JP7472653B2 - Composite powder, granular powder, tablet, sintered sheet and sintered body - Google Patents

Composite powder, granular powder, tablet, sintered sheet and sintered body Download PDF

Info

Publication number
JP7472653B2
JP7472653B2 JP2020091239A JP2020091239A JP7472653B2 JP 7472653 B2 JP7472653 B2 JP 7472653B2 JP 2020091239 A JP2020091239 A JP 2020091239A JP 2020091239 A JP2020091239 A JP 2020091239A JP 7472653 B2 JP7472653 B2 JP 7472653B2
Authority
JP
Japan
Prior art keywords
powder
glass
mass
sintered body
alkaline earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020091239A
Other languages
Japanese (ja)
Other versions
JP2021187688A (en
Inventor
芳夫 馬屋原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2020091239A priority Critical patent/JP7472653B2/en
Publication of JP2021187688A publication Critical patent/JP2021187688A/en
Application granted granted Critical
Publication of JP7472653B2 publication Critical patent/JP7472653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Glass Compositions (AREA)

Description

本発明は、2GHz以上の高周波領域において、低い比誘電率及び誘電正接を有する複合粉末、顆粒粉末、タブレット、シート焼結体及び焼結体に関する。特に、高周波回路分野における同軸線路、ミリ波レーダーの送受信モジュール、高周波用電子回路モジュール等に好適な複合粉末、顆粒粉末、タブレット、シート焼結体及び焼結体に関する。 The present invention relates to composite powders, granular powders, tablets, sintered sheets, and sintered bodies that have low dielectric constants and dielectric tangents in the high frequency range of 2 GHz or more. In particular, the present invention relates to composite powders, granular powders, tablets, sintered sheets, and sintered bodies that are suitable for coaxial lines in the high frequency circuit field, millimeter wave radar transmission and reception modules, high frequency electronic circuit modules, etc.

従来から、電気信号回路の配線を保護、絶縁する目的で、絶縁性ガラスを含む誘電体材料が用いられている。この誘電体材料は、1000℃以下の温度で焼成し得るため、導体損失の低いAg、Cu等の低融点金属との同時焼成が可能であり、これらを内層導体として使用し得るという長所がある。 Dielectric materials containing insulating glass have traditionally been used to protect and insulate the wiring of electrical signal circuits. These dielectric materials can be fired at temperatures below 1000°C, making them advantageous in that they can be fired simultaneously with low-melting-point metals such as Ag and Cu, which have low conductor loss, and can be used as inner-layer conductors.

電気信号の周波数は、無線通信技術の発達とともに高くなり、近年では2GHz以上の通信周波数が用いられている。5Gと呼ばれる次世代の通信技術では更に高周波数化することが予定されており、25~40GHzの電磁波が用いられる。また、自動車の衝突防止用などのミリ波レーダーでは75~80GHzの周波数の電磁波が用いられる。これらの通信に用いる誘電体材料には、低誘電率(ε)、低誘電正接(tanδ)であることが有利であり、例えば、特許文献1に誘電率3.15~3.74、誘電正接0.00317~0.0171の誘電体材料が開示されている。 The frequency of electrical signals has increased with the development of wireless communication technology, and in recent years communication frequencies of 2 GHz or higher have been used. The next generation of communication technology, known as 5G, is expected to use even higher frequencies, and electromagnetic waves of 25 to 40 GHz will be used. Furthermore, millimeter wave radars for preventing automobile collisions use electromagnetic waves with frequencies of 75 to 80 GHz. Dielectric materials used in these communications have the advantage of having a low dielectric constant (ε) and low dielectric tangent (tan δ); for example, Patent Document 1 discloses a dielectric material with a dielectric constant of 3.15 to 3.74 and a dielectric tangent of 0.00317 to 0.0171.

特開2019-108263号公報JP 2019-108263 A

しかし、特許文献1に記載の誘電体材料は、高周波領域における誘電特性が十分に低くないため、信号処理の速度を遅延化させるという問題がある。 However, the dielectric material described in Patent Document 1 does not have sufficiently low dielectric properties in the high frequency range, which causes a problem of slowing down the speed of signal processing.

そこで、本発明の目的は、1000℃以下の温度で焼成でき、しかも高周波領域において、低い誘電特性を有する複合粉末、顆粒粉末、タブレット、シート焼結体及び焼結体を提供することである。 The object of the present invention is to provide a composite powder, granular powder, tablet, sheet sintered body, and sintered body that can be sintered at a temperature of 1000°C or less and have low dielectric properties in the high frequency range.

