようにして得られた各ガラス粉末を、
表1に示す各種フィラー粉末と所定の割合で混合し、直
径5mm、長さ50mmの丸棒状試験体、直径40m
m、厚み2mmの円板状試験体、及び幅15mm、長さ
50mm、厚み1mmの短冊状試験体にプレス成形した
後、900℃で10分間焼成した。
Each glass powder thus obtained was
A mixture of various filler powders shown in Table 1 at a predetermined ratio, a round bar-shaped test body having a diameter of 5 mm and a length of 50 mm, a diameter of 40 m
After being press-molded into a disc-shaped test body of m, a thickness of 2 mm, and a strip-shaped test body of a width of 15 mm, a length of 50 mm, and a thickness of 1 mm, it was baked at 900 ° C. for 10 minutes.

【0023】丸棒状試験体を用いてディラトメーターで
熱膨張係数を測定し、円板状試験体を用いて誘電率を測
定し、短冊状試験体を用いて曲げ強度(三点荷重方式)
を測定した。
The thermal expansion coefficient was measured with a dilatometer using a round bar-shaped test body, the dielectric constant was measured using a disk-shaped test body, and the bending strength (three-point load method) was measured using a strip-shaped test body.
Was measured.

【0024】結果を表1に示す。The results are shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】また、比較として、表2に示すように本発
明の範囲外の組成のガラス粉末を用い、上記実施例と同
様にしてフィラー粉末と混合し、同様の試験体を作製
し、熱膨張係数、誘電率及び曲げ強度を測定した。結果
を表2に示す。
For comparison, as shown in Table 2, a glass powder having a composition outside the scope of the present invention was used and mixed with a filler powder in the same manner as in the above-mentioned example to prepare a similar test body, which was subjected to thermal expansion. The coefficient, dielectric constant and bending strength were measured. The results are shown in Table 2.

【0027】[0027]

【表2】 [Table 2]

【0028】表1から明らかなように、実施例の各試料
は、シリコンチップの熱膨張係数35×10-7/℃に近
い低熱膨張係数を示しており、また誘電率も7以下の低
い値を示している。また曲げ強度も高く、高い機械的強
度を有していることがわかる。
As is apparent from Table 1, each sample of the examples has a low coefficient of thermal expansion close to the thermal expansion coefficient of silicon chip of 35 × 10 −7 / ° C., and the dielectric constant is as low as 7 or less. Is shown. Further, it is found that the bending strength is also high and the mechanical strength is high.

【0029】これに対して、比較例1はガラス成分中の
MgOの含有量が本発明の範囲よりも少ないため熱膨張
係数及び誘電率が高くなっている。比較例2は、ガラス
成分中のSrOの含有量が本発明の範囲よりも少なく、
曲げ強度が著しく低くなっている。
On the other hand, in Comparative Example 1, the content of MgO in the glass component is less than the range of the present invention, so that the coefficient of thermal expansion and the dielectric constant are high. In Comparative Example 2, the content of SrO in the glass component was less than the range of the present invention,
Bending strength is extremely low.

【0030】比較例3は、ガラス成分中にB2 3 及び
ZnOを含まないため、緻密化した焼結体を得ることが
できなかった。比較例4は、ガラス成分中のAl2 3
の含有量が本発明の範囲よりも少ないため、熱膨張係数
及び誘電率が高く、また著しく曲げ強度が低下した。
In Comparative Example 3, since B 2 O 3 and ZnO were not contained in the glass component, a densified sintered body could not be obtained. Comparative Example 4 is Al 2 O 3 in the glass component.
Since the content of is less than the range of the present invention, the coefficient of thermal expansion and the dielectric constant are high, and the bending strength is remarkably lowered.

【0031】また比較例5は、ガラス成分が必須成分で
あるMgOを含有しておらず、フィラー成分としてコー
ジエライトを60%含有させたものである。コージエラ
イトをフィラー成分として大量に含有させると、低い熱
膨張係数及び低い誘電率が得られるものの、これらの特
性がほぼ同等である実施例3に比べて曲げ強度が著しく
劣る。これは本発明では、ガラス成分中にMgOを必須
成分として含有させることにより、焼成の際にガラス相
よりコージエライトが析出し、析出したコージエライト
によって低い熱膨張係数及び低い誘電率を達成し、しか
も析出したコージエライトが微結晶粒であるため、曲げ
強度の向上に寄与するためである。
In Comparative Example 5, the glass component does not contain MgO, which is an essential component, and 60% cordierite is contained as a filler component. When a large amount of cordierite is contained as a filler component, a low thermal expansion coefficient and a low dielectric constant are obtained, but the bending strength is significantly inferior to that of Example 3 in which these properties are almost the same. In the present invention, by containing MgO as an essential component in the glass component, cordierite is precipitated from the glass phase during firing, and the deposited cordierite achieves a low thermal expansion coefficient and a low dielectric constant, and This is because the cordierite formed is fine crystal grains and contributes to improvement in bending strength.

