JP2699919B2 - Multilayer wiring board, method for manufacturing the same, and method for manufacturing sintered silica used therefor - Google Patents
Multilayer wiring board, method for manufacturing the same, and method for manufacturing sintered silica used thereforInfo
- Publication number
- JP2699919B2 JP2699919B2 JP7085129A JP8512995A JP2699919B2 JP 2699919 B2 JP2699919 B2 JP 2699919B2 JP 7085129 A JP7085129 A JP 7085129A JP 8512995 A JP8512995 A JP 8512995A JP 2699919 B2 JP2699919 B2 JP 2699919B2
- Authority
- JP
- Japan
- Prior art keywords
- silica
- sintered body
- powder
- multilayer wiring
- average particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、特に低誘電率及び低誘
電損率を要求されるマイクロ波集積回路に用いられるセ
ラミックス多層配線基板及びその製造方法、ならびにそ
れに用いるシリカ焼結体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic multilayer wiring board used for a microwave integrated circuit which requires a particularly low dielectric constant and a low dielectric loss factor, a method for manufacturing the same, and a silica sintered body used for the same.
【0002】[0002]
【従来の技術】従来より、セラミックス多層配線基板
は、容易に微細な回路パターンを内装できることから、
複数の素子等を高密度に実装した場合配線長の短縮化が
可能であり、高速伝送化が要求される分野に多く適用さ
れてきた。更なる高速化のためには、信号伝播遅延時間
は配線周りの絶縁材料の誘電率の平方根に比例すること
から、基板材料の低誘電率化の検討がなされている。例
えばセラミックス多層配線基板としてよく知られている
アルミナ基板に対し、ガラスとアルミナとの複合により
誘電率を下げたもの(ガラスセラミックス多層配線基
板)が多数実用化されている。また、石英、フォルステ
ライト、ステアタイト等の基板材料も知られている。2. Description of the Related Art Conventionally, a ceramic multilayer wiring board can easily mount a fine circuit pattern therein.
When a plurality of elements and the like are mounted at high density, the wiring length can be reduced, and it has been widely applied to fields requiring high-speed transmission. In order to further increase the speed, the signal propagation delay time is proportional to the square root of the dielectric constant of the insulating material around the wiring. Therefore, studies have been made on lowering the dielectric constant of the substrate material. For example, an alumina substrate, which is well known as a ceramic multilayer wiring substrate, has been put into practical use in many cases (glass-ceramic multilayer wiring substrate) in which the dielectric constant is lowered by a composite of glass and alumina. Substrate materials such as quartz, forsterite, and steatite are also known.
【0003】又、低誘電率化以外にも、高周波帯におけ
る誘電損の増大を抑えることを要求する分野(マイクロ
波集積回路等)も存在する。前述のガラスセラミックス
多層配線基板では誘電率は最小でも3.9程度である
が、多層配線基板の低誘電損化に対する要求には十分応
えられない。In addition to low dielectric constants, there are fields (such as microwave integrated circuits) that require suppression of an increase in dielectric loss in a high frequency band . The above-mentioned glass ceramic multilayer wiring board has a dielectric constant of at least about 3.9, but does not sufficiently meet the demand for low dielectric loss of the multilayer wiring board.
【0004】[0004]
【発明が解決しようとする課題】低誘電率、低誘電損失
を共に満足する絶縁材料としては石英等で代表されるシ
リカが考えられる。しかしながら、シリカはその焼結温
度の高さから、低損失導体材料として使用される金、
銀、銅といった低抵抗導体を内装することが困難であ
り、多層配線基板に利用する場合にはB2 O3 やホウケ
イ酸ガラスといった複数の材料を10〜20重量%程度
添加して、ガラス相を作り出すことにより焼結温度を下
げなければならない。As an insulating material satisfying both a low dielectric constant and a low dielectric loss, silica represented by quartz or the like can be considered. However, silica is used as a low-loss conductor material because of its high sintering temperature.
It is difficult to incorporate a low-resistance conductor such as silver or copper, and when it is used for a multilayer wiring board, a plurality of materials such as B 2 O 3 and borosilicate glass are added in an amount of about 10 to 20% by weight to form a glass phase. The sintering temperature must be reduced by producing
【0005】添加物により焼成温度を下げる方法とし
て、特開平2−302362号公報にBPO4 を5重量
%以上添加して焼成温度を950〜1100℃とする技
術が開示されている。導体として銅や銀を適用する場合
に必要となる1000℃以下での焼成では添加量は20
重量%以上となっている。As a method of lowering the sintering temperature by means of an additive, Japanese Patent Application Laid-Open No. 2-302362 discloses a technique in which BPO 4 is added in an amount of 5% by weight or more to raise the sintering temperature to 950 to 1100 ° C. When firing at 1000 ° C. or less, which is required when copper or silver is used as a conductor, the amount added is 20.
% By weight or more.
【0006】特開平2−26862号公報にはシリカ焼
結体を低温で製造する方法の一例として、シリカ超微粉
末として50nm以下、好ましくは5〜20nmの範囲の平
均粒径を持つ微粉末を使用して500〜800℃でホッ
トプレスすることでシリカ焼結体を得る技術が開示され
ている。この超微粉末には必要に応じて希土類酸化物を
5重量%程度添加することも記載されている。しかし、
焼成時に高圧をかけることは多層配線基板の製造方法と
しては望ましくはない。Japanese Patent Application Laid-Open No. 2-26862 discloses an example of a method for producing a silica sintered body at a low temperature. As an example, ultrafine silica powder having a mean particle size of 50 nm or less, preferably 5 to 20 nm is used. A technique for obtaining a silica sintered body by hot pressing at 500 to 800 ° C. is disclosed. It is also described that a rare earth oxide is added to this ultrafine powder at about 5% by weight as needed. But,
Applying high pressure during firing is not desirable as a method for manufacturing a multilayer wiring board.
【0007】本発明の目的は、シリカの低温焼成を可能
とすることで低誘電率、低誘電損失を合わせ持つ多層配
線基板とその製造方法を提供することにある。An object of the present invention is to provide a multilayer wiring board having low dielectric constant and low dielectric loss by enabling low-temperature firing of silica, and a method of manufacturing the same.
