JP4508488B2 - Manufacturing method of ceramic circuit board - Google Patents

Manufacturing method of ceramic circuit board Download PDF

Info

Publication number
JP4508488B2
JP4508488B2 JP2001260271A JP2001260271A JP4508488B2 JP 4508488 B2 JP4508488 B2 JP 4508488B2 JP 2001260271 A JP2001260271 A JP 2001260271A JP 2001260271 A JP2001260271 A JP 2001260271A JP 4508488 B2 JP4508488 B2 JP 4508488B2
Authority
JP
Japan
Prior art keywords
insulating layer
mass
molded body
firing
shrinkage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001260271A
Other languages
Japanese (ja)
Other versions
JP2003069236A (en
Inventor
辰治 古瀬
誠一郎 平原
秀司 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001260271A priority Critical patent/JP4508488B2/en
Publication of JP2003069236A publication Critical patent/JP2003069236A/en
Application granted granted Critical
Publication of JP4508488B2 publication Critical patent/JP4508488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0054Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • C03C10/0045Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セラミック回路基板の製法に関し、特に、異なる焼成収縮開始温度を有する複数の絶縁層を同時焼成して寸法精度を改善するセラミック回路基板の製法に関する。
【0002】
【従来技術】
従来、強度の弱い絶縁層を強度の強い絶縁層で補強するためや回路基板の中に容量値の高いキャパシタを内蔵するために、絶縁層と、この絶縁層とは異なる材料からなる異種材料絶縁層を積層したセラミック回路基板が知られている(例えば、特開昭59ー194493号公報参照)。このような回路基板では、磁器のクラックやデラミネーションを防止するために、絶縁層と異種材料絶縁層とは、焼成収縮率および熱膨張係数を一致させるように材料を決定していた。
【0003】
しかしながら、このようなセラミック回路基板においては、クラックやデラミネーションを防止できるものの、焼成収縮率が大きいため、セラミック回路基板内に形成された導体層の主面(x−y)方向における寸法精度が低下するという問題があった。特に、近年においては、セラミック回路基板の小型薄型化のため、ますます導体層の主面(x−y)方向における寸法精度が要求されている。
【0004】
そこで、近年においては、セラミック回路基板の積層成形体をAl23基板等で挟持して焼成する加圧焼成法(特開昭62−260777号公報)、セラミック回路基板の積層成形体の表面に、この積層成形体の焼成温度では焼結しないグリーンシートを積層し、焼成後にそれを削り取る拘束焼成法(特開平4−243978号公報)によって焼成時の収縮を抑制し、寸法精度を高めることが提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記した加圧焼成法では、Al23基板等により加圧する必要があり、そのための設備やAl23基板等が必要であった。また、拘束焼成法では、未焼結グリーンシートを除去する工程が必要であり、しかも、除去したグリーンシートは廃棄しなければならず、原料が無駄であった。
【0006】
従って、本発明は、異なる焼成収縮開始温度を有する複数の絶縁層を同時焼成しても基板の主面(x−y)方向における収縮率を容易にかつ安価に小さくして、回路基板の寸法精度を改善できる回路基板の製法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明のセラミック回路基板の製法は、SiO18質量%、MgO:45質量%、B18質量%と、CaO:0.4質量%、Al :0.6質量%、BaO:15質量%、SnO :1.9質量%、 :1.0質量%、ZrO :0.1質量%とを含有する結晶化ガラス粉末を含み低温側から焼成収縮を開始する絶縁層A成形体を形成するとともに、SiO44質量%、MgO:18質量%と、CaO:33質量%、Al :4.5質量%、ZnO:0.1質量%、Na:0.1質量%、 :0.1質量%、ZrO :0.1質量%およびLi:0.1質量%とを含有する結晶化ガラス粉末を含み前記絶縁層A成形体よりも高温側から焼成収縮を開始する絶縁層B成形体を形成する工程と、前記絶縁層A成形体および前記絶縁層B成形体の表面および/または内部に所定の導体層パターンを形成する工程と、該導体層パターンが形成された前記絶縁層A成形体および前記絶縁層B成形体を複数積層して積層成形体を形成する工程と、該積層成形体を、前記絶縁層B成形体の焼成収縮率が0.1%のとき、前記絶縁層A成形体の焼成収縮が、該絶縁層A成形体が有する最終収縮率の100%に達するように焼成して、前記積層成形体の主面方向の焼成収縮率を0%にする工程とを具備する製法である。
