JP2022052429A - Glass ceramic dielectric material, sintered body and high frequency circuit member - Google Patents

Glass ceramic dielectric material, sintered body and high frequency circuit member Download PDF

Info

Publication number
JP2022052429A
JP2022052429A JP2020158825A JP2020158825A JP2022052429A JP 2022052429 A JP2022052429 A JP 2022052429A JP 2020158825 A JP2020158825 A JP 2020158825A JP 2020158825 A JP2020158825 A JP 2020158825A JP 2022052429 A JP2022052429 A JP 2022052429A
Authority
JP
Japan
Prior art keywords
glass
mass
sintered body
dielectric material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020158825A
Other languages
Japanese (ja)
Inventor
芳夫 馬屋原
Yoshio Umayahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2020158825A priority Critical patent/JP2022052429A/en
Priority to KR1020237003560A priority patent/KR20230072471A/en
Priority to PCT/JP2021/030410 priority patent/WO2022064906A1/en
Priority to CN202180057327.0A priority patent/CN116057019A/en
Priority to TW110131020A priority patent/TWI830048B/en
Publication of JP2022052429A publication Critical patent/JP2022052429A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/16Compositions for glass with special properties for dielectric glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/08Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances quartz; glass; glass wool; slag wool; vitreous enamels
    • H01B3/087Chemical composition of glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)

Abstract

To provide a glass ceramic dielectric material that can be calcined at a temperature of 1,000°C or less and has a low dielectric characteristic and a high thermal expansion coefficient in a high frequency region at 20 GHz or more, a sintered body, and a high-frequency circuit member.SOLUTION: The glass ceramic dielectric material containing glass powder and α quartz powder, is characterized in that the content of the glass powder is 60 to 80 mass%, the content of the α quartz powder is 20 to 40 mass%, and the glass powder contains 38 to 50 mass% of SiO2, 10 to 20 mass% of MgO, 15 to 25 mass% of CaO, 15 to 25 mass% of ZnO, and 0 to 2 mass% of Li2O+Na2O+K2O, as a glass composition.SELECTED DRAWING: None

Description

本発明は、20GHz以上の高周波領域において、低い誘電率及び誘電正接、高い熱膨張係数を有するガラスセラミック誘電体材料、焼結体及び高周波用回路部材に関する。 The present invention relates to a glass-ceramic dielectric material having a low dielectric constant, a dielectric loss tangent, and a high thermal expansion coefficient in a high frequency region of 20 GHz or higher, a sintered body, and a circuit member for high frequency.

アルミナセラミックは、配線基板や回路部品として広く使用されている。アルミナセラミックは、比誘電率が10と高いため、信号処理の速度が遅いという欠点がある。また、導体材料に高融点のタングステンを使用しなければならないため、導体損失が高くなるという欠点もある。 Alumina ceramics are widely used as wiring boards and circuit components. Alumina ceramic has a high relative permittivity of 10, so that it has a drawback that the signal processing speed is slow. In addition, since tungsten having a high melting point must be used as the conductor material, there is a drawback that the conductor loss becomes high.

その欠点を補うために、ガラス粉末とセラミック粉末からなるガラスセラミック誘電体材料が開発されており、その焼結体が誘電体層として使用されている。例えば、アルカリ硼珪酸ガラスからなるガラス粉末を用いたガラスセラミック誘電体材料は、比誘電率が6~8であり、アルミナセラミック材料のそれよりも低い。また1000℃以下の温度で焼成し得るため、導体損失の低いAg、Cu等の低融点の金属材料との同時焼成が可能であり、これらを内層導体として使用し得るという長所がある(特許文献1及び2参照)。 To make up for that shortcoming, a glass-ceramic dielectric material consisting of glass powder and ceramic powder has been developed, and the sintered body is used as a dielectric layer. For example, a glass-ceramic dielectric material using a glass powder made of alkaline borosilicate glass has a relative permittivity of 6 to 8, which is lower than that of an alumina ceramic material. Further, since it can be fired at a temperature of 1000 ° C. or lower, it can be simultaneously fired with a metal material having a low melting point such as Ag and Cu, which has a low conductor loss, and has an advantage that these can be used as an inner layer conductor (Patent Document). See 1 and 2).