本発明者は、種々の実験を重ねた結果、アルカリホウケイ酸ガラスからなるガラス粉末にアルカリ土類炭酸塩粉末を添加した後、軟化点以上の温度で焼成すると、アルカリ土類炭酸塩から発生した二酸化炭素がガラス中に閉じ込められて気泡を形成することを見出した。そして、この気泡により、比誘電率を顕著に低下させつつ、低い誘電正接を維持し得ることも見出し、本発明として提案するものである。すなわち、本発明の複合粉末は、少なくともガラス粉末とアルカリ土類炭酸塩粉末とを含む複合粉末であって、ガラス粉末が、ガラス組成として、質量%で、SiO 60~85%、B 15~40%、RO(LiO+NaO+KO) 0.1~5.0%を含有し、アルカリ土類炭酸塩粉末が、MgCO、CaCO、SrCO、BaCOの群から選ばれる1種又は2種以上であり、ガラス粉末100質量部に対して、アルカリ土類炭酸塩粉末を0.01~3.0質量部含むことを特徴とする。 As a result of various experiments, the inventors have found that when an alkaline earth carbonate powder is added to a glass powder made of an alkali borosilicate glass and then the glass powder is fired at a temperature equal to or higher than the softening point, carbon dioxide generated from the alkaline earth carbonate is trapped in the glass to form bubbles. They have also found that the bubbles can significantly reduce the relative dielectric constant while maintaining a low dielectric tangent, and propose this invention. That is, the composite powder of the present invention is a composite powder containing at least a glass powder and an alkaline earth carbonate powder, wherein the glass powder contains, in mass %, as a glass composition, 60 to 85% SiO 2 , 15 to 40% B 2 O 3 , and 0.1 to 5.0% R 2 O (Li 2 O + Na 2 O + K 2 O), the alkaline earth carbonate powder is one or more selected from the group consisting of MgCO 3 , CaCO 3 , SrCO 3 , and BaCO 3 , and the alkaline earth carbonate powder is contained in an amount of 0.01 to 3.0 parts by mass per 100 parts by mass of the glass powder.

本発明の顆粒粉末は、少なくとも上記の複合粉末とバインダー樹脂とを含む顆粒粉末であって、複合粉末の含有量が80~99質量%、バインダー樹脂の含有量が1~20質量%であることが好ましい。 The granular powder of the present invention is a granular powder containing at least the above-mentioned composite powder and a binder resin, and it is preferable that the composite powder content is 80 to 99 mass % and the binder resin content is 1 to 20 mass %.

本発明のタブレットは、顆粒粉末を焼結させたタブレットにおいて、顆粒粉末が上記の顆粒粉末であることが好ましい。 The tablet of the present invention is a tablet obtained by sintering granular powder, and it is preferable that the granular powder is the granular powder described above.

本発明のシート焼結体は、複合粉末をシート状に焼結させたシート焼結体であって、複合粉末が上記の複合粉末であることが好ましい。 The sheet sintered body of the present invention is a sheet sintered body obtained by sintering a composite powder into a sheet shape, and it is preferable that the composite powder is the composite powder described above.

本発明の焼結体は、ガラス組成として、質量%で、SiO 60~85%、B 15~40%、RO(LiO+NaO+KO) 0.1~5.0%を含有するガラスを少なくとも含み、気孔率が5~40%であることを特徴とする。ここで、「気孔率」は、(1-(見かけ比重/真比重))×100(%)より算出した値である。なお、見かけ比重は焼結体の比重、真比重は気孔を含まないガラスの比重をアルキメデス法でそれぞれ測定することで算出することができる。 The sintered body of the present invention is characterized in that it contains at least glass containing, by mass%, 60-85% SiO 2 , 15-40% B 2 O 3 , and 0.1-5.0% R 2 O (Li 2 O + Na 2 O + K 2 O) as a glass composition, and has a porosity of 5-40%. Here, the "porosity" is a value calculated from (1-(apparent specific gravity/true specific gravity)) x 100 (%). The apparent specific gravity can be calculated by measuring the specific gravity of the sintered body and the true specific gravity can be calculated by measuring the specific gravity of glass not containing pores by the Archimedes method.

また、本発明の焼結体は、ガラスのガラス組成中にMgO+CaO+SrO+BaOを0.01~3.0質量%含むことが好ましい。ここで、「MgO+CaO+SrO+BaO」は、MgO、CaO、SrO及びBaOの合量である。 The sintered body of the present invention preferably contains 0.01 to 3.0 mass% of MgO+CaO+SrO+BaO in the glass composition of the glass. Here, "MgO+CaO+SrO+BaO" is the total amount of MgO, CaO, SrO, and BaO.

本発明の複合粉末、顆粒粉末、タブレット及びシート焼結体では、焼成時にアルカリ土類炭酸塩から二酸化炭素が発生して、ガラス中に気泡が発生する。その気泡により、高周波領域における誘電特性を十分に低下させることができる。従って、本発明の複合粉末、顆粒粉末、タブレット及びシート焼結体は、高周波用回路部材に好適である。 In the composite powder, granular powder, tablet, and sintered sheet of the present invention, carbon dioxide is generated from the alkaline earth carbonate during firing, generating bubbles in the glass. These bubbles can sufficiently reduce the dielectric properties in the high frequency range. Therefore, the composite powder, granular powder, tablet, and sintered sheet of the present invention are suitable for use as high frequency circuit components.

