JP2000327428A - Low temperature sintering glass ceramic and its production - Google Patents
Low temperature sintering glass ceramic and its productionInfo
- Publication number
- JP2000327428A JP2000327428A JP11134147A JP13414799A JP2000327428A JP 2000327428 A JP2000327428 A JP 2000327428A JP 11134147 A JP11134147 A JP 11134147A JP 13414799 A JP13414799 A JP 13414799A JP 2000327428 A JP2000327428 A JP 2000327428A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- low
- glass
- sio
- firing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0036—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
- C03C10/0045—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0036—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C14/00—Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
- C03C14/004—Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/14—Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2214/00—Nature of the non-vitreous component
- C03C2214/20—Glass-ceramics matrix
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Dispersion Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、低抵抗導体である
Au、AgやCu等と同時焼成が可能な低温焼成無機組
成物に関するものであり、特にマイクロ波及びミリ波帯
領域の周波数において低い誘電率及び低い誘電損失を有
し、マイクロ波及びミリ波回路用多層配線基板の絶縁層
として好適な低温焼成ガラスセラミックスに関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-temperature fired inorganic composition which can be fired simultaneously with low-resistance conductors such as Au, Ag, and Cu. The present invention relates to a low-temperature fired glass ceramic having a dielectric constant and a low dielectric loss and suitable as an insulating layer of a multilayer wiring board for microwave and millimeter wave circuits.
【0002】[0002]
【従来の技術】低温焼成ガラスセラミックス多層配線基
板は、配線の多層化、微細配線による高密度化、小型化
が可能であり、低抵抗であるAu、AgやCuといった
導体を配線材料に選択でき、絶縁層の低誘電率化によっ
て信号伝播の高速化が可能なこと等から、電子機器の高
性能化に有効な手段として開発が進められてきた。更
に、キャビティ構造やヴィアホールの高密度配置による
高周波アナログ回路の電磁気的シールドが可能であるこ
とから、複数のMMICを実装したモジュールの小型
化、高性能化が可能であり、マイクロ波帯領域の高周波
アナログ回路を含む通信機器モジュール等の開発が行わ
れてきた。2. Description of the Related Art A low-temperature fired glass-ceramic multilayer wiring board is capable of multi-layer wiring, high-density wiring, and miniaturization by fine wiring, and is capable of selecting a conductor having low resistance, such as Au, Ag, or Cu, as a wiring material. Since signal propagation can be accelerated by lowering the dielectric constant of the insulating layer, development has been promoted as an effective means for improving the performance of electronic devices. Furthermore, since the high-frequency analog circuit can be electromagnetically shielded by the cavity structure and the high-density arrangement of via holes, it is possible to reduce the size and performance of the module in which a plurality of MMICs are mounted. Development of communication equipment modules including high-frequency analog circuits has been carried out.
【0003】[0003]
【発明が解決しようとする課題】高周波アナログ回路を
含む通信機器の分野においては、マイクロ波領域ばかり
ではなく更に高周波領域であるミリ波帯のシステム利用
が期待されてきている。このような超高周波領域のアナ
ログ回路を搭載するモジュールにおいては、信号の伝送
損失を抑えることが必須であり、したがって、ガラスセ
ラミックス多層配線基板には、絶縁層材料の更なる低誘
電損失化、導体材料の低抵抗化が求められている。In the field of communication equipment including high-frequency analog circuits, use of systems in the millimeter-wave band, which is not only the microwave region but also in the high-frequency region, has been expected. In a module equipped with an analog circuit in such an ultra-high frequency range, it is essential to suppress signal transmission loss. Therefore, a glass ceramic multilayer wiring board is required to further reduce the dielectric loss of the insulating layer material and to reduce the conductor loss. There is a demand for low resistance materials.
【0004】本発明の目的は、1000℃以下の温度で
焼成可能、すなわちAu、Ag、Cuといった低抵抗導
体の同時焼成による内装化、多層化が可能であり、マイ
クロ波及びミリ波領域の周波数において低誘電率かつ低
誘電損失の高周波アナログ回路搭載用多層配線基板の絶
縁層に好適な低温焼成ガラスセラミックスを提供するこ
とにある。An object of the present invention is to enable firing at a temperature of 1000 ° C. or lower, that is, simultaneous firing of low-resistance conductors such as Au, Ag, and Cu for interiorization and multi-layering, and for frequencies in the microwave and millimeter wave regions. Another object of the present invention is to provide a low-temperature fired glass ceramic suitable for an insulating layer of a multilayer wiring board for mounting a high-frequency analog circuit having a low dielectric constant and a low dielectric loss.
【0005】[0005]
【課題を解決するための手段】本発明者等は、従来の低
温焼成ガラスセラミックスにおける上記課題を解決する
為に、種々のガラス組成の検討を行った結果、SiO2
−CaO−Al2O3系ガラスは、一定組成範囲におい
て、各種セラミックスとの複合体乃至は単体で、100
0℃以下の焼成温度で焼結可能であるとともに、焼成過
程で結晶化して低誘電率、低誘電損失を示すことを見い
だした。The present inventors have SUMMARY OF THE INVENTION As a result of in order to solve the above problems of the conventional low-temperature firing glass-ceramic was investigated of various glass compositions, SiO 2
-CaO-Al 2 O 3 based glass in certain composition range, a complex with various ceramics or by itself, 100
It has been found that sintering can be carried out at a firing temperature of 0 ° C. or less, and that the crystallization takes place during the firing process to show a low dielectric constant and a low dielectric loss.
