JPH10194846A - Production of substrate fired at low temperature - Google Patents

Production of substrate fired at low temperature

Info

Publication number
JPH10194846A
JPH10194846A JP9005279A JP527997A JPH10194846A JP H10194846 A JPH10194846 A JP H10194846A JP 9005279 A JP9005279 A JP 9005279A JP 527997 A JP527997 A JP 527997A JP H10194846 A JPH10194846 A JP H10194846A
Authority
JP
Japan
Prior art keywords
powder
glass
low
substrate
crystalline aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9005279A
Other languages
Japanese (ja)
Inventor
Seigo Ooiwa
誠五 大岩
伸志 ▲椢▼原
Nobuyuki Kunihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal SMI Electronics Device Inc
Original Assignee
Sumitomo Metal SMI Electronics Device Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal SMI Electronics Device Inc filed Critical Sumitomo Metal SMI Electronics Device Inc
Priority to JP9005279A priority Critical patent/JPH10194846A/en
Publication of JPH10194846A publication Critical patent/JPH10194846A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To increase the percentage of a crystal phase in a glass-ceramic substrate and to obtain a substrate fired at a low temp. and excellent in mechanical and dielectric characteristics, the coefft. of thermal expansion, etc., by using crystalline aggregate powder having a specified specific surface area. SOLUTION: When the objective substrate fired at a low temp. is produced using glass powder and crystalline aggregate powder, crystalline aggregate powder having 4-15m<2> /g, preferably 6-12m<2> /g specific surface area is used. The kind of the glass powder is not especially limited and CaO-Al2 O3 -SiO2 -B2 O3 glass or borosilicate glass is, e.g. used. The king of the crystalline aggregate powder is not also especially limited and alumina or anorthite, etc., is used. The substrate is produced, e.g. by mixing 50-65 pts.wt. glass powder contg. 10-55wt.% CaO, 0-30wt.% Al2 O3 , 45-70wt.% SiO2 and 0-20wt.% B2 O3 with 50-35 pts.wt. Al2 O3 powder having 4-15m<2> /g specific surface area and then firing the resultant mixture at 800-1,000 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は低温焼成基板の製造
方法に関し、より詳細には電子部品を搭載するために用
いられる低温焼成基板の製造方法に関する。
The present invention relates to a method for manufacturing a low-temperature fired substrate, and more particularly, to a method for manufacturing a low-temperature fired substrate used for mounting electronic components.

【0002】[0002]

【従来の技術】LSI等の電子部品を搭載するセラミッ
ク基板として従来から汎用されているアルミナ多層基板
は、その焼成温度が1550℃前後と高いため、内部導
体には融点の高いWやMo等を用いる必要がある。しか
し、これらWやMoは比抵抗が大きいため、前記アルミ
ナ多層基板内における信号の伝送損失が大きくなる。ま
た、アルミナの比誘電率(εr )は、通常、8〜10と
大きいことから、信号遅延も大きくなる。
2. Description of the Related Art Alumina multilayer substrates, which have been widely used as ceramic substrates on which electronic components such as LSIs are mounted, have a high firing temperature of about 1550 ° C., so that W or Mo having a high melting point is used for the internal conductor. Must be used. However, since W and Mo have large specific resistance, signal transmission loss in the alumina multilayer substrate increases. In addition, the relative dielectric constant (ε r ) of alumina is usually as large as 8 to 10, so that the signal delay also becomes large.

【0003】最近の電子機器における信号処理の高速化
にともない、多層基板内において生じる信号の伝送損失
や信号遅延が大きな問題となってきており、伝送損失や
信号遅延が小さい多層基板が求められている。
With the recent increase in the speed of signal processing in electronic equipment, transmission loss and signal delay of signals occurring in a multilayer substrate have become a serious problem, and a multilayer substrate with small transmission loss and signal delay has been demanded. I have.

【0004】このような背景から、近年、低温で軟化焼
結するガラス、及び結晶性セラミックを成分とし、比誘
電率が低い低温焼成基板が注目されている。前記低温焼
成基板は、950℃以下の焼成温度で緻密化させること
ができるため、内部導体材料として比抵抗が小さく、か
つ伝送損失の小さいAg、Cu、Au、Ag−Pd合金
等を使用することができる。また、これらの金属や周囲
のガラスセラミックは比誘電率が小さいため、配線の信
号遅延を減少させることができる等種々の利点を有して
いる。
[0004] From such a background, in recent years, low-temperature fired substrates having a low relative dielectric constant and containing glass that softens and sinters at low temperatures and crystalline ceramics as components have been attracting attention. Since the low-temperature fired substrate can be densified at a firing temperature of 950 ° C. or lower, use of Ag, Cu, Au, an Ag—Pd alloy or the like having a low specific resistance and a small transmission loss as the internal conductor material is used. Can be. In addition, since these metals and the surrounding glass ceramics have a small relative dielectric constant, they have various advantages such as a reduction in signal delay of wiring.