【0008】[0008]
【課題を解決するための手段】本発明による多層配線基
板の特徴は、絶縁層がシリカ焼結体を95重量%以上含
み、かつ導体層が融点800〜1200℃の導電材料よ
りなることである。A feature of the multilayer wiring board according to the present invention is that the insulating layer contains 95% by weight or more of a silica sintered body and the conductive layer is made of a conductive material having a melting point of 800 to 1200 ° C. .
【0009】又、このようなシリカ焼結体は、平均粒径
が5〜500nmであるシリカの微粉末を、バインダー、
溶剤と混合してスラリーとし、これを形成した後、分圧
にして0.005気圧以上0.85気圧以下の水蒸気
と、窒素もしくは空気を含む雰囲気において800〜1
200℃にて焼成することによって緻密な焼結体を形成
することができる。Further, such a silica sintered body is obtained by adding a fine silica powder having an average particle size of 5 to 500 nm to a binder,
A slurry is formed by mixing with a solvent, and after forming the slurry, 800-1 atm. In an atmosphere containing steam having a partial pressure of 0.005 atm or more and 0.85 atm or less and nitrogen or air.
By firing at 200 ° C., a dense sintered body can be formed.
【0010】これを多層配線基板として用いる場合に
は、平均粒径5〜500nmのシリカの微粉末、バインダ
ー、及び溶剤より作成したスラリーを用いてグリーンシ
ートを作製し、このグリーンシート上に導体層を形成
し、これらを積層した後、分圧にして0.005気圧以
上0.85気圧以下の水蒸気と、窒素もしくは空気を含
む雰囲気において800〜1200℃にて一体焼成する
こと、もしくは前述したシリカ焼結体に導体層を設けた
配線基板を形成し、少なくとも前記配線基板を2層以上
積層した後、一体化焼成することで製造することができ
る。When this is used as a multilayer wiring board, a green sheet is prepared using a slurry prepared from a fine powder of silica having an average particle diameter of 5 to 500 nm, a binder and a solvent, and a conductive layer is formed on the green sheet. And laminating them, and then integrally firing at 800 to 1200 ° C. in an atmosphere containing water vapor having a partial pressure of 0.005 to 0.85 atm and nitrogen or air. Alternatively, it can be manufactured by forming a wiring board in which a conductor layer is provided on the above-described silica sintered body, laminating at least two or more wiring boards, and integrally firing.
【0011】[0011]
【作用】本発明による多層配線基板には、Au,Ag,
Ag−Pd,Cuの少なくとも1種以上より選択された
導電材料を用いることが望ましい。これは、これら金属
が特に高周波特性が良好であるためである。又、このよ
うなシリカ焼結体は結晶性のものでも非晶質でもよい
が、シリカ焼結体全体の50重量%以上が非晶質シリカ
であることが熱膨張、転移温度といった点で望ましい。The multilayer wiring board according to the present invention includes Au, Ag,
It is desirable to use a conductive material selected from at least one of Ag-Pd and Cu. This is because these metals have particularly good high-frequency characteristics. Further, such a silica sintered body may be crystalline or amorphous, but it is desirable that 50% by weight or more of the entire silica sintered body is amorphous silica in terms of thermal expansion and transition temperature. .
【0012】シリカ焼結体の製造において重要であるの
はシリカの微粉末の平均粒径が5〜500nmの範囲にあ
ること、及び分圧にして0.005気圧以上0.85気
圧以下の水蒸気を含む雰囲気において800〜1200
℃にして焼結することである。これは、平均粒径が5nm
未満のシリカ粉末を得ることは困難であること、又平均
粒径が500nmより大きくなると1200℃以下の焼結
が困難となる点で不適当であるためであり、更に5〜5
0nmの範囲が好適である。焼成雰囲気に関しては、水蒸
気分圧が0.005気圧未満であると焼結が困難とな
る。水蒸気は多いほど焼結性は向上するが、分圧にして
0.85気圧以下の雰囲気を作り出すことは困難であ
る。従って、0.005気圧から0.85気圧の間、更
に好ましくは0.3〜0.7気圧の間で焼成することが
好ましい。これら条件をそろえれば、焼成温度について
は800〜1200℃の間で制御が可能となる。What is important in the production of a silica sintered body is that the average particle size of the fine silica powder is in the range of 5 to 500 nm, and that the water vapor has a partial pressure of 0.005 to 0.85 atm. 800 to 1200 in an atmosphere containing
C. and sintering. This means that the average particle size is 5 nm
This is because it is difficult to obtain a silica powder having a particle size of less than 500 nm, and when the average particle size is larger than 500 nm, sintering at 1200 ° C. or less is unsuitable.
A range of 0 nm is preferred. Regarding the firing atmosphere, sintering becomes difficult if the partial pressure of water vapor is less than 0.005 atm. Although the sinterability improves as the amount of water vapor increases, it is difficult to create an atmosphere having a partial pressure of 0.85 atm or less. Therefore, it is preferable to bake at a pressure of 0.005 to 0.85 atm, more preferably 0.3 to 0.7 atm. With these conditions, the firing temperature can be controlled between 800 and 1200 ° C.
【0013】更に、シリカの微粉末のうち50重量%以
上を非晶質シリカとすると、それ以下の時と比較して転
移点における体積変化の影響が小さくなり、より好まし
い。又その場合の非晶質シリカ粉末は球形であると焼結
性がよいことから、比表面積にして5〜450m 2 /g
の範囲であると好適である。Further, it is more preferable that amorphous silica account for 50% by weight or more of the fine silica powder, since the effect of the change in volume at the transition point is smaller than that when the amount is less than 50% by weight. In this case, since the amorphous silica powder has a good sinterability when it is spherical, the specific surface area is 5 to 450 m 2 / g.
Is preferably within the range.
【0014】また、シリカ粉末として、5〜500nmの
微粉末と、1体積%以上20体積%以下の分量の平均粒
径1μm 以上10μm 以下の結晶化石英粉末との混合粉
とすると、焼結体強度・靱性を向上させることが可能で
ある。ここでいう結晶化石英とは、α−石英、クリスト
バライト、トリジマイトのうち少なくとも1種以上より
なることが好ましい。平均粒径が1μm より小さいと靱
性は向上せず、20μm より大きいと焼結性が低下す
る。同様なことが添加量にもいえ、1体積%未満を添加
しても靱性は向上せず、20体積%より多く添加すると
焼結性の低下を招くため、好ましくない。Further, when the silica powder is a mixed powder of a fine powder of 5 to 500 nm and a crystallized quartz powder having an average particle diameter of 1 μm to 10 μm in an amount of 1% to 20% by volume, It is possible to improve strength and toughness. The crystallized quartz referred to here is preferably composed of at least one of α-quartz, cristobalite and tridymite. If the average particle size is smaller than 1 μm, the toughness is not improved, and if it is larger than 20 μm, the sinterability is reduced. The same applies to the amount of addition, and if less than 1% by volume is added, the toughness is not improved, and if more than 20% by volume is added, sinterability is reduced, which is not preferable.
【0015】多層配線基板を製造する場合には、グリー
ンシート上に導電層を形成し、一体としてから焼成する
ことで工程が簡略化できるため最も好適である。しか
し、あらかじめ焼結したシリカ上に導電層を設けた配線
基板を容易し、少なくとも前記配線基板を2層以上積層
した後、一体化焼成してもよい。In the case of manufacturing a multilayer wiring board, it is most preferable to form a conductive layer on a green sheet and fire it after integrating it, since the process can be simplified. However, wiring with a conductive layer provided on pre-sintered silica
Easier substrate, stacking at least two layers of the wiring substrate
After that, integrated firing may be performed.
【0016】[0016]
【実施例】以下に本発明を実施例により更に具体的に説
明するが、本発明はその要旨を超えない限り、以下の実
施例に限定されるものではない。EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited to the following Examples without departing from the scope of the invention.
【0017】(実施例1)原料粉末として平均粒径が5
nmである非晶質シリカ粉末を用いた。ポリビニルブチラ
ールをエタノールを主成分とする溶剤で溶かした液と所
定量の前記原料粉末とを均一に混ぜ合わせ、粘度を30
00から10000cpsとしたスラリーを作製する。
これをスリップキャスティング成膜法により50μm か
ら200μm の厚みになるようにグリーンシート化す
る。作製したグリーンシートを熱プレスすることにより
生積層体を得た。この生積層体を、分圧にして0.5気
圧の水蒸気と、酸素及び窒素を含む雰囲気下800℃で
24時間、焼成を行った(表1、試料番号1)。(Example 1) As a raw material powder, the average particle size was 5
Amorphous silica powder having a nm was used. A solution obtained by dissolving polyvinyl butyral with a solvent containing ethanol as a main component and a predetermined amount of the raw material powder are uniformly mixed to give a viscosity of 30.
A slurry with a viscosity of 00 to 10,000 cps is prepared.
This is formed into a green sheet by a slip casting film forming method so as to have a thickness of 50 μm to 200 μm. A green laminate was obtained by hot pressing the produced green sheet. The green laminate was fired at 800 ° C. for 24 hours in an atmosphere containing water vapor at a partial pressure of 0.5 atm, oxygen and nitrogen (Table 1, sample number 1).
【0018】[0018]
【表1】 [Table 1]
【0019】こうして得られたシリカ焼結体は透光性を
もつ白色であり、密度は2.20g/cm3 であった。X
線回折法による結晶相の同定を行ったところ、非晶質で
あることが分かった(図3)。また、試料破断面におけ
る走査型電子顕微鏡による観察を行ったところ、1μm
以下の空隙が若干存在するのが観察されたが、緻密な焼
結体であることが観察された。この焼結体の誘電率を測
定したところ、1MHzにおいて、εr=3.8であっ
た。The thus-obtained silica sintered body was transparent white and had a density of 2.20 g / cm 3 . X
When the crystal phase was identified by the line diffraction method, it was found that the crystal phase was amorphous (FIG. 3). In addition, observation of the fracture surface of the sample with a scanning electron microscope showed that 1 μm
Although the following voids were observed to be slightly present, it was observed that the sintered body was dense. When the dielectric constant of this sintered body was measured, εr = 3.8 at 1 MHz.
【0020】(実施例2)非晶質シリカの粗粉体を乾式
粉砕機にて微粉末とした。この粉末をレーザ回折式粒度
計にて粒径を測定したところ、平均粒径は0.5μm で
あった。この微粉末を原料粉末として実施例1と同様の
工程により生積層体を得た。この生積層体を分圧にして
0.85気圧の水蒸気と、酸素及び窒素を含む雰囲気
下、1200℃にて48時間の焼成を行った(表2、試
料番号12)。Example 2 A coarse powder of amorphous silica was made into a fine powder by a dry pulverizer. The average particle size of the powder was measured by a laser diffraction type particle size analyzer, and was found to be 0.5 μm. Using this fine powder as a raw material powder, a green laminate was obtained in the same process as in Example 1. This green laminate was fired at 1200 ° C. for 48 hours in an atmosphere containing 0.85 atm of water vapor, oxygen and nitrogen at a partial pressure (Table 2, Sample No. 12).
【0021】[0021]
【表2】 [Table 2]
【0022】こうして得られたシリカ焼結体は、実施例
1で得られた試料同様、透光性を示す白色であり、密度
は2.20g/cm3 であった。X線回折法による結晶相
の同定では若干のクリストバライト相を含んでいるが、
大部分は非晶質相であった(図3)。また、この焼結体
の誘電率を測定したところ、1MHzにおいてεr=
3.9であった。The silica sintered body thus obtained was white, showing translucency, and had a density of 2.20 g / cm 3 , similarly to the sample obtained in Example 1. Although the identification of the crystal phase by the X-ray diffraction method includes a slight cristobalite phase,
Most were in the amorphous phase (FIG. 3). Also, when the dielectric constant of this sintered body was measured, at 1 MHz, εr =
3.9.
【0023】(実施例3)平均粒径が7nmである非晶質
シリカ粉末を用い、実施例1と同様の工程により生積層
体を作製し、1200℃にて48時間焼成を行った。こ
の際、焼成雰囲気として分圧にして0.005気圧の水
蒸気と、酸素及び窒素を用いた(表2、試料番号1
0)。(Example 3) Using an amorphous silica powder having an average particle size of 7 nm, a green laminate was produced in the same process as in Example 1, and baked at 1200 ° C for 48 hours. At this time, as the firing atmosphere, steam having a partial pressure of 0.005 atm, and oxygen and nitrogen were used (Table 2, sample number 1).