特開平11-116272号Japanese Patent Application Laid-Open No. 11-116272 特開平9-241068号Japanese Patent Application Laid-Open No. 9-2410668

ところで、近年、5Gに代表される移動体通信機器、WiFi等のローカルネットワーク通信分野において、利用される周波数帯域が20GHz以上と高くなってきており、高周波領域において、ガラスセラミック誘電体材料の更なる低誘電正接化が強く求められるようになってきている。 By the way, in recent years, in the field of local network communication such as mobile communication equipment typified by 5G and WiFi, the frequency band used has become as high as 20 GHz or more, and in the high frequency region, the glass ceramic dielectric material is further increased. There is a strong demand for low dielectric loss tangent.

電磁波の電子回路での伝送損失は、回路基板の誘電率の平方根、誘電正接、電磁波の周波数の積に比例する。上記特許文献で開示されているガラスセラミック誘電体材料は、高周波領域における誘電特性、特に誘電正接が十分に低くないため、伝送損失が大きくなるという問題があった。 The transmission loss of an electromagnetic wave in an electronic circuit is proportional to the product of the square root of the permittivity of the circuit board, the dielectric loss tangent, and the frequency of the electromagnetic wave. The glass-ceramic dielectric material disclosed in the above patent document has a problem that the dielectric property in a high frequency region, particularly the dielectric loss tangent is not sufficiently low, so that the transmission loss becomes large.

また、従来のガラスセラミック誘電体材料は、熱膨張係数が4~7ppm/℃と低いため、樹脂のマザーボードに半田付けした後、ヒートサイクルをかけると、熱膨張差によって歪が生じ、断線や亀裂が生じるという不具合が発生することがあった。 Further, since the conventional glass-ceramic dielectric material has a low coefficient of thermal expansion of 4 to 7 ppm / ° C., when a heat cycle is applied after soldering to a resin motherboard, distortion occurs due to the difference in thermal expansion, resulting in disconnection or cracking. There was a problem that the problem occurred.

本発明の目的は、1000℃以下の温度で焼成でき、しかも20GHz以上での高周波領域において、低い誘電特性と高い熱膨張係数を有するガラスセラミック誘電体材料、焼結体及び高周波用回路部材を提供することである。 An object of the present invention is to provide a glass-ceramic dielectric material, a sintered body, and a circuit member for high frequency, which can be fired at a temperature of 1000 ° C. or lower and have a low dielectric property and a high coefficient of thermal expansion in a high frequency region at 20 GHz or higher. It is to be.

本発明者は、種々の実験を重ねた結果、特定のガラス組成を有するガラス粉末とα石英粉末とを複合化することにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。即ち、本発明のガラスセラミック誘電体材料は、ガラス粉末とα石英粉末を含有するガラスセラミック誘電体材料であって、ガラス粉末の含有量が60~80質量%、α石英粉末の含有量が20~40質量%であり、且つ、ガラス粉末が、ガラス組成として、質量%で、SiO 38~50%、MgO 10~20%、CaO 15~25%、ZnO 15~25%、LiO+NaO+KO 0~2%未満を含有することを特徴とする。ここで、「LiO+NaO+KO」は、LiO、NaO及びKOの合量を指す。 As a result of repeating various experiments, the present inventor has found that the above technical problem can be solved by combining a glass powder having a specific glass composition and an α-quartz powder, and proposes the present invention. It is a thing. That is, the glass-ceramic dielectric material of the present invention is a glass-ceramic dielectric material containing glass powder and α-quartz powder, and the content of glass powder is 60 to 80% by mass and the content of α-quartz powder is 20. -40% by mass, and the glass powder has a glass composition of 238-50 %, MgO 10-20%, CaO 15-25%, ZnO 15-25%, Li 2O + Na 2 by mass%. It is characterized by containing O + K 2 O 0 to less than 2%. Here, "Li 2 O + Na 2 O + K 2 O" refers to the total amount of Li 2 O, Na 2 O and K 2 O.