本発明の複合粉末は、少なくともガラス粉末とアルカリ土類炭酸塩粉末とを含む複合粉末を含む。ガラス粉末は、ホウケイ酸ガラスを基本組成とし、RO(LiO+NaO+KO)を0.1質量%以上含むため、1000℃以下の温度で焼成可能である。また、アルカリホウケイ酸ガラスにおいて、アルカリ金属酸化物は、比誘電率や誘電正接を上昇させる原因となるが、その含有量を5質量%以下に低減すると、高周波領域での比誘電率や誘電正接の上昇を実用上問題のないレベルまで抑えることができる。 The composite powder of the present invention includes a composite powder containing at least a glass powder and an alkaline earth carbonate powder. The glass powder has a basic composition of borosilicate glass and contains 0.1 mass % or more of R2O ( Li2O + Na2O + K2O ), and therefore can be fired at a temperature of 1000°C or less. In alkali borosilicate glass, alkali metal oxides cause an increase in the relative dielectric constant and dielectric loss tangent, but by reducing the content to 5 mass % or less, the increase in the relative dielectric constant and dielectric loss tangent in the high frequency range can be suppressed to a level that does not cause practical problems.

アルカリホウケイ酸ガラスは、1000℃以下の温度で焼成しても結晶が析出しない非晶質のガラスであることが望ましい。これは、非晶質のガラスの方が、結晶性のガラスに比べて、焼成時における軟化流動性が良好であり、緻密な焼結体が得られるためである。 It is desirable for the alkali borosilicate glass to be amorphous glass that does not precipitate crystals even when fired at temperatures below 1000°C. This is because amorphous glass has better softening and fluidity during firing than crystalline glass, and a dense sintered body can be obtained.

本発明に係るガラス粉末は、ガラス粉末が、ガラス組成として、質量%で、SiO 60~85%、B 15~40%、RO(LiO+NaO+KO) 0.1~5.0%を含有する。各成分の含有量を上記のように限定した理由を以下に示す。 The glass powder according to the present invention contains, in mass %, 60 to 85% SiO 2 , 15 to 40% B 2 O 3 , and 0.1 to 5.0% R 2 O (Li 2 O + Na 2 O + K 2 O) as a glass composition. The reasons for limiting the content of each component as above are as follows.

SiOはガラスのネットワークを構成する成分であり、その含有量は60~85%であり、好ましくは70~83%である。SiOが少ないと、誘電正接が高くなり過ぎる。またSiOが多いと、溶融温度が高くなり、溶解性が低下する。 SiO2 is a component that constitutes the glass network, and its content is 60 to 85%, preferably 70 to 83%. If the SiO2 content is too low, the dielectric tangent becomes too high. If the SiO2 content is too high, the melting temperature becomes high and the solubility decreases.

は、ガラスの粘度を調整する成分であり、その含有量は15~40%であり、好ましくは20~30%である。Bが少ないと、ガラスの粘度が高くなり、溶解性が低下する。またBが多いと、誘電正接が高くなる。 B 2 O 3 is a component that adjusts the viscosity of glass, and its content is 15 to 40%, preferably 20 to 30%. If the content of B 2 O 3 is small, the viscosity of the glass increases and the solubility decreases. If the content of B 2 O 3 is large, the dielectric tangent increases.

アルカリ金属酸化物(LiO、NaO、KO)は、溶融性を高める成分であると共に、焼成温度を低下させる成分であり、その含有量は0.1~5.0%であり、好ましくは0.5~3.0%である。LiO+NaO+KOが多いと、誘電正接が高くなり、伝送信号の損失が大きくなる。一方、LiO+NaO+KOが少ないと、溶融性が低下すると共に、低温焼成が困難となる。 Alkali metal oxides (Li 2 O, Na 2 O, K 2 O) are components that increase melting property and also reduce the firing temperature, and their content is 0.1 to 5.0%, preferably 0.5 to 3.0%. If the amount of Li 2 O + Na 2 O + K 2 O is large, the dielectric tangent becomes high and the loss of the transmission signal becomes large. On the other hand, if the amount of Li 2 O + Na 2 O + K 2 O is small, the melting property decreases and low-temperature firing becomes difficult.

上記の成分以外にも、誘電特性を損なわない範囲でAl、MgO、CaO等の成分をそれぞれ3質量%まで添加してもよい。 In addition to the above components, components such as Al 2 O 3 , MgO, and CaO may be added in amounts up to 3 mass % each within the range that does not impair the dielectric properties.

本発明の複合粉末において、アルカリ土類炭酸塩粉末は、MgCO、CaCO、SrCO、BaCOの群から選ばれる1種又は2種以上である。これらのアルカリ土類炭酸塩粉末を添加して、ガラス粉末の軟化点以上の温度で焼成すると、アルカリ土類炭酸塩から二酸化炭素が発生し、ガラス中に気泡を形成することができる。この気泡により、比誘電率が顕著に低下させつつ、低い誘電正接を維持することができる。 In the composite powder of the present invention, the alkaline earth carbonate powder is one or more selected from the group consisting of MgCO 3 , CaCO 3 , SrCO 3 and BaCO 3. When these alkaline earth carbonate powders are added and fired at a temperature equal to or higher than the softening point of the glass powder, carbon dioxide is generated from the alkaline earth carbonate, forming bubbles in the glass. These bubbles can significantly reduce the relative dielectric constant while maintaining a low dielectric tangent.