0).
【0024】得られた試料は実施例1、2と同様に焼結
体密度は2.20g/cm3 に達しており、外観も同様の
透光性のある白色であった。X線回折法による結晶相の
同定では実施例2と同様に若干のクリストバライト相を
含んでいることが確認されたが、他は非晶質相であるこ
とが確認された。The obtained sample had a sintered body density of 2.20 g / cm 3 as in the case of Examples 1 and 2, and had the same translucent white appearance in appearance. The identification of the crystal phase by the X-ray diffraction method confirmed that it contained a slight cristobalite phase as in Example 2, but the others were confirmed to be amorphous phases.
【0025】(実施例4)前述した平均粒径7nmの非晶
質シリカ粉末50重量%と平均粒径1μm の結晶石英粉
末50重量%とからなる混合粉末をエタノール中、ホモ
ジナイザーを用いて分散させ、分散液を作製した。エタ
ノールを主成分とする溶剤にポリビニルブチラールを溶
解させたものを、所定量の前述した分散液と混合し、粘
度を3000から10000cpsに調整したスラリー
を作製する。これをスリップキャスティング成膜法によ
り50から200μm の厚みになるようにグリーンシー
ト化する。作製したグリーンシートを熱プレスすること
により生積層体を得る。この生積層体を電気炉中、分圧
にして0.5気圧の水蒸気と、酸素及び窒素を含む雰囲
気中、1200℃にて24時間焼成を行った(表3、試
料番号16)。Example 4 A mixed powder composed of 50% by weight of the above-mentioned amorphous silica powder having an average particle diameter of 7 nm and 50% by weight of crystalline quartz powder having an average particle diameter of 1 μm was dispersed in ethanol using a homogenizer. To prepare a dispersion. A solution obtained by dissolving polyvinyl butyral in a solvent containing ethanol as a main component is mixed with a predetermined amount of the above-mentioned dispersion to prepare a slurry whose viscosity is adjusted to 3,000 to 10,000 cps. This is formed into a green sheet by a slip casting method so as to have a thickness of 50 to 200 μm. A green laminate is obtained by hot pressing the produced green sheet. This green laminate was fired in an electric furnace at 1200 ° C. for 24 hours in an atmosphere containing water vapor at a partial pressure of 0.5 atm and oxygen and nitrogen (Table 3, Sample No. 16).
【0026】[0026]
【表3】 [Table 3]
【0027】こうして得られた試料は、非晶質シリカ単
体の焼結体と同様の透光性をもつ白色であり、焼結体温
度は2.35g/cm3 であった。X線回折法による結晶
相の同定を行ったところ、クォーツが確認され、若干の
クリストバライト相と非晶質相が確認された。The sample thus obtained was white with the same light transmittance as the sintered body of the amorphous silica alone, and the sintered body temperature was 2.35 g / cm 3 . When the crystal phase was identified by the X-ray diffraction method, quartz was confirmed, and a slight cristobalite phase and an amorphous phase were confirmed.
【0028】(実施例5)平均粒径7nmの非晶質シリカ
粉末80重量%と平均粒径1μm の結晶石英粉末20重
量%とからなる混合粉末を用い、実施例4と同様の工程
により生積層体を作製、焼成を行った(表3、試料番号
17)。こうして得られた試料は、非晶質シリカ単体の
焼結体と同様の透光性をもつ白色であり、焼結体密度は
2.22g/cm3 であった。X線回折法による結晶相の
同定では、非晶質相を示すブロードパターンとクォーツ
のピークが確認された。Example 5 A mixed powder consisting of 80% by weight of amorphous silica powder having an average particle diameter of 7 nm and 20% by weight of crystalline quartz powder having an average particle diameter of 1 μm was produced by the same process as in Example 4. A laminate was prepared and fired (Table 3, Sample No. 17). The sample thus obtained was white with the same light transmittance as the sintered body of the amorphous silica alone, and the density of the sintered body was 2.22 g / cm 3 . In the identification of the crystal phase by the X-ray diffraction method, a broad pattern indicating an amorphous phase and a quartz peak were confirmed.
【0029】(実施例6)平均粒径7nmの非晶質シリカ
粉末95重量%と平均粒径1μm のホウケイ酸ガラス粉
末5重量%とからなる混合粉末及び、平均粒径7nmの非
晶質シリカ粉末97重量%と平均粒径1μm のホウケイ
酸ガラス粉末3重量%とからなる混合粉末を用い、実施
例4と同様の工程によりそれぞれ生積層体を作製し、分
圧にして0.5気圧の水蒸気と、窒素及び酸素からなる
雰囲気下、1000℃にて24時間焼成を行った。得ら
れた試料は、実施例1で得られた試料と同様の外観をも
ち、焼結体密度はそれぞれ2.19g/cm3 、2.20
g/cm3 であった。使用したホウケイ酸ガラスは誘電率
が5.0であるが、焼結体の誘電率はそれぞれ4.0、
3.9であった。Example 6 A mixed powder composed of 95% by weight of amorphous silica powder having an average particle diameter of 7 nm and 5% by weight of borosilicate glass powder having an average particle diameter of 1 μm, and amorphous silica having an average particle diameter of 7 nm Using a mixed powder consisting of 97% by weight of the powder and 3% by weight of a borosilicate glass powder having an average particle size of 1 μm, green laminates were prepared in the same manner as in Example 4, and the partial pressure was adjusted to 0.5 atm. Baking was performed at 1000 ° C. for 24 hours in an atmosphere composed of steam, nitrogen and oxygen. The obtained sample has the same appearance as the sample obtained in Example 1, and has a sintered body density of 2.19 g / cm 3 and 2.20, respectively.
g / cm 3 . The borosilicate glass used has a dielectric constant of 5.0, and the dielectric constant of the sintered body is 4.0, respectively.
3.9.
【0030】(実施例7)前述した平均粒径7nmの非晶
質シリカ粉末をシリカ原料とし、実施例1と同様の方法
により、100μm 厚みのグリーンシートを作製した。
これに直径200μm のヴィアホールを形成しCuペー
ストを埋め込んだ。更にCuペーストにより導体パター
ンを印刷したシート20枚を積層し、90℃、50MP
aで30分間静水圧プレスを行い、生積層体を形成し
た。この生積層体を分圧にして0.5気圧の水蒸気と、
窒素及び微量酸素からなる雰囲気下、図1に示した条件
にて脱バインダー及び焼成を行った。得られた多層基板
(図2)の絶縁層は実施例1で得られた焼結体と同様の
性能を示した。また、Cu導体の比抵抗値は3μΩ・cm
であり低抵抗導体として良好であった。Example 7 A green sheet having a thickness of 100 μm was produced in the same manner as in Example 1 using the above-mentioned amorphous silica powder having an average particle diameter of 7 nm as a silica raw material.
A via hole having a diameter of 200 μm was formed therein and Cu paste was embedded therein. Further, 20 sheets on which a conductor pattern is printed with a Cu paste are laminated, and 90 ° C., 50MP
a) Isostatic pressing was performed for 30 minutes to form a green laminate. This raw laminate is subjected to a partial pressure of 0.5 atm of steam,
Under an atmosphere composed of nitrogen and a trace amount of oxygen, binder removal and firing were performed under the conditions shown in FIG. The insulating layer of the obtained multilayer substrate (FIG. 2) showed the same performance as the sintered body obtained in Example 1. The specific resistance of the Cu conductor is 3 μΩ · cm.
And was good as a low resistance conductor.
【0031】(実施例8)原料粉末として平均粒径が5
nmである非晶質石英粉末80体積%と平均粒径1μm の
α−石英粉末20体積%及び平均粒径が5nmである非晶
質石英粉末99体積%と平均粒径10μm のα−石英粉
末1体積%からなる混合粉末を用いた。この混合粉末を
エチルセロソルブを分散媒としてボールミル混合を行っ
た。得られた分散液にポリビニルブチラール・可塑剤等
を添加した後、ホモジナイザーにて約80℃に加温しな
がらバインダーの溶解・混合を行い、粘度3000から
10000cpsのスラリーを作製した。得られたスラ
リーをスリップキャスティング成膜法により50μm か
ら200μm の厚みのグリーンシートとした。作製した
グリーンシートを熱プレスすることにより生積層体を得
た。この生積層体を、分圧にして0.5気圧の水蒸気
と、酸素及び窒素を含む雰囲気中1000℃で10時間
焼成を行った。Example 8 The raw material powder had an average particle size of 5
80% by volume of amorphous quartz powder having an average particle diameter of 20% by volume and α-quartz powder having an average particle diameter of 1 μm and 99% by volume of amorphous quartz powder having an average particle diameter of 5 nm and α-quartz powder having an average particle diameter of 10 μm. A mixed powder consisting of 1% by volume was used. This mixed powder was subjected to ball mill mixing using ethyl cellosolve as a dispersion medium. After adding polyvinyl butyral, a plasticizer, and the like to the obtained dispersion, the binder was dissolved and mixed while heating to about 80 ° C. with a homogenizer to prepare a slurry having a viscosity of 3,000 to 10,000 cps. The obtained slurry was formed into a green sheet having a thickness of 50 μm to 200 μm by a slip casting method. A green laminate was obtained by hot pressing the produced green sheet. This green laminate was baked at 1000 ° C. for 10 hours in an atmosphere containing water vapor at a partial pressure of 0.5 atm and oxygen and nitrogen.
【0032】こうして得られたシリカ焼結体は透光性の
白色を呈しており、密度は2.40g/cm3 であった。
破断面を走査型電子顕微鏡にて観察したところ、気孔は
ほとんど認められず、緻密な焼結体であることが観察さ
れた。また、この焼結体から角柱試片を切り出し、破壊
靱性測定を行ったところKIC=3.5MPa/m1/2及
び3.0MPa/m1/2 であり十分信頼性が得られるこ
とが確認された。The silica sintered body thus obtained exhibited a translucent white color, and had a density of 2.40 g / cm 3 .
Observation of the fractured surface with a scanning electron microscope showed that almost no pores were observed, and that the sintered body was a dense sintered body. Also, cut out prism test piece from the sintered body, a K IC = 3.5MPa / m 1/2 and 3.0 MPa / m 1/2 was subjected to fracture toughness measurement be reliable enough to obtain confirmed.
【0033】また、原料粉末としてα−石英粉末をクリ
ストバライト、トリジマイトとした場合についても破壊
靱性値は3.0MPa/m1/2 以上であり十分な信頼性
が得られる。In addition, when cristobalite and tridymite are used as the α-quartz powder as the raw material powder, the fracture toughness is 3.0 MPa / m 1/2 or more, and sufficient reliability can be obtained.
【0034】(実施例9)非晶質石英の粗粉体を乾式粉
砕機にて微粉末とした。この粉末をレーザ回折式粒度計
にて粒径を測定したところ、平均粒径は500nmであっ
た。この微粉末80体積%と平均粒径1μm のα−石英
粉末20体積%及び前記微粉末99体積%と平均粒径1
0μm のα−石英粉末1体積%からなる混合粉末を原料
粉末とし、実施例1と同様の工程により生積層体を作製
した。この生積層体を分圧にして0.5気圧の水蒸気
と、酸素及び窒素を含む雰囲気中1200℃にて50時
間焼成を行った。Example 9 A coarse powder of amorphous quartz was made into a fine powder by a dry pulverizer. When the particle size of this powder was measured with a laser diffraction particle size analyzer, the average particle size was 500 nm. 80% by volume of this fine powder, 20% by volume of α-quartz powder having an average particle size of 1 μm, 99% by volume of the fine powder and 1
A raw laminate was prepared by the same process as in Example 1 using a mixed powder consisting of 0% of α-quartz powder of 1% by volume as a raw material powder. The green laminate was fired at 1200 ° C. for 50 hours in an atmosphere containing 0.5 atm of water vapor, oxygen and nitrogen at a partial pressure.
【0035】得られたシリカ焼結体の破壊靱性値を測定
したところ、KIC=3.5MPa/m1/2 及び3.0M
Pa/m1/2 であった。When the fracture toughness value of the obtained silica sintered body was measured, K IC = 3.5 MPa / m 1/2 and 3.0 M
Pa / m 1/2 .
【0036】(比較例1)実施例1と同様の工程により
作製した試料を電気炉中、分圧にして0.85気圧の水
蒸気と、酸素及び窒素を含む雰囲気下、750℃にて4
8時間焼成を行った(表2、試料番号13)。得られた
試料は生積層体の寸法と比較して大きな収縮を示した
が、透光性は認められない白色を呈していた。走査型電
子顕微鏡にて破断面の観察を行ったが、未焼結であるこ
とが観察された。従って、焼成温度については、750
℃では不十分であると考えられる。(Comparative Example 1) A sample prepared by the same process as in Example 1 was placed in an electric furnace at 750 ° C. in an atmosphere containing water vapor at a partial pressure of 0.85 atm and oxygen and nitrogen.
The firing was performed for 8 hours (Table 2, Sample No. 13). The obtained sample showed a large shrinkage as compared with the dimensions of the green laminate, but exhibited a white color with no translucency. Observation of the fracture surface with a scanning electron microscope revealed that it was not sintered. Therefore, regarding the firing temperature, 750
C is considered insufficient.
【0037】一方、1200℃以上の温度域では焼成を
行った場合、充分な焼結は可能であるが、低抵抗導体の
融点以上となるため同時焼成が不可能となり、実用に共
さない。On the other hand, when sintering is performed in a temperature range of 1200 ° C. or more, sufficient sintering is possible, but simultaneous sintering becomes impossible because the temperature exceeds the melting point of the low-resistance conductor, which is not practical.
【0038】(比較例2)実施例1と同様の工程により
作製した生積層体を、分圧にして0.004気圧となる
水蒸気と、窒素および酸素を含む雰囲気中、最高温度1
200℃で48時間焼成を行った(表2、試料番号
9)。得られた試料は透光性を示さず、全く焼結してい
ない。焼成雰囲気に占める水蒸気量が分圧にして0.0
04気圧以下では、本発明に示す温度範囲における焼成
では十分な焼結体は得られない。(Comparative Example 2) A green laminate produced by the same steps as in Example 1 was subjected to a partial pressure of 0.004 atm in an atmosphere containing water vapor, nitrogen and oxygen, and a maximum temperature of 1%.
Baking was performed at 200 ° C. for 48 hours (Table 2, Sample No. 9). The obtained sample does not show translucency and is not sintered at all. The amount of water vapor in the firing atmosphere is 0.0
If the pressure is not more than 04 atm, a sufficient sintered body cannot be obtained by firing in the temperature range shown in the present invention.
【0039】また、水蒸気量として分圧にして0.85
気圧以上を実現することは困難であり、実用に共さな
い。The partial pressure of the water vapor is 0.85
It is difficult to achieve a pressure higher than the atmospheric pressure, which is not practical.
【0040】(比較例3)平均粒径5nmの非晶質シリカ
粉末45wt%と平均粒径1μm の結晶石英粉末55w
t%を原料として、実施例4と同様の方法により生積層
体を得た。これを分圧にして0.5気圧となる水蒸気
と、酸素及び窒素を含む雰囲気中、1200℃にて24
時間焼成を行った(表3、試料番号15)。こうして得
られた試料は生積層体寸法と比較して大きな収縮を示し
たが、容易に破断できる脆さを呈しており、焼結は不十
分であった。従って、非晶質シリカは45wt%以下で
は本発明の範囲の焼成条件下では、十分な焼結体は得ら
れない。Comparative Example 3 45 wt% of amorphous silica powder having an average particle size of 5 nm and crystalline quartz powder 55 w having an average particle size of 1 μm
Using t% as a raw material, a green laminate was obtained in the same manner as in Example 4. This is divided at a partial pressure of 0.5 atm into water vapor and an atmosphere containing oxygen and nitrogen at 1200 ° C. for 24 hours.
Time calcination was performed (Table 3, Sample No. 15). The sample thus obtained showed a large shrinkage as compared with the size of the green laminate, but exhibited brittleness that could be easily broken, and sintering was insufficient. Therefore, when the amount of the amorphous silica is 45 wt% or less, a sufficient sintered body cannot be obtained under the firing conditions in the range of the present invention.
【0041】(比較例4)晶質石英の粗粉末を乾式粉砕
機にて平均粒径0.5μm の微粉末とした。この粉末を
X線回折法による結晶相の同定を行ったが、クォーツで
あることが確認された。この粉末を原料粉末として実施
例1と同様の工程により生積層体を得た。この生積層体
を分圧にして0.5気圧の水蒸気と、酸素及び窒素を含
む雰囲気下、1200℃にて24時間焼成を行った(表
3、試料番号14)。こうして得られたシリカ焼成体は
白色を呈しており、非常に脆いものであった。走査型電
子顕微鏡により破断面の観察を行ったところ、多くのマ
イクロクラックが発生していることが確認された。これ
は冷却途中に高温型から低温型結晶への転移点があるた
めに起こるものと思われる。従って、全てを晶質石英に
することは、強度のある試料を作る上では不適当であ
る。Comparative Example 4 A coarse powder of crystalline quartz was made into a fine powder having an average particle size of 0.5 μm by a dry pulverizer. The crystal phase of this powder was identified by an X-ray diffraction method, and it was confirmed that the powder was quartz. Using this powder as a raw material powder, a green laminate was obtained in the same steps as in Example 1. This green laminate was fired at 1200 ° C. for 24 hours in an atmosphere containing 0.5 atm of water vapor, oxygen and nitrogen at a partial pressure (Table 3, sample number 14). The calcined silica body thus obtained was white and very brittle. Observation of the fracture surface with a scanning electron microscope confirmed that many microcracks had occurred. This is considered to be caused by a transition point from a high-temperature type crystal to a low-temperature type crystal during cooling. Therefore, it is not suitable to make a strong sample if all is made of crystalline quartz.
【0042】(比較例5)平均粒径7nmの非晶質シリカ
粉末90重量%と平均粒径1μm のホウケイ酸ガラス粉
末10重量%とからなる混合粉末を用い、実施例4と同
様の工程により生積層体を作製し、分圧にして0.5気
圧の水蒸気と、窒素及び酸素からなる雰囲気下、100
0℃にて24時間焼成を行った。得られた試料は実施例
6で得られた試料と同様の外観をもつが、誘電率を測定
したところ1MHzにおいて4.1であり、4.0以上
となってしまう。重量基準でSiO2 が95重量%未満
となる緻密なシリカ焼結体を作製した場合、低誘電率と
いう有意性がなくなり実用に共さない。Comparative Example 5 A mixed powder composed of 90% by weight of amorphous silica powder having an average particle diameter of 7 nm and 10% by weight of borosilicate glass powder having an average particle diameter of 1 μm was prepared in the same manner as in Example 4. A green laminate was prepared, and a partial pressure of 0.5 atm water vapor and 100 atmospheres of nitrogen and oxygen were used.
The firing was performed at 0 ° C. for 24 hours. The obtained sample has the same appearance as that of the sample obtained in Example 6, but its dielectric constant is 4.1 at 1 MHz, which is 4.0 or more. When a dense silica sintered body having a SiO 2 content of less than 95% by weight on a weight basis is manufactured, the low dielectric constant is not significant and is not practical.
【0043】[0043]
【発明の効果】以上述べたように、本発明によれば非常
に低い誘電率を有する多層配線基板を得ることができ
る。特に非晶質体シリカの場合その誘電率は3.5〜
4.0であり、より信号伝播遅延時間の短縮がはかれ
る。又、Au,Ag,Ag−Pd等の低抵抗導体の融点
以下で焼結が可能であるので、同時焼成により内層導体
を形成することも可能となった。特にα−石英粉末等を
添加した場合においては、破壊靱性値はKIC=3.5〜
3.6(MPa/m1/2 )であり、十分な信頼性をもつ
シリカ焼結体を得られた。As described above, according to the present invention, a multilayer wiring board having a very low dielectric constant can be obtained. In particular, in the case of amorphous silica, the dielectric constant is 3.5 to 3.5.
4.0, thereby further reducing the signal propagation delay time. In addition, since sintering can be performed at a temperature equal to or lower than the melting point of a low-resistance conductor such as Au, Ag, or Ag-Pd, the inner conductor can be formed by simultaneous firing. In particular, when α-quartz powder or the like is added, the fracture toughness value is K IC = 3.5 to
It was 3.6 (MPa / m 1/2 ), and a highly reliable silica sintered body was obtained.
【図1】本発明における焼成条件の実施例を示すグラフ
である。FIG. 1 is a graph showing an example of firing conditions in the present invention.
【図2】低抵抗導体としてCuを用いた、本発明による
多層配線基板の構成を示す図である。FIG. 2 is a diagram showing a configuration of a multilayer wiring board according to the present invention using Cu as a low-resistance conductor.
【図3】900℃、1200℃、及び1400℃におい
て焼成を行ったときの結晶相を示すXRDパターンであ
る。FIG. 3 is an XRD pattern showing a crystal phase when firing at 900 ° C., 1200 ° C., and 1400 ° C.
【図4】シリカ焼結体の概略を示す図である。FIG. 4 is a view schematically showing a silica sintered body.
1 シリカ焼結体 2 銅導体パターン 3 ヴィア銅導体 4 石英マトリクス 5 結晶化石英粒子 Reference Signs List 1 silica sintered body 2 copper conductor pattern 3 via copper conductor 4 quartz matrix 5 crystallized quartz particle
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−83674(JP,A) 特開 昭60−171781(JP,A) 特開 昭61−186259(JP,A) 特開 昭61−247660(JP,A) 特開 昭54−111511(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-83674 (JP, A) JP-A-60-11781 (JP, A) JP-A-61-186259 (JP, A) JP-A-61-186259 247660 (JP, A) JP-A-54-111511 (JP, A)
Claims (10)
み焼結体密度が2.19g/cm 3 以上である緻密な層
よりなり、かつ導体層が融点800〜1200℃の導電
材料よりなることを特徴とする多層配線基板。1. A dielectric layer is a silica sintered body 95 wt% or more free
A multilayer wiring board comprising a dense layer having a sintered body density of 2.19 g / cm 3 or more , and a conductive layer made of a conductive material having a melting point of 800 to 1200 ° C.
質シリカであることを特徴とする請求項1記載の多層配
線基板。2. The multilayer wiring board according to claim 1, wherein 50% by weight or more of the silica sintered body is amorphous silica.
少なくとも1種以上よりなることを特徴とする請求項1
ないし2記載の多層配線基板。3. The method according to claim 1, wherein the conductive layer is made of at least one of Au, Ag, Ag-Pd, and Cu.
3. The multilayer wiring board according to any one of claims 2 to 3.
粉末を、バインダー、溶剤と混合してスラリーとし、こ
れを形成した後、分圧にして0.005気圧以上0.8
5気圧以下の水蒸気と、窒素もしくは空気を含む雰囲気
において800〜1200℃にて焼成することによって
焼結体を形成することを特徴とするシリカ焼結体の製造
方法。4. A fine powder of silica having an average particle size of 5 to 500 nm is mixed with a binder and a solvent to form a slurry.
5 atm and less steam, depending on firing at 800 to 1200 ° C. in an atmosphere including nitrogen or air
A method for producing a silica sintered body, comprising forming a sintered body.
粉末と、平均粒径1μm 以上10μm 以下の結晶化石
英粉末とを、前記結晶化石英粉末が全粉末中1体積%以
上20体積%以下となるように 秤量した後バインダ
ー、溶剤と混合してスラリーとし、これを成形した後、
分圧にして0.005気圧以上0.85気圧以下の水蒸
気と、窒素もしくは空気を含む雰囲気において800〜
1200℃にて焼成することによって焼結体を形成する
ことを特徴とするシリカ焼結体の製造方法。5. A fine silica powder having an average particle size of 5 to 500 nm and a crystallized quartz powder having an average particle size of 1 μm or more and 10 μm or less, wherein the crystallized quartz powder is 1% by volume to 20% by volume of the whole powder. %, And then weighed so as to be less than 10%, and then mixed with a binder and a solvent to form a slurry.
In an atmosphere containing water vapor having a partial pressure of 0.005 to 0.85 atm and nitrogen or air , 800 to
The method for producing a silica sintered body and forming a the firing Therefore sintered body at 1200 ° C..