【0006】すなわち、本発明の要旨とするところは、
(1) 酸化物換算にしてSiO210〜45重量%、
CaO20〜50重量%、Al2O320〜45重量
%、MgO0.1〜5重量%、SrO0.1〜5重量
%、BaO0.1〜5重量%、TiO20.1〜5重量
%、ZnO0.1〜5重量%、ZrO20.1〜5重量
%、及び1A族元素酸化物0〜3重量%からなる組成を
有するSiO2−CaO−Al2O3系ガラスであっ
て、800〜1000℃の焼成温度の焼成過程において
緻密化することを特徴とする低温焼成ガラスセラミック
ス、(2) SiO2−CaO−Al2O3系ガラス中
にセラミックス粒子が分散した複合体であって、該ガラ
スが酸化物換算にしてSiO210〜45重量%、Ca
O20〜50重量%、Al2O320〜45重量%、M
gO0.1〜5重量%、SrO0.1〜5重量%、Ba
O0.1〜5重量%、TiO20.1〜5重量%、Zn
O0.1〜5重量%、ZrO20.1〜5重量%、及び
1A族元素酸化物0〜3重量%からなる組成を有すると
ともに、800〜1000℃の焼成温度の焼成過程にお
いて緻密化することを特徴とする低温焼成ガラスセラミ
ックス、(3) 前記1A族元素酸化物が、Na2O、
K2O、及びLi2Oから選ばれる1種類以上であるこ
とを特徴とする、上記(1)項又は(2)項に記載の低
温焼成ガラスセラミックス、(4) 前記複合体中の前
記セラミックス粒子の比率が、重量比率にして10〜5
0重量%であることを特徴とする、上記(2)項又は
(3)項に記載の低温焼成ガラスセラミックス、(5)
前記セラミックス粒子が、Al2O3(Alumina)、
SiO2(Silica)、Mg2Al4Si5O18(Cord
ierite)、Mg2SiO4(Forsterite)及びAl6S
i2O13(Mullite)から選ばれる1種類以上である
ことを特徴とする、上記(2)、(3)乃至(4)項の
いずれか1項に記載の低温焼成ガラスセラミックス、
(6) 前記焼成過程においてCaAl2SiO6、C
a3Si2O7(Rankinite)、CaSiO3(Wollast
onite)、及びAl6Si2O13(Mullite)のうち、
いずれか1種類以上の結晶が析出することを特徴とす
る、上記(1)、(2)、(3)、(4)乃至(5)項
のいずれか1項に記載の低温焼成ガラスセラミックス、
(7) (A)重量百分率で、SiO2ーCaO―Al
2O3系ガラス粉末50〜100重量%、セラミックス
粉末0〜50重量%からなる混合粉末よりグリーンシー
トを作製する成膜工程と、(B)前記グリーンシートを
積層して、熱プレスすることにより一体化する積層工程
と、(C)前記積層工程を経て得られた積層体を800
〜1000℃の温度範囲で焼成して焼結体を作製する焼
成工程とを有する低温焼成ガラスセラミックスの製造方
法であって、該ガラスが酸化物換算にしてSiO210
〜45重量%、CaO20〜50重量%、Al2O32
0〜45重量%、MgO0.1〜5重量%、SrO0.
1〜5重量%、BaO0.1〜5重量%、TiO20.
1〜5重量%、ZnO0.1〜5重量%、ZrO20.
1〜5重量%、及び1A族元素酸化物0〜3重量%から
なる組成を有することを特徴とする低温焼成ガラスセラ
ミックスの製造方法、(8) 前記1A族元素酸化物
が、Na2O、K2O、及びLi2Oから選ばれる1種
類以上であることを特徴とする、上記(7)項に記載の
低温焼成ガラスセラミックスの製造方法、(9) 前記
セラミックス粒子が、Al2O3(Alumina)、SiO
2(Silica)、Mg2Al4Si5O18(Cordierit
e)、Mg2SiO4(Forsterite)、CaAl2Si
O7、Ca3Si2O7(Rankinite)、CaSiO3
(Wollastonite)、及びAl6Si2O13(Mullit
e)から選ばれる1種類以上であることを特徴とする、
上記(7)又は(8)項に記載の低温焼成ガラスセラミ
ックスの製造方法、(10) 前記焼成工程においてC
aAl2SiO6、Ca3Si2O7(Rankinite)、
CaSiO3(Wollastonite)、及びAl6Si2O
13(Mullite)のうち、いずれか1種類以上の結晶が
析出することを特徴とする、上記(7)、(8)乃至
(9)項ののいずれか1項に記載の低温焼成ガラスセラ
ミックスの製造方法、にある。That is, the gist of the present invention is as follows.
(1) 10 to 45% by weight of SiO 2 in terms of oxide;
CaO20~50 wt%, Al 2 O 3 20 to 45 wt%, MgO0.1~5 wt%, SrO0.1~5 wt%, BaO0.1~5 wt%, TiO 2 0.1 to 5% by weight, ZnO0.1~5 wt%, a SiO 2 -CaO-Al 2 O 3 based glass having ZrO 2 0.1 to 5 wt%, and a composition comprising a group 1A element oxide 0-3% by weight, 800 low-temperature firing glass-ceramic, characterized in that the densification in the firing process of firing temperature to 1000 ° C., a composite ceramic particles are dispersed in (2) SiO 2 -CaO-Al 2 O 3 based glass, The glass is 10 to 45% by weight of SiO 2 in terms of oxide, Ca
O 20 to 50% by weight, Al 2 O 3 20 to 45% by weight, M
gO 0.1-5% by weight, SrO 0.1-5% by weight, Ba
O 0.1-5% by weight, TiO 2 0.1-5% by weight, Zn
O0.1~5 wt%, ZrO 2 0.1 to 5 wt%, and which has a composition consisting of Group 1A element oxide 0-3% by weight, densification in the firing process of firing temperature 800 to 1000 ° C. (3) the group 1A element oxide is Na 2 O,
The low-temperature fired glass ceramic according to the above item (1) or (2), wherein the ceramic is at least one selected from K 2 O and Li 2 O, (4) the ceramic in the composite The ratio of the particles is 10 to 5 by weight.
(5) the low-temperature fired glass ceramic according to the above (2) or (3), which is 0% by weight.
The ceramic particles are Al 2 O 3 (Alumina),
SiO 2 (Silica), Mg 2 Al 4 Si 5 O 18 (Cord
ierite), Mg 2 SiO 4 (Forsterite) and Al 6 S
The low-temperature fired glass ceramic according to any one of the above (2), (3) to (4), wherein the glass ceramic is at least one selected from i 2 O 13 (Mullite).
(6) CaAl 2 SiO 6 , C
a 3 Si 2 O 7 (Rankinite), CaSiO 3 (Wollast
onite) and Al 6 Si 2 O 13 (Mullite)
The low-temperature fired glass ceramic according to any one of the above (1), (2), (3), (4) to (5), wherein one or more types of crystals are precipitated.