【0032】次に実施例9〜11のガラスセラミックス
組成物を使用してセラミックス多層基板を作製した。図
1はガラスセラミックス多層基板の断面図を示したもの
であり、1はビア導体、2は内層導体パターン、3は最
外層導体、4はベアICチップ、5は突起電極、6は接
合材である。また表3は作製したガラスセラミックス多
層基板の反りや変形の有無、端子強度、接続抵抗値の変
化量をそれぞれ示している。
Next, using the glass-ceramic compositions of Examples 9 to 11, ceramic multilayer substrates were prepared. FIG. 1 is a cross-sectional view of a glass-ceramic multilayer substrate, in which 1 is a via conductor, 2 is an inner layer conductor pattern, 3 is an outermost layer conductor, 4 is a bare IC chip, 5 is a protruding electrode, and 6 is a bonding material. is there. Table 3 shows the presence or absence of warpage or deformation of the produced glass-ceramic multilayer substrate, the terminal strength, and the amount of change in the connection resistance value, respectively.

【0033】[0033]

【表3】 [Table 3]

【0034】まず実施例9〜11の組成を有するガラス
セラミックス組成物を用い、公知の技術によりグリーン
シートを複数枚作製した。さらに得られた各グリーンシ
ートの所定の位置にビア孔を設け、CuOビア導体を充
填してビア導体1を形成し、また印刷法によりCuO内
層導体を用いて内層導体パターン2を形成した。その
後、これらのグリーンシートを積層して多層化し、脱バ
インダーの後、H2 /N 2 グリーンガスにより還元し、
900℃の窒素雰囲気中で10分間焼成した。このよう
にして内層導体と同時焼成されたガラスセラミックス多
層基板には、反りや変形は認められなかった。
First, glasses having the compositions of Examples 9 to 11
Green with known technology using ceramics composition
A plurality of sheets were prepared. Further obtained each green
A via hole is provided at a predetermined position in the board to fill the CuO via conductor.
Filled to form the via conductor 1, and also in CuO by printing method
The inner layer conductor pattern 2 was formed using the layer conductor. That
After that, these green sheets are laminated to form a multilayer,
After the inder, H2/ N 2Reduced by green gas,
It was baked for 10 minutes in a nitrogen atmosphere at 900 ° C. like this
Glass ceramics that were co-fired with the inner conductor
No warpage or deformation was observed in the layered substrate.

【0035】また、ガラスセラミックス多層基板にCu
導体を印刷して焼成し、最外層導体3を形成し、その端
子強度を測定した。端子強度が1.5mm角の電極で
0.9kg以上であれば実用レベルであるが、本実施例
では表3に示すように0.9〜1.8kg/1.5mm
角の値を示し、実用に十分耐え得ることがわかった。
In addition, Cu is added to the glass-ceramic multilayer substrate.
The conductor was printed and fired to form the outermost layer conductor 3, and its terminal strength was measured. If the terminal strength is 0.9 kg or more for a 1.5 mm square electrode, it is at a practical level, but in this embodiment, as shown in Table 3, it is 0.9 to 1.8 kg / 1.5 mm.
The value of the angle was shown, and it was found that it could withstand practical use.

【0036】さらに6mm角のベアICチップ4を、接
合材に共晶ハンダを用い、フリップチップ実装法により
ガラスセラミックス多層基板にハンダ付けした。チップ
実装後の多層基板に対して、ヒートサイクル−40〜+
125℃、100サイクルの試験を行ったところ、接続
部の断線はなく1バンプ(ICパッドの大きさは100
μm)当たりの抵抗値の変化量は±20mΩと良好な値
を示した。このように熱膨張係数をシリコンチップに近
づけた組成により、優れた信頼性のフリップチップ実装
されたガラスセラミックス多層基板を得ることができ
た。
Further, a 6 mm square bare IC chip 4 was soldered to a glass ceramic multilayer substrate by a flip chip mounting method using eutectic solder as a bonding material. Heat cycle -40 to + for multi-layer board after chip mounting
When the test was conducted at 125 ° C. for 100 cycles, there was no disconnection at the connection part and 1 bump (IC pad size was 100
The amount of change in resistance value per μm was ± 20 mΩ, which was a good value. As described above, the composition in which the coefficient of thermal expansion is close to that of the silicon chip makes it possible to obtain the flip-chip-mounted glass-ceramic multilayer substrate with excellent reliability.

