JP2014234341A - Glass member - Google Patents

Glass member Download PDF

Info

Publication number
JP2014234341A
JP2014234341A JP2013118470A JP2013118470A JP2014234341A JP 2014234341 A JP2014234341 A JP 2014234341A JP 2013118470 A JP2013118470 A JP 2013118470A JP 2013118470 A JP2013118470 A JP 2013118470A JP 2014234341 A JP2014234341 A JP 2014234341A
Authority
JP
Japan
Prior art keywords
glass
glass member
ion exchange
powder
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013118470A
Other languages
Japanese (ja)
Other versions
JP6315399B2 (en
Inventor
克 岩尾
Katsu Iwao
克 岩尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2013118470A priority Critical patent/JP6315399B2/en
Publication of JP2014234341A publication Critical patent/JP2014234341A/en
Application granted granted Critical
Publication of JP6315399B2 publication Critical patent/JP6315399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a glass member having higher strength than conventional strengthened glass.SOLUTION: A glass member comprises a glass powder sintered body, and has an ion exchange layer on a surface layer. In the ion exchange layer, it is preferable that the concentration of alkali metal ion or alkaline earth metal ion having a relatively large ion radius is lowered gradually from the surface toward the inside of the glass member, and that the concentration of alkali metal ion or alkaline earth metal ion having a relatively small ion radius is raised gradually from the surface toward the inside of the glass member.

Description

本発明は、電子部品デバイスの構成部材である筐体、光拡散板、多層配線基板等に用いられるガラス部材に関する。   The present invention relates to a glass member used for a casing, a light diffusing plate, a multilayer wiring board and the like which are constituent members of an electronic component device.

従来、電子部品デバイスの構成部材である筐体、光拡散板、多層配線基板等として、強化ガラスが使用されている。強化ガラスとしては、ソーダ石灰ガラスや硼珪酸ガラスの風冷強化処理品あるいはイオン交換処理品等が挙げられる。   Conventionally, tempered glass has been used as a casing, a light diffusing plate, a multilayer wiring board and the like which are constituent members of an electronic component device. Examples of the tempered glass include air-cooled tempered or ion exchange treated products of soda lime glass and borosilicate glass.

風冷強化ガラスは、前駆体ガラスを軟化点以上に加熱した後、冷却空気を高圧で吹き付けることにより、表面に圧縮応力層を形成することにより作製される。一方、イオン交換強化ガラスは、例えばアルカリ金属溶融塩に前駆体ガラスを浸漬することにより作製される。ここで、ガラス表層におけるイオン半径の比較的小さいイオン(例えばNaイオン)と、溶融塩中におけるイオン半径の比較的大きいイオン(例えばKイオン)とのイオン交換反応が進行することにより、ガラス表層の容積増加が起こって圧縮応力が発生し、その結果、ガラスの機械的強度が向上する(例えば、特許文献1または2参照)。 The air-cooled tempered glass is produced by forming a compressive stress layer on the surface by heating the precursor glass to the softening point or higher and then blowing cooling air at a high pressure. On the other hand, ion exchange tempered glass is produced, for example, by immersing precursor glass in an alkali metal molten salt. Here, an ion exchange reaction between ions having a relatively small ion radius (for example, Na + ions) in the glass surface layer and ions having a relatively large ion radius (for example, K + ions) in the molten salt proceeds, so that the glass The volume of the surface layer increases and compressive stress is generated. As a result, the mechanical strength of the glass is improved (for example, see Patent Document 1 or 2).

特開平10−182182号公報JP-A-10-182182 特開2004−99370号公報JP 2004-99370 A

上記の通り、前駆体ガラスに対して強化処理を施すことにより、相当程度の強度向上を図ることは可能である。しかしながら、それでも強度は十分とは言えず、電子部品デバイスの構成部品として使用した場合に、依然として破損が発生しやすいという問題がある。   As described above, a considerable improvement in strength can be achieved by applying a strengthening treatment to the precursor glass. However, it still cannot be said that the strength is sufficient, and when used as a component part of an electronic component device, there is still a problem that breakage still tends to occur.

以上に鑑み、本発明は、従来の強化ガラスよりも高い強度を有するガラス部材を提供することを課題とする。   In view of the above, an object of the present invention is to provide a glass member having higher strength than conventional tempered glass.

本発明のガラス部材は、ガラス粉末焼結体からなり、表層にイオン交換層を有することを特徴とする。   The glass member of the present invention is made of a glass powder sintered body and has an ion exchange layer as a surface layer.

本発明者は、ガラス粉末焼結体はバルク状ガラスと比較して、表層に圧縮応力層が形成されやすく機械的強度が高くなることを見出した。この詳細なメカニズムは不明であるが、ガラス粉末焼結体には各ガラス粉末間に粒界が存在するため、イオン交換処理の際に溶融塩が内部に浸透しやすいためであると考えられる。また、所望の機械的強度を得るためのイオン交換処理時間を短縮できるという効果もある。   The present inventor has found that the glass powder sintered body is more likely to form a compressive stress layer on the surface layer and has higher mechanical strength than the bulk glass. Although this detailed mechanism is unknown, it is considered that the glass powder sintered body has a grain boundary between the glass powders, so that the molten salt easily penetrates into the interior during the ion exchange treatment. In addition, there is an effect that the ion exchange processing time for obtaining a desired mechanical strength can be shortened.

また、本発明のガラス部材は、ガラス粉末焼結体から構成されるため、バルク状ガラスと異なり、内部に機能性セラミック粉末等を分散させることが容易である。また、多様な形状に成形することも容易である。   Moreover, since the glass member of this invention is comprised from a glass powder sintered compact, unlike bulk glass, it is easy to disperse | distribute a functional ceramic powder etc. inside. It is also easy to form into various shapes.

本発明のガラス部材は、イオン交換層において、相対的にイオン半径の大きいアルカリ金属イオンまたはアルカリ土類金属イオンの濃度が、ガラス部材の表面から内部にかけて低下し、かつ、相対的にイオン半径の小さいアルカリ金属イオンまたはアルカリ土類金属イオンの濃度が、ガラス部材の表面から内部にかけて上昇することが好ましい。   In the glass member of the present invention, in the ion exchange layer, the concentration of alkali metal ions or alkaline earth metal ions having a relatively large ion radius decreases from the surface of the glass member to the inside, and the ion radius is relatively large. The concentration of small alkali metal ions or alkaline earth metal ions is preferably increased from the surface to the inside of the glass member.