(7) (A) SiO 2 —CaO—Al in weight percentage
A film forming step of producing a green sheet from a mixed powder composed of 50 to 100% by weight of 2 O 3 glass powder and 0 to 50% by weight of a ceramic powder; and (B) laminating the green sheets and hot pressing. (C) laminating the laminated body obtained through the laminating step to 800
A method of manufacturing a low-temperature firing glass-ceramic having a firing step of preparing a baked sintered body in a temperature range of ~1000 ℃, SiO 2 10 the glass is in the oxide equivalent
45 wt%, CaO20~50 wt%, Al 2 O 3 2
0 to 45% by weight, 0.1 to 5% by weight of MgO, 0.
1 to 5% by weight, 0.1 to 5% by weight of BaO, TiO 2 .
1 to 5% by weight, ZnO 0.1 to 5% by weight, ZrO 2 0.
1 to 5% by weight, and a method of manufacturing low-temperature firing glass-ceramics and having a composition consisting of Group 1A element oxide 0-3% by weight, (8) the Group 1A element oxides, Na 2 O, and characterized in that K 2 O, and one or more selected from Li 2 O, (7) the method of manufacturing low-temperature firing glass-ceramic according to terms, (9) the ceramic particles, Al 2 O 3 (Alumina), SiO
2 (Silica), Mg 2 Al 4 Si 5 O 18 (Cordierit
e), Mg 2 SiO 4 (Forsterite), CaAl 2 Si
O 7 , Ca 3 Si 2 O 7 (Rankinite), CaSiO 3
(Wollastonite), and Al 6 Si 2 O 13 (Mullit
e) one or more types selected from the group consisting of:
(7) The method for producing a low-temperature fired glass ceramic according to the above (7) or (8), (10) In the firing step, C is used.
aAl 2 SiO 6 , Ca 3 Si 2 O 7 (Rankinite),
CaSiO 3 (Wollastonite) and Al 6 Si 2 O
13 (Mullite), wherein one or more kinds of crystals are precipitated, and the low-temperature fired glass ceramics according to any one of the above (7), (8) to (9) is characterized in that Manufacturing method.
【0007】本発明の低温焼成ガラスセラミックスによ
れば、低抵抗導体を配線材料とする高周波特性に優れた
多層配線基板を得ることが可能となる。According to the low-temperature fired glass ceramics of the present invention, it is possible to obtain a multilayer wiring board excellent in high frequency characteristics using a low-resistance conductor as a wiring material.
【0008】[0008]
【発明の実施形態】本発明の低温焼成ガラスセラミック
スは、酸化物換算にしてSiO210〜45重量%、C
aO20〜50重量%、Al2O320〜45重量%、
MgO0.1〜5重量%、SrO0.1〜5重量%、B
aO0.1〜5重量%、TiO20.1〜5重量%、Z
nO0.1〜5重量%、ZrO20.1〜5重量%及び
1A族元素酸化物0〜3重量%からなる組成を有するS
iO2−CaO−Al2O3系ガラス乃至は上記ガラス
にセラミックス粒子が分散した複合体からなることを特
徴とする。該組成のSiO2−CaO−Al2O3系ガ
ラスは単体乃至はセラミックス粒子との複合体で800
〜1000℃の温度において焼成が可能であり、Au、
Ag、Cuといった低融点低抵抗導体を内層配線材料と
する多層配線基板を作製することが可能となる。また、
該組成のSiO2−CaO−Al2O3系ガラスは低い
誘電率と低誘電損失である特性を併せ持ち、高周波回路
搭載用多層配線基板の絶縁層には好適である。BEST MODE FOR CARRYING OUT THE INVENTION The low-temperature fired glass ceramic of the present invention has a SiO 2 content of 10 to 45% by weight,
aO20~50 wt%, Al 2 O 3 20 to 45 wt%,
MgO 0.1-5% by weight, SrO 0.1-5% by weight, B
aO 0.1 to 5% by weight, TiO 2 0.1 to 5% by weight, Z
nO0.1~5 wt%, S having a composition consisting of ZrO 2 0.1 to 5 wt% and a Group 1A element oxide 0-3 wt%
iO 2 -CaO-Al 2 O 3 based glass or is characterized by comprising a composite ceramic particles are dispersed in the glass. The SiO 2 —CaO—Al 2 O 3 system glass having the composition is 800 alone or in a composite with ceramic particles.
It can be fired at a temperature of 10001000 ° C., and Au,
It is possible to manufacture a multilayer wiring board using a low-melting-point low-resistance conductor such as Ag or Cu as an inner wiring material. Also,
The SiO 2 —CaO—Al 2 O 3 system glass having this composition has both low dielectric constant and low dielectric loss characteristics, and is suitable for an insulating layer of a multilayer wiring board for mounting a high-frequency circuit.
【0009】更に組成について詳しく述べる。該組成の
ガラスは前述の組成範囲において1000℃以下の温度
での焼成が可能となるが、特にMgO、SrO、Ba
O、TiO2、ZnO及びZrO2をそれぞれ0.1〜
5重量%添加すると軟化点が低くなり、焼成可能な温度
域が低くなり、低温焼成には好適である。しかしなが
ら、これらの多量な添加は本発明の低温焼成ガラスセラ
ミックスの一つの特徴である低誘電損失を損ない、誘電
損失を増大させることになる。従って、その添加量はそ
れぞれ5重量%以下である必要がある。一方、添加量を
少なくすると焼成可能な温度が高くなり、1000℃以
下の焼成を困難にする。従って、その添加は0.1重量
%以上が必要である。特に、0.5重量%以上2重量%
以下の添加は、焼成可能な温度を900℃前後とするこ
とが可能となり、好適である。Further, the composition will be described in detail. Glass having this composition can be fired at a temperature of 1000 ° C. or less in the above-mentioned composition range, and in particular, MgO, SrO, Ba
0.1~ O, TiO 2, ZnO and ZrO 2, respectively
Addition of 5% by weight lowers the softening point, lowers the sinterable temperature range, and is suitable for low-temperature sintering. However, these large amounts impair the low dielectric loss, which is one characteristic of the low-temperature fired glass ceramics of the present invention, and increase the dielectric loss. Therefore, the amount of each of them must be 5% by weight or less. On the other hand, when the amount of addition is small, the temperature at which sintering can be performed increases, and sintering at 1000 ° C. or lower becomes difficult. Therefore, its addition needs to be 0.1% by weight or more. In particular, 0.5% by weight or more and 2% by weight
The following additions make it possible to set the sinterable temperature to around 900 ° C., which is preferable.