【0014】
このような構成によれば、上記の組成のように絶縁層成形体中に複数種の結晶化ガラス粉末を含有させることにより、焼成収縮開始温度、焼成収縮する温度範囲および最終焼成収縮率等の焼成収縮挙動の異なる2種以上の絶縁層成形体を容易に形成でき、絶縁層成形体として低温側で焼成収縮する絶縁層A成形体と高温側とで焼成収縮する絶縁層B成形体とを積層して用いることにより、両絶縁層の主面(x−y)方向の焼成収縮を抑制できる。
また、このことにより、絶縁層A、Bの焼成収縮挙動が異なる場合であっても、層間の接着性が高まりクラックやデラミネーションを防止できる。
そして、同時焼成する際に、Al 基板等により加圧する加圧焼成法に比較して、そのための設備やAl 基板等の必要がなく、また、拘束焼成法に比較して、焼成後にこの未焼結グリーンシートを除去する必要が無く、そのための原料を無駄にすることもないことから製造コストを低減できる。
【0015】
また、積層成形体の主面方向の焼成収縮率を0%とすることにより、低温側絶縁層成形体および高温側絶縁層成形体の相互の拘束力を効果的に発揮させることができ焼成されたセラミック回路基板の反りを抑え、寸法精度を向上できる。
また、このように焼成中の両絶縁層成形体間の焼成収縮率差が大きいほど拘束力が大きくなり、回路基板の最終的な焼成収縮率を容易により小さくでき、寸法精度を高めることができる。
【0016】
上記セラミック回路基板の製法では、絶縁層A成形体と絶縁層B成形体との間の焼成収縮開始温度差が10℃以上であることが望ましい。この製法は、焼成収縮する側の絶縁層を焼成収縮しない方の絶縁層が拘束することにより焼成収縮率を低減することができるものであることから、互いの絶縁層が共に焼成収縮する温度領域が狭いほど収縮の拘束の効果を大きくでき、特に、焼成収縮開始温度差が10℃以上であれば両絶縁層成形体の焼成収縮挙動を相互に容易に制御できる。
【0017】
上記セラミック回路基板の製法では、絶縁層B成形体の焼成収縮率が0.1%のとき、絶縁層A成形体は、該絶縁層A成形体が有する最終収縮率の90%以上に達していることが望ましい。このように焼成中の両絶縁層成形体間の焼成収縮率差が大きいほど拘束力が大きくなり、回路基板の最終的な焼成収縮率を容易により小さくでき、寸法精度を高めることができる。
【0018】
【発明の実施の形態】
図1は、セラミック回路基板の一例の概略断面図を示すもので、図1において、セラミック回路基板10は、絶縁層1a〜1gが積層された基板1と、この基板1の表裏面および/または内部に形成された導体層3、導体層3間を接続するためのビアホール導体4を有する。
【0019】
基板1は、収縮開始温度が異なる絶縁層1a〜1gによって形成され、この図1のセラミック回路基板10では、絶縁層1a〜1gのうち、絶縁層A1a、1gが、他の絶縁層B1b〜1fと焼成収縮開始温度が異なるセラミック材料から形成されている。例えば、絶縁層A1a、1gの焼成収縮開始温度は絶縁層B1b〜1fよりも低いものである。
【0020】
この2種の絶縁層1a〜1gを形成するセラミックスの焼成収縮挙動の概要について、図2の焼成収縮曲線に基づき説明する。図2は焼成収縮挙動の異なるセラミックスの加熱時の収縮曲線であり、横軸は温度、縦軸は収縮率を示す。この収縮曲線によれば、焼成収縮開始温度が異なる2つのセラミックスA、Bは、それぞれ焼成収縮開始温度SA、SB(SA<SB)、焼成収縮終了温度EA、EB(EA<EB)を有する。図1のセラミック回路基板10に当てはめると、絶縁層A1a、1gはセラミックスA、絶縁層B1b〜1fはセラミックスBと当てはめられる。
【0022】
また、絶縁層A1a、1gと絶縁層B1b〜1fとの間の熱膨張係数差は2×10-6/℃以下であることが、両絶縁層A、B1a〜1gの熱膨張係数差が小さいほど焼成中および焼成後の反りが抑制されるという理由から望ましく、特に熱膨張係数の差は1×10-6/℃以下が望ましい。
【0023】
ここで、セラミック回路基板10を構成する絶縁層1a〜1gのうち、絶縁層A1a、1gに含まれる結晶化ガラスは、SiO18質量%、MgO:45質量%、B18質量%と、CaO:0.4質量%、Al :0.6質量%、BaO:15質量%、SnO :1.9質量%、 :1.0質量%、ZrO :0.1質量%とを含有する範囲の組成とされている。
【0024】
一方、絶縁層B1b〜1fに含まれる結晶化ガラスは、SiO44質量%、MgO:18質量%と、CaO:33質量%、Al :4.5質量%、ZnO:0.1質量%、Na:0.1質量%、 :0.1質量%、ZrO :0.1質量%およびLi:0.1質量%とを含有する範囲の組成とされている。