【0037】[0037]

【発明の効果】以上のように本発明のガラスセラミック
ス多層基板は、1000℃以下の温度で焼成が可能であ
り、シリコンチップを直接搭載できる低い熱膨張係数を
有し、高速演算処理に十分対応できる7以下の低い誘電
率を有し、かつ高い機械的強度を有するセラミックス多
層基板を作製することができる。
As described above, the glass-ceramic multilayer substrate of the present invention can be fired at a temperature of 1000 ° C. or less, has a low coefficient of thermal expansion for directly mounting a silicon chip, and is sufficiently compatible with high-speed arithmetic processing. It is possible to manufacture a ceramic multilayer substrate having a low dielectric constant of 7 or less and having high mechanical strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のガラスセラミックス多層基板にICチ
ップを実装した状態を示す断面図。
FIG. 1 is a cross-sectional view showing a state in which an IC chip is mounted on a glass-ceramic multilayer substrate of the present invention.

【符号の説明】[Explanation of symbols]

1…ビア導体 2…内層導体パターン 3…最外層導体 4…ベアICチップ 5…突起電極 6…接合材 1 ... Via conductor 2 ... Inner layer conductor pattern 3 ... Outermost layer conductor 4 ... Bare IC chip 5 ... Projection electrode 6 ... Bonding material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 瀬川 茂俊 香川県高松市寿町2丁目2番10号 松下寿 電子工業株式会社内 (72)発明者 福永 靖一 香川県高松市寿町2丁目2番10号 松下寿 電子工業株式会社内 (72)発明者 馬屋原 芳夫 滋賀県大津市晴嵐2丁目7番1号 日本電 気硝子株式会社内 (72)発明者 渡邊 広光 滋賀県大津市晴嵐2丁目7番1号 日本電 気硝子株式会社内 (72)発明者 新藤 和義 滋賀県大津市晴嵐2丁目7番1号 日本電 気硝子株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigetoshi Segawa 2-2-10 Kotobukicho, Takamatsu-shi, Kagawa Matsushita Electronics Industry Co., Ltd. (72) Inventor Yasushi Fukunaga 2-chome, Kotobuki, Takamatsu-shi, Kagawa No. 10 In Matsushita Electronics Industry Co., Ltd. (72) Inventor Yoshio Mayahara 2-7-1 Harumi Arashi, Otsu City, Shiga Prefecture Nihon Denki Glass Co., Ltd. (72) Inventor Hiromitsu Watanabe 2-7 Harashira, Otsu City, Shiga Prefecture No. 1 in Nippon Electric Glass Co., Ltd. (72) Inventor Kazuyoshi Shindo 2-7-1 Harusan, Otsu City, Shiga Prefecture In Nippon Electric Glass Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量百分率で、ガラス成分40〜80
%、フィラー成分20〜60%からなり、該ガラス成分
がSiO2 20〜50%、Al2 3 10〜40%、
SrO 11〜25%、MgO 6〜20%、B2 3
0.1〜30%、ZnO0.1〜30%の組成を有す
ることを特徴とするガラスセラミックス多層基板。
1. A glass component of 40 to 80 in weight percentage.
%, A filler component 20 to 60%, the glass component SiO 2 20 to 50%, Al 2 O 3 10 to 40%,
SrO 11-25%, MgO 6-20%, B 2 O 3
A glass-ceramic multilayer substrate having a composition of 0.1 to 30% and ZnO of 0.1 to 30%.
【請求項2】 フィラー成分が、アルミナ、ムライト、
コージエライト、ジルコニア及びケイ酸ジルコニウムの
群から選ばれる1種以上であることを特徴とする請求項
1に記載のガラスセラミックス多層基板。
2. The filler component is alumina, mullite,
The glass-ceramic multilayer substrate according to claim 1, which is one or more selected from the group consisting of cordierite, zirconia, and zirconium silicate.
JP5199499A 1993-08-11 1993-08-11 Glass ceramic multilayer substrate Expired - Lifetime JP2598872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5199499A JP2598872B2 (en) 1993-08-11 1993-08-11 Glass ceramic multilayer substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5199499A JP2598872B2 (en) 1993-08-11 1993-08-11 Glass ceramic multilayer substrate

Publications (2)

Publication Number Publication Date
JPH0758454A true JPH0758454A (en) 1995-03-03
JP2598872B2 JP2598872B2 (en) 1997-04-09

Family

ID=16408845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5199499A Expired - Lifetime JP2598872B2 (en) 1993-08-11 1993-08-11 Glass ceramic multilayer substrate

Country Status (1)