【0010】また、1A族元素酸化物は添加することに
よりガラスの軟化点を低下させる効果が著しく、焼成温
度を低下させるのには有効であるが、誘電損失の増大も
大きい。従って、その添加は3重量%以下である必要が
あり、好適には1重量%以下の添加が望ましい。The addition of a Group 1A element oxide has a remarkable effect of lowering the softening point of glass, and is effective in lowering the firing temperature, but also greatly increases the dielectric loss. Therefore, the addition must be 3% by weight or less, and preferably 1% by weight or less.
【0011】また、上記した組成のガラスをセラミック
ス粒子との複合体として用いると、セラミックス粒子の
選別により材料強度の強化、誘電率、誘電損失や熱膨張
率の変更が可能となり有用であるが、その比率はセラミ
ックス粒子50重量%以下であることが望ましい。それ
以上の比率では1000℃以下での焼成が著しく困難と
なるからである。更に10重量%以上30重量%以下の
配合比率が、材料強度の強化には有効であることから好
適である。また、該セラミックス粒子は、アルミナ、シ
リカ、ムライト、コーディエライト、フォルステライト
等何れでも良いが、低誘電率、低誘電損失であるもの
が、誘電特性を劣化させないために好ましい。When the glass having the above-mentioned composition is used as a composite with ceramic particles, the material strength can be enhanced and the dielectric constant, dielectric loss and thermal expansion coefficient can be changed by selecting the ceramic particles, which is useful. The ratio is desirably 50% by weight or less of the ceramic particles. If the ratio is higher than the above, firing at 1000 ° C. or lower becomes extremely difficult. Further, a blending ratio of 10% by weight or more and 30% by weight or less is preferable because it is effective for enhancing the material strength. The ceramic particles may be any of alumina, silica, mullite, cordierite, forsterite and the like, but those having a low dielectric constant and a low dielectric loss are preferable because they do not deteriorate the dielectric properties.
【0012】上記した組成のガラスは、800〜100
0℃の温度範囲での焼成過程においてCaAl2SiO
6、Ca3Si2O7(Rankinite)、CaSiO3(W
ollastonite)、乃至はAl6Si2O13(Mullite)
の結晶を析出する。これら結晶の析出はガラス組成、焼
成条件により状態が異なるが、誘電損失の低減、材料強
度の強化には有効に作用する。The glass having the above-mentioned composition is 800 to 100
In the firing process in a temperature range of 0 ° C., CaAl 2 SiO
6 , Ca 3 Si 2 O 7 (Rankinite), CaSiO 3 (W
ollastonite) or Al 6 Si 2 O 13 (Mullite)
The crystals of are precipitated. The state of precipitation of these crystals differs depending on the glass composition and firing conditions, but it effectively acts to reduce dielectric loss and strengthen material strength.
【0013】本発明の低温焼成ガラスセラミックスを用
いて多層配線基板を製造する場合、グリーンシート積層
法が有効である。平均粒径がサブミクロンから数ミクロ
ン程度である上記した組成のガラス粉末と可塑剤、バイ
ンダーを分散媒となる溶剤に添加、混合してスラリーと
し、これをスリップキャスティング成膜法等によりグリ
ーンシートとする。ガラス粉末の粒径は、焼成温度、焼
成前後の収縮率、前述のスラリー作製時における各種有
機ビヒクルの添加量等と関係してくるが、平均粒径1〜
3μm程度が取り扱い易い。また、本発明の低温焼成ガ
ラスセラミックスをセラミックス粒子との複合体として
使用する場合は、添加するセラミックス粒子は平均粒径
をサブミクロンから数ミクロンとして用いて良いが、前
述のガラス粉末と同様、その粒径が各種因子に影響す
る。平均粒径が0.5〜2μm程度であると、材料強度
に有効であり好適である。グリーンシートにヴィア導体
や回路、キャビティ等を形成して、これら加工したグリ
ーンシートを積層して熱プレスを行って一体化した後、
800〜1000℃の温度範囲で焼成することにより多
層配線基板を得ることができる。この焼成過程において
上記組成のガラスは、焼成条件やガラス組成等により異
なるが、各種結晶を析出する。これにより、更に絶縁層
の低損失化、基板強度の強化が可能となり、高周波回路
搭載に好適な多層配線基板を得ることが可能となる。When manufacturing a multilayer wiring board using the low-temperature fired glass ceramic of the present invention, a green sheet laminating method is effective. A glass powder of the above composition having an average particle diameter of about several microns to submicron and a plasticizer, a binder are added to a solvent serving as a dispersion medium, mixed to form a slurry, and this is formed into a green sheet by a slip casting film forming method or the like. I do. The particle size of the glass powder is related to the firing temperature, the shrinkage ratio before and after firing, the amount of various organic vehicles added during the above-mentioned slurry preparation, and the like.
About 3 μm is easy to handle. When the low-temperature fired glass ceramic of the present invention is used as a composite with ceramic particles, the ceramic particles to be added may have an average particle size of submicron to several microns, but like the above-mentioned glass powder, Particle size affects various factors. When the average particle size is about 0.5 to 2 μm, it is effective and preferable for the material strength. After forming via conductors, circuits, cavities, etc. on the green sheet, laminating these processed green sheets, performing heat pressing and integrating them,
By firing in a temperature range of 800 to 1000 ° C., a multilayer wiring board can be obtained. In the firing process, the glass having the above composition precipitates various crystals depending on firing conditions, glass composition, and the like. As a result, it is possible to further reduce the loss of the insulating layer and enhance the strength of the substrate, and it is possible to obtain a multilayer wiring board suitable for mounting a high-frequency circuit.
【0014】[0014]
【実施例】以下に本発明をより更に具体的に説明する
が、本発明はその要旨を超えない限り、以下の実施例に
限定されるものではない。EXAMPLES The present invention will be described in more detail below, but the present invention is not limited to the following examples unless it exceeds the gist.