【0025】
絶縁層A1a、1gおよび絶縁層B1b〜1fに含まれるガラス組成を上記のような組成としたのは、これらの絶縁層1a〜1gの収縮開始温度差を設けかつ焼成温度範囲を異なるものとしつつも最終的な焼成収縮率を同じ値とするためである。
【0026】
ここで、絶縁層A1a、1gおよび絶縁層B1b〜1fに含まれるガラス組成の中で、MgOとB23の量を増すことにより、結晶化ガラスの軟化点が低下し、絶縁層Aの焼成開始温度の低温下を図ることができ、一方、SiO2の量を増すことにより、結晶化ガラスの軟化点を高め、これにより焼成開始温度の高温化を図ることができる。
【0027】
そして、MgOとBの量は、絶縁層B1b〜1f中よりも絶縁層A1a、1gの方が多く、一方、SiOの量は、絶縁層A1a、1gよりも絶縁層B1b〜1fの方が多くなっている
【0028】
また、上記の結晶化ガラスとセラミックフィラーによる組み合わせによれば、絶縁層A1a、1gおよび絶縁層B1b〜1f同士の拘束力が高まり、両絶縁層A、B1a〜1gが積層された主面方向の焼成収縮率を5%以下とすることができ、また、絶縁層間の接着性が強くなり、反り、剥がれ、デラミネーションを防止できる。そして、基板の寸法精度を高めることができる。
【0029】
一方、上記以外の組成のガラスの組み合わせでは、絶縁層A1a、1gおよび絶縁層B1b〜1f同士の拘束力が弱く、両絶縁層A、B1a〜1gが接地された主面方向の焼成収縮率を5%以下とすることが困難であり、絶縁層1a〜1g間の接着性が弱くなり、反り、剥がれ、デラミネーションが発生しやすくなる。
【0030】
また、絶縁層1a〜1gには、上記ガラス以外に、セラミックフィラーを含有してもよい用いられるセラミックフィラーとしては、高強度化と理由からAlが好適に用いられ、上記以外のセラミック粉末を混合して焼成を行うと、ガラスと反応してガラスの熱特性が変化し、その結果焼成収縮挙動が変わり、焼成時の主面(x−y)方向の拘束力が弱くなるからである。
【0031】
そして、絶縁層A1a、1gに含まれるセラミックフィラー量は、20質量%、一方、絶縁層B1b〜1fに含まれるセラミックフィラー量は、30質量%でる。
【0032】
このように絶縁層A1a、1gに含まれる結晶化ガラス量を80質量%、そして、セラミックフィラー量を20質量%としたのは、絶縁層A1a、1gの焼結性をさらに向上させるという観点からであり、絶縁層Aおよび絶縁層B間において結晶化ガラスに加えて絶縁層に含まれるセラミックフィラー量に差を持たせることにより、両絶縁層の焼成収縮開始温度差をさらに顕著にすることができる
【0033】
本発明のセラミック回路基板の製法について具体的に説明する。
【0034】
先ず絶縁層A成形体中に含まれる結晶化ガラス粉末の組成は、SiO18質量%、MgO:45質量%、B18質量%と、CaO:0.4質量%、Al :0.6質量%、BaO:15質量%、SnO :1.9質量%、 :1.0質量%、ZrO :0.1質量%の範囲の組成とされている。
【0035】
一方、絶縁層B成形体中に含まれる結晶化ガラス粉末の組成は、SiO44質量%、MgO:18質量%と、CaO:33質量%、Al :4.5質量%、ZnO:0.1質量%、Na:0.1質量%、 :0.1質量%、ZrO :0.1質量%およびLi:0.1質量%の範囲の組成とされている。
【0036】
そして、これらの結晶化ガラス粉末とセラミックフィラーとを混合して焼成収縮挙動の異なる2種のセラミック材料を調製し、これら2種のセラミック材料と有機バインダと有機溶剤および必要に応じて可塑剤とを混合しセラミックスラリを調製する。このセラミックスラリを用いてドクターブレード法などによりテープ成形を行い、所定寸法に切断し絶縁層A成形体および絶縁層B成形体となるセラミックグリーンシートを作製する。
【0037】
次に、このセラミックグリーンシートにパンチングなどによって貫通孔を形成し、その貫通孔内に導体ペーストを充填したり、表面導体層や内部導体層を導体ペーストを用いてスクリーン印刷法などによって被着形成する。
【0038】
このようにして得られた各セラミックグリーンシートを所定の積層順序に応じて積層して積層成形体を形成した後、焼成する。
【0039】
焼成にあたっては、昇温して、セラミックスA(絶縁層A)の収縮開始温度Sに達した後、除々に昇温するか、または収縮開始温度S、あるいは収縮開始温度S以上、セラミックスB(絶縁層B)の収縮開始温度Sよりも低い温度で、一時的に炉内温度を保持してセラミックスA(絶縁層A)が最終収縮率の100%まで焼成が進行するまで保持する。この時、セラミックスA(絶縁層A)は、その温度で焼成収縮しないセラミックスB(絶縁層B)によって主面(x−y)方向への収縮が抑制され、Z方向に焼成収縮する。
【0040】
その後、セラミックスA(絶縁層A)が最終収縮率の100%まで収縮した後、セラミックスB(絶縁層B)の収縮開始温度Sに昇温して焼成する。この焼成によって、セラミックスB(絶縁層B)は、焼結が完了したセラミックスA(絶縁層A)によって主面(x−y)方向への焼成収縮が抑制され、Z方向に焼成収縮する。その結果、セラミックスA(絶縁層A)およびセラミックスB(絶縁層B)ともに主面(x−y)方向への焼成収縮が抑制され、Z方向に焼成収縮した寸法精度の高い基板を作製することができる。