本発明の複合粉末において、アルカリ土類炭酸塩粉末の含有量は、ガラス粉末100質量部に対して、0.01~3.0質量部であり、0.05~2質量部が好ましい。アルカリ土類炭酸塩粉末が多いと、焼結体中の気孔率が大きくなり過ぎて、誘電正接が高くなる。アルカリ土類炭酸塩粉末が少ないと、誘電率を低下させることが困難になる。 In the composite powder of the present invention, the content of the alkaline earth carbonate powder is 0.01 to 3.0 parts by mass, preferably 0.05 to 2 parts by mass, per 100 parts by mass of the glass powder. If there is too much alkaline earth carbonate powder, the porosity in the sintered body becomes too large, resulting in a high dielectric tangent. If there is too little alkaline earth carbonate powder, it becomes difficult to reduce the dielectric constant.

本発明の複合粉末は、ガラス粉末とアルカリ土類炭酸塩粉末だけで構成されていてもよいが、更にセラミックフィラー粉末を添加することもできる。セラミックフィラー粉末の混合割合は、好ましくは20~50質量%、より好ましくは20~45質量%である。セラミックフィラー粉末の割合をこのように限定した理由は、セラミックフィラー粉末が多くなると、焼結体の緻密化が困難になり、セラミックフィラー粉末が少なくなると、焼結体の曲げ強度が低下するためである。 The composite powder of the present invention may be composed of only glass powder and alkaline earth carbonate powder, but ceramic filler powder can also be added. The mixing ratio of ceramic filler powder is preferably 20 to 50 mass %, more preferably 20 to 45 mass %. The reason for limiting the ratio of ceramic filler powder in this way is that if there is too much ceramic filler powder, it becomes difficult to densify the sintered body, and if there is too little ceramic filler powder, the bending strength of the sintered body decreases.

セラミックフィラー粉末としては、2GHz以上の高周波領域での比誘電率9以下、誘電正接が0.0010以下であるセラミックフィラー粉末を用いることが好ましく、例えばα-石英、α-クリストバライト、β-トリジマイト、α-アルミナ、ムライト、コージエライトの一種又は二種以上を使用することができる。このようにすれば、高周波領域において、複合粉末の比誘電率、誘電正接を低下させることができる。 As the ceramic filler powder, it is preferable to use a ceramic filler powder having a relative dielectric constant of 9 or less and a dielectric loss tangent of 0.0010 or less in the high frequency range of 2 GHz or more. For example, one or more of α-quartz, α-cristobalite, β-tridymite, α-alumina, mullite, and cordierite can be used. In this way, the relative dielectric constant and dielectric loss tangent of the composite powder can be reduced in the high frequency range.

本発明の顆粒粉末は、プレス成型により焼結体を作製する場合の顆粒であって、上記の複合粉末80~99質量%とバインダー樹脂1~20質量%を含むことが好ましい。バインダー樹脂を添加して、顆粒化することにより、充填性が向上し、プレス成型しても欠けやクラックが入らない成型体を作製することができる。 The granular powder of the present invention is a granule for producing a sintered body by press molding, and preferably contains 80 to 99% by mass of the composite powder described above and 1 to 20% by mass of binder resin. By adding binder resin and granulating, the filling property is improved, and a molded body that does not chip or crack even when press molded can be produced.

顆粒粉末は、複合粉末、樹脂バインダー、溶剤を添加、混合して混合物を得た後、これをスプレードライヤー等の乾燥装置で乾燥することにより作製することできる。樹脂バインダーは、アクリル樹脂、ブチラール樹脂、ポリエチレングリコール等のポリエーテルであることが好ましい。溶剤は、エタノール、IPA、水等が好ましい。 Granular powder can be produced by adding and mixing composite powder, resin binder, and solvent to obtain a mixture, and then drying the mixture with a drying device such as a spray dryer. The resin binder is preferably an acrylic resin, a butyral resin, or a polyether such as polyethylene glycol. The solvent is preferably ethanol, IPA, water, etc.

本発明のタブレットは、上記の顆粒粉末をプレス成型した後、ガラス粉末の軟化点以下の温度で仮焼結したものであることが好ましい。プレス成型は、一軸プレス成型、静水圧プレス成型等により行うことができる。ガラス粉末の軟化点以下で仮焼結すると、成型体の強度を維持したまま樹脂成分を除去することができる。バインダー樹脂を除去すると、窒素等の非酸化性雰囲気でもガラスを着色させることなく焼成することができる。 The tablet of the present invention is preferably produced by press-molding the above-mentioned granular powder, followed by pre-sintering at a temperature below the softening point of the glass powder. Press molding can be performed by uniaxial press molding, isostatic press molding, or the like. Pre-sintering at a temperature below the softening point of the glass powder allows the resin component to be removed while maintaining the strength of the molded body. Removing the binder resin allows the glass to be fired in a non-oxidizing atmosphere such as nitrogen without discoloring it.

本発明のシート焼結体は、複合粉末をシート状に焼結させたシート焼結体であって、複合粉末が上記の複合粉末であることが好ましい。本発明のシート焼結体は、以下の方法で作製することができる。複合粉末に対して、所定量の結合剤、可塑剤及び溶剤を添加してスラリーを調製する。結合剤としては、例えばポリビニルブチラール樹脂、メタアクリル酸樹脂等が好適に使用可能であり、可塑剤としては、例えばフタル酸ジブチル等が好適に使用可能であり、溶剤としては、例えばトルエン、メチルエチルケトン等が好適に使用可能である。ドクターブレード法によって、上記のスラリーをグリーンシートに成形する。更に、このグリーンシートを乾燥させ、所定寸法に切断し、機械的加工でバイアホールを形成、例えば銀導体や電極となる低抵抗金属材料をバイアホール及びグリーンシート表面に印刷する。その後、このようなグリーンシートの複数枚を積層し、熱圧着によって一体化する。得られた積層グリーンシートを焼成して、シート焼結体を得る。このようにして作製されたシート焼結体は、内部や表面に導体や電極を備えている。焼成温度は1000℃以下、特に800~950℃の温度であることが望ましい。 The sheet sintered body of the present invention is a sheet sintered body obtained by sintering a composite powder into a sheet shape, and the composite powder is preferably the above-mentioned composite powder. The sheet sintered body of the present invention can be produced by the following method. A predetermined amount of a binder, a plasticizer, and a solvent are added to the composite powder to prepare a slurry. For example, polyvinyl butyral resin, methacrylic acid resin, etc. can be suitably used as the binder, for example, dibutyl phthalate, etc. can be suitably used as the plasticizer, and for example, toluene, methyl ethyl ketone, etc. can be suitably used as the solvent. The above-mentioned slurry is formed into a green sheet by a doctor blade method. Furthermore, this green sheet is dried, cut to a predetermined size, and via holes are formed by mechanical processing, and low-resistance metal materials that become, for example, silver conductors or electrodes are printed on the via holes and the green sheet surface. Then, a plurality of such green sheets are stacked and integrated by thermocompression. The obtained laminated green sheet is fired to obtain a sheet sintered body. The sheet sintered body produced in this way has conductors and electrodes inside and on the surface. The firing temperature is preferably 1000°C or less, and more preferably 800 to 950°C.

本発明の焼結体は、ガラス組成として、質量%で、SiO 60~85%、B 15~40%、RO(LiO+NaO+KO) 0.1~5.0%を含有するガラスを少なくとも含み、気孔率が5~40%であることを特徴とする。本発明の焼成体の技術的特徴の一部は、既に記載済みであり、ここでは詳細な説明を省略する。 The sintered body of the present invention is characterized in that it contains at least a glass containing, by mass%, 60-85% SiO 2 , 15-40% B 2 O 3 , and 0.1-5.0% R 2 O (Li 2 O + Na 2 O + K 2 O) as a glass composition, and has a porosity of 5-40%. Some of the technical features of the sintered body of the present invention have already been described, and detailed description will be omitted here.

本発明の焼結体において、気孔率は5~40%であり、好ましくは10~35%、より好ましくは15~30%である。気孔率が高過ぎると、焼結体の誘電正接が高くなる。一方、気孔率が少ないと、焼結体の誘電率を低下させることが困難になる。 In the sintered body of the present invention, the porosity is 5 to 40%, preferably 10 to 35%, and more preferably 15 to 30%. If the porosity is too high, the dielectric tangent of the sintered body will be high. On the other hand, if the porosity is low, it will be difficult to reduce the dielectric constant of the sintered body.

また、本発明の焼結体は、ガラスのガラス組成中にMgO+CaO+SrO+BaOを0.01~3.0質量%、特に0.05~2質量%含むことが好ましく、これらのアルカリ土類金属酸化物は、焼成時にアルカリ土類炭酸塩粉末をガラスに溶け込ませることにより、導入することが好ましい。MgO+CaO+SrO+BaOの含有量が多過ぎると、焼結体の誘電正接が高くなり易い。一方、MgO+CaO+SrO+BaOの含有量が少な過ぎると、アルカリ土類金属炭酸塩粉末を導入し難くなり、焼結体の誘電率を低下させることが困難になる。 The sintered body of the present invention preferably contains 0.01 to 3.0 mass %, particularly 0.05 to 2 mass %, of MgO+CaO+SrO+BaO in the glass composition of the glass, and these alkaline earth metal oxides are preferably introduced by dissolving alkaline earth metal carbonate powder in the glass during firing. If the content of MgO+CaO+SrO+BaO is too high, the dielectric tangent of the sintered body tends to be high. On the other hand, if the content of MgO+CaO+SrO+BaO is too low, it becomes difficult to introduce the alkaline earth metal carbonate powder, making it difficult to reduce the dielectric constant of the sintered body.

以下、実施例に基づいて本発明を説明する。なお、本発明は以下の実施例に何ら限定されない。以下の実施例は単なる例示である。 The present invention will be described below based on examples. Note that the present invention is not limited to the following examples. The following examples are merely illustrative.

本発明の実施例(試料No.1~14)及び比較例(試料No.15、16)を表1、2に示す。 Examples of the present invention (samples No. 1 to 14) and comparative examples (samples No. 15 and 16) are shown in Tables 1 and 2.

次のようにして各試料を作製した。まず、表中のガラス組成になるように、各種酸化物のガラス原料を調合し、均一に混合した後、白金坩堝に入れて1550~1650℃で3~8時間溶融し、得られた溶融ガラスを水冷ローラーで薄板状に成形した。次いで、得られたガラスフィルムを粗砕した後、アルコールを加えてボールミルにより湿式粉砕し、平均粒径が1~3μmとなるように分級して、ガラス粉末を得た。 Each sample was prepared as follows. First, glass raw materials of various oxides were prepared and mixed uniformly to obtain the glass composition shown in the table, and then placed in a platinum crucible and melted at 1550-1650°C for 3-8 hours. The resulting molten glass was formed into a thin plate using a water-cooled roller. Next, the obtained glass film was roughly crushed, and then alcohol was added and wet-pulverized in a ball mill. The glass was classified to obtain a glass powder with an average particle size of 1-3 μm.

次に、上記のガラス粉末に対して、表中に示すアルカリ土類炭酸塩粉末(平均粒径が2~5μm)を添加、混合して、複合粉末(誘電体材料)を得た。なお、表中では、アルカリ土類炭酸塩粉末の添加量をガラス粉末100質量部に対する割合で記載した。 Next, the alkaline earth carbonate powder (average particle size 2-5 μm) shown in the table was added to the above glass powder and mixed to obtain a composite powder (dielectric material). Note that in the table, the amount of alkaline earth carbonate powder added is shown as a percentage relative to 100 parts by mass of glass powder.

続いて、上記の複合粉末に対して、結合剤としてポリエチレングリコールを水溶液にして固形分として5質量%添加して均質混合、乾燥、分級して顆粒粉末を得た。得られた顆粒粉末を金型によりプレス成型、表中の焼成温度で焼成することにより、表中に示す組成を有する焼結体を得た。 Next, 5% by mass of polyethylene glycol as a binder in aqueous solution was added to the composite powder, which was then mixed homogeneously, dried, and classified to obtain a granular powder. The resulting granular powder was press molded in a mold and fired at the firing temperature shown in the table to obtain a sintered body having the composition shown in the table.

シート焼結体は以下のように作製した。上記の複合粉末に対して、結合剤としてポリビニルブチラールを15質量%、可塑剤としてブチルベンジルフタレートを4質量%、溶剤としてトルエンを30質量%添加して、スラリーを調整した。次いで、上記のスラリーをドクターブレード法によってグリーンシートに成形し、乾燥させ、所定寸法に切断した後、複数枚を積層し、熱圧着によって一体化した。更に、得られた積層グリーンシートを表中の温度で焼成することによってシート焼結体を得た。 The sheet sintered body was produced as follows. A slurry was prepared by adding 15% by mass of polyvinyl butyral as a binder, 4% by mass of butyl benzyl phthalate as a plasticizer, and 30% by mass of toluene as a solvent to the composite powder. The slurry was then formed into a green sheet by the doctor blade method, dried, and cut to the specified dimensions, after which multiple sheets were stacked and integrated by thermocompression. The resulting laminated green sheet was then fired at the temperatures shown in the table to obtain a sheet sintered body.

このようにして得られた各試料について、誘電特性を測定した。その結果を表中に示す。ガラスの比誘電率と誘電正接は、焼結体を直径13mm、高さ6.5mmの円柱に加工し、両端短絡形誘電体共振器法(JIS R1627)に基づいて、温度25℃、測定周波数16GHzで測定した値である。 The dielectric properties of each sample thus obtained were measured. The results are shown in the table. The relative dielectric constant and dielectric tangent of the glass were measured at a temperature of 25°C and a measurement frequency of 16 GHz by processing the sintered body into a cylinder with a diameter of 13 mm and a height of 6.5 mm, based on the double-short-ended dielectric resonator method (JIS R1627).

気孔率の測定は、(1-(見かけ比重/真比重))×100(%)より求めた。なお、見かけ比重は焼結体の比重、真比重は気孔を含まないガラスの比重をアルキメデス法でそれぞれ求めたものである。 The porosity was measured by (1 - (apparent specific gravity/true specific gravity)) x 100 (%). Note that the apparent specific gravity is the specific gravity of the sintered body, and the true specific gravity is the specific gravity of the glass that does not contain pores, which was determined by the Archimedes method.

表から明らかなように、試料No.1~14は、比誘電率が2.0~3.8、誘電正接が0.0017~0.0035であった。これに対し、試料No.15は、アルカリ土類炭酸塩粉末の添加量が多いため、焼結体中の気孔率が大きくなり過ぎて、誘電正接が0.0055であった。試料No.16は、アルカリ土類炭酸塩粉末の添加量が少ないため、誘電率が4.3であった。 As is clear from the table, samples No. 1 to No. 14 had a relative dielectric constant of 2.0 to 3.8 and a dielectric loss tangent of 0.0017 to 0.0035. In contrast, sample No. 15 had a large amount of alkaline earth carbonate powder added, which resulted in excessive porosity in the sintered body, resulting in a dielectric loss tangent of 0.0055. Sample No. 16 had a small amount of alkaline earth carbonate powder added, resulting in a dielectric constant of 4.3.

Claims (3)

少なくともガラス粉末とアルカリ土類炭酸塩粉末とを含む複合粉末であって、
ガラス粉末が、ガラス組成として、質量%で、SiO 7079.0%、B 15~27.4%、RO(LiO+NaO+KO) 0.1~1.6%を含有し、
アルカリ土類炭酸塩粉末が、MgCO、CaCO、SrCO、BaCOの群から選ばれる1種又は2種以上であり、
ガラス粉末100質量部に対して、アルカリ土類炭酸塩粉末を0.01~3.0質量部含むことを特徴とする複合粉末。
A composite powder including at least a glass powder and an alkaline earth carbonate powder,
The glass powder contains, as a glass composition, in mass %, 70 to 79.0 % SiO 2 , 15 to 27.4 % B 2 O 3 , and 0.1 to 1.6% R 2 O (Li 2 O + Na 2 O + K 2 O),
The alkaline earth carbonate powder is one or more selected from the group consisting of MgCO 3 , CaCO 3 , SrCO 3 and BaCO 3 ;
A composite powder comprising 0.01 to 3.0 parts by mass of an alkaline earth carbonate powder relative to 100 parts by mass of a glass powder.
少なくとも請求項1に記載の複合粉末とバインダー樹脂とを含む顆粒粉末であって、
複合粉末の含有量が80~99質量%、バインダー樹脂の含有量が1~20質量%であ
ることを特徴とする顆粒粉末。
A granular powder comprising at least the composite powder according to claim 1 and a binder resin,
A granular powder characterized in that the content of the composite powder is 80 to 99 mass % and the content of the binder resin is 1 to 20 mass %.
ガラス組成として、質量%で、SiO 7078.7%、B 15~27.3%、RO(LiO+NaO+KO) 0.1~1.6%、MgO+CaO+SrO+BaO 0.05~3.0%を含有するガラスを少なくとも含み、
気孔率が20~40%であることを特徴とする焼結体。
The glass composition includes at least a glass containing, in mass %, 70 to 78.7 % SiO 2 , 15 to 27.3 % B 2 O 3 , 0.1 to 1.6% R 2 O (Li 2 O + Na 2 O + K 2 O), and 0.05 to 3.0% MgO + CaO + SrO + BaO,
A sintered body having a porosity of 20 to 40%.
JP2020091239A 2020-05-26 2020-05-26 Composite powder, granular powder, tablet, sintered sheet and sintered body Active JP7472653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020091239A JP7472653B2 (en) 2020-05-26 2020-05-26 Composite powder, granular powder, tablet, sintered sheet and sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020091239A JP7472653B2 (en) 2020-05-26 2020-05-26 Composite powder, granular powder, tablet, sintered sheet and sintered body

Publications (2)

Publication Number Publication Date
JP2021187688A JP2021187688A (en) 2021-12-13
JP7472653B2 true JP7472653B2 (en) 2024-04-23

Family

ID=78848082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020091239A Active JP7472653B2 (en) 2020-05-26 2020-05-26 Composite powder, granular powder, tablet, sintered sheet and sintered body

Country Status (1)

Country Link
JP (1) JP7472653B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306374A (en) 2002-04-11 2003-10-28 Ngk Spark Plug Co Ltd Composition for low temperature-burned ceramic, low temperature-burned ceramic and wiring board by using the same
JP2005132714A (en) 2003-10-08 2005-05-26 Tottori Prefecture Method for producing foamed glass and foamed glass
JP2008208022A (en) 2007-01-30 2008-09-11 Nippon Electric Glass Co Ltd Flat panel displaying device
JP2011184259A (en) 2010-03-10 2011-09-22 Panasonic Corp Ceramic electronic part and method for producing the same
JP2011187772A (en) 2010-03-10 2011-09-22 Panasonic Corp Ceramic electronic component, and method of manufacturing the same
JP2013056784A (en) 2011-09-07 2013-03-28 Nippon Electric Glass Co Ltd Material for glass ceramic dielectric and glass ceramic dielectric
JP2013062459A (en) 2011-09-15 2013-04-04 Panasonic Corp Common mode noise filter and manufacturing method of the same
JP2014234341A (en) 2013-06-05 2014-12-15 日本電気硝子株式会社 Glass member
US20190135683A1 (en) 2017-11-07 2019-05-09 Ferro Corporation Low K Dielectric Compositions For High Frequency Applications
JP2019099400A (en) 2017-11-29 2019-06-24 株式会社村田製作所 Glass-ceramic-ferrite composition and electronic component
US20200283333A1 (en) 2017-11-22 2020-09-10 Schott Ag Coated glass or glass ceramic substrate, coating comprising closed pores, and method for coating a substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532444B1 (en) * 1973-12-13 1978-01-28
JPH10236834A (en) * 1996-12-25 1998-09-08 Asahi Glass Co Ltd Supporting member for electron gun and its production
JPH11116272A (en) * 1997-10-20 1999-04-27 Murata Mfg Co Ltd Glass powder for high frequency and electric insulating layer using same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306374A (en) 2002-04-11 2003-10-28 Ngk Spark Plug Co Ltd Composition for low temperature-burned ceramic, low temperature-burned ceramic and wiring board by using the same
JP2005132714A (en) 2003-10-08 2005-05-26 Tottori Prefecture Method for producing foamed glass and foamed glass
JP2008208022A (en) 2007-01-30 2008-09-11 Nippon Electric Glass Co Ltd Flat panel displaying device
JP2011184259A (en) 2010-03-10 2011-09-22 Panasonic Corp Ceramic electronic part and method for producing the same
JP2011187772A (en) 2010-03-10 2011-09-22 Panasonic Corp Ceramic electronic component, and method of manufacturing the same
JP2013056784A (en) 2011-09-07 2013-03-28 Nippon Electric Glass Co Ltd Material for glass ceramic dielectric and glass ceramic dielectric
JP2013062459A (en) 2011-09-15 2013-04-04 Panasonic Corp Common mode noise filter and manufacturing method of the same
JP2014234341A (en) 2013-06-05 2014-12-15 日本電気硝子株式会社 Glass member
US20190135683A1 (en) 2017-11-07 2019-05-09 Ferro Corporation Low K Dielectric Compositions For High Frequency Applications
JP2019108263A (en) 2017-11-07 2019-07-04 フエロ コーポレーション Low dielectric constant (low k) dielectric composition for high frequency application
US20200283333A1 (en) 2017-11-22 2020-09-10 Schott Ag Coated glass or glass ceramic substrate, coating comprising closed pores, and method for coating a substrate
JP2019099400A (en) 2017-11-29 2019-06-24 株式会社村田製作所 Glass-ceramic-ferrite composition and electronic component

Also Published As

Publication number Publication date
JP2021187688A (en) 2021-12-13

Similar Documents

Publication Publication Date Title
JP5835640B2 (en) Crystalline glass powder
JP2010006690A (en) Low permittivity dielectric ceramic composition for low temperature firing
JP4863975B2 (en) Ceramic powder for green sheet and multilayer ceramic substrate
JP4228344B2 (en) Glass powder, glass ceramic dielectric material, sintered body, and circuit member for high frequency
JP2001287984A (en) Glass ceramic composition
JP7472653B2 (en) Composite powder, granular powder, tablet, sintered sheet and sintered body
CN114206794B (en) Glass powder, dielectric material, sintered body, and circuit component for high frequency
JP7498891B2 (en) Glass powder, dielectric materials, sintered bodies and high frequency circuit components
US5786288A (en) Low dielectric ceramic compositions for multilayer ceramic package
JP2006256956A (en) Glass ceramic sintered compact and circuit member for microwave
JP2000327428A (en) Low temperature sintering glass ceramic and its production
JP7549289B2 (en) Glass ceramic dielectric materials, sintered bodies and high frequency circuit components
JP3494184B2 (en) Glass ceramic composition
JP4442077B2 (en) Porcelain composition for high frequency components
JP2004210568A (en) Low-temperature burned porcelain composition for high frequency and its manufacturing process
CN117222607A (en) Glass ceramic dielectric material, sintered body, and circuit member for high frequency
KR20240004217A (en) Glass-ceramic dielectric materials, sintered bodies, and high-frequency circuit members
CN115872624A (en) Glass ceramic dielectric material, sintered body, method for producing sintered body, and circuit member for high frequency
CN115724588A (en) Crystalline glass powder, glass ceramic dielectric material, sintered body, and high-frequency circuit member
CN116848594A (en) Laminated glass ceramic dielectric material, sintered body, method for producing sintered body, and circuit member for high frequency
JP2012051767A (en) Crystalline glass powder
KR20230142453A (en) Laminated glass ceramic dielectric material, sintered body, manufacturing method of sintered body, and high frequency circuit member
JP2005179137A (en) Porcelain having excellent high frequency transmission characteristics
JP2022171535A (en) Glass ceramic dielectric material, sintered compact and circuit member for high frequency wave
JPH10182241A (en) Production of green sheet for ceramic substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240325

R150 Certificate of patent or registration of utility model

Ref document number: 7472653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150