【0015】[実施例1]表1の組成に示すような組
成を有するガラスを製造し、アルコールを分散媒として
湿式粉砕を行った。アルコールを濾過乾燥した後、製粒
して平均粒径1μmの粒度を有するガラス粉末Aを得
た。同様に表1の組成、に示すような組成のガラス
を製造、製粒し、平均粒径1μmのガラス粉末B及びC
を得た。これらガラス粉末A、B及びCにそれぞれ有機
バインダー、可塑剤、分散媒となる溶剤を添加した後、
ボールミルで十分混練し、粘度3000〜10000c
psのスラリーを作製した。尚、有機バインダー、可塑
剤、溶媒等の有機ビヒクル類は、通常用いられているも
ので十分であり、その成分については特に限定を要しな
い。得られた各スラリーをスリップキャスティング成膜
法により100μmの厚みのグリーンシートとした。作
製した各グリーンシートをそれぞれ積層、熱プレスする
ことによりグリーンシート積層体A、B及びCとし、積
層体A及びBを900℃、積層体Cを1000℃で焼成
し、焼成体A、B及びCを得た。ここでグリーンシート
積層体A、B、Cと焼成体A、B、Cはガラス粉末A、
B、Cに対応する。各焼成体をX線回折法による結晶相
の同定を行ったところ、焼成体Aからは Rankinite、Wo
llastonite、CaAl2SiO6が同定された。同様に
焼成体Bからは Mullite 及びCaAl2SiO6が、
焼成体CからはCaAl2SiO6が同定された。ま
た、各焼成体の誘電特性は、各焼成体を直径約12m
m、高さ約5mmの円柱状に加工し、空洞共振器法によ
り誘電率、誘電正接を測定することで評価を行った。焼
成体A、B、Cの10GHz帯における誘電率は、それ
ぞれ 6、7、7、誘電正接は、それぞれ 0.001で
あり、低誘電率、低誘電損失であることが確認された。Example 1 A glass having a composition shown in Table 1 was produced, and wet pulverization was performed using alcohol as a dispersion medium. After filtering and drying the alcohol, the mixture was granulated to obtain glass powder A having an average particle size of 1 μm. Similarly, glass having the composition shown in Table 1 was produced and granulated, and glass powders B and C having an average particle diameter of 1 μm were produced.
I got After adding an organic binder, a plasticizer, and a solvent serving as a dispersion medium to these glass powders A, B, and C, respectively,
Knead well with ball mill, viscosity 3000 ~ 10000c
A ps slurry was made. As the organic vehicle such as an organic binder, a plasticizer, and a solvent, those commonly used are sufficient, and the components thereof are not particularly limited. Each of the obtained slurries was formed into a green sheet having a thickness of 100 μm by a slip casting method. Each of the produced green sheets is laminated and hot-pressed to form green sheet laminates A, B and C. The laminates A and B are fired at 900 ° C. and the laminate C is fired at 1000 ° C., and the fired bodies A, B and C was obtained. Here, the green sheet laminates A, B, and C and the fired bodies A, B, and C are glass powders A,
Corresponding to B and C. When the crystal phase of each fired body was identified by X-ray diffraction method, Rankinite, Wo
llastonite, CaAl 2 SiO 6 was identified. Similarly, Mullite and CaAl 2 SiO 6 are obtained from the fired body B,
From the fired body C, CaAl 2 SiO 6 was identified. The dielectric properties of each fired body were such that each fired body had a diameter of about 12 m.
The sample was processed into a cylindrical shape having a height of about 5 mm and a height of about 5 mm, and evaluated by measuring the dielectric constant and the dielectric loss tangent by a cavity resonator method. The dielectric constants of the fired bodies A, B, and C in the 10 GHz band were 6, 7, and 7, respectively, and the dielectric loss tangent was 0.001, respectively.
【0016】[実施例2]表1の組成に示す組成を有
するガラスを製造し、実施例1と同様の工程にて、平均
粒径約2μmの粒度を有するガラス粉末Dを得た。次
に、平均粒径1μmのコーディエライト粉末を、コーデ
ィエライト20重量%、ガラス粉末D80重量%となる
ように秤量し、分散媒としてアルコールを用い、ボール
ミルで3時間混合した後、アルコールを濾過乾燥させて
均質な混合粉末Dとした。同様に、表1の組成に示す
組成を有するガラス粉末E80重量%と平均粒径1μm
の非晶質石英粉末20重量%とからなる均質な混合粉末
Eを得た。これら混合粉末D、Eから、実施例1と同様
の工程にてグリーンシート積層体D、Eを作製し、それ
ぞれ950℃の焼成温度にて焼成を行い、焼成体D、E
を得た。空洞共振器法を用いて誘電特性を評価したとこ
ろ、10GHz帯において焼成体D、Eの誘電率は、そ
れぞれ5.5、6、誘電正接はそれぞれ0.001、
0.001であり、低誘電率、低誘電損失であることが
確認された。Example 2 A glass having the composition shown in Table 1 was produced, and a glass powder D having an average particle size of about 2 μm was obtained in the same process as in Example 1. Next, cordierite powder having an average particle diameter of 1 μm was weighed so that cordierite was 20% by weight and glass powder D was 80% by weight, and alcohol was used as a dispersion medium and mixed for 3 hours in a ball mill. The mixture was filtered and dried to obtain a homogeneous mixed powder D. Similarly, 80% by weight of glass powder E having the composition shown in Table 1 and an average particle size of 1 μm
To obtain a homogeneous mixed powder E composed of 20% by weight of an amorphous quartz powder. From these mixed powders D and E, green sheet laminates D and E were prepared in the same process as in Example 1, and baked at a firing temperature of 950 ° C., respectively.
I got When the dielectric properties were evaluated using the cavity resonator method, the dielectric constants of the fired bodies D and E in the 10 GHz band were 5.5 and 6, respectively, the dielectric loss tangent was 0.001, and the dielectric loss tangent was 0.001.
0.001, which was confirmed to be low dielectric constant and low dielectric loss.