【0041】
ここで、絶縁層B成形体の焼成収縮率が0.1%のとき、絶縁層A成形体は、この絶縁層A成形体が有する最終収縮率の100%まで収縮が進行していることとしたのは、全体の体積収縮率が100%未満の場合には主面(x−y)方向の収縮が大きくなり、配線導体の寸法精度が悪くなるからである。ここで、焼成収縮が高温側の絶縁層が0.1%体積収縮するということは、Z方向のみの収縮であってもよい
【0042】
また、絶縁層1a〜1gの収縮開始温度差は10℃以上、特に20℃以上であることが望ましい。これは、互いのセラミックスが共に焼成収縮する温度領域が減少するほど収縮の拘束の効果が大きくなるためである。なお、ここでは収縮開始温度とは、絶縁層1a〜1gが0.1%焼成収縮した時点の温度とし、焼成収縮終了温度とは、焼成収縮が最終焼成体積収縮率の99%進行した時点の温度を意味する。
【0043】
尚、本発明のセラミック回路基板10の製法では、焼成収縮挙動もしくは焼成収縮開始温度、焼成収縮終了温度の異なる材料から形成される絶縁層1a〜1gが複数積層されており、それらの誘電率は等しくても良いが、目的によっては異なっていても良く、焼成挙動が異なる2種のセラミックスは、例えば、焼成収縮挙動の相違のみならず、目的に応じて比誘電率が異なる、強度が異なる、誘電損失が異なるなどの他の特性が異なっていても良い。
【0044】
また、焼成収縮挙動が異なる2種のセラミックスA−Bの積層形態としては、図1では、ABBBBBA、AABABAA、AABBAAA、ABAAAAAでもよく、また、AとBとを反対に入れ換えても良い。
【0045】
【実施例】
表1および表2に示すような、焼成収縮開始温度が異なる絶縁層A、絶縁層Bを形成するセラミックスAとセラミックスBを形成する材料それぞれに、有機バインダとしてエチルセルロースと、有機溶剤として2・2・4トリメチル3・3ペンタジオールモノイソブチレートを添加してなるスラリを調製し、これをドクターブレード法により薄層化し、基板用のセラミックグリーンシートを作製した。
【0046】
次に、絶縁層BとなるセラミックスBを含むセラミックグリーンシートの所定の位置にパンチング等により貫通孔を形成し、この貫通孔にAgを含む導電性ペーストを充填し、また、この導電性ペーストを用いて、スクリーン印刷により所定の導体層パターンを形成した。
【0047】
一方、最上層、最下層の絶縁層AとなるセラミックスAを含むセラミックグリーンシートに、表層導体となるAgからなる導電性ペーストを用いて所定形状の導体層パターンを印刷形成した。
【0048】
導電性ペーストが充填され、所定形状の導体層パターンが形成された絶縁層BとなるセラミックスBを含むセラミックグリーンシートを複数積層するとともに、最上層および最下層に、表層導体となる導体膜形成した絶縁層Aとなるグリーンシートを積層し、積層成形体を作製した。
【0049】
この後、大気中400℃で脱バインダ処理し、さらに910℃で焼成し、図1に示すようなセラミック回路基板10を作製した。尚、絶縁層1a〜1gの厚みは0.15mmであり、セラミック回路基板10の大きさは、縦10mm、横10mm、厚み1.2mmであった。
【0050】
尚、積層成形体と焼成後のセラミック回路基板10に対して、所定のポイント間の長さを測定することにより、主面(x−y)方向のセラミック回路基板10の収縮率を測定した。尚、各試料について10個の試料を作製し、それぞれの収縮率を測定し、10個の試料の収縮率の最大収縮率と最小収縮率の差を収縮ばらつきとして評価した。また、基板を研磨して金属顕微鏡を用いて断面を研磨することにより、基板におけるクラック、デラミネーションの有無を評価した。
【0051】
また、セラミックスAとセラミックスBを形成する材料に、ワックスを添加し、圧力1t/cm2でプレスすることにより圧粉体を形成し、この圧粉体に対して空気中で熱機械分析(TMA)による室温〜1000℃の温度範囲により各セラミックスの焼成収縮開始温度SA、SB、焼成収縮終了温度EA、EB熱膨張係数を評価した。
【0052】
【表1】

Figure 0004508488
【0053】
【表2】
Figure 0004508488
【0054】
【表3】
Figure 0004508488
【0055】
この表3から、表1、2に示した本発明の結晶化ガラス組成を含有する絶縁層Aの収縮終了温度EAと絶縁層Bの収縮開始温度SBとの差を0℃とした試料Aでは、(x−y)収縮率が0%となり無収縮基板を作製できた。また、絶縁層Aおよび絶縁層Bの熱膨張差を1.6×10ー6/℃以下とした試料では焼成におけるクラックやデラミネーションが無かった。
【0056】
【発明の効果】
本発明によれば、絶縁層として絶縁層Aと絶縁層Bとを積層して、これら複数の絶縁層を一体焼成することにより、基板のx−y収縮率が0%のセラミック回路基板を得ることができる。また、前記絶縁層と異種材料絶縁層の間の熱膨張係数差を小さくすることにより、クラックやデラミネーションの生じない基板を得ることができる。
【図面の簡単な説明】
【図1】 ラミック回路基板の概略断面図を示す。
【図2】 成収縮挙動が異なるセラミックスAとセラミックスBの焼成収縮曲線を示す。
【符号の説明】