本発明の焼結体は、上記のガラスセラミック誘電体材料を焼結させた焼結体であって、熱膨張係数が9~11ppm/℃であり、28GHzでの比誘電率が5.5~5.9であり、且つ、28GHzでの誘電正接が0.0010~0.0020であることが好ましい。ここで、「熱膨張係数」は、30~380℃の温度範囲において、熱機械分析装置にて測定した値を指す。「比誘電率」と「誘電正接」は、ファインセラミックス基板のマイクロ波誘電特性の測定方法(JIS R1641)に基づいて、測定温度25℃、周波数28GHzで測定した値を指す。 The sintered body of the present invention is a sintered body obtained by sintering the above-mentioned glass-ceramic dielectric material, has a thermal expansion coefficient of 9 to 11 ppm / ° C., and has a relative permittivity of 5.5 to 28 GHz. It is preferably 5.9 and the dielectric loss tangent at 28 GHz is preferably 0.0010 to 0.0020. Here, the "coefficient of thermal expansion" refers to a value measured by a thermomechanical analyzer in a temperature range of 30 to 380 ° C. “Relative permittivity” and “dielectric loss tangent” refer to values measured at a measurement temperature of 25 ° C. and a frequency of 28 GHz based on a method for measuring microwave dielectric properties of a fine ceramic substrate (JIS R1641).

本発明の高周波回路部材は、誘電体層を有する高周波用回路部材であって、誘電体層が上記の焼結体であることが好ましい。 The high-frequency circuit member of the present invention is a high-frequency circuit member having a dielectric layer, and the dielectric layer is preferably the above-mentioned sintered body.

本発明のガラスセラミック誘電体材料は、1000℃以下の低温で焼成可能であり、Ag、Cu等の低融点の金属材料を内層導体として使用することができる。しかも20GHz以上の高周波領域において低い誘電特性を有し、熱膨張係数が9~10ppm/℃と高い。よって、本発明のガラスセラミック誘電体材料は、樹脂製マザーボードに実装する高周波用回路部材として好適である。 The glass-ceramic dielectric material of the present invention can be fired at a low temperature of 1000 ° C. or lower, and a metal material having a low melting point such as Ag or Cu can be used as the inner layer conductor. Moreover, it has a low dielectric property in a high frequency region of 20 GHz or higher, and has a high coefficient of thermal expansion of 9 to 10 ppm / ° C. Therefore, the glass-ceramic dielectric material of the present invention is suitable as a high-frequency circuit member to be mounted on a resin motherboard.

本発明のガラスセラミック誘電体材料において、ガラス粉末の含有量が60~80質量%、α石英粉末の含有量が20~40質量%であり、ガラス粉末の含有量が65~75質量%、α石英粉末の含有量が25~35質量%が好ましい。α石英粉末が多くなると、焼成体の緻密化が困難になり、α石英粉末が少なくなると、焼成体の曲げ強度が低下し易くなる。 In the glass-ceramic dielectric material of the present invention, the content of glass powder is 60 to 80% by mass, the content of α-quartz powder is 20 to 40% by mass, the content of glass powder is 65 to 75% by mass, and α. The content of the quartz powder is preferably 25 to 35% by mass. When the amount of α-quartz powder is large, it becomes difficult to densify the fired body, and when the amount of α-quartz powder is small, the bending strength of the fired body tends to decrease.

セラミック粉末として、α石英以外に他のセラミック粉末を導入してもよい。例えばαクリストバライト、βトリジマイト、ムライト、ジルコニア、コージエライトの一種又は二種以上を使用することができる。 As the ceramic powder, other ceramic powder may be introduced in addition to α-quartz. For example, one or more of α-cristobalite, β-tridimite, mullite, zirconia, and cordierite can be used.

本発明のガラスセラミック誘電体材料において、ガラス粉末は、ガラス組成として、質量%で、SiO 38~50%、MgO 10~20%、CaO 15~25%、ZnO 15~25%、LiO+NaO+KO 0~2%未満を含有する。各成分の含有範囲を上記のように限定した理由を以下に述べる。 In the glass-ceramic dielectric material of the present invention, the glass powder has a glass composition of SiO 2 38 to 50%, MgO 10 to 20%, CaO 15 to 25%, ZnO 15 to 25%, Li 2 O + Na in terms of glass composition. 2 O + K 2 O Contains less than 0-2%. The reason for limiting the content range of each component as described above will be described below.