【0017】[実施例3]表1の組成に示す組成を有
するガラスを作製し、実施例1と同様の工程にて、平均
粒径約1μmの粒度を有するガラス粉末とした。次に上
記ガラス粉末が70重量%、平均粒径約1μmのアルミ
ナ粉末が30重量%となるように秤量し、分散媒として
エタノールを用い、ボールミルで3時間混合した後、エ
タノールを濾過乾燥させて均質な混合粉末とした。得ら
れた混合粉末に有機バインダー、可塑剤、分散媒となる
溶剤を添加した後、ボールミルで十分混練して粘度が約
5000cpsのスラリーとし、スリップキャスティン
グ成膜法により厚み約100μmのグリーンシートを作
製した。作製したグリーンシートを所定の形状に打ち抜
いた後、各グリーンシートの所定の位置にヴィアホール
を形成し、該ヴィアホールにAuペーストを埋め込ん
だ。また、各グリーンシート上にAuペーストをスクリ
ーン印刷法により印刷することにより配線パターンを形
成した。配線導体としてはAuペーストの他に、Cuペ
ースト、CuOペースト、Agペースト、必要に応じて
PdやPtを添加したAgペースト等も用いられる。こ
うして作製されたグリーンシートを積層、熱プレスによ
り一体化して積層体を得た。該積層体を大気中、900
℃にて焼成して多層配線基板を得た。得られた多層配線
基板のマイクロストリップ線路部にて伝送特性を評価し
たところ、30GHzにおいて損失が0.1dB/mm
であり、高周波アナログ回路の搭載に適した多層配線基
板が得られたことが確認された。Example 3 A glass having the composition shown in Table 1 was prepared, and a glass powder having an average particle size of about 1 μm was obtained in the same process as in Example 1. Next, the above-mentioned glass powder was weighed so that 70% by weight of alumina powder and 30% by weight of alumina powder having an average particle diameter of about 1 μm were mixed using ethanol as a dispersion medium in a ball mill for 3 hours, and then ethanol was filtered and dried. A homogeneous mixed powder was obtained. After adding an organic binder, a plasticizer, and a solvent serving as a dispersion medium to the obtained mixed powder, the mixture is sufficiently kneaded with a ball mill to obtain a slurry having a viscosity of about 5000 cps, and a green sheet having a thickness of about 100 μm is formed by a slip casting film forming method. did. After punching the produced green sheet into a predetermined shape, a via hole was formed at a predetermined position of each green sheet, and an Au paste was embedded in the via hole. Further, a wiring pattern was formed by printing an Au paste on each green sheet by a screen printing method. As the wiring conductor, in addition to the Au paste, a Cu paste, a CuO paste, an Ag paste, an Ag paste to which Pd or Pt is added as necessary, or the like is used. The green sheets thus produced were laminated and integrated by hot pressing to obtain a laminate. The laminate is placed in air at 900
It was fired at ℃ to obtain a multilayer wiring board. When the transmission characteristics were evaluated in the microstrip line portion of the obtained multilayer wiring board, the loss was 0.1 dB / mm at 30 GHz.
It was confirmed that a multilayer wiring board suitable for mounting a high-frequency analog circuit was obtained.
【0018】[0018]
【表1】 [Table 1]
【0019】[0019]
【発明の効果】以上述べたように、本発明の低温焼成ガ
ラスセラミックスによれば、1000℃以下の温度で焼
成可能、すなわちAu、Ag、Cuといった低抵抗導体
の同時焼成による内装化が可能であり、かつマイクロ
波、ミリ波領域の周波数帯において低誘電率かつ低誘電
損失な絶縁層を有する高周波アナログ回路の搭載に好適
な多層配線基板を提供することができる。As described above, according to the low-temperature fired glass ceramics of the present invention, firing can be performed at a temperature of 1000 ° C. or less, that is, interiorization by simultaneous firing of low-resistance conductors such as Au, Ag, and Cu is possible. It is possible to provide a multilayer wiring board suitable for mounting a high-frequency analog circuit having an insulating layer having a low dielectric constant and a low dielectric loss in a frequency band of microwave and millimeter wave regions.
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成12年8月7日(2000.8.7)[Submission Date] August 7, 2000 (2000.8.7)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項1[Correction target item name] Claim 1
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【手続補正2】[Procedure amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項7[Correction target item name] Claim 7
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
Claims (10)
量%、CaO20〜50重量%、Al2O320〜45
重量%、MgO0.1〜5重量%、SrO0.1〜5重
量%、BaO0.1〜5重量%、TiO20.1〜5重
量%、ZnO0.1〜5重量%、ZrO20.1〜5重
量%、及び1A族元素酸化物0〜3重量%からなる組成
を有するSiO2−CaO−Al2O3系ガラスであっ
て、800〜1000℃の焼成温度の焼成過程において
緻密化することを特徴とする低温焼成ガラスセラミック
ス。1. An oxide equivalent of 10 to 45% by weight of SiO 2 , 20 to 50% by weight of CaO, and 20 to 45% of Al 2 O 3 .
Wt%, MgO0.1~5 wt%, SrO0.1~5 wt%, BaO0.1~5 wt%, TiO 2 0.1 to 5 wt%, ZnO0.1~5 wt%, ZrO 2 0.1 An SiO 2 —CaO—Al 2 O 3 based glass having a composition of about 5 to 5% by weight and a group 1A element oxide of 0 to 3% by weight, which is densified in a firing process at a firing temperature of 800 to 1000 ° C. A low-temperature fired glass ceramic characterized by the following:
中にセラミックス粒子が分散した複合体であって、該ガ
ラスが酸化物換算にしてSiO210〜45重量%、C
aO20〜50重量%、Al2O320〜45重量%、
MgO0.1〜5重量%、SrO0.1〜5重量%、B
aO0.1〜5重量%、TiO20.1〜5重量%、Z
nO0.1〜5重量%、ZrO20.1〜5重量%、及
び1A族元素酸化物0〜3重量%からなる組成を有する
とともに、800〜1000℃の焼成温度の焼成過程に
おいて緻密化することを特徴とする低温焼成ガラスセラ
ミックス。 2. A composite comprising ceramic particles dispersed in a SiO 2 —CaO—Al 2 O 3 system glass, wherein the glass is composed of 10 to 45% by weight of SiO 2 in terms of oxide, and
aO20~50 wt%, Al 2 O 3 20 to 45 wt%,
MgO 0.1-5% by weight, SrO 0.1-5% by weight, B
aO 0.1 to 5% by weight, TiO 2 0.1 to 5% by weight, Z
nO0.1~5 wt%, ZrO 2 0.1 to 5 wt%, and which has a composition consisting of Group 1A element oxide 0-3% by weight, densification in the firing process of firing temperature 800 to 1000 ° C. A low-temperature fired glass ceramic characterized by the following:
2O、及びLi2Oから選ばれる1種類以上であること
を特徴とする請求項1又は2記載の低温焼成ガラスセラ
ミックス。3. The oxide of a Group 1A element is Na 2 O, K
2 O, and 1 or more in the low-temperature firing glass-ceramic according to claim 1 or 2, characterized in that selected from Li 2 O.