1・・・・・・・・・・・・・・・・・基板
1a、1g・・・・・・・・・・・・・絶縁層A
1b、1c、1d、1e、1f・・・・絶縁層B
3・・・・・・・・・・・・・・・・・導体層
10・・・・・・・・・・・・・・・・セラミック回路基板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for preparing ceramic circuit board, in particular, it relates to a process for the preparation of ceramic circuit board for improving the co-firing dimensional accuracy a plurality of insulating layers with different firing shrinkage initiation temperature.
[0002]
[Prior art]
Conventionally, in order to reinforce a weak insulating layer with a strong insulating layer or to incorporate a capacitor with a high capacitance value in a circuit board, an insulating layer and a different material insulation made of a material different from this insulating layer are used. A ceramic circuit board in which layers are laminated is known (for example, see Japanese Patent Application Laid-Open No. 59-194493). In such a circuit board, in order to prevent cracking and delamination of porcelain, the materials of the insulating layer and the dissimilar material insulating layer are determined so that the firing shrinkage rate and the thermal expansion coefficient coincide with each other.
[0003]
However, in such a ceramic circuit board, although cracking and delamination can be prevented, since the firing shrinkage rate is large, the dimensional accuracy in the principal surface (xy) direction of the conductor layer formed in the ceramic circuit board is high. There was a problem of lowering. In particular, in recent years, dimensional accuracy in the principal surface (xy) direction of the conductor layer is increasingly required in order to reduce the size and thickness of the ceramic circuit board.
[0004]
Therefore, in recent years, a pressure firing method (Japanese Patent Laid-Open No. Sho 62-260777) in which a multilayer molded body of ceramic circuit boards is sandwiched between Al 2 O 3 substrates and fired, the surface of the multilayer molded body of ceramic circuit boards is disclosed. In addition, the shrinkage at the time of firing is suppressed and the dimensional accuracy is improved by a constrained firing method (Japanese Patent Laid-Open No. Hei 4-243978) that laminates green sheets that are not sintered at the firing temperature of the laminated molded body and scrapes them after firing. Has been proposed.