本発明のガラス部材は、イオン交換層において、Kイオン濃度が、ガラス部材の表面から内部にかけて低下し、かつ、Naイオン濃度が、ガラス部材の表面から内部にかけて上昇することが好ましい。 In the glass member of the present invention, in the ion exchange layer, the K + ion concentration preferably decreases from the surface of the glass member to the inside, and the Na + ion concentration increases from the surface of the glass member to the inside.

本発明のガラス部材において、ガラス粉末は、モル%で、SiO 30〜80%、B 0〜30%、及びLiO+NaO+KO 0.1〜40%を含有することが好ましい。 In the glass member of the present invention, the glass powder contains, in mol%, SiO 2 30 to 80%, B 2 O 3 0 to 30%, and Li 2 O + Na 2 O + K 2 O 0.1 to 40%. preferable.

本発明のガラス部材において、ガラス粉末は、さらにモル%で、LiO 0〜30%、NaO 0〜30%、KO 0〜30%、MgO 0〜30%、CaO 0〜30%、SrO 0〜30%、BaO 0〜30%、Al 0〜30%、及びZnO 0〜25%を含有することが好ましい。 In the glass member of the present invention, the glass powder is a further mole%, Li 2 O 0~30%, Na 2 O 0~30%, K 2 O 0~30%, 0~30% MgO, CaO 0~30 %, SrO 0~30%, BaO 0~30 %, Al 2 O 3 0~30%, and preferably contains 0 to 25% ZnO.

本発明のガラス部材は、セラミック粉末を含有することが好ましい。   The glass member of the present invention preferably contains ceramic powder.

本発明のガラス部材の製造方法は、ガラス粉末を含む原料粉末を焼成して焼結体を得る工程、及び、焼結体に対してイオン交換処理を施す工程、を含むことを特徴とする。   The manufacturing method of the glass member of this invention is characterized by including the process of baking the raw material powder containing glass powder, obtaining a sintered compact, and the process of performing an ion exchange process with respect to a sintered compact.

本発明によれば、従来の強化ガラスよりも高い強度を有するガラス部材を提供することが可能となる。   According to the present invention, it is possible to provide a glass member having higher strength than conventional tempered glass.

本発明のガラス部材の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the glass member of this invention. 本発明のガラス部材の別の実施形態を示す模式図である。It is a schematic diagram which shows another embodiment of the glass member of this invention.

図1は、本発明のガラス部材の一実施形態を示す模式図である。図1に示すように、ガラス部材1は板状である。ガラス部材1はガラス粉末焼結体から構成されており、表層にイオン交換層を有している。   FIG. 1 is a schematic view showing an embodiment of the glass member of the present invention. As shown in FIG. 1, the glass member 1 is plate-shaped. The glass member 1 is comprised from the glass powder sintered compact, and has an ion exchange layer in the surface layer.

具体的には、イオン交換層において、相対的にイオン半径の大きいアルカリ金属イオンまたはアルカリ土類金属イオンの濃度が、ガラス部材1の表面から内部にかけて低下し、かつ、相対的にイオン半径の小さいアルカリ金属イオンまたはアルカリ土類金属イオンの濃度が、ガラス部材1の表面から内部にかけて上昇する構造を有している。アルカリ金属イオンとしては、Liイオン、Naイオン、Kイオン、RbイオンまたはCsイオンが挙げられる。アルカリ土類金属イオンとしては、Mg2+イオン、Ca2+イオン、Sr2+イオンまたはBa2+イオンが挙げられる。 Specifically, in the ion exchange layer, the concentration of alkali metal ions or alkaline earth metal ions having a relatively large ion radius decreases from the surface to the inside of the glass member 1 and has a relatively small ion radius. The alkali metal ion or alkaline earth metal ion concentration increases from the surface of the glass member 1 to the inside. Examples of alkali metal ions include Li + ions, Na + ions, K + ions, Rb + ions, and Cs + ions. Alkaline earth metal ions include Mg 2+ ions, Ca 2+ ions, Sr 2+ ions or Ba 2+ ions.

特に、イオン交換層において、Kイオン濃度が、ガラス部材1の表面から内部にかけて低下し、かつ、Naイオン濃度が、ガラス部材1の表面から内部にかけて上昇することが好ましい。このような構成であれば、ガラス部材1の表層に圧縮応力層が形成されやすくなる。 In particular, in the ion exchange layer, it is preferable that the K + ion concentration decreases from the surface of the glass member 1 to the inside, and the Na + ion concentration increases from the surface of the glass member 1 to the inside. With such a configuration, the compressive stress layer is easily formed on the surface layer of the glass member 1.

ガラス粉末としては、例えばSiO−B−R’O系ガラス、SiO−B−RO系ガラス、SnO−P−R’O系ガラス、SnO−P−RO系ガラス、TeO−R’O系ガラス、TeO−RO系ガラス、Bi−R’O系ガラス、Bi−RO系ガラス等(ただし、R’はLi、Na、K、Rb及びCsから選択される少なくとも1種、RはMg、Ca、Sr及びBaから選択される少なくとも1種)が使用される。ガラス組成としては、SiO、B、P、BiまたはTeOのいずれか1種類以上を好ましくは10〜99モル%、より好ましくは12〜95モル%含有することが好ましい。これらの成分の含有量が少なすぎると、ガラス化しにくくなる。 Examples of the glass powder include SiO 2 —B 2 O 3 —R ′ 2 O glass, SiO 2 —B 2 O 3 —RO glass, SnO—P 2 O 5 —R ′ 2 O glass, and SnO—P. 2 O 5 —RO glass, TeO 2 —R ′ 2 O glass, TeO 2 —RO glass, Bi 2 O 3 —R ′ 2 O glass, Bi 2 O 3 —RO glass, etc. (however, R 'Is at least one selected from Li, Na, K, Rb and Cs, and R is at least one selected from Mg, Ca, Sr and Ba). As the glass composition, SiO 2, B 2 O 3 , P 2 O 5, Bi 2 O 3 or, preferably any one or more of TeO 2 is from 10 to 99 mol%, more preferably 12 to 95 mol% It is preferable. When there is too little content of these components, it will become difficult to vitrify.