比率が、重量比率にして10〜50重量%であることを
特徴とする請求項2又は3記載の低温焼成ガラスセラミ
ックス。4. The low-temperature fired glass ceramic according to claim 2, wherein the ratio of the ceramic particles in the composite is 10 to 50% by weight in terms of weight ratio.
3(Alumina)、SiO 2(Silica)、Mg2Al4S
i5O18(Cordierite)、Mg2SiO4(Forsteri
te)及びAl6Si2O13(Mullite)から選ばれる
1種類以上であることを特徴とする請求項2、3乃至4
のいずれか1項に記載の低温焼成ガラスセラミックス。5. The method according to claim 1, wherein the ceramic particles are Al.2O
3(Alumina), SiO 2(Silica), Mg2Al4S
i5O18(Cordierite), Mg2SiO4(Forsteri
te) and Al6Si2O13(Mullite)
5. The method according to claim 2, wherein at least one kind is selected.
The low-temperature fired glass ceramic according to any one of the above.
6、Ca3Si2O 7(Rankinite)、CaSiO3(W
ollastonite)、及びAl6Si2O13(Mullite)の
うち、いずれか1種類以上の結晶が析出することを特徴
とする請求項1、2、3、4乃至5のいずれか1項に記
載の低温焼成ガラスセラミックス。6. The method according to claim 1, wherein the sintering process comprises CaAl.2SiO
6, Ca3Si2O 7(Rankinite), CaSiO3(W
ollastonite), and Al6Si2O13(Mullite)
Among them, one or more types of crystals are precipitated
The method according to any one of claims 1, 2, 3, 4 to 5
Low temperature fired glass ceramics.
―Al2O3系ガラス粉末50〜100重量%、セラミ
ックス粉末0〜50重量%からなる混合粉末よりグリー
ンシートを作製する成膜工程と、(B)前記グリーンシ
ートを積層して、熱プレスすることにより一体化する積
層工程と、(C)前記積層工程を経て得られた積層体を
800〜1000℃の温度範囲で焼成して焼結体を作製
する焼成工程とを有する低温焼成ガラスセラミックスの
製造方法であって、該ガラスが酸化物換算にしてSiO
210〜45重量%、CaO20〜50重量%、Al2
O320〜45重量%、MgO0.1〜5重量%、Sr
O0.1〜5重量%、BaO0.1〜5重量%、TiO
20.1〜5重量%、ZnO0.1〜5重量%、ZrO
20.1〜5重量%、及び1A族元素酸化物0〜3重量
%からなる組成を有することを特徴とする低温焼成ガラ
スセラミックスの製造方法。7. (A) SiO 2 —CaO by weight percentage
A film-forming step of forming a green sheet from a mixed powder composed of 50 to 100% by weight of Al 2 O 3 -based glass powder and 0 to 50% by weight of ceramic powder; and (B) laminating the green sheets and hot pressing. (C) firing the laminated body obtained through the laminating step in a temperature range of 800 to 1000 ° C. to produce a sintered body. A method of manufacturing, wherein the glass is SiO 2 in terms of oxide.
2 10 to 45% by weight, CaO 20 to 50% by weight, Al 2
O 3 20 to 45% by weight, MgO 0.1 to 5% by weight, Sr
O 0.1-5% by weight, BaO 0.1-5% by weight, TiO
2 0.1-5% by weight, ZnO 0.1-5% by weight, ZrO
2. A method for producing a low-temperature fired glass ceramic, comprising a composition comprising 0.1 to 5% by weight and a group 1A element oxide of 0 to 3% by weight.
2O、及びLi2Oから選ばれる1種類以上であること
を特徴とする請求項7記載の低温焼成ガラスセラミック
スの製造方法。8. The method according to claim 1, wherein the group 1A element oxide is Na 2 O, K
2 O, and a manufacturing method of low-temperature firing glass-ceramic according to claim 7, characterized in that one or more selected from Li 2 O.
3(Alumina)、SiO 2(Silica)、Mg2Al4S
i5O18(Cordierite)、Mg2SiO4(Forsteri
te)、CaAl2SiO7、Ca3Si2O7(Rankin
ite)、CaSiO3(Wollastonite)、及びAl6S
i2O13(Mullite)から選ばれる1種類以上である
ことを特徴とする請求項7又は8記載の低温焼成ガラス
セラミックスの製造方法。9. The method according to claim 1, wherein the ceramic particles are Al.2O
3(Alumina), SiO 2(Silica), Mg2Al4S
i5O18(Cordierite), Mg2SiO4(Forsteri
te), CaAl2SiO7, Ca3Si2O7(Rankin
ite), CaSiO3(Wollastonite) and Al6S
i2O13(Mullite) One or more types selected from
The low-temperature fired glass according to claim 7 or 8, wherein
Manufacturing method of ceramics.