[0005]
[Problems to be solved by the invention]
However, in the above-mentioned pressure firing method, it is necessary to pressurize with an Al 2 O 3 substrate or the like, and equipment for that purpose, an Al 2 O 3 substrate or the like is required. Further, the restraint firing method requires a step of removing the unsintered green sheet, and the removed green sheet has to be discarded, and the raw material is wasted.
[0006]
Therefore, the present invention makes it possible to easily and inexpensively reduce the shrinkage rate in the principal surface (xy) direction of the substrate even if a plurality of insulating layers having different firing shrinkage start temperatures are simultaneously fired, thereby reducing the dimensions of the circuit board. and to provide a production method of a circuit board capable of improving the accuracy.
[0013]
[Means for Solving the Problems]
The manufacturing method of the ceramic circuit board of the present invention is SiO 2 : 18 % by mass, MgO: 45 % by mass, B 2 O 3 : 18 % by mass, CaO 2 : 0.4% by mass , Al 2 O 3 : 0.6 % by mass. %, BaO : 15% by mass, SnO 2 : 1.9% by mass, P 2 O 3 : 1.0% by mass , ZrO 2 : 0.1% by mass In addition to forming an insulation layer A molded body that starts shrinkage, SiO 2 : 44 mass%, MgO: 18 mass% , C aO : 33 mass% , Al 2 O 3 : 4.5 mass%, ZnO : 0. 1 mass%, Na 2 O: 0.1 wt%, P 2 O 3: 0.1 wt%, ZrO 2: 0.1% by weight and Li 2 O: crystallized glass containing 0.1 wt% Baking shrinkage is started from higher temperature side than the molded body of insulating layer A containing powder Forming an insulating layer B molded body, forming a predetermined conductor layer pattern on and / or inside the insulating layer A molded body and the insulating layer B molded body, and forming the conductor layer pattern. A step of laminating a plurality of the insulating layer A molded body and the insulating layer B molded body to form a laminated molded body; and the laminated molded body having a firing shrinkage ratio of the insulating layer B molded body of 0.1%. When firing shrinkage of the insulating layer A molded body reaches 100% of the final shrinkage rate of the insulating layer A molded body, the firing shrinkage rate in the main surface direction of the laminated molded body is 0% a method comprising the step of the.
[0014]
According to such a configuration, by including a plurality of types of crystallized glass powder in the insulating layer molded body as in the above composition, the firing shrinkage start temperature, the firing shrinkage temperature range, the final firing shrinkage rate, etc. Two or more types of insulating layer molded bodies having different firing shrinkage behavior can be easily formed. As the insulating layer molded body, an insulating layer A molded body that is fired and shrunk on the low temperature side and an insulating layer B molded body that is fired and shrunk on the high temperature side are formed. By stacking and using, it is possible to suppress firing shrinkage in the principal surface (xy) direction of both insulating layers.
Moreover, even if it is a case where the baking shrinkage | contraction behaviors of the insulating layers A and B differ by this, the adhesiveness between layers increases and a crack and delamination can be prevented.
And, compared with the press firing method in which pressurization is performed with an Al 2 O 3 substrate or the like when co-firing , there is no need for equipment or an Al 2 O 3 substrate for that purpose, and in comparison with the restraint firing method. It is not necessary to remove the unsintered green sheet after firing, and the raw material for that purpose is not wasted, so that the manufacturing cost can be reduced.
[0015]
Further, by setting the firing shrinkage rate in the main surface direction of the laminated molded body to 0%, the mutual restraining force of the low temperature side insulating layer molded body and the high temperature side insulating layer molded body can be effectively exhibited and fired. It is possible to suppress warpage of the ceramic circuit board and improve dimensional accuracy.
In addition, the greater the difference in firing shrinkage between the two insulating layer molded bodies during firing, the greater the binding force, the easier the final firing shrinkage of the circuit board can be reduced, and the dimensional accuracy can be increased. .
[0016]
In the manufacturing method of the ceramic circuit board, it is desirable that the difference in firing shrinkage start temperature between the insulating layer A molded body and the insulating layer B molded body is 10 ° C. or more. This manufacturing method is capable of reducing the firing shrinkage rate by constraining the insulating layer on the side to be fired and contracted by the insulating layer that is not fired and contracted. The narrower the effect of restraining the shrinkage, the more the firing shrinkage behavior of both insulating layer molded bodies can be easily controlled with each other if the firing shrinkage start temperature difference is 10 ° C. or more.