なかでも、SiO−B−R’O系ガラスはイオン交換処理により、ガラス部材1の表層に圧縮応力層を形成しやすいため好ましい。SiO−B−R’O系ガラスとしては、例えばモル%で、SiO 30〜80%、B 0〜30%、及びLiO+NaO+KO 0.1〜40%を含有するものが好ましい。ガラス組成をこのように限定した理由を以下に説明する。なお、以下の説明において、特に断りがない限り「%」はモル%を意味する。 Among these, SiO 2 —B 2 O 3 —R ′ 2 O-based glass is preferable because it easily forms a compressive stress layer on the surface layer of the glass member 1 by ion exchange treatment. Examples of the SiO 2 —B 2 O 3 —R ′ 2 O-based glass include mol%, SiO 2 30 to 80%, B 2 O 3 0 to 30%, and Li 2 O + Na 2 O + K 2 O 0.1 to 0.1%. Those containing 40% are preferred. The reason for limiting the glass composition in this way will be described below. In the following description, “%” means mol% unless otherwise specified.

SiOはガラス骨格を形成する成分である。SiOの含有量は好ましくは30〜80%、より好ましくは40〜65%である。SiOの含有量が少なすぎると、化学的耐久性が低下する傾向にある。一方、SiOの含有量が多すぎると、溶融温度が高くなり、ガラス化しにくくなる。 SiO 2 is a component that forms a glass skeleton. The content of SiO 2 is preferably 30 to 80%, more preferably 40 to 65%. When the content of SiO 2 is too small, chemical durability tends to decrease. On the other hand, if the content of SiO 2 is too large, the melting temperature becomes high, it is difficult to vitrify.

は溶融温度を低下させて溶融性を改善する効果が高い成分である。Bの含有量は好ましくは0〜30%、より好ましくは5〜25%である。Bの含有量が多すぎると、化学的耐久性が低下する傾向にある。 B 2 O 3 is a component having a high effect of reducing the melting temperature and improving the meltability. The content of B 2 O 3 is preferably 0 to 30%, more preferably 5 to 25%. If the B 2 O 3 content is too large, chemical durability tends to decrease.

アルカリ金属酸化物であるLiO、NaO及びKOは、イオン交換処理によりガラス部材1の表層に圧縮応力層を形成するために使われる成分である。また、溶融性を改善する効果を有する。LiO+NaO+KOの含有量は好ましくは0.1%〜40%、より好ましくは2.5〜35%である。これらの成分の合量が少なすぎると、上記効果が得られにくくなる。一方、これらの成分の合量が多すぎると、成形時に失透しやすくなる。なお、LiO、NaO及びKOの各成分の含有量は、それぞれ好ましくは0〜30%、より好ましくは1〜25%である。 Li 2 O is an alkali metal oxide, Na 2 O and K 2 O are components that are used to form a compression stress layer on the surface layer of the glass member 1 by an ion exchange process. It also has the effect of improving meltability. The content of Li 2 O + Na 2 O + K 2 O is preferably 0.1% to 40%, more preferably 2.5 to 35%. If the total amount of these components is too small, it is difficult to obtain the above effect. On the other hand, if the total amount of these components is too large, it tends to devitrify during molding. The content of each component of Li 2 O, Na 2 O and K 2 O are each preferably 0-30%, more preferably from 1 to 25%.

SiO−B−R’O系ガラスには、上記成分以外にも下記の成分を含有させることができる。 In addition to the above components, the following components can be contained in the SiO 2 —B 2 O 3 —R ′ 2 O-based glass.

Alはイオン交換性能に影響を与える成分であり、その含有量は好ましくは0〜30%、より好ましくは3〜25%である。Alの含有量が多すぎると、溶融性が低下する傾向がある。 Al 2 O 3 is a component that affects the ion exchange performance, and the content thereof is preferably 0 to 30%, more preferably 3 to 25%. When the content of Al 2 O 3 is too large, there is a tendency that the melting is lowered.

アルカリ土類金属であるMgO、CaO、SrO及びBaOは、イオン交換処理によりガラス部材1の表層に圧縮応力層を形成するために使われる成分である。また、溶融温度を低下させて溶融性を改善する成分でもある。これらの成分の含有量は、それぞれ好ましくは0〜30%、より好ましくは0.1〜20%である。これらの成分の含有量が多すぎると、化学的耐久性が低下する傾向にある。   The alkaline earth metals MgO, CaO, SrO and BaO are components used to form a compressive stress layer on the surface layer of the glass member 1 by ion exchange treatment. It is also a component that improves the meltability by lowering the melting temperature. The content of these components is preferably 0 to 30%, more preferably 0.1 to 20%. When there is too much content of these components, it exists in the tendency for chemical durability to fall.

ZnOは溶融温度を低下させて溶融性を改善する成分である。また、分相を促進する効果もある。ガラス部材1が分相することにより、光拡散特性の向上が期待できる。ZnOの含有量は好ましくは0〜25%、より好ましくは0.1〜23%である。ZnOの含有量が多すぎると、化学的耐久性が低下する傾向にある。   ZnO is a component that improves the meltability by lowering the melting temperature. It also has the effect of promoting phase separation. By the phase separation of the glass member 1, an improvement in light diffusion characteristics can be expected. The content of ZnO is preferably 0 to 25%, more preferably 0.1 to 23%. When there is too much content of ZnO, it exists in the tendency for chemical durability to fall.

上記成分以外にも、溶融性を向上させたり、軟化点を低下させて低温焼結させやすくしたりためにPを5%まで、化学的耐久性を向上させるためにTa、TiO、Nb、Gd、La、Y、CeO、Sb、SnO、Bi、TeOまたはZrOを合量で15%まで含有させてもよい。また、光学特性制御や抗菌作用を付与する目的としてAgOを含有させてもよい。さらにガラス部材を発光させたい場合は、ガラス粉末中にEu、Sm、Ce等の発光中心イオンを導入してもよい。 In addition to the above components, P 2 O 5 can be up to 5% in order to improve the meltability or lower the softening point to facilitate low-temperature sintering, and Ta 2 O 5 in order to improve the chemical durability. , TiO 2 , Nb 2 O 5 , Gd 2 O 3 , La 2 O 3 , Y 2 O 3 , CeO 2 , Sb 2 O 3 , SnO 2 , Bi 2 O 3 , TeO 2 or ZrO 2 in a total amount of 15 % May be included. Further, Ag 2 O may be contained for the purpose of imparting optical property control and antibacterial action. Furthermore, when it is desired to emit light from the glass member, luminescent center ions such as Eu, Sm, and Ce may be introduced into the glass powder.

上記ガラス粉末の焼結体であるガラス部材1の組成も上記の範囲にあることが好ましい。   The composition of the glass member 1 which is a sintered body of the glass powder is also preferably in the above range.