O6、Ca3Si2O7(Rankinite)、CaSiO3
(Wollastonite)、及びAl6Si2O13(Mullit
e)のうち、いずれか1種類以上の結晶が析出すること
を特徴とする請求項7、8乃至9のいずれか1項に記載
の低温焼成ガラスセラミックスの製造方法。10. The method according to claim 1, wherein in the firing step, CaAl 2 Si
O 6 , Ca 3 Si 2 O 7 (Rankinite), CaSiO 3
(Wollastonite), and Al 6 Si 2 O 13 (Mullit
The method for producing a low-temperature fired glass ceramic according to any one of claims 7, 8 and 9, wherein at least one kind of crystal is precipitated out of e).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13414799A JP3166850B2 (en) | 1999-05-14 | 1999-05-14 | Low temperature fired glass ceramics and method for producing the same |
US09/438,492 US6348424B1 (en) | 1998-11-11 | 1999-11-12 | Low-temperature calcined glass ceramic and a manufacturing process therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13414799A JP3166850B2 (en) | 1999-05-14 | 1999-05-14 | Low temperature fired glass ceramics and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000327428A true JP2000327428A (en) | 2000-11-28 |
JP3166850B2 JP3166850B2 (en) | 2001-05-14 |
Family
ID=15121575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13414799A Expired - Fee Related JP3166850B2 (en) | 1998-11-11 | 1999-05-14 | Low temperature fired glass ceramics and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3166850B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100419868B1 (en) * | 2001-05-14 | 2004-02-25 | 한국과학기술연구원 | Method for Preparing Dielectric Ceramic for Low Temperature Co-fired Ceramic Substrate |
US6936558B2 (en) | 2002-12-24 | 2005-08-30 | Samsung Electro-Mechanics Co., Ltd. | Low temperature sinterable dielectric ceramic composition, multilayer ceramic chip capacitor and ceramic electronic device |
JP2011001206A (en) * | 2009-06-16 | 2011-01-06 | Mitsubishi Electric Corp | Ceramic powder for green sheet, green sheet and ceramic substrate |
JP2013527106A (en) * | 2010-04-01 | 2013-06-27 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Vitroceramic glass compositions for gaskets of devices operating at high temperatures, and assembly methods using such compositions. |
US11332405B2 (en) | 2018-07-23 | 2022-05-17 | Corning Incorporated | Magnesium aluminosilicate glass ceramics |
CN114685152A (en) * | 2020-12-28 | 2022-07-01 | 山东国瓷功能材料股份有限公司 | Low-temperature co-fired ceramic material for millimeter wave antenna module and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01100060A (en) * | 1987-07-06 | 1989-04-18 | Tokuyama Soda Co Ltd | Production of anorthite-based sintered material |
JPH06345530A (en) * | 1993-06-10 | 1994-12-20 | Nec Corp | Multilayreed glass-ceramic substrate and production thereof |
JPH08175864A (en) * | 1994-12-26 | 1996-07-09 | Etsuro Kato | Production of low-temperature sintered anorthite-gehlenite ceramic |
-
1999
- 1999-05-14 JP JP13414799A patent/JP3166850B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01100060A (en) * | 1987-07-06 | 1989-04-18 | Tokuyama Soda Co Ltd | Production of anorthite-based sintered material |
JPH06345530A (en) * | 1993-06-10 | 1994-12-20 | Nec Corp | Multilayreed glass-ceramic substrate and production thereof |
JPH08175864A (en) * | 1994-12-26 | 1996-07-09 | Etsuro Kato | Production of low-temperature sintered anorthite-gehlenite ceramic |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100419868B1 (en) * | 2001-05-14 | 2004-02-25 | 한국과학기술연구원 | Method for Preparing Dielectric Ceramic for Low Temperature Co-fired Ceramic Substrate |
US6936558B2 (en) | 2002-12-24 | 2005-08-30 | Samsung Electro-Mechanics Co., Ltd. | Low temperature sinterable dielectric ceramic composition, multilayer ceramic chip capacitor and ceramic electronic device |
JP2011001206A (en) * | 2009-06-16 | 2011-01-06 | Mitsubishi Electric Corp | Ceramic powder for green sheet, green sheet and ceramic substrate |
JP2013527106A (en) * | 2010-04-01 | 2013-06-27 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Vitroceramic glass compositions for gaskets of devices operating at high temperatures, and assembly methods using such compositions. |
US9522842B2 (en) | 2010-04-01 | 2016-12-20 | Commissariat a l'énergie atomique et aux énergies alternatives | Vitroceramic glass compositions for gaskets of apparatuses operating at high temperatures and assembling method using said compositions |
US11332405B2 (en) | 2018-07-23 | 2022-05-17 | Corning Incorporated | Magnesium aluminosilicate glass ceramics |
US12017947B2 (en) | 2018-07-23 | 2024-06-25 | Corning Incorporated | Magnesium aluminosilicate glass ceramics |
CN114685152A (en) * | 2020-12-28 | 2022-07-01 | 山东国瓷功能材料股份有限公司 | Low-temperature co-fired ceramic material for millimeter wave antenna module and preparation method thereof |
CN114685152B (en) * | 2020-12-28 | 2022-11-04 | 山东国瓷功能材料股份有限公司 | Low-temperature co-fired ceramic material for millimeter wave antenna module and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3166850B2 (en) | 2001-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3480179A1 (en) | Low k dielectric compositions for high frequency applications | |
JP3387531B2 (en) | Glass-based and glass-ceramic based composites | |
US7722732B2 (en) | Thick film paste via fill composition for use in LTCC applications | |
JPH0482297A (en) | Wiring board for distributed constant circuit | |
US5206190A (en) | Dielectric composition containing cordierite and glass | |
JPH05211005A (en) | Dielectric composition | |
JP2001114554A (en) | Low-temperature burnable ceramic composition and ceramic multilayer substrate | |
JP3033568B1 (en) | Low temperature firing glass ceramics | |
US6348424B1 (en) | Low-temperature calcined glass ceramic and a manufacturing process therefor | |
JP2001287984A (en) | Glass ceramic composition | |
JP3166850B2 (en) | Low temperature fired glass ceramics and method for producing the same | |
JP3419291B2 (en) | Low-temperature sintered ceramic composition and multilayer ceramic substrate using the same | |
JP3721570B2 (en) | Glass ceramic dielectric material | |
JP3678260B2 (en) | Glass ceramic composition | |
JP3890779B2 (en) | Glass ceramic composition | |
JP4202117B2 (en) | Low-frequency fired porcelain composition for high frequency and manufacturing method thereof | |
JPH10297960A (en) | Ceramic composition baked at low temperature and production of porcelain baked at low temperature | |
US7300897B2 (en) | Low temperature sintering ceramic composition for high frequency, method of fabricating the same and electronic component | |
JPH0483737A (en) | Dielectric porcelain composition, production thereof and basal plate for distributing board using said composition | |
JP3149613B2 (en) | Ceramic substrate and method of manufacturing the same | |
JPH09175853A (en) | Low-temperature-baked ceramic composition | |
JP2003095740A (en) | Glass ceramic dielectric material, and sintered compact | |
WO2022191020A1 (en) | Glass ceramic material, laminate, and electronic component | |
JPH09175855A (en) | Low-temperature-baked ceramic composition | |
JPH10189828A (en) | Low-temperature baked ceramic composition and manufacturing method of low-temperature baked ceramic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080309 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090309 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090309 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100309 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100309 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110309 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110309 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120309 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120309 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130309 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130309 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140309 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |