JP3149613B2 - Ceramic substrate and method of manufacturing the same - Google Patents

Ceramic substrate and method of manufacturing the same

Info

Publication number
JP3149613B2
JP3149613B2 JP07161393A JP7161393A JP3149613B2 JP 3149613 B2 JP3149613 B2 JP 3149613B2 JP 07161393 A JP07161393 A JP 07161393A JP 7161393 A JP7161393 A JP 7161393A JP 3149613 B2 JP3149613 B2 JP 3149613B2
Authority
JP
Japan
Prior art keywords
ceramic substrate
glass
temperature
crystal
cordierite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07161393A
Other languages
Japanese (ja)
Other versions
JPH0616470A (en
Inventor
善章 山出
利雄 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP07161393A priority Critical patent/JP3149613B2/en
Publication of JPH0616470A publication Critical patent/JPH0616470A/en
Priority to US08/219,549 priority patent/US5498580A/en
Priority to DE4411127A priority patent/DE4411127A1/en
Application granted granted Critical
Publication of JP3149613B2 publication Critical patent/JP3149613B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はセラミックス基板及びそ
の製造方法、より詳細には電子部品を搭載するための多
層配線基板として多く用いられるセラミックス基板及び
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic substrate and a method of manufacturing the same, and more particularly, to a ceramic substrate often used as a multilayer wiring board for mounting electronic components and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年、高集積化したLSIや各種電子部
品を搭載する多層配線基板において、小型化、信頼性等
の要求から基板材料としてセラミックスが用いられるこ
とが多くなってきている。アルミナは強度が高い等の利
点を有するため、前記基板材料用のセラミックス中に占
める割合は大きい。しかし、一方前記アルミナは比誘電
率が大きいため伝送信号の遅延発生の原因になり、また
熱膨張係数がシリコンに比べて非常に大きいため、部品
を実装する際に信頼性を確保できないという問題点を有
している。さらにアルミナは焼成温度が約1500℃以
上と高いため、内層の配線に融点が高く電気抵抗率の大
きいW又はMoを使用する必要があり、配線を微細化す
ると電気抵抗が大きくなるという問題点をも有してい
る。
2. Description of the Related Art In recent years, ceramics have been increasingly used as a substrate material in multilayer wiring boards on which highly integrated LSIs and various electronic components are mounted due to requirements for miniaturization, reliability, and the like. Alumina has advantages such as high strength, so that it accounts for a large proportion of the ceramics for the substrate material. However, on the other hand, the alumina has a large relative dielectric constant, which causes a delay in transmission signals, and the thermal expansion coefficient is much larger than that of silicon, so that reliability cannot be ensured when mounting components. have. Further, since alumina has a high firing temperature of about 1500 ° C. or more, it is necessary to use W or Mo having a high melting point and a high electric resistivity for the wiring in the inner layer. Also have.

【0003】そこで、このような問題点を解決するため
に、比誘電率を小さくすると同時に、熱膨張係数をシリ
コンに近づけ、さらにCu、AgやAg−Pd等の低融
点の金属材料を内層導体として焼成することが可能な低
温焼成セラミックス基板の研究開発が進められている。
In order to solve such a problem, the relative dielectric constant is reduced, the thermal expansion coefficient is brought close to that of silicon, and a metal material having a low melting point such as Cu, Ag or Ag-Pd is used as an inner layer conductor. Research and development of a low-temperature fired ceramic substrate that can be fired as a substrate has been advanced.

【0004】一般に低温焼成セラミックス基板は、ガラ
ス材料と骨材と呼ばれる結晶材料とを混合し、焼成する
ことによって製造される。しかしガラス材料と結晶材料
との組合せの数は極めて多く、また両者を組み合わせた
ことにより焼成の際に相乗作用が働き、得られるセラミ
ックス基板の特性(比誘電率、熱膨張係数、焼成温度、
抗折強度等)が変化する。従って、最良の組合せを見つ
け、さらに常に一定の特性を出現させるように安定した
組成や構造を有するセラミックス基板を製造することは
困難であった。
[0004] Generally, a low-temperature fired ceramic substrate is manufactured by mixing a glass material and a crystal material called an aggregate and firing the mixture. However, the number of combinations of glass materials and crystal materials is extremely large, and the combination of the two provides a synergistic effect during firing, resulting in the properties of the resulting ceramic substrate (relative permittivity, coefficient of thermal expansion, firing temperature,
Flexural strength). Therefore, it has been difficult to find the best combination and to produce a ceramic substrate having a stable composition and structure so as to always exhibit certain characteristics.

【0005】このような背景の中、前記した比誘電率が
低く、熱膨張係数がシリコンに近いという特性を損なう
ことなく、強度を向上させ、信号伝達の高速化や搭載素
子の大型化等に対応できる低温焼成セラミックス基板と
して、特開平2−225338号公報に示されるような
コージェライト(2MgO・2Al23 ・5SiO
2 )系結晶化ガラスが注目されるようになった。
In such a background, the strength is improved without deteriorating the characteristic that the relative dielectric constant is low and the coefficient of thermal expansion is close to that of silicon, and the speed of signal transmission and the size of the mounted element are increased. As a low-temperature fired ceramic substrate that can be used, cordierite (2MgO.2Al 2 O 3 .5SiO) as disclosed in JP-A-2-225338 is used.
2 ) System-crystallized glass has attracted attention.

【0006】[0006]

【発明が解決しようとする課題】しかし、前記特開平2
−225338号公報において用いられているコージェ
ライト系結晶化ガラスは、軟化温度が高く、また高温で
の粘性も高いので基板のち密化が難しいという課題があ
った。
However, the above-mentioned Japanese Patent Application Laid-Open
The cordierite-based crystallized glass used in JP-A-225338 has a high softening temperature and a high viscosity at a high temperature, and thus has a problem that it is difficult to densify the substrate.

【0007】このような点から、Agを内層するのに必
要な950℃以下の温度やCu等を内層するのに必要な
1000℃以下の温度でコージェライト系結晶化ガラス
が析出するように焼成を行った場合には、得られたセラ
ミックス基板は、気孔率が充分に小さくならず、抗折強
度や耐湿性等が充分でなく、内層導体の酸化やマイグレ
ーションが発生し易く信頼性に乏しいものになるという
課題があった。
[0007] From such a point, firing at a temperature of 950 ° C or less required for forming an inner layer of Ag or at a temperature of 1000 ° C or less required for forming an inner layer of Cu or the like so as to precipitate a cordierite-based crystallized glass. In the case of performing the above, the obtained ceramic substrate does not have a sufficiently small porosity, does not have sufficient bending strength and moisture resistance, and is liable to generate oxidation and migration of the inner layer conductor and has low reliability. There was a problem of becoming.

【0008】本発明は上記した課題に鑑みなされたもの
であり、1000℃以下、さらには950℃以下の焼成
によっても充分にち密化し、比誘電率が小さく、抗折強
度、耐湿性、耐水性等にも優れたセラミックス基板及び
その製造方法を提供することを目的としている。
[0008] The present invention has been made in view of the above-mentioned problems, and is sufficiently densified by firing at 1000 ° C or lower, and even 950 ° C or lower, has a low relative dielectric constant, flexural strength, moisture resistance, and water resistance. It is an object of the present invention to provide a ceramic substrate excellent in the above and a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明に係るセラミックス基板は、MgO :10〜30wt% Al 2 O 3 : 5〜20wt% SiO 2 :40〜55wt% B 2 O 3 :10〜20wt% R 2 O : 0〜 5wt% (但し、Rはアルカリ金属で、0は
除く) の組成からなるガラス粉末と、 Al 2 O 3 結晶粒とを、 ガラス粉末:60〜80wt% 結晶粒 :20〜40wt% となるよう混合した混合物を焼成して得られる ガラスと
結晶とからなるセラミックス基板であって、前記結晶
コージェライト結晶を含有していることを特徴としてい
る。
Means for Solving the Problems] ceramic substrate according to the present invention in order to achieve the above object, MgO: 10~30wt% Al 2 O 3: 5~20wt% SiO 2: 40~55wt% B 2 O 3 : 10~20wt% R 2 O: 0~ 5wt% ( where, R represents an alkali metal, 0
(Excluding glass powder) and Al 2 O 3 crystal grains, and a glass powder obtained by calcining a mixture obtained by mixing glass powder: 60 to 80 wt% crystal grains: 20 to 40 wt%. A ceramic substrate , wherein the crystal contains a cordierite crystal.

【0010】また本発明に係るセラミックス基板の製造
方法は、上記セラミックス基板の製造方法であって、MgO :10〜30wt% Al 2 O 3 : 5〜20wt% SiO 2 :40〜55wt% B 2 O 3 :10〜20wt% R 2 O : 0〜 5wt% (但し、Rはアルカリ金属で、0は
除く) の組成からなるガラス粉末と、 Al 2 O 3 結晶粒とを、 ガラス粉末:60〜80wt% 結晶粒 :20〜40wt% となるよう混合した混合物を 800 ℃以上1000℃未満の温
度範囲で焼成することを特徴としている。
The method of manufacturing a ceramic substrate according to the present invention is the above-described method of manufacturing a ceramic substrate, wherein : MgO: 10 to 30 wt% Al 2 O 3 : 5 to 20 wt% SiO 2 : 40 to 55 wt% B 2 O 3 : 10 to 20 wt % R 2 O: 0 to 5 wt% (where R is an alkali metal and 0 is
(Excluding glass powder) and Al 2 O 3 crystal grains in a temperature range from 800 ° C. to less than 1000 ° C. by mixing a mixture obtained by mixing glass powder: 60 to 80 wt% crystal grains: 20 to 40 wt%. It is characterized by firing.

【0011】[0011]

【作用】上記した構成に係るガラスと結晶とからなるセ
ラミックス基板において、前記ガラスはMgO−Al2
3 −SiO2 −B23 −R2 O系ガラス(Rはアル
カリ金属を示す)からなり、前記結晶はコージェライト
を含有しており、ガラスの軟化温度が720℃以下にな
り、気孔率が減少してち密化し、熱膨張係数がシリコン
基板に近く、比誘電率が小さく、坑折強度、耐湿性、耐
水性等に優れたセラミックス基板となる。また、前記セ
ラミックス基板は、軟化点が低いため、800℃以上1
000℃以下の焼成によっても上記特性を有するものが
得られ、AgやCu等を回路配線に使用することが可能
なセラミックス基板となる。
In the ceramic substrate according to the above-mentioned structure, comprising glass and crystal, the glass is made of MgO-Al 2
It is composed of an O 3 —SiO 2 —B 2 O 3 —R 2 O-based glass (R represents an alkali metal), the crystal contains cordierite, the softening temperature of the glass is 720 ° C. or less, and the pores are The ceramic substrate has a low coefficient of thermal expansion, a thermal expansion coefficient close to that of a silicon substrate, a small relative dielectric constant, and excellent burrow strength, moisture resistance, water resistance, and the like. Further, since the ceramic substrate has a low softening point, the temperature is 800 ° C.
A material having the above characteristics can be obtained even by firing at 000 ° C. or less, and a ceramic substrate in which Ag, Cu, or the like can be used for circuit wiring is obtained.

【0012】また上記したセラミックス基板の製造方法
によれば、MgO、Al23 、SiO2 、B23
びR2 O(Rはアルカリ金属を示す)からなるガラス粉
末と、Al23 結晶粒を混合して、800℃以上10
00℃未満の温度範囲で焼成するので、前記セラミック
ス基板中にコージェライトが析出し、ガラスセラミック
スの気孔率が減少してち密化し、前記した種々の優れた
特性を有するセラミックス基板が製造される。
[0012] According to the method of manufacturing a ceramic substrate as described above, the glass powder consisting of MgO, Al 2 O 3, SiO 2, B 2 O 3 and R 2 O (R is an alkali metal), Al 2 O Mix 3 crystal grains, 800 ℃ or more 10
Since firing is performed in a temperature range of less than 00 ° C., cordierite precipitates in the ceramic substrate, the porosity of the glass ceramic decreases, and the glass ceramic becomes denser, and the ceramic substrate having the above various excellent characteristics is manufactured.

【0013】なお、前記セラミックス基板の製造におけ
る前記ガラス粉末の組成に関しては、MgO が30wt%を超
えると軟化温度が高くなりち密化が不十分になり、また
MgOが10wt%未満ではコージェライトが析出せず熱膨張
係数が大きくなる。Al2O3 が20wt%を超えると軟化温度
が高くなり、1000℃以下の焼成温度ではち密化が不充分
となり抗折強度が小さくなり、またAl2O3 が5wt%未満
ではコージェライトが析出せず熱膨張係数が大きくな
る。SiO2が55wt%を超えると軟化温度が高くなり、1000
℃以下の焼成温度ではち密化が不十分となり抗折強度が
小さくなり、またSiO2が40wt%未満では比誘電率と熱膨
張率が大きくなる。B2O3が20wt%を超えるとガラスの耐
水性が低下し、またガラスの製造過程で分相するために
組成が不均一になり、またB2O3が10wt%未満では軟化強
度が高くなり、1000℃以下の焼成温度ではち密化が不充
分となり抗折強度が小さくなる。アルカリ金属は、MgO
、Al2O3 、SiO2及びB2O3と相互に作用し、特にB2O3
の相乗作用により軟化温度が低下するが、5wt%を超え
ると耐水性が劣化する。
[0013] Incidentally, the terms composition of the glass powder in the manufacture of the ceramic substrate, MgO becomes insufficient high becomes densification is the softening temperature exceeds 30 wt%, also
If MgO is less than 10 wt%, cordierite does not precipitate and the coefficient of thermal expansion increases. If the Al 2 O 3 content exceeds 20 wt%, the softening temperature becomes high, and if the firing temperature is less than 1000 ° C., the densification becomes insufficient and the flexural strength decreases, and if the Al 2 O 3 content is less than 5 wt%, cordierite precipitates. Without this, the coefficient of thermal expansion increases. If the content of SiO 2 exceeds 55% by weight, the softening temperature increases,
If the sintering temperature is lower than 0 ° C., the densification becomes insufficient and the transverse rupture strength becomes small. If the SiO 2 content is less than 40% by weight, the relative dielectric constant and the thermal expansion coefficient become large. If B 2 O 3 exceeds 20 wt%, the water resistance of the glass decreases, and the composition becomes uneven due to phase separation in the glass manufacturing process. If B 2 O 3 is less than 10 wt%, the softening strength is high. At a sintering temperature of 1000 ° C. or less, the densification is insufficient and the bending strength is reduced. Alkali metal is MgO
, Al 2 O 3 , SiO 2 and B 2 O 3, and in particular, the softening temperature decreases due to the synergistic action with B 2 O 3 , but if it exceeds 5 wt%, the water resistance deteriorates.

【0014】従って、ガラス粉末材料の組成としては、
MgO が10〜30wt%、Al2O3 が 5〜20wt%、SiO2が40〜55
wt%、B2O3が10〜20wt%、アルカリ金属酸化物が0 〜 5
wt%(0は含まず) の範囲さらにはMgO が10〜20wt%、
Al2O3 が10〜20wt%、SiO2が40〜55wt%、B2O3が10〜20
wt%、アルカリ金属酸化物が1〜5wt%の範囲が好まし
い。
Therefore, the composition of the glass powder material is as follows:
MgO 10 ~ 30wt%, Al 2 O 3 5 ~ 20wt%, SiO 2 40 ~ 55
wt%, B 2 O 3 is 10-20 wt%, alkali metal oxide 0-5
range of wt% (0 is not included), more is MgO 10-20 wt%,
Al 2 O 3 is 10-20 wt%, SiO 2 is 40~55wt%, B 2 O 3 is 10 to 20
wt%, alkali metal oxides in the range of 1-5 wt% good better <br/> physician.

【0015】また、前記セラミックス基板の製造方法に
おいて、骨材の結晶としてAl23 を選定したのは、
ガラスと骨材との相互作用によりコージェライトを析出
させ、セラミックス基板としての良好な特性(比誘電率
が7.0以下、熱膨張率が5.0〜6.0付近の値、焼
成温度が1000℃未満、抗折強度が20kgf/mm
2 以上)を得るためである。
In the method of manufacturing a ceramic substrate, Al 2 O 3 is selected as the crystal of the aggregate because:
Cordierite is precipitated by the interaction between glass and aggregate, and has good properties as a ceramic substrate (specific permittivity is 7.0 or less, coefficient of thermal expansion is around 5.0 to 6.0, firing temperature is Less than 1000 ° C, bending strength is 20kgf / mm
2 or more).

【0016】原料中のガラスと結晶との混合割合につい
ては、得られるセラミックス基板の抗折強度を20kg
f/mm2 以上にするため、ガラスを60〜80wt
%、結晶を40〜20wt%の範囲で混合することが好
ましい。
Regarding the mixing ratio of glass and crystal in the raw material, the bending strength of the obtained ceramic substrate was set to 20 kg.
f / mm 2 or more, glass is 60 to 80 wt.
% And the crystals are preferably mixed in the range of 40 to 20 wt%.

【0017】なお、ここで耐水性とは、ガラスが水に対
して溶解しない性質のことをいい、耐湿性とは、ガラス
の多孔質部分に染み込んだ液体が内層導体に影響(酸化
やマイグレーション)を与えない性質のことをいう。
Here, the term "water resistance" means a property that glass does not dissolve in water, and the term "moisture resistance" means that a liquid permeated into a porous portion of glass affects an inner layer conductor (oxidation and migration). Means that it does not give

【0018】[0018]

【実施例】以下、本発明に係るセラミックス基板及びそ
の製造方法の実施例及び比較例を説明する。MgO、A
23 、SiO2 、B23 及びR2 O(Rはアルカ
リ金属を示す)からなり、その平均粒径が0.1〜10
μmのガラス粉末と、Al23 からなる平均粒径が
0.1〜10μmの結晶粒を表1に示した割合で混合し
た。
EXAMPLES Examples and comparative examples of a ceramic substrate and a method of manufacturing the same according to the present invention will be described below. MgO, A
It is composed of l 2 O 3 , SiO 2 , B 2 O 3 and R 2 O (R represents an alkali metal) and has an average particle size of 0.1 to 10
A glass powder of μm and crystal grains of Al 2 O 3 having an average particle diameter of 0.1 to 10 μm were mixed at a ratio shown in Table 1.

【0019】次にこの混合物に有機バインダ、可塑剤及
び溶剤をそれぞれ適量添加し、混練して約10,000cps
のスラリとした。
Next, an appropriate amount of an organic binder, a plasticizer and a solvent are added to the mixture, and the mixture is kneaded to obtain a mixture of about 10,000 cps.
Of the slurry.

【0020】次に前記スラリを用い、ドクターブレード
法によって0.2mm厚のシートに成形し、80℃で約
10分間乾燥させた。その後、このシートを10℃/m
inの速度で昇温させ、約900℃で30分間焼成し、
セラミックス基板の焼結体の製造を完了した。
Next, the slurry was formed into a sheet having a thickness of 0.2 mm by a doctor blade method and dried at 80 ° C. for about 10 minutes. Thereafter, the sheet is heated at 10 ° C./m
The temperature is raised at a rate of in, and baked at about 900 ° C. for 30 minutes.
The manufacture of the sintered body of the ceramic substrate was completed.

【0021】次に、前記方法により製造されたセラミッ
クス基板にコージェライト結晶が析出していることをX
線回折により確認した。さらに前記セラミックス基板の
気孔率、周波数1MHzにおける比誘電率、熱膨張係
数、抗折強度の値及び耐水性を測定した。気孔率はアル
キメデス法により測定し、比誘電率はインピーダンスア
ナライザにより測定した。熱膨張係数は接触式の線膨張
計により室温から350℃までの平均値を測定した。抗
折強度は3点曲げ試験により測定し、耐水性は煮沸水中
に一定期間試験片を保持し、その重量減少により評価し
た。耐湿性は薄板状サンプルの片面から水又は水蒸気を
接触させ、反対側における湿度の上昇により評価した。
Next, it was confirmed that cordierite crystals had precipitated on the ceramic substrate manufactured by the above method.
It was confirmed by line diffraction. Further, the porosity, the relative dielectric constant at a frequency of 1 MHz, the coefficient of thermal expansion, the value of the transverse rupture strength and the water resistance of the ceramic substrate were measured. The porosity was measured by the Archimedes method, and the relative permittivity was measured by an impedance analyzer. The average coefficient of thermal expansion was measured from room temperature to 350 ° C. using a contact linear dilatometer. The flexural strength was measured by a three-point bending test, and the water resistance was evaluated by keeping the test piece in boiling water for a certain period of time and reducing its weight. Moisture resistance was evaluated by contacting water or steam from one side of the thin plate sample and increasing the humidity on the other side.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】表1からも明らかなように、実施例1〜25
においては、焼成温度が1000℃以下でも充分にち密化さ
せることができ、比誘電率が小さく、抗折強度、耐湿
性、耐水性等に優れたセラミックス基板を製造できるこ
とがわかる。
As is clear from Table 1, Examples 1 to 25
It can be seen that the ceramic substrate can be sufficiently densified even at a sintering temperature of 1000 ° C. or lower, has a low relative dielectric constant, and has excellent flexural strength, moisture resistance, water resistance and the like.

【0025】なお、内層導体が溶融しない温度範囲であ
れば、セラミックス基板の焼成温度が高いほど、ち密化
及び結晶化するので大きな抗折強度と小さな熱膨張係数
を得ることができる。
In the temperature range where the inner conductor is not melted, the higher the firing temperature of the ceramic substrate, the more dense and crystallized the ceramic substrate, so that a large bending strength and a small thermal expansion coefficient can be obtained.

【0026】図1は、実施例6で得られたサンプルをX
線回折したときのX線回折強度のデータである。図1に
よりコージェライトが析出していることが確認できた。
さらに、TEM(透過電子顕微鏡)により観察したとこ
ろアルミナの表面からコージェライトが析出しているこ
とがわかった。
FIG. 1 shows that the sample obtained in Example 6
It is data of X-ray diffraction intensity at the time of X-ray diffraction. From FIG. 1, it was confirmed that cordierite was precipitated.
Further, observation with a TEM (transmission electron microscope) revealed that cordierite was precipitated from the surface of the alumina.

【0027】比較例1は、特開平2−225338号公
報に開示された内容に基づいて試作した比較例で、Ag
やCuなどを内層するのに必要な温度範囲である900
℃以下の焼成では気孔率が充分に小さくならず、ち密化
しないため抗折強度が小さいことがわかる。比較例2で
は、ガラス材料のMgOの量が少ないため、コージェラ
イトが析出せず、気孔率が大きく抗折強度は小さくな
り、さらに耐湿性も悪いことがわかる。また、比較例3
では、ガラス材料のAl23 の量が少ないため、コー
ジェライトが析出せず、気孔率が大きく抗折強度は小さ
くなり、さらに耐湿性も悪いことがわかる。比較例4で
は、ガラスに対する骨材の混合比が小さいため、抗折強
度が小さい。比較例5では、ガラス材料のK2 Oの量が
多いため、基板が変形し、さらに耐水性も悪い。比較例
6では、ガラス材料のB23 の量が少ないため、気孔
率が大きく抗折強度は小さくなり、さらに耐湿性も悪
い。比較例7では、ガラス材料のB23 の量が多いた
め、基板が変形し、さらに耐水性も悪い。比較例8は、
ガラスに対する骨材の混合比が大きいため、気孔率が大
きく抗折強度は小さくなり、さらに耐湿性も悪いことが
わかる。
Comparative Example 1 is a comparative example made on the basis of the contents disclosed in JP-A-2-225338,
900 which is the temperature range required for inner layer of Cu and Cu etc.
It can be seen that the porosity does not become sufficiently small and the densification does not occur when firing at a temperature of not more than ℃, so that the transverse rupture strength is low. In Comparative Example 2, since the amount of MgO in the glass material was small, cordierite did not precipitate, the porosity was large, the transverse rupture strength was small, and the moisture resistance was poor. Comparative Example 3
It can be seen that, since the amount of Al 2 O 3 in the glass material was small, cordierite did not precipitate, the porosity was large, the transverse rupture strength was small, and the moisture resistance was poor. In Comparative Example 4, since the mixing ratio of the aggregate to the glass was small, the transverse rupture strength was low. In Comparative Example 5, since the amount of K 2 O in the glass material was large, the substrate was deformed, and the water resistance was poor. In Comparative Example 6, since the amount of B 2 O 3 in the glass material was small, the porosity was large, the bending strength was small, and the moisture resistance was poor. In Comparative Example 7, since the amount of B 2 O 3 in the glass material was large, the substrate was deformed and the water resistance was poor. Comparative Example 8
It can be seen that since the mixing ratio of the aggregate to glass is large, the porosity is large, the bending strength is small, and the moisture resistance is poor.

【0028】[0028]

【発明の効果】以上詳述したように本発明に係るガラス
と結晶とからなるセラミックス基板にあっては、前記ガ
ラスはMgO−Al23 −SiO2 −B23 −R2
O系ガラス(Rはアルカリ金属を示す)からなり、前記
結晶はコージェライトを含有しており、ガラスの軟化温
度が720℃以下になり、気孔率が減少してち密化して
おり、熱膨張係数がシリコン基板に近く、比誘電率が小
さく、抗折強度、耐湿性、耐水性等に優れたセラミック
ス基板となる。また、前記セラミックス基板は、軟化点
が低いため、800℃以上1000℃以下の焼成によっ
ても上記特性を有するものを製造することができ、低融
点で低電気抵抗のAgやCu等を回路配線に有するセラ
ミックス基板を製造することができる。
In the ceramic substrate made of glass and crystal according to the present invention as described in detail above, according to the present invention, the glass is MgO-Al 2 O 3 -SiO 2 -B 2 O 3 -R 2
It is composed of an O-based glass (R represents an alkali metal), the crystal contains cordierite, the softening temperature of the glass becomes 720 ° C. or less, the porosity decreases, and the glass becomes denser, and the thermal expansion coefficient increases. Is close to a silicon substrate, has a low relative dielectric constant, and is a ceramic substrate excellent in bending strength, moisture resistance, water resistance, and the like. In addition, since the ceramic substrate has a low softening point, it is possible to produce a substrate having the above characteristics even by firing at 800 ° C. or higher and 1000 ° C. or lower, and use a low melting point, low electric resistance Ag, Cu, or the like for circuit wiring. Can be manufactured.

【0029】また本発明に係る前記セラミックス基板の
製造方法によれば、MgO、Al23 、SiO2 、B2
3 及びR2 O(Rはアルカリ金属を示す)からなる
ガラス粉末と、Al23 結晶粒を混合して、800℃
以上1000℃未満の温度範囲で焼成することにより、
前記セラミックス基板中にコージェライトを析出させ、
ガラスセラミックスの気孔率を減少させてち密化させ、
熱膨張係数がシリコン基板に近く、比誘電率が小さく、
抗折強度、耐湿性、耐水性等に優れたセラミックス基板
を製造することができる。
According to the method of manufacturing a ceramic substrate according to the present invention, MgO, Al 2 O 3 , SiO 2 , B 2
A glass powder composed of O 3 and R 2 O (R represents an alkali metal) and Al 2 O 3 crystal grains are mixed,
By firing in a temperature range of at least 1000 ° C.,
Precipitating cordierite in the ceramic substrate,
Reduce the porosity of glass ceramics and make it denser,
Thermal expansion coefficient is close to silicon substrate, relative dielectric constant is small,
A ceramic substrate having excellent bending strength, moisture resistance, water resistance and the like can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例6で得られたサンプルをX線回折したと
きのX線回折強度のデータである。
FIG. 1 shows X-ray diffraction intensity data when the sample obtained in Example 6 was subjected to X-ray diffraction.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C04B 35/16 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) C04B 35/16