【0005】一般に、低温焼成基板は以下の方法により
製造される。まず、ガラス粉末と結晶性骨材と呼ばれる
無機材料粉末との混合粉末に樹脂(バインダ)、有機溶
剤等を添加してスラリを調製し、このスラリを用いてド
クタブレード法等によりグリーンシートを作製する。
Generally, a low-temperature fired substrate is manufactured by the following method. First, a slurry is prepared by adding a resin (binder), an organic solvent, and the like to a mixed powder of a glass powder and an inorganic material powder called a crystalline aggregate, and a green sheet is prepared using the slurry by a doctor blade method or the like. I do.

【0006】次に、このグリーンシートに必要によりパ
ンチング等の加工処理を施した後、Ag等の導体を主成
分とする導体ペーストを用いてその表面に所定パターン
の導体ペースト層を形成し、ビアホールに導体ペースト
を充填する。
Next, the green sheet is subjected to a processing such as punching as required, and a conductor paste layer having a predetermined pattern is formed on the surface thereof by using a conductor paste mainly composed of a conductor such as Ag, thereby forming a via hole. Is filled with a conductive paste.

【0007】次に、これらの処理が施されたグリーンシ
ートを積層、熱圧着させてグリーンシート積層体を形成
し、空気中で脱脂、焼成してガラスセラミック基板(焼
結体)を製造した後、必要によりメッキ処理等を施し、
低温焼成基板を完成させる。一旦、焼成により内部導体
層のみを有するガラスセラミック基板を製造した後、そ
の表面に導体ペースト層を形成し、焼き付け等の処理を
施し、外部接続用パッド等を形成する方法もある。
Next, the green sheets subjected to these treatments are laminated and thermocompressed to form a green sheet laminate, which is degreased and fired in the air to produce a glass ceramic substrate (sintered body). , If necessary, plating
Complete the low-temperature fired substrate. There is also a method in which a glass-ceramic substrate having only an internal conductor layer is once manufactured by firing, and then a conductor paste layer is formed on the surface of the glass ceramic substrate, and a process such as baking is performed to form external connection pads and the like.

【0008】上記方法により製造された低温焼成基板に
は、ガラス相と結晶相とが含まれており、この結晶相に
は原料として使用された結晶性骨材粉末の一部が含まれ
ている他、焼成過程で析出した結晶性骨材と同一又は異
なる結晶相が含まれている。低温焼成基板では、950
℃以下の低温で焼成するため、低温で軟化するガラス相
の生成は必須であるが、ガラス相のみでは必要な特性
(機械的強度、熱膨張係数、比誘電率等)を得ることが
難しく、そのため結晶性骨材粉末を添加する。しかし、
結晶性骨材粉末の添加量が多くなると焼結が難しくなる
ため、結晶性骨材粉末の添加量には限界がある。そこ
で、従来より、焼成過程において新たな結晶相を析出さ
せて機械的特性(曲げ強度等)を改善し、併せて他の材
料特性(熱膨張係数、誘電率等)も制御する方法が採用
されており、その制御方法として、原料粉末の平均粒径
を小さくしたり、焼成温度を上げる方法がとられてい
た。
The low-temperature fired substrate manufactured by the above method contains a glass phase and a crystal phase, and this crystal phase contains a part of the crystalline aggregate powder used as a raw material. In addition, it contains the same or different crystal phase as the crystalline aggregate precipitated during the firing process. For low temperature fired substrates, 950
Since it is fired at a low temperature of ℃ or lower, it is essential to generate a glass phase that softens at a low temperature, but it is difficult to obtain necessary properties (mechanical strength, thermal expansion coefficient, relative permittivity, etc.) with the glass phase alone. Therefore, a crystalline aggregate powder is added. But,
When the amount of the crystalline aggregate powder is large, sintering becomes difficult, and therefore the amount of the crystalline aggregate powder is limited. Therefore, conventionally, a method has been adopted in which a new crystal phase is precipitated in the firing process to improve mechanical properties (flexural strength, etc.) and also control other material properties (thermal expansion coefficient, dielectric constant, etc.). As a control method, a method of reducing the average particle size of the raw material powder or increasing the firing temperature has been adopted.

【0009】[0009]

【発明が解決しようとする課題】しかし、原料粉末の平
均粒径を小さくして結晶相の析出量を多くしようとする
と、スラリ調整の際、スラリ中の原料粉末の充填状態が
悪くなるため、グリーンシートを作製する際等における
ハンドリング性が悪化し、また、グリーンシート中の原
料粉末の充填状態の悪化に起因して焼成時の収縮率が大
きくなり、良好な諸特性を有する低温焼成基板の製造が
難しくなるという課題があった。
However, if an attempt is made to reduce the average particle size of the raw material powder to increase the amount of the crystal phase precipitated, the state of filling of the raw material powder in the slurry during the slurry adjustment deteriorates. Handling properties such as when manufacturing a green sheet are deteriorated, and the shrinkage rate during firing is increased due to the deterioration of the filling state of the raw material powder in the green sheet, and a low-temperature fired substrate having good various properties is obtained. There was a problem that manufacturing became difficult.

【0010】また、焼成温度を上げて結晶相の析出量を
多くしようとすると、内部又は表面に形成する金属導体
や内部に形成するコンデンサ用の誘電体材料等との処理
温度のミスマッチを生じ、この場合にも良好な諸特性を
有する低温焼成基板の製造が難しくなるという課題があ
った。
Further, if the amount of the crystal phase is increased by increasing the firing temperature, a mismatch occurs in the processing temperature with the metal conductor formed inside or on the surface or the dielectric material for the capacitor formed inside, etc. Also in this case, there is a problem that it becomes difficult to manufacture a low-temperature fired substrate having good various characteristics.

【0011】本発明は上記課題に鑑みなされたものであ
り、原料粉末の平均粒径や焼成温度を従来の場合と余り
変化させることなく、ガラスセラミック基板中の結晶相
の割合を増加させることができ、機械的特性、誘電特
性、熱膨張率等の諸特性に優れた低温焼成基板を製造す
ることができる低温焼成基板の製造方法を提供すること
を目的としている。
The present invention has been made in view of the above problems, and it is an object of the present invention to increase the ratio of the crystal phase in a glass ceramic substrate without changing the average particle diameter of the raw material powder and the sintering temperature so much as in the conventional case. It is an object of the present invention to provide a method of manufacturing a low-temperature fired substrate capable of manufacturing a low-temperature fired substrate excellent in various properties such as mechanical properties, dielectric properties, and thermal expansion coefficient.

【0012】[0012]

【課題を解決するための手段及びその効果】上記目的を
達成するために本発明に係る低温焼成基板の製造方法
(1)は、ガラス粉末と結晶性骨材粉末とを用いた低温
焼成基板の製造方法において、比表面積が4〜15m2
/gの結晶性骨材粉末を使用することを特徴としてい
る。
In order to achieve the above object, a method of manufacturing a low-temperature fired substrate according to the present invention (1) is a method of manufacturing a low-temperature fired substrate using glass powder and crystalline aggregate powder. In the production method, the specific surface area is 4 to 15 m 2.
/ G of crystalline aggregate powder.

【0013】また、本発明に係る低温焼成基板の製造方
法(2)は、上記低温焼成基板の製造方法(1)におい
て、比表面積が6〜12m2 /gの結晶性骨材粉末を使
用することを特徴としている。
In the method (2) for producing a low-temperature fired substrate according to the present invention, a crystalline aggregate powder having a specific surface area of 6 to 12 m 2 / g is used in the method (1) for producing a low-temperature fired substrate. It is characterized by:

【0014】上記低温焼成基板の製造方法(1)又は
(2)によれば、比表面積が大きな結晶性骨材粉末を使
用しているため、ガラス相と接する結晶性骨材の面積が
大きくなり、焼成過程において、ガラス相と接する結晶
性骨材の境界面より結晶相が析出し、結晶相の割合が大
きい低温焼成基板を製造することができる。その結果、
機械的特性や熱膨張率等の諸特性に優れた低温焼成基板
を製造することができる。
According to the low-temperature fired substrate manufacturing method (1) or (2), since the crystalline aggregate powder having a large specific surface area is used, the area of the crystalline aggregate in contact with the glass phase becomes large. In the firing process, a crystal phase is precipitated from the boundary surface of the crystalline aggregate in contact with the glass phase, and a low-temperature fired substrate having a high crystal phase ratio can be manufactured. as a result,
A low-temperature fired substrate excellent in various characteristics such as a mechanical characteristic and a coefficient of thermal expansion can be manufactured.

【0015】また、本発明に係る低温焼成基板の製造方
法(3)は、上記低温焼成基板の製造方法(1)又は
(2)において、ガラス粉末としてCaO−Al23
−SiO2 −B23 系ガラス、結晶性骨材粉末として
Al23 をそれぞれ用い、結晶層としてAl23
びCaO・Al23 ・2SiO2 (アノーサイト)を
含有する低温焼成基板を製造することを特徴としてい
る。
The low-temperature fired substrate manufacturing method (3) according to the present invention is the same as the low-temperature fired substrate manufacturing method (1) or (2), except that the glass powder is CaO-Al 2 O 3.
Cold containing -SiO 2 -B 2 O 3 based glass, using Al 2 O 3, respectively as a crystalline aggregate powder, Al 2 O 3 and CaO · Al 2 O 3 · 2SiO 2 as the crystalline layer (anorthite) It is characterized by producing a fired substrate.

【0016】また、本発明に係る低温焼成基板の製造方
法(4)は、上記低温焼成基板の製造方法(3)におい
て、CaOを10〜55wt%、Al23 を0〜30
wt%、SiO2 を45〜70wt%、B23 を0〜
20wt%の範囲で含有するガラス粉末50〜65重量
部に対し、比表面積が4〜15m2 /gのAl2
末を50〜35重量部の割合で混合した後、800〜1
000℃の温度で焼成することを特徴としている。
The low-temperature fired substrate manufacturing method (4) according to the present invention is the same as the low-temperature fired substrate manufacturing method (3), except that CaO is 10 to 55 wt% and Al 2 O 3 is 0 to 30 wt%.
wt%, a SiO 2 45~70wt%, the B 2 O 3 0 to
After mixing 50 to 35 parts by weight of Al 2 O 3 powder having a specific surface area of 4 to 15 m 2 / g with respect to 50 to 65 parts by weight of glass powder contained in the range of 20 wt%, 800 to 1 part by weight
It is characterized by firing at a temperature of 000 ° C.

【0017】上記低温焼成基板の製造方法(3)又は
(4)によれば、ガラス粉末の材料としてアノーサイト
の成分に近いCaO−Al3 −SiO2 −B2
3 系ガラスを用い、結晶性骨材粉末として比表面積の大
きなAl23 粉末を使用しているため、ガラス相と接
するAl23 の境界面よりアノーサイトの結晶相が析
出し易くなり、アノーサイト結晶相の割合が大きい低温
焼成基板を製造することができる。その結果、機械的特
性や熱膨張率等の諸特性に優れた低温焼成基板を製造す
ることができる。
According to the low-temperature fired substrate manufacturing method (3) or (4), CaO—Al 2 O 3 —SiO 2 —B 2 O close to the anorthite component is used as the glass powder material.
Since an Al 2 O 3 powder having a large specific surface area is used as a crystalline aggregate powder using a 3 series glass, a crystal phase of anorthite is easily precipitated from a boundary surface of the Al 2 O 3 in contact with the glass phase. Thus, a low-temperature fired substrate having a high anorthite crystal phase ratio can be manufactured. As a result, a low-temperature fired substrate excellent in various properties such as mechanical properties and thermal expansion coefficient can be manufactured.

【0018】[0018]

【発明の実施の形態】以下、本発明に係る低温焼成基板
の製造方法の実施の形態を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a method for manufacturing a low-temperature fired substrate according to the present invention will be described.

【0019】実施の形態に係る低温焼成基板の製造方法
においては、ガラスセラミック層形成用の原料としてガ
ラス粉末及び結晶性骨材粉末を用いる。
In the method for manufacturing a low-temperature fired substrate according to the embodiment, glass powder and crystalline aggregate powder are used as raw materials for forming a glass ceramic layer.

【0020】前記ガラス粉末の種類は特に限定されるも
のではなく、従来の場合と同様の種類のものを用いるこ
とができる。具体的には、例えばCaO−Al23
SiO2 −B23 系ガラス、MgO−Al23 −S
iO2 −B23 −R2 O系ガラス(Rはアルカリ金属
を示す)、ホウ珪酸系ガラス等が挙げられる。CaO−
Al23 −SiO2 −B23 系ガラスを用いる場合
には、CaOを10〜55wt%、Al23 を0〜3
0wt%、SiO2 を45〜70wt%、B23 を0
〜20wt%の範囲で含有する平均粒径が2〜5μmの
ガラス粉末が好ましい。
The type of the glass powder is not particularly limited, and the same type as in the conventional case can be used. Specifically, for example, CaO-Al 2 O 3 -
SiO 2 -B 2 O 3 based glass, MgO-Al 2 O 3 -S
iO 2 -B 2 O 3 -R 2 O -based glass (the R represents an alkali metal), and a borosilicate glass. CaO-
In the case of using the Al 2 O 3 -SiO 2 -B 2 O 3 based glass, 10~55wt% of CaO, the Al 2 O 3 0 to 3
0 wt%, 45 to 70 wt% of SiO 2 , and 0 of B 2 O 3
Glass powder having an average particle size of 2 to 5 μm contained in the range of 20 wt% is preferred.

【0021】前記結晶性骨材粉末の種類も特に限定され
るものではなく、従来と同じ種類のものを用いることが
できる。具体的には、例えばAl23 (アルミナ)、
CaO・Al23 ・2SiO2 (アノーサイト)、2
MgO・2Al23 ・5SiO2 結晶(コージェライ
ト)、3Al23 ・2SiO2 (ムライト)等が挙げ
られるが、これら結晶性骨材粉末の比表面積が4〜15
2 /g、好ましくは6〜12m2 /gのものを使用す
る。このように比表面積が大きな結晶性骨材粉末を選定
したのは、比表面積が大きな結晶性骨材粉末を使用する
ことにより、これら結晶性骨材粉末を焼成時に結晶核と
して作用させ、ガラスからの結晶相の析出を促進させ、
機械的特性等に優れた低温焼成基板を製造するためであ
る。
The type of the crystalline aggregate powder is not particularly limited, and the same type as in the prior art can be used. Specifically, for example, Al 2 O 3 (alumina),
CaO.Al 2 O 3 .2SiO 2 (anorthite), 2
MgO · 2Al 2 O 3 · 5SiO 2 crystals (cordierite), 3Al 2 O 3 · 2SiO 2 (mullite), etc., and the specific surface area of these crystalline aggregate powders is 4 to 15
m 2 / g, preferably using those 6~12m 2 / g. The reason for selecting the crystalline aggregate powder having a large specific surface area as described above is that, by using the crystalline aggregate powder having a large specific surface area, these crystalline aggregate powders act as crystal nuclei at the time of sintering, and from the glass. Promotes the precipitation of the crystalline phase of
This is for producing a low-temperature fired substrate having excellent mechanical properties and the like.

【0022】例えば、ガラス粉末としてCaO−Al2
3 −SiO2 −B23 系ガラスを使用し、結晶性骨
材粉末としてAl23 を使用した場合には、アノーサ
イト結晶相を析出させることができるが、特に比表面積
が4〜15m2 /gのものを使用することにより、製造
されたガラスセラミック基板中のアノーサイトの割合を
低温焼成材料として好ましい範囲にすることができる。
For example, as a glass powder, CaO-Al 2
When an O 3 —SiO 2 —B 2 O 3 system glass is used and Al 2 O 3 is used as the crystalline aggregate powder, an anorthite crystal phase can be precipitated. By using a material of 15 m 2 / g, the ratio of anorthite in the manufactured glass-ceramic substrate can be set to a preferable range as a low-temperature firing material.

【0023】上記条件以外の条件は、従来の場合と特に
変わらず、まず、ガラス粉末と結晶性骨材粉末とを配合
した粉末に、バインダ、溶剤、可塑剤等を添加して混合
することにより、スラリを調製し、このスラリを用いて
ドクターブレード法等によりグリーンシートを作製す
る。次に、グリーンシートを所定のサイズに切断し、必
要によりパンチング等の加工処理を施し、CuやAg−
Pd合金等の金属を含む導体ペーストの塗布や充填等を
行った後、積層、熱圧着してグリーンシート積層体を作
製する。前記工程の後、空気中、850〜950℃で1
0分〜10時間焼成し、ガラス相及び結晶相からなるガ
ラスセラミック層が形成され、内部及び/又は表面に導
体層が形成された低温焼成多層配線基板を製造する。
Conditions other than the above conditions are not particularly different from those in the conventional case. First, a binder, a solvent, a plasticizer, and the like are added to powder mixed with glass powder and crystalline aggregate powder and mixed. And a slurry is prepared, and a green sheet is prepared using the slurry by a doctor blade method or the like. Next, the green sheet is cut into a predetermined size, and if necessary, a processing such as punching is performed.
After applying or filling a conductive paste containing a metal such as a Pd alloy, the resultant is laminated and thermocompression-bonded to produce a green sheet laminate. After the above steps, 1-800 ° C. and 950 ° C.
Firing for 0 minutes to 10 hours to produce a low-temperature fired multilayer wiring board in which a glass-ceramic layer composed of a glass phase and a crystal phase is formed, and a conductor layer is formed inside and / or on the surface.

【0024】上記方法により製造された低温焼成基板
は、抗折強度を2000kgf/cm2 以上とすること
ができ、比誘電率や熱膨張率等の諸特性に優れたものと
することができる。
The low-temperature fired substrate manufactured by the above method can have a transverse rupture strength of 2000 kgf / cm 2 or more, and can be excellent in various properties such as relative dielectric constant and coefficient of thermal expansion.

【0025】[0025]

【実施例及び比較例】以下、本発明に係る低温焼成基板
の製造方法の実施例を説明する。また、比較例として、
従来の原料を用いて低温焼成基板を製造した場合につい
ても説明する。
Examples and Comparative Examples Examples of the method for manufacturing a low-temperature fired substrate according to the present invention will be described below. As a comparative example,
A case where a low-temperature fired substrate is manufactured using a conventional raw material will also be described.

【0026】本実施例及び比較例においては、ガラス粉
末及び結晶性骨材粉末を含むグリーンシートを作製し、
これを50mm×40mmの金型で打ち抜いた後、焼成
し、種々の特性についての試験を行って低温焼成基板用
の焼結体としての評価を行った。
In this example and comparative examples, green sheets containing glass powder and crystalline aggregate powder were prepared.
This was punched out with a 50 mm × 40 mm mold, fired, tested for various characteristics, and evaluated as a sintered body for a low-temperature fired substrate.

【0027】(1) 製造条件 ガラス粉末 ガラス粉末の種類:CaO−Al23 −SiO2 −B
23 系ガラス ガラス粉末の組成 CaO:25wt%、Al23 :6wt%、SiO
2 :60wt%、B23 :9wt% 結晶性骨材粉末 結晶性骨材粉末の種類:Al23 結晶性骨材粉末(Al23 粉末)の前処理 ボールミルにより粉砕処理を行い、比表面積の異なるA
23 粉末を作製した。粉砕処理の時間、粉砕処理さ
れたAl23 粉末の平均粒径、及び比表面積(BET
値:m2 /g)を下記の表1に示している。 BET値測定法:N2 吸着法(マイクロメトリックス社
製のフローソーブII) ガラス粉末と結晶性骨材粉末との混合 混合粉末中の各粉末の割合 ガラス粉末:60wt%、アルミナ粉末:40wt%、 混合粉末の平均粒径:表1に示す。 粉末(アルミナ粉末、混合粉末)の平均粒径の測定 レーザ回折法を用いた粒度測定機(日機装社製のマイク
ロトラック) グリーンシートの作製 スラリ中の成分:混合粉末、樹脂(メチルメタアクリレ
ート)、 溶剤(トルエン、キシレン、ブタノール)、可塑剤(ア
ジピン酸ジオクチル(DOA)) 成形方法:ドクタブレード法 グリーンシート中の混合粉末の割合:60wt% グリーンシートの厚み:400μm 焼成 焼成雰囲気:大気雰囲気 昇温条件:200℃/hr 焼成条件:890℃、20分 (2) 評価方法 製造された焼結体を以下の3項目について、評価を行っ
た。結果を下記の表1に示している。
(1) Manufacturing conditions Glass powder Type of glass powder: CaO—Al 2 O 3 —SiO 2 —B
2 O 3 -based glass Composition of glass powder CaO: 25 wt%, Al 2 O 3 : 6 wt%, SiO
2: 60wt%, B 2 O 3: 9wt% crystalline aggregate powder crystalline aggregate powder Type: Al 2 O 3 and milling process pretreatment ball mill crystalline aggregate powder (Al 2 O 3 powder) , Different in specific surface area A
l 2 O 3 powder was prepared. Pulverization time, average particle size of pulverized Al 2 O 3 powder, and specific surface area (BET
(Value: m 2 / g) are shown in Table 1 below. BET value measurement method: N 2 adsorption method (Flowsorb II manufactured by Micrometrics) Mixing of glass powder and crystalline aggregate powder Ratio of each powder in mixed powder Glass powder: 60 wt%, alumina powder: 40 wt%, mixing Average particle size of powder: shown in Table 1. Measurement of average particle size of powder (alumina powder, mixed powder) Particle size analyzer using laser diffraction method (Microtrack manufactured by Nikkiso Co., Ltd.) Preparation of green sheet Components in slurry: mixed powder, resin (methyl methacrylate), Solvent (toluene, xylene, butanol), plasticizer (dioctyl adipate (DOA)) Molding method: doctor blade method Ratio of mixed powder in green sheet: 60 wt% Green sheet thickness: 400 μm Firing Firing atmosphere: air atmosphere Temperature rise Conditions: 200 ° C./hr Firing conditions: 890 ° C., 20 minutes (2) Evaluation method The following three items were evaluated for the manufactured sintered body. The results are shown in Table 1 below.

【0028】 アノーサイト結晶の析出量の測定 析出したアノーサイト結晶につき、X線回折法によりそ
のX線強度を測定した。表1にアノーサイト結晶のピー
ク強度(任意単位)を示している。
Measurement of the Anorthite Crystal Deposition The X-ray intensity of the precipitated anorthite crystal was measured by an X-ray diffraction method. Table 1 shows the peak intensity (arbitrary unit) of the anorthite crystal.

【0029】 熱膨張係数の測定 接触式の線膨張係数計により室温から250℃までの熱
膨張係数を測定し、その平均値をとった。
Measurement of Thermal Expansion Coefficient The thermal expansion coefficient from room temperature to 250 ° C. was measured by a contact type linear expansion coefficient meter, and the average value was taken.

【0030】 後付け熱処理時の反り 製造した焼結体の両面に導体ペーストを印刷し、印刷さ
れた導体ペースト層が底面と接しないように、断面が半
円の形状をした後付け用治具の内部に前記焼結体を載置
し、熱処理を行い、熱処理により前記焼結体に生じた反
りを測定した。後付け焼成時に反りが生ずると基板とし
て使用することができないため、反りは0.5mm以下
が好ましく、0.1mm以下がより好ましい。そこで反
りが0.1mm以下のものを、0.5mm以下で0.1
mmを超えたものを△、0.5mmを超えたものを×と
した。
[0030] Warping during post-installation heat treatment [0030] A conductor paste is printed on both surfaces of the manufactured sintered body, and the inside of a post-fixing jig having a semicircular cross section so that the printed conductor paste layer does not contact the bottom surface. The sintered body was placed thereon, and heat treatment was performed, and the warpage generated in the sintered body due to the heat treatment was measured. If the substrate is warped during post-installation firing, it cannot be used as a substrate. Therefore, the warpage is preferably 0.5 mm or less, more preferably 0.1 mm or less. Therefore, when the warp is 0.1 mm or less, the warp is
Those exceeding mm were rated as Δ, and those exceeding 0.5 mm were rated X.

【0031】[0031]

【表1】 [Table 1]

【0032】(3) 評価結果 上記表1に示したように、結晶性骨材粉末であるAl2
3 粉末のBET値が大きくなるに従ってアノーサイト
結晶の量が増加しており、熱膨張係数等の値も、比較例
の場合と比較して小さくなっている。また、耐熱性に優
れるため、後付け熱処理時の反りも小さくなっており、
低温焼成基板を構成するガラスセラミック層として十分
な特性を示している。一方、結晶性骨材粉末や混合粉末
の平均粒径は、余り変化しておらず、従来とほぼ同様の
条件でグリーンシートの作製等を行うことができる。
(3) Evaluation results As shown in Table 1 above, the crystalline aggregate powder Al 2
As the BET value of the O 3 powder increases, the amount of anorthite crystal increases, and the values of the thermal expansion coefficient and the like also decrease as compared with the comparative example. In addition, due to its excellent heat resistance, warpage during post heat treatment is also small,
It shows sufficient characteristics as a glass ceramic layer constituting a low-temperature fired substrate. On the other hand, the average particle size of the crystalline aggregate powder and the mixed powder does not change so much, and green sheets can be produced under substantially the same conditions as in the related art.

【0033】このように実施例に係る低温焼成基板の製
造方法によれば、従来の場合と比較して、CaO−Al
23 −SiO2 −B23 系ガラス粉末や結晶性骨材
粉末であるAl23 の平均粒径を余り変化させること
なく、従って成形体の製造条件や焼成条件も余り変化さ
せることなく、結晶性骨材粉末のBET値を4〜12.
9m2 /gと大きくすることにより、ガラスセラミック
基板中の結晶相(アルミナ、アノーサイト)の割合が大
きく、機械的特性、誘電特性、熱膨張率等の諸特性に優
れた低温焼成基板を製造することができる。
As described above, according to the method for manufacturing a low-temperature fired substrate according to the embodiment, the CaO-Al
The average particle size of 2 O 3 —SiO 2 —B 2 O 3 -based glass powder or Al 2 O 3 , which is a crystalline aggregate powder, is not significantly changed, and therefore, the manufacturing conditions and firing conditions of the molded body are also significantly changed. Without changing the BET value of the crystalline aggregate powder from 4 to 12.
By increasing it to 9 m 2 / g, the ratio of the crystal phase (alumina, anorthite) in the glass ceramic substrate is large, and a low-temperature fired substrate excellent in various properties such as mechanical properties, dielectric properties, and coefficient of thermal expansion is manufactured. can do.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガラス粉末と結晶性骨材粉末とを用いた
低温焼成基板の製造方法において、比表面積が4〜15
2 /gの結晶性骨材粉末を使用することを特徴とする
低温焼成基板の製造方法。
1. A method for producing a low-temperature fired substrate using a glass powder and a crystalline aggregate powder, wherein the specific surface area is 4 to 15
A method for producing a low-temperature fired substrate, comprising using m 2 / g of crystalline aggregate powder.
【請求項2】 比表面積が6〜12m2 /gの結晶性骨
材粉末を使用することを特徴とする請求項1記載の低温
焼成基板の製造方法。
2. The method for producing a low-temperature fired substrate according to claim 1, wherein a crystalline aggregate powder having a specific surface area of 6 to 12 m 2 / g is used.
【請求項3】 ガラス粉末としてCaO−Al23
SiO2 −B23系ガラス、結晶性骨材粉末としてA
23 をそれぞれ用い、結晶層としてAl23 及び
CaO・Al23 ・2SiO2 (アノーサイト)を含
有する低温焼成基板を製造することを特徴とする請求項
1又は請求項2記載の低温焼成基板の製造方法。
3. A glass powder comprising CaO--Al 2 O 3-
SiO 2 -B 2 O 3 based glass, A as a crystalline aggregate powder
3. A low-temperature fired substrate containing l 2 O 3 and containing Al 2 O 3 and CaO.Al 2 O 3 .2SiO 2 (anorthite) as a crystal layer is manufactured. The method for producing the low-temperature fired substrate according to the above.
【請求項4】 CaOを10〜55wt%、Al23
を0〜30wt%、SiO2 を45〜70wt%、B2
3 を0〜20wt%の範囲で含有するガラス粉末50
〜65重量部に対し、比表面積が4〜15m2 /gのA
23 粉末を50〜35重量部の割合で混合した後、
800〜1000℃の温度で焼成することを特徴とする
請求項3記載の低温焼成基板の製造方法。
4. 10~55Wt% of CaO, Al 2 O 3
The 0~30wt%, the SiO 2 45~70wt%, B 2
Glass powder 50 containing O 3 in the range of 0 to 20 wt%
A having a specific surface area of 4 to 15 m 2 / g with respect to
After mixing l 2 O 3 powder at a ratio of 50-35 parts by weight,
4. The method according to claim 3, wherein the substrate is fired at a temperature of 800 to 1000 [deg.] C.
JP9005279A 1997-01-16 1997-01-16 Production of substrate fired at low temperature Pending JPH10194846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9005279A JPH10194846A (en) 1997-01-16 1997-01-16 Production of substrate fired at low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9005279A JPH10194846A (en) 1997-01-16 1997-01-16 Production of substrate fired at low temperature

Publications (1)

Publication Number Publication Date
JPH10194846A true JPH10194846A (en) 1998-07-28

Family

ID=11606807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9005279A Pending JPH10194846A (en) 1997-01-16 1997-01-16 Production of substrate fired at low temperature

Country Status (1)

Country Link
JP (1) JPH10194846A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001010868A (en) * 1999-06-22 2001-01-16 Murata Mfg Co Ltd Composition for ceramic substrate and ceramic circuit part
JP2009215161A (en) * 2009-04-17 2009-09-24 Nippon Electric Glass Co Ltd Glass ceramic dielectric material, sintered compact, and circuit member for high frequency wave
US20110233484A1 (en) * 2009-09-28 2011-09-29 E. I. Du Pont De Nemours And Company Glass-crystalline particles including a glass component and a crystalline component
JP2013071860A (en) * 2011-09-27 2013-04-22 Okamoto Glass Co Ltd Lead-free white glass ceramic substrate
US8685290B2 (en) * 2009-09-28 2014-04-01 E I Du Pont Nemours And Company Glass-crystalline particle powders including a glass component and a crystalline component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001010868A (en) * 1999-06-22 2001-01-16 Murata Mfg Co Ltd Composition for ceramic substrate and ceramic circuit part
JP2009215161A (en) * 2009-04-17 2009-09-24 Nippon Electric Glass Co Ltd Glass ceramic dielectric material, sintered compact, and circuit member for high frequency wave
US20110233484A1 (en) * 2009-09-28 2011-09-29 E. I. Du Pont De Nemours And Company Glass-crystalline particles including a glass component and a crystalline component
US8685290B2 (en) * 2009-09-28 2014-04-01 E I Du Pont Nemours And Company Glass-crystalline particle powders including a glass component and a crystalline component
JP2013071860A (en) * 2011-09-27 2013-04-22 Okamoto Glass Co Ltd Lead-free white glass ceramic substrate

Similar Documents

Publication Publication Date Title
US4621066A (en) Low temperature fired ceramics
US4749665A (en) Low temperature fired ceramics
JP3240271B2 (en) Ceramic substrate
US5145540A (en) Ceramic composition of matter and its use
JPH04231363A (en) Conductive composition containing iolite and glass
JP3419291B2 (en) Low-temperature sintered ceramic composition and multilayer ceramic substrate using the same
JPH10194846A (en) Production of substrate fired at low temperature
JPS63107838A (en) Glass-ceramic sintered body
JP3678260B2 (en) Glass ceramic composition
US5932326A (en) Ceramic wiring boards and method for their manufacture
JPH09241068A (en) Low temperature fired ceramic substrate
JPH0617250B2 (en) Glass ceramic sintered body
JPS63295473A (en) Dielectric material for circuit board
JPS6350345A (en) Glass ceramic sintered body
JP2000128628A (en) Glass ceramics composition
JP2000327428A (en) Low temperature sintering glass ceramic and its production
JPH10297960A (en) Ceramic composition baked at low temperature and production of porcelain baked at low temperature
JPS62123059A (en) Ceramic composition with surface smoothness
JPH03141153A (en) Inorganic composition having low-temperature sintering property and low dielectric constant
JP2699919B2 (en) Multilayer wiring board, method for manufacturing the same, and method for manufacturing sintered silica used therefor
JP3125500B2 (en) Ceramic substrate
JP3149613B2 (en) Ceramic substrate and method of manufacturing the same
JP3101966B2 (en) High thermal expansion Al2O3-SiO2-based sintered body and method for producing the same
JP4047050B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board using the same
JPS62252340A (en) Sintered glass and sintered glass ceramic