なお、ガラス粉末は結晶性ガラス粉末であってもよい。この場合、焼成によりガラス内部に結晶が析出するため、ガラス部材1の機械的強度を高めたり、熱膨張係数を制御したりすることができる。ここで、ガラス部材1の結晶化度は95%以下であることが好ましい。結晶化度が高すぎると、残存ガラス相の割合が少なくなって、イオン交換層を形成することが困難になる傾向がある。   The glass powder may be a crystalline glass powder. In this case, since crystals are precipitated inside the glass by firing, the mechanical strength of the glass member 1 can be increased, and the thermal expansion coefficient can be controlled. Here, the crystallinity of the glass member 1 is preferably 95% or less. If the degree of crystallinity is too high, the proportion of the remaining glass phase tends to decrease and it becomes difficult to form an ion exchange layer.

ガラス粉末の平均粒子径D50は好ましくは0.1〜100μm、より好ましくは1〜50μmである。ガラス粉末の平均粒子径D50が小さすぎると、焼成時に気孔の発生量が多くなる。ガラス部材1中に気孔が多く含まれると、イオン交換後においても強度が低下する傾向がある。また、水分等が内部に浸入しやすくなり化学的耐久性が低下するおそれがある。ガラス部材1における好ましい気孔率は10体積%以下、特に9体積%以下である。一方、ガラス粉末の平均粒子径D50が大きすぎる場合も、ガラス部材1中に気孔が多く発生して、ガラス部材1の強度が低下する傾向がある。 The average particle diameter D50 of the glass powder is preferably 0.1 to 100 μm, more preferably 1 to 50 μm. When the average particle diameter D 50 of the glass powder is too small, the amount of pores increases during firing. If the glass member 1 contains many pores, the strength tends to decrease even after ion exchange. In addition, moisture and the like can easily enter the inside, and the chemical durability may be reduced. The preferable porosity in the glass member 1 is 10% by volume or less, particularly 9% by volume or less. On the other hand, even if the average particle diameter D 50 of the glass powder is too large, the pores in the glass member 1 is most generated, strength of the glass member 1 tends to decrease.

なお、本発明において、平均粒子径D50はレーザー回折法により測定した値をいう。 In the present invention, the average particle diameter D 50 is a value measured by a laser diffraction method.

図2は、本発明のガラス部材の別の実施形態を示す図である。図2に示すように、本発明のガラス部材1は、ガラス粉末焼結体からなるガラスマトリクス2中にセラミック粉末3を分散させてなる構造を有していてもよい。セラミック粉末3としては、一般に市場で入手可能な材料であれば特に限定されず、例えば低温型石英、低温型クリストバル石、アルミナ、ガーネット、正方晶ジルコニア、ガーナイト、コージエライト等が挙げられる。これらは熱膨張係数や光学特性を制御することを目的として使用される。   FIG. 2 is a view showing another embodiment of the glass member of the present invention. As shown in FIG. 2, the glass member 1 of the present invention may have a structure in which a ceramic powder 3 is dispersed in a glass matrix 2 made of a glass powder sintered body. The ceramic powder 3 is not particularly limited as long as it is generally a commercially available material, and examples thereof include low-temperature type quartz, low-temperature type cristobalite, alumina, garnet, tetragonal zirconia, garnite, and cordierite. These are used for the purpose of controlling the thermal expansion coefficient and optical characteristics.

また必要に応じて、熱膨張特性や光学特性の制御のために石英ガラス、ホウケイ酸ガラス等のガラス粉末、発光特性の制御のためにYAG蛍光体等の蛍光体粉末を含有させることができる。またガラス部材を着色させたい場合は、Co、MnまたはFe系等の無機顔料セラミック粉末を含有させることができる。   Further, if necessary, glass powder such as quartz glass and borosilicate glass can be contained for controlling thermal expansion characteristics and optical characteristics, and phosphor powder such as YAG phosphor can be contained for controlling light emission characteristics. Further, when it is desired to color the glass member, inorganic pigment ceramic powder such as Co, Mn or Fe can be contained.

ガラス部材1がこれらのセラミック粉末を含有することにより、入射光を散乱させる効果がより大きくなり、光拡散特性が向上する。なお、入射光の散乱効果を高めるには、ガラス粉末とセラミック粉末の屈折率差が大きくなるよう組み合わせることが好ましい。具体的には、ガラス粉末とセラミック粉末の屈折率差(nd)は0.05〜0.2であることが好ましく、0.1〜0.15であることがより好ましい。屈折率差が大きすぎると、入射光の散乱効果が高くなりすぎて散乱損失となり、透過率が低下する傾向がある。   When the glass member 1 contains these ceramic powders, the effect of scattering incident light is further increased, and the light diffusion characteristics are improved. In order to enhance the incident light scattering effect, it is preferable to combine the glass powder and the ceramic powder so that the difference in refractive index is large. Specifically, the refractive index difference (nd) between the glass powder and the ceramic powder is preferably 0.05 to 0.2, and more preferably 0.1 to 0.15. If the refractive index difference is too large, the scattering effect of incident light becomes too high, resulting in a scattering loss, and the transmittance tends to decrease.

セラミック粉末3の平均粒子径D50は、好ましくは0.01〜100μm、より好ましくは0.1〜50μmである。セラミック粉末3の平均粒子径D50が小さすぎると、ガラス部材1の緻密性が損なわれ、気孔等の欠陥が生じるおそれがある。一方、平均粒子径D50が大きすぎると、ガラス部材1中にセラミック粉末3が均一に分散されにくくなり、強度低下の原因となる傾向がある。 The average particle diameter D 50 of the ceramic powder 3 is preferably 0.01 to 100 μm, more preferably 0.1 to 50 μm. When the average particle diameter D 50 of the ceramic powder 3 is too small, the density of the glass member 1 is lost, there is a possibility that a defect of pores and the like occur. On the other hand, when the average particle diameter D 50 is too large, the ceramic powder 3 in the glass member 1 is less likely to be homogeneously dispersed, there is a tendency to cause strength reduction.

ガラス部材1におけるセラミック粉末3の含有量は、体積%で、好ましくは1〜60%、より好ましくは2〜55%である。セラミック粉末3の含有量が少なすぎると、所望の特性が得られにくくなる。一方、セラミック粉末3の含有量が多すぎると、ガラス部材1の緻密性が低下し、機械的強度が低下する傾向がある。なお、要求特性に応じて、複数のセラミック粉末を混合して用いてもよい。   Content of the ceramic powder 3 in the glass member 1 is a volume%, Preferably it is 1-60%, More preferably, it is 2-55%. When there is too little content of the ceramic powder 3, it will become difficult to obtain a desired characteristic. On the other hand, when there is too much content of the ceramic powder 3, the compactness of the glass member 1 will fall and there exists a tendency for mechanical strength to fall. Depending on the required characteristics, a plurality of ceramic powders may be mixed and used.