[0017]
In the method for producing a ceramic circuit board, when the firing shrinkage rate of the insulating layer B molded body is 0.1%, the insulating layer A molded body reaches 90% or more of the final shrinkage rate of the insulating layer A molded body. It is desirable. Thus, the greater the difference in firing shrinkage between the two insulating layer molded bodies during firing, the greater the restraining force, the smaller the final firing shrinkage of the circuit board, and the higher the dimensional accuracy.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Figure 1 shows a schematic cross-sectional view of an example of a ceramic circuit board, in FIG. 1, the ceramic circuit board 10 includes a substrate 1, an insulating layer 1a~1g are stacked, the front and back surfaces of the substrate 1 and / Or it has the via-hole conductor 4 for connecting between the conductor layers 3 and the conductor layers 3 formed inside.
[0019]
The substrate 1 is formed by insulating layers 1a to 1g having different shrinkage start temperatures. In the ceramic circuit substrate 10 of FIG. 1, among the insulating layers 1a to 1g, the insulating layers A1a and 1g are the other insulating layers B1b to 1f. And a ceramic material having different firing shrinkage start temperatures. For example, the firing shrinkage start temperatures of the insulating layers A1a and 1g are lower than those of the insulating layers B1b to 1f.
[0020]
An outline of the firing shrinkage behavior of the ceramics forming these two types of insulating layers 1a to 1g will be described based on the firing shrinkage curve of FIG. FIG. 2 is a shrinkage curve during heating of ceramics having different firing shrinkage behavior, where the horizontal axis represents temperature and the vertical axis represents the shrinkage rate. According to this shrinkage curve, the two ceramics A and B having different firing shrinkage temperatures have firing shrinkage start temperatures S A and S B (S A <S B ) and firing shrink end temperatures E A and E B (E A <E B ). When applied to the ceramic circuit board 10 of FIG. 1, the insulating layers A1a and 1g are applied to the ceramics A, and the insulating layers B1b to 1f are applied to the ceramics B.
[0022]
Further, the difference in thermal expansion coefficient between the insulating layers A1a and 1g and the insulating layers B1b to 1f is 2 × 10 −6 / ° C. or less, so that the difference in thermal expansion coefficient between the two insulating layers A and B1a to 1g is small. It is desirable for the reason that warpage during and after firing is suppressed, and the difference in thermal expansion coefficient is particularly preferably 1 × 10 −6 / ° C. or less.
[0023]
Here, in the insulating layer 1a~1g constituting the ceramic circuit board 10, the insulating layer A1a, crystallized glass contained in 1g is, SiO 2: 18 wt%, MgO: 45 wt%, B 2 O 3: 18 % by mass, CaO 2 : 0.4% by mass , Al 2 O 3 : 0.6% by mass, BaO 3 : 15% by mass, SnO 2 : 1.9% by mass, P 2 O 3 : 1.0% by mass , ZrO 2: there is a composition of the range you containing 0.1 mass%.
[0024]
On the other hand, crystallized glass contained in the insulating layer B1b~1f is, SiO 2: 44 wt%, MgO: 18 mass%, C aO: 33 wt%, Al 2 O 3: 4.5 wt%, ZnO: 0 .1 wt%, Na 2 O: 0.1 wt%, P 2 O 3: 0.1 wt%, ZrO 2: 0.1% by weight and Li 2 O: range you containing 0.1 wt% The composition of the wall.
[0025]
The reason why the glass compositions contained in the insulating layers A1a and 1g and the insulating layers B1b to 1f are as described above is to provide a shrinkage start temperature difference between these insulating layers 1a to 1g and to make the firing temperature range different. This is because the final firing shrinkage rate is set to the same value.
[0026]
Here, among the glass compositions contained in the insulating layers A1a and 1g and the insulating layers B1b to 1f, increasing the amount of MgO and B 2 O 3 reduces the softening point of the crystallized glass, and the insulating layer A The firing start temperature can be lowered. On the other hand, by increasing the amount of SiO 2 , the softening point of the crystallized glass can be increased, and thereby the firing start temperature can be increased.
[0027]
Then, the amount of MgO and B 2 O 3 is an insulating layer B1b~1f insulating layer A1a than in Trip 1g many, while the amount of SiO 2, the insulating layer A1a, an insulating layer than 1g B1b~1f who is multi-Kuna'.
[0028]
Further, according to the combination of the crystallized glass and the ceramic filler, the binding force between the insulating layers A1a and 1g and the insulating layers B1b to 1f is increased, and the main surface direction in which both the insulating layers A and B1a to 1g are laminated is increased. The firing shrinkage rate can be 5% or less, and the adhesiveness between the insulating layers becomes strong, so that warping, peeling, and delamination can be prevented. And the dimensional accuracy of a board | substrate can be raised.