SiOは、ガラスのネットワークフォーマーとなる成分である。SiOの含有量が多くなると、焼成温度が高くなる傾向にあり、導体や電極としてAgやCuを使用できなくなる虞がある。一方、SiOの含有量が少なくなると、ガラス化が困難になる。また低誘電特性を得難くなる。よって、SiOの含有量は38~50%、特に40~48%が好ましい。 SiO 2 is a component that serves as a network former for glass. When the content of SiO 2 is large, the firing temperature tends to be high, and there is a risk that Ag or Cu cannot be used as a conductor or an electrode. On the other hand, when the content of SiO 2 is low, vitrification becomes difficult. In addition, it becomes difficult to obtain low dielectric properties. Therefore, the content of SiO 2 is preferably 38 to 50%, particularly preferably 40 to 48%.

MgO、CaO、ZnOは、何れもガラス粉末の軟化点を低下させる効果がある。それぞれ限定範囲から多い領域では、ガラス化が困難になり、限定範囲より少ない領域では、軟化点が高くなり過ぎる。また含有範囲を外れると、誘電正接が0.0020以上になり易い。 MgO, CaO, and ZnO all have the effect of lowering the softening point of the glass powder. In each region from the limited range to a large amount, vitrification becomes difficult, and in a region less than the limited range, the softening point becomes too high. Further, if it is out of the content range, the dielectric loss tangent tends to be 0.0020 or more.

アルカリ金属酸化物(LiO、NaO、KO)は、焼成温度を低下させる成分であるが、高周波領域での誘電正接を上昇させる成分である。よって、LiO+NaO+KOの含有量は2%未満であり、好ましくは1%未満、0.5%未満、特に0.1%未満である。なお、LiOの含有量は、好ましくは0.5%未満、特に0.1%未満である。NaOの含有量は、好ましくは0.5%未満、特に0.1%未満である。KOの含有量は、好ましくは0.5%未満、特に0.1%未満である。 Alkali metal oxides (Li 2 O, Na 2 O, K 2 O) are components that lower the firing temperature, but increase the dielectric loss tangent in the high frequency region. Therefore, the content of Li 2 O + Na 2 O + K 2 O is less than 2%, preferably less than 1%, less than 0.5%, particularly less than 0.1%. The content of Li 2 O is preferably less than 0.5%, particularly less than 0.1%. The content of Na 2 O is preferably less than 0.5%, particularly less than 0.1%. The content of K2O is preferably less than 0.5%, particularly less than 0.1%.

上記成分以外にも、誘電特性を損なわない範囲でB、Al等の成分をそれぞれ3%まで添加してもよい。 In addition to the above components, components such as B 2 O 3 and Al 2 O 3 may be added up to 3% each as long as the dielectric properties are not impaired.

本発明の焼結体は、上記のガラスセラミック誘電体材料を焼結させた焼結体である。本発明の焼結体において、焼結体の熱膨張係数は9~11ppm/℃が好ましい。焼結体の熱膨張係数が低過ぎると、樹脂のマザーボードに半田付けした後、ヒートサイクルをかける場合に、熱膨張差によって歪が生じ易くなる。 The sintered body of the present invention is a sintered body obtained by sintering the above-mentioned glass-ceramic dielectric material. In the sintered body of the present invention, the coefficient of thermal expansion of the sintered body is preferably 9 to 11 ppm / ° C. If the coefficient of thermal expansion of the sintered body is too low, distortion is likely to occur due to the difference in thermal expansion when a heat cycle is applied after soldering to the resin motherboard.

本発明の焼結体において、28GHzでの比誘電率は5.5~5.9が好ましく、28GHzでの誘電正接は0.0010~0.0020が好ましい。比誘電率や誘電正接が高くなると、伝送信号の損失が大きくなり易く、また信号処理の速度が遅くなり易い。 In the sintered body of the present invention, the relative permittivity at 28 GHz is preferably 5.5 to 5.9, and the dielectric loss tangent at 28 GHz is preferably 0.0010 to 0.0020. When the relative permittivity and the dielectric loss tangent are high, the loss of the transmission signal tends to be large, and the speed of signal processing tends to be slow.

次に本発明の焼結体の製造方法を以下に述べる。 Next, the method for producing the sintered body of the present invention will be described below.

まず、上記のガラス粉末とα石英粉末の混合粉末に、所定量の結合剤、可塑剤及び溶剤を添加してスラリーを調製する。結合剤としては例えばポリビニルブチラール樹脂、メタアクリル酸樹脂等、可塑剤としては例えばフタル酸ジブチル等、溶剤としては例えばトルエン、メチルエチルケトン等が好適である。 First, a predetermined amount of a binder, a plasticizer and a solvent are added to the mixed powder of the above glass powder and α-quartz powder to prepare a slurry. As the binder, for example, polyvinyl butyral resin, methacrylic acid resin and the like, as the plasticizer, for example, dibutyl phthalate and the like, and as the solvent, for example, toluene, methyl ethyl ketone and the like are suitable.

次いで上記のスラリーを、ドクターブレード法によってグリーンシートに成型した後、乾燥させ、所定寸法に切断してから、機械的加工を施してバイアホールを形成し、例えば、銀導体や電極となる低抵抗金属材料をバイアホール及びグリーンシート表面に印刷する。次いでこのようなグリーンシートを複数枚積層し、熱圧着によって一体化する。 Next, the above slurry is molded into a green sheet by the doctor blade method, dried, cut to a predetermined size, and then mechanically processed to form a via hole, for example, a low resistance to be a silver conductor or an electrode. The metallic material is printed on the via holes and the surface of the green sheet. Next, a plurality of such green sheets are laminated and integrated by thermocompression bonding.

更に、積層グリーンシートを焼成すると焼結体を得ることができる。このようにして作製された焼結体は、内部や表面に導体や電極を備えている。なお、導体損失の低いAg、Cu等の低融点の金属材料を使用する観点から、焼成温度は1000℃以下、特に800~950℃の温度であることが望ましい。 Further, a sintered body can be obtained by firing the laminated green sheet. The sintered body thus produced has conductors and electrodes inside and on the surface. From the viewpoint of using a metal material having a low melting point such as Ag and Cu having a low conductor loss, the firing temperature is preferably 1000 ° C. or lower, particularly 800 to 950 ° C.

焼結体の製造方法として、グリーンシートを用いる例を挙げたが、本発明はこれに限定されるものではなく、バインダーを含む顆粒を作製して、プレス成型を行う等の各種方法を適用することができる。 An example of using a green sheet has been given as a method for producing a sintered body, but the present invention is not limited to this, and various methods such as producing granules containing a binder and performing press molding are applied. be able to.

本発明の高周波用回路部材は、配線でコイルを形成したり、上記のようにして作製した焼結体表面上にSi系やGaAs系の半導体素子のチップを接続したりすることで作製することができる。 The circuit member for high frequency of the present invention is manufactured by forming a coil by wiring or connecting a chip of a Si-based or GaAs-based semiconductor element on the surface of the sintered body manufactured as described above. Can be done.

以下、実施例に基づいて本発明を説明する。但し、本発明は以下の実施例に限定されず、以下の実施例は例示である。 Hereinafter, the present invention will be described based on examples. However, the present invention is not limited to the following examples, and the following examples are examples.

表1は、本発明の実施例(試料No.1~4)と比較例(試料No.5、6)を示している。なお、表中のROは、LiO+NaO+KOを指す。 Table 1 shows Examples (Samples Nos. 1 to 4) and Comparative Examples (Samples Nos. 5 and 6) of the present invention. In addition, R 2 O in the table refers to Li 2 O + Na 2 O + K 2 O.

Figure 2022052429000001
Figure 2022052429000001

各試料は、次のようにして作製した。まず、表中に示すガラス組成となるように、各種酸化物のガラス原料を調合し、均一に混合した後、白金坩堝に入れて1400~1500℃で3~8時間溶融し、水冷ローラーによって溶融ガラスを薄板状に成形した。次いで、得られたガラスフィルムを粗砕した後、アルコールを加えてボールミルにより湿式粉砕し、平均粒径が1.5~3μmとなるように分級してガラス粉末を得た。 Each sample was prepared as follows. First, glass raw materials of various oxides are mixed so as to have the glass composition shown in the table, mixed uniformly, then placed in a platinum crucible and melted at 1400 to 1500 ° C. for 3 to 8 hours, and melted by a water-cooled roller. The glass was formed into a thin plate. Next, the obtained glass film was roughly crushed, alcohol was added, and wet pulverized by a ball mill, and the mixture was classified so that the average particle size was 1.5 to 3 μm to obtain a glass powder.