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 MgO :10〜30wt% Al2O3 : 5〜20wt% SiO2 :40〜55wt% B2O3 :10〜20wt% R2O : 0〜 5wt% (但し、Rはアルカリ金属で、0は
除く) の組成からなるガラス粉末と、 Al2O3 結晶粒とを、 ガラス粉末:60〜80wt% 結晶粒 :20〜40wt% となるよう混合した混合物を焼成して得られるガラスと
結晶とからなるセラミックス基板であって、 前記結晶にコージェライト結晶を含有していることを特
徴とするセラミックス基板。
1. A MgO: 10~30wt% Al 2 O 3 : 5~20wt% SiO 2: 40~55wt% B 2 O 3: 10~20wt% R 2 O: 0~ 5wt% ( where, R represents an alkali A mixture of a glass powder having a composition of metal (excluding 0) and Al 2 O 3 crystal grains, such that glass powder: 60 to 80 wt% and crystal grains: 20 to 40 wt%. A ceramic substrate comprising glass and a crystal, wherein the crystal contains a cordierite crystal.
【請求項2】 MgO :10〜30wt% Al2O3 : 5〜20wt% SiO2 :40〜55wt% B2O3 :10〜20wt% R2O : 0〜 5wt% (但し、Rはアルカリ金属で、0は
除く) の組成からなるガラス粉末と、 Al2O3 結晶粒とを、 ガラス粉末:60〜80wt% 結晶粒 :20〜40wt% となるよう混合した混合物を800 ℃以上1000℃未満の温
度範囲で焼成することをを特徴とする請求項1記載のセ
ラミックス基板の製造方法。
2. MgO: 10 to 30 wt% Al 2 O 3 : 5 to 20 wt% SiO 2 : 40 to 55 wt% B 2 O 3 : 10 to 20 wt% R 2 O: 0 to 5 wt% (where R is an alkali) A mixture of glass powder having a composition of metal (excluding 0) and Al 2 O 3 crystal grains mixed with glass powder: 60 to 80 wt% crystal grains: 20 to 40 wt% is 800 ° C. to 1000 ° C. 2. The method for producing a ceramic substrate according to claim 1, wherein the firing is performed in a temperature range of less than.
JP07161393A 1992-03-30 1993-03-30 Ceramic substrate and method of manufacturing the same Expired - Lifetime JP3149613B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP07161393A JP3149613B2 (en) 1992-03-30 1993-03-30 Ceramic substrate and method of manufacturing the same
US08/219,549 US5498580A (en) 1993-03-30 1994-03-29 Ceramic substrate and a method for producing the same
DE4411127A DE4411127A1 (en) 1993-03-30 1994-03-30 Ceramic substrate, and process for the production thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-74118 1992-03-30
JP7411892 1992-03-30
JP07161393A JP3149613B2 (en) 1992-03-30 1993-03-30 Ceramic substrate and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0616470A JPH0616470A (en) 1994-01-25
JP3149613B2 true JP3149613B2 (en) 2001-03-26

Family

ID=26412728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07161393A Expired - Lifetime JP3149613B2 (en) 1992-03-30 1993-03-30 Ceramic substrate and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3149613B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111210A (en) * 2000-09-28 2002-04-12 Kyocera Corp Wiring board and its manufacturing method
JP4540297B2 (en) * 2003-02-25 2010-09-08 京セラ株式会社 Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board

Also Published As

Publication number Publication date
JPH0616470A (en) 1994-01-25

Similar Documents

Publication Publication Date Title
JP3240271B2 (en) Ceramic substrate
JP3419291B2 (en) Low-temperature sintered ceramic composition and multilayer ceramic substrate using the same
JP3721570B2 (en) Glass ceramic dielectric material
JP2001287984A (en) Glass ceramic composition
JP4569000B2 (en) Low-frequency sintered dielectric material for high frequency and its sintered body
JP3678260B2 (en) Glass ceramic composition
JPS63107838A (en) Glass-ceramic sintered body
JP3149613B2 (en) Ceramic substrate and method of manufacturing the same
JP3890779B2 (en) Glass ceramic composition
JP3087656B2 (en) Low temperature sintering inorganic composition
JPH0617250B2 (en) Glass ceramic sintered body
JP2000327428A (en) Low temperature sintering glass ceramic and its production
JP3097426B2 (en) Ceramic substrate and method of manufacturing the same
JP3341782B2 (en) Ceramic substrate and method of manufacturing the same
JPH10297960A (en) Ceramic composition baked at low temperature and production of porcelain baked at low temperature
JP3494184B2 (en) Glass ceramic composition
JPH10194846A (en) Production of substrate fired at low temperature
JP3117346B2 (en) Insulated porcelain, manufacturing method thereof, and multilayer wiring board
JP2003095740A (en) Glass ceramic dielectric material, and sintered compact
JP3401147B2 (en) Low temperature firing porcelain composition
JP3792355B2 (en) High-strength ceramic sintered body, method for producing the same, and wiring board
JP3420437B2 (en) Low temperature firing porcelain composition
JPS62252340A (en) Sintered glass and sintered glass ceramic
JP3936164B2 (en) Low temperature sintered ceramic composition for high frequency and method for producing the same
JPH10189828A (en) Low-temperature baked ceramic composition and manufacturing method of low-temperature baked ceramic

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 13