ガラス部材1の厚みは、好ましくは0.1〜5mm、より好ましくは0.5〜1.5mmである。ガラス部材1の厚みが小さすぎると、強度が不十分となるため、表層に圧縮応力層を形成すると自己崩壊するおそれがある。一方、ガラス部材1の厚みが大きすぎると、例えば可視域透過率が低下し、透光性が要求される用途への使用が困難になる傾向がある。なお、ガラス部材1の形状は特に限定されず、板状以外にも、ファイバー状、球状、半球状、半球ドーム状等が挙げられる。なお、ガラス部材1は、アルミナ基板、ガラス基板、YAGセラミック基板、透光性セラミック基板、金属基板等の無機基板表面に融着または接着させた後、イオン交換層を形成させて使用することも可能である。   The thickness of the glass member 1 is preferably 0.1 to 5 mm, more preferably 0.5 to 1.5 mm. If the thickness of the glass member 1 is too small, the strength becomes insufficient. Therefore, when a compressive stress layer is formed on the surface layer, there is a risk of self-collapse. On the other hand, when the thickness of the glass member 1 is too large, for example, the visible region transmittance is lowered, and there is a tendency that it is difficult to use in applications where translucency is required. In addition, the shape of the glass member 1 is not specifically limited, In addition to plate shape, fiber shape, spherical shape, hemispherical shape, hemispherical dome shape, etc. are mentioned. The glass member 1 may be used after being fused or bonded to the surface of an inorganic substrate such as an alumina substrate, a glass substrate, a YAG ceramic substrate, a translucent ceramic substrate, or a metal substrate and then forming an ion exchange layer. Is possible.

次に、ガラス部材1の製造方法について説明する。   Next, the manufacturing method of the glass member 1 is demonstrated.

ガラス部材1は、ガラス粉末を含む原料粉末を焼成して焼結体を得る工程、及び、焼結体に対してイオン交換処理を施す工程、を含む方法により製造される。   The glass member 1 is manufactured by a method including a step of firing a raw material powder containing glass powder to obtain a sintered body, and a step of subjecting the sintered body to an ion exchange treatment.

ガラス粉末は、必要に応じて予備成形した後に焼成する。予備成形方法は特に制限されず、プレス成形法、射出成形法、シート成形法、押出し成形法等を採用することができる。   The glass powder is fired after being preformed as necessary. The preforming method is not particularly limited, and a press molding method, an injection molding method, a sheet molding method, an extrusion molding method, or the like can be employed.

ガラス粉末の焼成温度は、ガラス粉末の軟化点以上であることが好ましく、軟化点+50℃以上であることがより好ましい。焼成温度が低すぎると、ガラス粉末が十分に軟化流動せず、ガラス部材1中に気孔が残存して強度が低下しやすくなる。一方、焼成温度の上限は特に限定されないが、焼成温度が高すぎると、焼成時にガラス中の溶存ガスが放出され、焼結体内部に気孔が発生しやすくなり、ガラス部材1の機械的強度が低下する傾向がある。よって、焼成温度はガラス粉末の軟化点+250℃以下であることが好ましい。   The firing temperature of the glass powder is preferably equal to or higher than the softening point of the glass powder, and more preferably equal to or higher than the softening point + 50 ° C. If the firing temperature is too low, the glass powder does not sufficiently soften and flow, and pores remain in the glass member 1 and the strength tends to decrease. On the other hand, the upper limit of the firing temperature is not particularly limited. However, if the firing temperature is too high, dissolved gas in the glass is released during firing, and pores are easily generated inside the sintered body, so that the mechanical strength of the glass member 1 is increased. There is a tendency to decrease. Therefore, it is preferable that a calcination temperature is the softening point of glass powder +250 degrees C or less.

焼結体に対するイオン交換処理の具体例としては、焼結体をアルカリ金属溶融塩に浸漬し、ガラス部材1表層におけるアルカリ金属イオンと、アルカリ金属溶融塩中のアルカリ金属イオンを置換する方法が挙げられる。例えば、組成としてNaOを含む焼結体を、硝酸カリウム溶融塩に浸漬することにより、ガラス部材1の表層における相対的にイオン半径の小さいNaイオンと、硝酸カリウム溶融塩から導入される、相対的にイオン半径の大きいKイオンのイオン交換反応が進行する。これにより、Kイオン濃度がガラス部材1の表面から内部にかけて低下し、かつ、Naイオン濃度がガラス部材1の表面から内部にかけて上昇するイオン交換層が、ガラス部材1の表層に形成される。その結果、ガラス部材1の表層において容積増加が起こり、圧縮応力層が形成され、機械的強度が向上する。 As a specific example of the ion exchange treatment for the sintered body, there is a method in which the sintered body is immersed in an alkali metal molten salt to replace the alkali metal ions in the surface layer of the glass member 1 and the alkali metal ions in the alkali metal molten salt. It is done. For example, by immersing a sintered body containing Na 2 O as a composition in a potassium nitrate molten salt, the Na + ions having a relatively small ionic radius in the surface layer of the glass member 1 are introduced from the potassium nitrate molten salt. In particular, an ion exchange reaction of K + ions having a large ion radius proceeds. As a result, an ion exchange layer in which the K + ion concentration decreases from the surface to the inside of the glass member 1 and the Na + ion concentration increases from the surface to the inside of the glass member 1 is formed on the surface layer of the glass member 1. . As a result, a volume increase occurs in the surface layer of the glass member 1, a compressive stress layer is formed, and the mechanical strength is improved.

アルカリ金属溶融塩の温度は、ガラス粉末の歪点±150℃以内の範囲であることが好ましい。アルカリ金属溶融塩の温度が上記温度範囲外であると、イオン交換反応が進行しにくくなるおそれがある。   The temperature of the alkali metal molten salt is preferably in the range of the strain point of the glass powder within ± 150 ° C. If the temperature of the alkali metal molten salt is outside the above temperature range, the ion exchange reaction may not easily proceed.

なお、イオン交換処理を行う前に、必要に応じて、焼結体に対して研削、研磨またはリプレス等による加工を行っても構わない。   In addition, before performing an ion exchange process, you may process by grinding, grinding | polishing, or repressing etc. with respect to a sintered compact as needed.

以下、実施例に基づき本発明を説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples.

(1)試料の作製
表1及び2は実施例(No.1〜4、6、8、10)及び比較例(No.5、7、9、11〜13)を示している。
(1) Preparation of sample Table 1 and 2 has shown the Example (No. 1-4, 6, 8, 10) and the comparative example (No. 5, 7, 9, 11-13).

まず、表に示すガラス組成となるように原料粉末を秤量して混合し、得られた混合物を白金坩堝中において900〜1600℃で2時間溶融してガラス化した。溶融ガラスをフィルム状に成形し、得られたフィルム状ガラスをボールミルで粉砕した後、325メッシュの篩に通して分級し、平均粒子径D50が30μmのガラス粉末を得た。なお、同組成のバルクガラスを別途作製し、歪点及び軟化点を測定した。歪点はASTMC336に基づいて測定し、軟化点はASTMC338に基づいて測定した。 First, raw material powder was weighed and mixed so as to have the glass composition shown in the table, and the obtained mixture was melted at 900 to 1600 ° C. for 2 hours in a platinum crucible to be vitrified. Molding the molten glass into a film, and the obtained film-like glass was pulverized by a ball mill and then classified through a sieve of 325 mesh, the average particle diameter D 50 was obtained glass powder 30 [mu] m. In addition, the bulk glass of the same composition was produced separately and the strain point and the softening point were measured. The strain point was measured based on ASTM C336, and the softening point was measured based on ASTM C338.

次に、ガラス粉末に対し、必要に応じて表に示すセラミック粉末を混合し、金型を用いて加圧成形して予備成形体を作製した。予備成形体を表に示す焼成温度で焼成し、焼結体を得た。得られた焼結体に研磨加工処理を施すことにより、3点曲げ強度試験用として3mm×4mm×40mmの棒状試料を、またヘイズ率評価用として10mm×10mm、厚さ0.2mmの板状試料をそれぞれ作製した。なお、No.13ではバルク状ガラスを使用した。   Next, the ceramic powder shown in the table | surface was mixed with the glass powder as needed, and it pressure-molded using the metal mold | die, and produced the preform. The preform was fired at the firing temperature shown in the table to obtain a sintered body. By subjecting the obtained sintered body to a polishing process, a rod-shaped sample of 3 mm × 4 mm × 40 mm is used for a three-point bending strength test, and a plate shape of 10 mm × 10 mm and a thickness of 0.2 mm is used for haze rate evaluation. Each sample was prepared. In addition, No. In No. 13, bulk glass was used.

No.1〜4、5、8、10及び13については、得られた試料に対してイオン交換処理を行った。イオン交換処理は、表に示す温度で硝酸カリウム溶融塩中に4時間浸漬することにより行った。   No. For 1-4, 5, 8, 10, and 13, the obtained samples were subjected to ion exchange treatment. The ion exchange treatment was performed by immersing in potassium nitrate molten salt for 4 hours at the temperature shown in the table.

(2)各特性の測定
得られた各試料について、下記の方法に従い、3点曲げ強度、ヘイズ率、及び試料表層(試料におけるガラスマトリクスの表層)におけるアルカリ金属イオンの濃度勾配(イオン交換層の有無)について測定または評価を行った。結果を表1及び2に示す。
(2) Measurement of each characteristic For each of the obtained samples, according to the following method, the three-point bending strength, the haze ratio, and the alkali metal ion concentration gradient (surface of the glass matrix in the sample) The presence or absence) was measured or evaluated. The results are shown in Tables 1 and 2.

3点曲げ強度試験はJIS R 1601に基づいて測定した。   The three-point bending strength test was measured based on JIS R 1601.

ヘイズ率はJIS K7105に基づいて測定した。   The haze ratio was measured based on JIS K7105.

表層におけるアルカリ金属イオンの濃度勾配は、グロー放電発光表面分析装置(堀場製作所製 GD−Profiler2)を用いて測定した。具体的には、各試料の表層におけるNaイオン及びKイオンの濃度を測定して、深さ方向における各成分の濃度プロファイルを作製し、表面から内部にかけて濃度勾配が認められた場合は「○」、認められなかった場合は「×」として評価した。 The concentration gradient of alkali metal ions in the surface layer was measured using a glow discharge luminescence surface analyzer (GD-Profiler 2 manufactured by Horiba Seisakusho). Specifically, the concentration profile of each component in the depth direction is prepared by measuring the concentration of Na + ions and K + ions in the surface layer of each sample, and when a concentration gradient is observed from the surface to the inside, “ “Yes”, if not recognized, evaluated as “x”.

結晶化度は粉末X線回折計を用いて測定した。   The crystallinity was measured using a powder X-ray diffractometer.

(3)結果
実施例であるNo.1〜4、6、8、10の試料は、表層においてアルカリ金属イオンの濃度勾配が認められた。具体的には、Kイオンについては、表面から深さ20〜40μmにかけて濃度が低下し、それより深い場所では濃度がほぼ一定であった。一方、Naイオンについては、表面から深さ20〜40μmにかけて濃度が上昇し、それより深い場所では濃度がほぼ一定であった。すなわち、実施例の試料は、表層においてアルカリ金属イオンによるイオン交換層が形成されていることがわかる。このように、実施例であるNo.1〜4、6、8、10の試料は、表層にイオン交換層を有するため、3点曲げ強度が341MPa以上と高かった。
(3) Result No. which is an example. In the samples 1 to 4, 6, 8, and 10, a concentration gradient of alkali metal ions was observed on the surface layer. Specifically, the concentration of K + ions decreased from the surface to a depth of 20 to 40 μm, and the concentration was substantially constant at a deeper location. On the other hand, the concentration of Na + ions increased from the surface to a depth of 20 to 40 μm, and the concentration was substantially constant at a deeper location. That is, it can be seen that the sample of the example has an ion exchange layer formed of alkali metal ions on the surface layer. In this way, No. 1 as an example. Since the samples 1-4, 6, 8, and 10 have an ion exchange layer on the surface layer, the three-point bending strength was as high as 341 MPa or more.

一方、比較例であるNo.5、7、9、11及び12の試料は、表面から内部にかけて、Kイオン濃度及びNaイオン濃度が一定であり、濃度勾配が認められなかった。すなわち、これらの試料には、表層にイオン交換層が形成されていなかった。そのため、これらの試料は3点曲げ強度が230MPa以下と低かった。なお、No.13の試料は、表層においてアルカリ金属イオンの濃度勾配が認められ、イオン交換層が形成されていたものの、バルク状ガラスのためNo.10の試料より3点曲げ強度が低かった。 On the other hand, No. which is a comparative example. In the samples 5, 7, 9, 11 and 12, the K + ion concentration and the Na + ion concentration were constant from the surface to the inside, and no concentration gradient was observed. That is, in these samples, an ion exchange layer was not formed on the surface layer. Therefore, these samples had a three-point bending strength as low as 230 MPa or less. In addition, No. In the sample No. 13, a concentration gradient of alkali metal ions was observed on the surface layer, and an ion exchange layer was formed. Three-point bending strength was lower than 10 samples.

1 ガラス部材
2 ガラスマトリクス
3 セラミック粉末
1 Glass member 2 Glass matrix 3 Ceramic powder

Claims (7)

ガラス粉末焼結体からなり、表層にイオン交換層を有することを特徴とするガラス部材。   A glass member comprising a glass powder sintered body and having an ion exchange layer on a surface layer. イオン交換層において、相対的にイオン半径の大きいアルカリ金属イオンまたはアルカリ土類金属イオンの濃度が、ガラス部材の表面から内部にかけて低下し、かつ、相対的にイオン半径の小さいアルカリ金属イオンまたはアルカリ土類金属イオンの濃度が、ガラス部材の表面から内部にかけて上昇することを特徴とする請求項1に記載のガラス部材。   In the ion exchange layer, the concentration of alkali metal ions or alkaline earth metal ions having a relatively large ionic radius decreases from the surface of the glass member to the inside, and alkali metal ions or alkaline earth having a relatively small ionic radius. The glass member according to claim 1, wherein the concentration of the metal-like ions increases from the surface of the glass member to the inside. イオン交換層において、Kイオン濃度が、ガラス部材の表面から内部にかけて低下し、かつ、Naイオン濃度が、ガラス部材の表面から内部にかけて上昇することを特徴とする請求項2に記載のガラス部材。 The glass according to claim 2, wherein in the ion exchange layer, the K + ion concentration decreases from the surface of the glass member to the inside, and the Na + ion concentration increases from the surface of the glass member to the inside. Element. ガラス粉末が、モル%で、SiO 30〜80%、B 0〜30%、及びLiO+NaO+KO 0.1〜40%を含有することを特徴とする請求項1〜3のいずれか一項に記載のガラス部材。 Glass powder, in mol%, SiO 2 30~80%, B 2 O 3 0~30%, and Li 2 O + Na 2 O + K 2 O , characterized in that it contains 0.1 to 40% claim 1 The glass member according to any one of 3. ガラス粉末が、さらにモル%で、LiO 0〜30%、NaO 0〜30%、KO 0〜30%、MgO 0〜30%、CaO 0〜30%、SrO 0〜30%、BaO 0〜30%、Al 0〜30%、及びZnO 0〜25%を含有することを特徴とする請求項4に記載のガラス部材。 Glass powder, in addition mol%, Li 2 O 0~30%, Na 2 O 0~30%, K 2 O 0~30%, 0~30% MgO, CaO 0~30%, SrO 0~30% , BaO 0~30%, Al 2 O 3 0~30%, and a glass member according to claim 4, characterized in that it contains 0 to 25% ZnO. セラミック粉末を含有することを特徴とする請求項1〜5に記載のガラス部材。   The glass member according to claim 1, comprising ceramic powder. 請求項1〜6のいずれか一項に記載のガラス部材を製造するための方法であって、ガラス粉末を含む原料粉末を焼成して焼結体を得る工程、及び、焼結体に対してイオン交換処理を施す工程、を含むことを特徴とするガラス部材の製造方法。   It is a method for manufacturing the glass member as described in any one of Claims 1-6, Comprising: The process of baking the raw material powder containing glass powder, and obtaining a sintered compact, and a sintered compact And a step of performing an ion exchange treatment.
JP2013118470A 2013-06-05 2013-06-05 Glass member Active JP6315399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013118470A JP6315399B2 (en) 2013-06-05 2013-06-05 Glass member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013118470A JP6315399B2 (en) 2013-06-05 2013-06-05 Glass member

Publications (2)

Publication Number Publication Date
JP2014234341A true JP2014234341A (en) 2014-12-15
JP6315399B2 JP6315399B2 (en) 2018-04-25

Family

ID=52137300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013118470A Active JP6315399B2 (en) 2013-06-05 2013-06-05 Glass member

Country Status (1)

Country Link
JP (1) JP6315399B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105837031A (en) * 2016-03-03 2016-08-10 深圳市力沣实业有限公司 High-strength chemically-strengthened glass and glass strengthening method
CN106430927A (en) * 2016-08-30 2017-02-22 江苏潮华玻璃制品有限公司 Glass bottle water resistance first-level control process
JPWO2016208671A1 (en) * 2015-06-23 2018-04-12 旭硝子株式会社 Fired molded body and method for producing the same, article provided with the fired molded body, material for fired molded body, and molded body before firing and method for producing the same
WO2018198968A1 (en) * 2017-04-27 2018-11-01 Agc株式会社 Glass ceramic composite for chemical strengthening, chemically strengthened glass ceramic composite, and method for producing same
DE202018107043U1 (en) 2018-12-10 2018-12-20 Hiwin Technologies Corp. transmission
DE102020108867A1 (en) 2020-03-31 2021-09-30 Schott Ag Melting jar and its use
JP2021187688A (en) * 2020-05-26 2021-12-13 日本電気硝子株式会社 Composite powder, granular powder, tablet, sintered sheet and sintered body
US20220024817A1 (en) * 2018-12-21 2022-01-27 Corning Incorporated Strengthened 3d printed surface features and methods of making the same
CN114315170A (en) * 2020-10-10 2022-04-12 科立视材料科技有限公司 Antibacterial impact-resistant safety glass and preparation method thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953907A (en) * 1972-09-28 1974-05-25
JPS5186512A (en) * 1975-01-28 1976-07-29 Mitsubishi Heavy Ind Ltd SERAMITSUKUSUNOKYOKAHOHO
JPS58151476A (en) * 1982-02-28 1983-09-08 Matsushita Electric Works Ltd Manufacture of enameled product
US4438210A (en) * 1982-12-20 1984-03-20 Corning Glass Works Transparent colorless glass-ceramics especially suitable for use as stove windows
JPS60254697A (en) * 1984-05-31 1985-12-16 富士通株式会社 Method of producing multilayer ceramic circuit board
JPS62241830A (en) * 1986-04-15 1987-10-22 Seiko Epson Corp Production of temperated glass
JPS63151647A (en) * 1986-12-16 1988-06-24 Fujitsu Ltd Reinforcement of ceramic-glass composite material
JPS63162568A (en) * 1986-12-25 1988-07-06 富士通株式会社 Glass-ceramic composite body
JPH06166539A (en) * 1992-11-30 1994-06-14 Nippon Sheet Glass Co Ltd Production of sintered compact of crystallized glass powder
JPH10275963A (en) * 1997-03-31 1998-10-13 Kyocera Corp Wiring board for high frequency
JP2011210911A (en) * 2010-03-30 2011-10-20 Nippon Electric Glass Co Ltd Method for manufacturing semiconductor light emitting element device
WO2014081647A1 (en) * 2012-11-20 2014-05-30 Corning Incorporated Method of making three dimensional glass ceramic article
JP2014234487A (en) * 2013-06-05 2014-12-15 日本電気硝子株式会社 Wavelength conversion member and light-emitting device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953907A (en) * 1972-09-28 1974-05-25
JPS5186512A (en) * 1975-01-28 1976-07-29 Mitsubishi Heavy Ind Ltd SERAMITSUKUSUNOKYOKAHOHO
JPS58151476A (en) * 1982-02-28 1983-09-08 Matsushita Electric Works Ltd Manufacture of enameled product
US4438210A (en) * 1982-12-20 1984-03-20 Corning Glass Works Transparent colorless glass-ceramics especially suitable for use as stove windows
JPS60254697A (en) * 1984-05-31 1985-12-16 富士通株式会社 Method of producing multilayer ceramic circuit board
JPS62241830A (en) * 1986-04-15 1987-10-22 Seiko Epson Corp Production of temperated glass
JPS63151647A (en) * 1986-12-16 1988-06-24 Fujitsu Ltd Reinforcement of ceramic-glass composite material
JPS63162568A (en) * 1986-12-25 1988-07-06 富士通株式会社 Glass-ceramic composite body
JPH06166539A (en) * 1992-11-30 1994-06-14 Nippon Sheet Glass Co Ltd Production of sintered compact of crystallized glass powder
JPH10275963A (en) * 1997-03-31 1998-10-13 Kyocera Corp Wiring board for high frequency
JP2011210911A (en) * 2010-03-30 2011-10-20 Nippon Electric Glass Co Ltd Method for manufacturing semiconductor light emitting element device
WO2014081647A1 (en) * 2012-11-20 2014-05-30 Corning Incorporated Method of making three dimensional glass ceramic article
JP2014234487A (en) * 2013-06-05 2014-12-15 日本電気硝子株式会社 Wavelength conversion member and light-emitting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T.S.SHEU ET AL.: ""Fracture strength of ion-exchange silicate-containing dental glass ceramics"", JOURNAL OF MATERIALS SCIENCE, vol. Volume 42, Issue 6, JPN6017024184, March 2007 (2007-03-01), US, pages 2064 - 2069, ISSN: 0003737603 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016208671A1 (en) * 2015-06-23 2018-04-12 旭硝子株式会社 Fired molded body and method for producing the same, article provided with the fired molded body, material for fired molded body, and molded body before firing and method for producing the same
CN105837031A (en) * 2016-03-03 2016-08-10 深圳市力沣实业有限公司 High-strength chemically-strengthened glass and glass strengthening method
CN106430927A (en) * 2016-08-30 2017-02-22 江苏潮华玻璃制品有限公司 Glass bottle water resistance first-level control process
WO2018198968A1 (en) * 2017-04-27 2018-11-01 Agc株式会社 Glass ceramic composite for chemical strengthening, chemically strengthened glass ceramic composite, and method for producing same
DE202018107043U1 (en) 2018-12-10 2018-12-20 Hiwin Technologies Corp. transmission
US20220024817A1 (en) * 2018-12-21 2022-01-27 Corning Incorporated Strengthened 3d printed surface features and methods of making the same
DE102020108867A1 (en) 2020-03-31 2021-09-30 Schott Ag Melting jar and its use
JP2021187688A (en) * 2020-05-26 2021-12-13 日本電気硝子株式会社 Composite powder, granular powder, tablet, sintered sheet and sintered body
CN114315170A (en) * 2020-10-10 2022-04-12 科立视材料科技有限公司 Antibacterial impact-resistant safety glass and preparation method thereof

Also Published As

Publication number Publication date
JP6315399B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
JP6315399B2 (en) Glass member
CN110546115A (en) Chemically strengthened glass and glass for chemical strengthening
JP5263112B2 (en) Ceramic raw material composition
KR102588721B1 (en) Wavelength conversion member, and light emitting device using same
KR102422065B1 (en) Wavelength conversion member and light emitting device using same
TW201726575A (en) Chemically strengthened glass, and glass for chemical strengthening
JP2014234487A (en) Wavelength conversion member and light-emitting device
JP5633114B2 (en) SnO-P2O5 glass used for phosphor composite material
KR20150031268A (en) Crystalline glass substrate, crystallized glass substrate, diffusion plate, and illumination device provided with same
CN114929641A (en) Chemically strengthened glass article and method for producing same
KR102242189B1 (en) Composite powder, green sheet, light reflective substrate, and light emitting device using these
JP6902199B2 (en) Wavelength conversion member and light emitting device using it
JP6249218B2 (en) Glass manufacturing method and glass
JP6955190B2 (en) Glass member and its manufacturing method
WO2006070686A1 (en) Glass set for preparation of front substrate of plasma display panel
WO2020246274A1 (en) Glass, chemically tempered glass, and method for producing same
JP2016102051A (en) Luminous glass composite and manufacturing method therefor
JP2005068008A (en) Electronic circuit board
JP7382013B2 (en) Wavelength conversion member and light emitting device using the same
WO2016117406A1 (en) Phase-separated glass
JP2023164073A (en) split phase glass
WO2023032936A1 (en) Crystallized glass, chemically strengthened glass and electronic device
WO2023032937A1 (en) Crystallized glass, method for producing same, chemically strengthened glass, and electronic device
CN116348424A (en) Adjustable glass composition with improved mechanical durability
JP2020066559A (en) Glass ceramic composite for chemical strengthening, chemically strengthened glass ceramic composite and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180305

R150 Certificate of patent or registration of utility model

Ref document number: 6315399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180318