次に、上記のガラス粉末に、表中に示す量のセラミック粉末(平均粒径2μm)を均一に混合して、ガラスセラミック誘電体材料を得た。 Next, the ceramic powder (average particle size 2 μm) shown in the table was uniformly mixed with the above glass powder to obtain a glass-ceramic dielectric material.

続いて、得られたガラスセラミック誘電体材料に、結合剤としてポリビニルブチラールを15質量%、可塑剤としてブチルベンジルフタレートを4質量%、及び溶剤としてトルエンを30質量%添加してスラリーを調整した。次いで、上記のスラリーをドクターブレード法によってグリーンシートに成型し、乾燥させ、所定寸法に切断した後、複数枚を積層し、熱圧着によって一体化した。更に、得られた積層グリーンシートを焼成することによって焼結体を得た。 Subsequently, 15% by mass of polyvinyl butyral as a binder, 4% by mass of butylbenzyl phthalate as a plasticizer, and 30% by mass of toluene as a solvent were added to the obtained glass-ceramic dielectric material to prepare a slurry. Next, the above slurry was molded into a green sheet by the doctor blade method, dried, cut to a predetermined size, and then a plurality of sheets were laminated and integrated by thermocompression bonding. Further, the obtained laminated green sheet was fired to obtain a sintered body.

このようにして得られた各試料について、焼成温度、誘電特性及び熱膨張係数を評価した。その結果を表1に示す。 For each sample thus obtained, the firing temperature, the dielectric property and the coefficient of thermal expansion were evaluated. The results are shown in Table 1.

焼成温度は、種々の温度で焼成した焼結体にインクを塗布した後に拭き取り、インクが残らない(=緻密に焼結した)最低の温度を表記したものである。 The firing temperature indicates the lowest temperature at which ink is applied to sintered bodies fired at various temperatures and then wiped off so that no ink remains (= finely sintered).

比誘電率と誘電正接は、グリーンシート成型したものを表中に示す焼成温度で焼結した後、25mm×50mm×0.1mmの大きさに加工して、測定試料とした上で、ファインセラミックス基板のマイクロ波誘電特性の測定方法(JIS R1641)に基づいて、測定温度25℃、周波数28GHzで測定したものである。 For the relative permittivity and dielectric tangent, after sintering the green sheet molded product at the firing temperature shown in the table, it is processed to a size of 25 mm x 50 mm x 0.1 mm to make a measurement sample, and then fine ceramics. It was measured at a measurement temperature of 25 ° C. and a frequency of 28 GHz based on a method for measuring microwave dielectric characteristics of a substrate (JIS R1641).

熱膨張係数は、30~380℃の温度範囲において、熱機械分析装置にて測定したものである。 The coefficient of thermal expansion is measured by a thermomechanical analyzer in a temperature range of 30 to 380 ° C.

表から明らかなように、試料No.1~4は、周波数28GHzでの比誘電率は5.5~5.9、周波数28GHzでの誘電正接が0.0012~0.0019であり、高周波領域での誘電特性が低かった。また焼成温度が930℃以下と低く、熱膨張係数が9.2~10.8ppm/℃と高かった。 As is clear from the table, the sample No. In Nos. 1 to 4, the relative permittivity at a frequency of 28 GHz was 5.5 to 5.9, the dielectric loss tangent at a frequency of 28 GHz was 0.0012 to 0.0019, and the dielectric properties in the high frequency region were low. The firing temperature was as low as 930 ° C. or lower, and the coefficient of thermal expansion was as high as 9.2 to 10.8 ppm / ° C.

一方、試料No.5は、ガラス粉末中のアルカリ金属酸化物が多いため、周波数28GHzでの誘電正接が0.0055であり、高周波領域での誘電特性が高かった。試料No.6は、セラミック粉末がアルミナであるため、比誘電率が7.9と高く、熱膨張係数が8.5ppm/℃と低かった。 On the other hand, sample No. In No. 5, since the amount of alkali metal oxide in the glass powder was large, the dielectric loss tangent at a frequency of 28 GHz was 0.0055, and the dielectric property in the high frequency region was high. Sample No. In No. 6, since the ceramic powder was alumina, the relative permittivity was as high as 7.9 and the coefficient of thermal expansion was as low as 8.5 ppm / ° C.