晶質シリカであることを特徴とする請求項4または5記
載のシリカ焼結体の製造方法。6. The method for producing a silica sintered body according to claim 4, wherein 50% by weight or more of the fine silica powder is amorphous silica.
/g以上450m 2 /g以下であることを特徴とする
請求項6記載のシリカ焼結体の製造方法。7. The specific surface area of the amorphous silica powder is 5 m 2
/ Method for producing a silica sintered body according to claim 6, wherein the g or more 450m 2 / g or less.
イト、トリジマイトのうち少なくとも1種以上よりなる
ことを特徴とする請求項5記載のシリカ焼結体の製造方
法。8. The method according to claim 5, wherein the crystallized quartz powder comprises at least one of α-quartz, cristobalite, and tridymite.
粉末、バインダー、及び溶剤より作成したスラリーを用
いてグリーンシートを作製し、このグリーンシート上に
導体層を形成し、これらを積層した後、分圧にして0.
005気圧以上0.85気圧以下の水蒸気と、窒素もし
くは空気を含む雰囲気において800〜1200℃にて
一体焼成することを特徴とする多層配線基板の製造方
法。9. A green sheet is prepared by using a slurry prepared from a fine powder of silica having an average particle diameter of 5 to 500 nm, a binder and a solvent, a conductor layer is formed on the green sheet, and these are laminated. After that, the partial pressure was set to 0.1.
Steam between 005 and 0.85 atm and nitrogen
Or a method of manufacturing a multilayer wiring board, comprising integrally firing at 800 to 1200 ° C. in an atmosphere containing air.
Law .
導体層を設けた配線基板を形成し、少なくとも前記配線
基板を2層以上積層した後、一体化焼成することを特徴
とする多層配線基板の製造方法。10. A multilayer wiring, comprising: forming a wiring substrate in which a conductor layer is provided on a silica sintered body according to any one of claims 4 to 8, laminating at least two wiring substrates, and integrally firing. Substrate manufacturing method.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7085129A JP2699919B2 (en) | 1994-05-13 | 1995-04-11 | Multilayer wiring board, method for manufacturing the same, and method for manufacturing sintered silica used therefor |
US08/439,798 US5728470A (en) | 1994-05-13 | 1995-05-12 | Multi-layer wiring substrate, and process for producing the same |
US08/567,467 US5714112A (en) | 1994-05-13 | 1995-12-05 | Process for producing a silica sintered product for a multi-layer wiring substrate |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6-99818 | 1994-05-13 | ||
JP9981894 | 1994-05-13 | ||
JP7085129A JP2699919B2 (en) | 1994-05-13 | 1995-04-11 | Multilayer wiring board, method for manufacturing the same, and method for manufacturing sintered silica used therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0832238A JPH0832238A (en) | 1996-02-02 |
JP2699919B2 true JP2699919B2 (en) | 1998-01-19 |
Family
ID=26426160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7085129A Expired - Lifetime JP2699919B2 (en) | 1994-05-13 | 1995-04-11 | Multilayer wiring board, method for manufacturing the same, and method for manufacturing sintered silica used therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2699919B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002060266A (en) * | 2000-08-18 | 2002-02-26 | Denki Kagaku Kogyo Kk | Production process of amorphous silica sintered body |
JP2016207747A (en) * | 2015-04-17 | 2016-12-08 | 京セラ株式会社 | Insulator and wiring board |
CN115340394A (en) * | 2022-08-10 | 2022-11-15 | 武汉科技大学 | Boron phosphate reinforced quartz material and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60171781A (en) * | 1984-02-17 | 1985-09-05 | 富士通株式会社 | Method of producing low dielectric constant multilayer board |
JPS6183674A (en) * | 1984-10-01 | 1986-04-28 | 株式会社日立製作所 | Ceramic wire distribution substrate and manufacture |
JPS61186259A (en) * | 1985-02-14 | 1986-08-19 | ハリマセラミック株式会社 | Manufacture of fused silica base sintered body |
JPS61247660A (en) * | 1985-03-23 | 1986-11-04 | ハリマセラミック株式会社 | Manufacture of porous silica sintered body |
-
1995
- 1995-04-11 JP JP7085129A patent/JP2699919B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0832238A (en) | 1996-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5728470A (en) | Multi-layer wiring substrate, and process for producing the same | |
US4755490A (en) | Low firing temperature ceramic materials | |
JPH11511719A (en) | Low dielectric loss glass | |
JPH0649594B2 (en) | Crystallizable low dielectric constant low dielectric loss composition | |
JP4508488B2 (en) | Manufacturing method of ceramic circuit board | |
JPH107435A (en) | Glass ceramic wiring substrate and its production | |
JP3042441B2 (en) | Low temperature fired glass-ceramic substrate and its manufacturing method | |
JP2699919B2 (en) | Multilayer wiring board, method for manufacturing the same, and method for manufacturing sintered silica used therefor | |
JP4569000B2 (en) | Low-frequency sintered dielectric material for high frequency and its sintered body | |
JP3678260B2 (en) | Glass ceramic composition | |
JP3550270B2 (en) | Low temperature fired porcelain composition and method for producing low temperature fired porcelain | |
JP3377898B2 (en) | Low temperature firing porcelain composition | |
JP4202117B2 (en) | Low-frequency fired porcelain composition for high frequency and manufacturing method thereof | |
JPH0617250B2 (en) | Glass ceramic sintered body | |
JP3363299B2 (en) | Low temperature firing porcelain composition | |
JP3494184B2 (en) | Glass ceramic composition | |
WO2022191020A1 (en) | Glass ceramic material, laminate, and electronic component | |
JPH10194846A (en) | Production of substrate fired at low temperature | |
JPH02141458A (en) | Low-temperature calcined ceramic multilayered base plate and production thereof | |
JP3125500B2 (en) | Ceramic substrate | |
EP0242226A2 (en) | Glass-ceramic materials with low firing temperature | |
JP3363297B2 (en) | Low temperature firing porcelain composition | |
JPS59162169A (en) | Ceramics and multilayer distribution panel | |
JP2892163B2 (en) | Low temperature firing glass ceramic body | |
JP2008105916A (en) | Low temperature fired porcelain, its manufacturing method and wiring board using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970826 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080926 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080926 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090926 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090926 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100926 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110926 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120926 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130926 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term |