Country Link
JP (1) JP2598872B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1095915A2 (en) 1999-10-27 2001-05-02 Ngk Spark Plug Co., Ltd. Low-temperature firing ceramic composition, process for producing same and wiring substrate prepared by using same
JP2002338295A (en) * 2001-05-17 2002-11-27 Asahi Glass Co Ltd Alkali-free glass, composition for electronic circuit board and electronic circuit board
JP2006232645A (en) * 2005-02-28 2006-09-07 Kyocera Corp Glass ceramic composition, glass ceramic sintered compact, wiring board using the same and mounting structure of the same
US7307032B2 (en) * 2004-06-28 2007-12-11 Tdk Corporation Low-temperature co-fired ceramics material and multilayer wiring board using the same
JP2012167008A (en) * 2012-04-06 2012-09-06 Kyocera Corp Glass ceramic composition, glass ceramic sintered compact, wiring board using the same, and mounting structure of the same
WO2014156456A1 (en) * 2013-03-26 2014-10-02 日本碍子株式会社 Glass/ceramic composite material
WO2021060001A1 (en) * 2019-09-24 2021-04-01 日本電気硝子株式会社 Glass for semiconductor element coating and material for semiconductor coating using same
CN113121116A (en) * 2021-05-11 2021-07-16 景德镇陶瓷大学 Microcrystalline glass solder, preparation method thereof and method for connecting alumina ceramics

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1095915A2 (en) 1999-10-27 2001-05-02 Ngk Spark Plug Co., Ltd. Low-temperature firing ceramic composition, process for producing same and wiring substrate prepared by using same
US6602623B1 (en) 1999-10-27 2003-08-05 Ngk Spark Plug Co., Ltd. Low-temperature firing ceramic composition, process for producing same and wiring substrate prepared by using same
JP2002338295A (en) * 2001-05-17 2002-11-27 Asahi Glass Co Ltd Alkali-free glass, composition for electronic circuit board and electronic circuit board
US7307032B2 (en) * 2004-06-28 2007-12-11 Tdk Corporation Low-temperature co-fired ceramics material and multilayer wiring board using the same
JP2006232645A (en) * 2005-02-28 2006-09-07 Kyocera Corp Glass ceramic composition, glass ceramic sintered compact, wiring board using the same and mounting structure of the same
JP2012167008A (en) * 2012-04-06 2012-09-06 Kyocera Corp Glass ceramic composition, glass ceramic sintered compact, wiring board using the same, and mounting structure of the same
WO2014156456A1 (en) * 2013-03-26 2014-10-02 日本碍子株式会社 Glass/ceramic composite material
WO2021060001A1 (en) * 2019-09-24 2021-04-01 日本電気硝子株式会社 Glass for semiconductor element coating and material for semiconductor coating using same
CN113121116A (en) * 2021-05-11 2021-07-16 景德镇陶瓷大学 Microcrystalline glass solder, preparation method thereof and method for connecting alumina ceramics

Also Published As

Publication number Publication date
JP2598872B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
JP3240271B2 (en) Ceramic substrate
US5468694A (en) Composition for producing low temperature co-fired substrate
EP0163155A1 (en) Low temperature fired ceramics
JPH08242062A (en) Ceramic circuit board backed at low temperature
EP1505040B1 (en) Thick film dielectric compositions for use on aluminium nitride substrates
JP3943341B2 (en) Glass ceramic composition
JP2598872B2 (en) Glass ceramic multilayer substrate
JP3419291B2 (en) Low-temperature sintered ceramic composition and multilayer ceramic substrate using the same
JP4748904B2 (en) Glass ceramic sintered body and wiring board using the same
JP2695587B2 (en) Glass ceramics composition
JP3890779B2 (en) Glass ceramic composition
JP2006074008A (en) High thermal cycle conductor system
JPH10194828A (en) Ceramic multilayered substrate fired at low temperature and its production
JP2539169B2 (en) Glass ceramics composition
JP4794040B2 (en) Ceramic sintered body and wiring board using the same
JP2003277852A (en) Copper metallized composition and ceramic wiring board
JPS5817695A (en) Multilayer circuit board and method of producing same
JP4045127B2 (en) Ceramic substrate
JPH10167822A (en) Ceramic material calcined at low temperature and wiring board consisting of the ceramic material
JP2695602B2 (en) Glass ceramic multilayer substrate
JP3125500B2 (en) Ceramic substrate
JP2872273B2 (en) Ceramic substrate material
JP3643264B2 (en) Conductive paste and wiring board using the same
JPS62252340A (en) Sintered glass and sintered glass ceramic
JP2003137657A (en) Glass ceramics and method of manufacturing the same and wiring board

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 16

EXPY Cancellation because of completion of term