Claims (3)

ガラス粉末とα石英粉末を含有するガラスセラミック誘電体材料であって、
ガラス粉末の含有量が60~80質量%、α石英粉末の含有量が20~40質量%であり、
且つ、ガラス粉末が、ガラス組成として、質量%で、SiO 38~50%、MgO 10~20%、CaO 15~25%、ZnO 15~25%、LiO+NaO+KO 0~2%未満を含有することを特徴とするガラスセラミック誘電体材料。
A glass-ceramic dielectric material containing glass powder and α-quartz powder.
The content of the glass powder is 60 to 80% by mass, the content of the α-quartz powder is 20 to 40% by mass, and the content is 20 to 40% by mass.
Moreover, the glass powder has a glass composition of SiO 2 38 to 50%, MgO 10 to 20%, CaO 15 to 25%, ZnO 15 to 25%, Li 2 O + Na 2 O + K 2 O 0 to 2% in terms of glass composition. A glass-ceramic dielectric material characterized by containing less than.
請求項1に記載のガラスセラミック誘電体材料を焼結させた焼結体であって、
熱膨張係数が9~11ppm/℃であり、
28GHzでの比誘電率が5.5~5.9であり、
且つ、28GHzでの誘電正接が0.0010~0.0020であることを特徴とする焼結体。
A sintered body obtained by sintering the glass-ceramic dielectric material according to claim 1.
The coefficient of thermal expansion is 9 to 11 ppm / ° C.
The relative permittivity at 28 GHz is 5.5 to 5.9.
Moreover, the sintered body is characterized in that the dielectric loss tangent at 28 GHz is 0.0010 to 0.0020.
誘電体層を有する高周波用回路部材であって、
誘電体層が請求項2に記載の焼結体であることを特徴する高周波回路部材。
A high-frequency circuit member having a dielectric layer,
A high-frequency circuit member characterized in that the dielectric layer is the sintered body according to claim 2.
JP2020158825A 2020-09-23 2020-09-23 Glass ceramic dielectric material, sintered body and high frequency circuit member Pending JP2022052429A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020158825A JP2022052429A (en) 2020-09-23 2020-09-23 Glass ceramic dielectric material, sintered body and high frequency circuit member
KR1020237003560A KR20230072471A (en) 2020-09-23 2021-08-19 Glass ceramic dielectric material, sintered body and circuit member for high frequency
PCT/JP2021/030410 WO2022064906A1 (en) 2020-09-23 2021-08-19 Glass ceramic dielectric material, sintered body, and circuit member for high-frequency use
CN202180057327.0A CN116057019A (en) 2020-09-23 2021-08-19 Glass ceramic dielectric material, sintered body, and circuit member for high frequency
TW110131020A TWI830048B (en) 2020-09-23 2021-08-23 Glass ceramic dielectric materials, sintered bodies and circuit components for high frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020158825A JP2022052429A (en) 2020-09-23 2020-09-23 Glass ceramic dielectric material, sintered body and high frequency circuit member

Publications (1)

Publication Number Publication Date
JP2022052429A true JP2022052429A (en) 2022-04-04

Family

ID=80845112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020158825A Pending JP2022052429A (en) 2020-09-23 2020-09-23 Glass ceramic dielectric material, sintered body and high frequency circuit member

Country Status (5)

Country Link
JP (1) JP2022052429A (en)
KR (1) KR20230072471A (en)
CN (1) CN116057019A (en)
TW (1) TWI830048B (en)
WO (1) WO2022064906A1 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241068A (en) 1996-03-11 1997-09-16 Sumitomo Metal Ind Ltd Low temperature fired ceramic substrate
JPH11116272A (en) 1997-10-20 1999-04-27 Murata Mfg Co Ltd Glass powder for high frequency and electric insulating layer using same
JP3890779B2 (en) * 1998-10-26 2007-03-07 日本電気硝子株式会社 Glass ceramic composition
JP2002211971A (en) * 2000-11-17 2002-07-31 Nippon Electric Glass Co Ltd Glass-ceramics dielectric material, sintered body and circuit member for microwave
US6649550B2 (en) * 2000-11-17 2003-11-18 Nippon Electric Glass Co., Ltd. Glass ceramics dielectric material and sintered glass ceramics
JP3943341B2 (en) * 2001-02-23 2007-07-11 日本電気硝子株式会社 Glass ceramic composition
JP2003095740A (en) * 2001-09-20 2003-04-03 Nippon Electric Glass Co Ltd Glass ceramic dielectric material, and sintered compact
JP2003128431A (en) * 2001-10-22 2003-05-08 Asahi Glass Co Ltd Lead-free glass and glass ceramic composition
JP4590866B2 (en) * 2001-11-05 2010-12-01 旭硝子株式会社 Glass ceramic composition
JP4228344B2 (en) * 2003-03-05 2009-02-25 日本電気硝子株式会社 Glass powder, glass ceramic dielectric material, sintered body, and circuit member for high frequency
JP2005082415A (en) * 2003-09-05 2005-03-31 Nippon Electric Glass Co Ltd Glass ceramic dielectric material, sintered compact and circuit member for high frequency
JP5835640B2 (en) * 2010-11-17 2015-12-24 日本電気硝子株式会社 Crystalline glass powder
WO2014157679A1 (en) * 2013-03-29 2014-10-02 日本山村硝子株式会社 Insulation layer formation material, insulation layer formation paste
MX2018013441A (en) * 2017-11-07 2020-01-30 Ferro Corp Low k dielectric compositions for high frequency applications.

Also Published As

Publication number Publication date
CN116057019A (en) 2023-05-02
KR20230072471A (en) 2023-05-24
WO2022064906A1 (en) 2022-03-31
TWI830048B (en) 2024-01-21
TW202222722A (en) 2022-06-16

Similar Documents

Publication Publication Date Title
US7015160B2 (en) Glass ceramic dielectric material suitable for production of a microwave circuit component
JP4228344B2 (en) Glass powder, glass ceramic dielectric material, sintered body, and circuit member for high frequency
JP4569000B2 (en) Low-frequency sintered dielectric material for high frequency and its sintered body
WO2021024620A1 (en) Glass powder, dielectric material, sintered body, and high frequency circuit member
JP7498891B2 (en) Glass powder, dielectric materials, sintered bodies and high frequency circuit components
JP2006256956A (en) Glass ceramic sintered compact and circuit member for microwave
WO2022064906A1 (en) Glass ceramic dielectric material, sintered body, and circuit member for high-frequency use
JP4407199B2 (en) Crystallized lead-free glass, glass ceramic composition, green sheet and electronic circuit board
WO2022230475A1 (en) Glass ceramic dielectric material, sintered body, and circuit member for high-frequency use
JP2023049306A (en) Glass ceramic dielectric material, sintered body, method for producing sintered body and circuit member for high frequency
JP2022171535A (en) Glass ceramic dielectric material, sintered compact and circuit member for high frequency wave
JPH0517211A (en) Substrate material and circuit substrate
JP2000327428A (en) Low temperature sintering glass ceramic and its production
CN117222607A (en) Glass ceramic dielectric material, sintered body, and circuit member for high frequency
TWI850615B (en) Multilayer glass ceramic dielectric material, sintered body, method for manufacturing sintered body, and high frequency circuit component
JP3494184B2 (en) Glass ceramic composition
JP7472653B2 (en) Composite powder, granular powder, tablet, sintered sheet and sintered body
JP2003095740A (en) Glass ceramic dielectric material, and sintered compact
KR20230142453A (en) Laminated glass ceramic dielectric material, sintered body, manufacturing method of sintered body, and high frequency circuit member
JP2023033104A (en) Crystalline glass powder, glass-ceramic dielectric material, sintered body and high-frequency circuit member
CN115724588A (en) Crystalline glass powder, glass ceramic dielectric material, sintered body, and high-frequency circuit member
CN116848594A (en) Laminated glass ceramic dielectric material, sintered body, method for producing sintered body, and circuit member for high frequency
JP2003132733A (en) Conductor composition and wiring substrate to use the same
JP2003095739A (en) Glass ceramic dielectric material, and sintered compact
JP2004010437A (en) Porcelain composition with low dielectric constant for high frequency part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240731