[0029]
On the other hand, in the combination of glasses having a composition other than the above, the binding force between the insulating layers A1a and 1g and the insulating layers B1b to 1f is weak, and the firing shrinkage rate in the main surface direction where both the insulating layers A and B1a to 1g are grounded. It is difficult to make it 5% or less, the adhesiveness between the insulating layers 1a to 1g becomes weak, and warping, peeling, and delamination tend to occur.
[0030]
In addition, the insulating layers 1a to 1g may contain a ceramic filler in addition to the glass . As the ceramic filler to be used, Al 2 O 3 is suitably used for reasons of high strength, and when ceramic powders other than the above are mixed and fired, the thermal properties of the glass change by reacting with the glass, As a result, the firing shrinkage behavior is changed, and the restraining force in the main surface (xy) direction during firing is weakened.
[0031]
The ceramic filler content in the insulating layer A1a, in 1g is 20 mass%, hand, ceramic filler content in the insulating layer B1b~1f is Ru Ah at 30 wt%.
[0032]
Thus insulating layer A1a, 80 wt% crystallized glass content in the 1g, then was ceramic filler amount is 20% by mass, the insulating layer A1a, from the viewpoint of further improving the sinterability of 1g By making a difference in the amount of ceramic filler contained in the insulating layer in addition to the crystallized glass between the insulating layer A and the insulating layer B, the difference in the firing shrinkage start temperature of both insulating layers can be made more remarkable. I can .
[0033]
The method for producing the ceramic circuit board of the present invention will be specifically described.
[0034]
First , the composition of the crystallized glass powder contained in the insulating layer A molded body is SiO 2 : 18 % by mass, MgO: 45 % by mass, B 2 O 3 : 18 % by mass, CaO 2 : 0.4% by mass , Al 2 O 3 : 0.6% by mass, BaO : 15% by mass, SnO 2 : 1.9% by mass, P 2 O 3 : 1.0% by mass , ZrO 2 : 0.1% by mass Has been.
[0035]
On the other hand, the composition of the crystallized glass powder contained in the insulating layer B compact is as follows: SiO 2 : 44 mass%, MgO: 18 mass% , C aO : 33 mass% , Al 2 O 3 : 4.5 mass%. , ZnO: 0.1 wt%, Na 2 O: 0.1 wt%, P 2 O 3: 0.1 wt%, ZrO 2: 0.1% by weight and Li 2 O: 0.1 wt% range It is said that the composition.
[0036]
These crystallized glass powders and ceramic fillers are mixed to prepare two kinds of ceramic materials having different firing shrinkage behaviors, and these two kinds of ceramic materials, an organic binder, an organic solvent, and a plasticizer as necessary. Are mixed to prepare a ceramic slurry. Using this ceramic slurry, tape molding is performed by a doctor blade method or the like, and the ceramic green sheets are cut into predetermined dimensions to form the insulating layer A molded body and the insulating layer B molded body.
[0037]
Next, a through hole is formed in this ceramic green sheet by punching and the like, and a conductive paste is filled in the through hole, or a surface conductor layer and an internal conductor layer are formed by screen printing using a conductive paste. To do.
[0038]
The ceramic green sheets thus obtained are laminated according to a predetermined lamination order to form a laminated molded body, and then fired.
[0039]
Firing In is heated, after reaching the shrinkage start temperature S A ceramic A (insulating layer A), or heated gradually, or shrinkage starting temperature S A, or shrinkage starting temperature S A above, ceramics At a temperature lower than the shrinkage start temperature S B of B (insulating layer B), the furnace temperature is temporarily held, and the ceramic A (insulating layer A) is held until firing proceeds to 100 % of the final shrinkage rate. To do. At this time, the ceramic A (insulating layer A) is restrained from shrinking in the principal surface (xy) direction by the ceramic B (insulating layer B) that does not fire and shrink at that temperature, and fires and shrinks in the Z direction.
[0040]
Thereafter, ceramics A (insulating layer A) is contracted to 100% of the final shrinkage, calcined by heating to shrink start temperature S B of the ceramic B (insulating layer B). This firing ceramics B (insulating layer B) is, firing shrinkage of the main surface (x-y) direction by ceramics A sintering is complete (insulating layer A) is suppressed, and firing shrinkage in the Z-direction. As a result, both ceramics A (insulating layer A) and ceramics B (insulating layer B) are suppressed from firing shrinkage in the principal surface (xy) direction, and a substrate with high dimensional accuracy is obtained which is fired and shrunk in the Z direction. Can do.
[0041]
Here, when the firing shrinkage rate of the insulating layer B formed body is 0.1%, the insulating layer A molded body that has progressed contracted to 10 0% of the final shrinkage insulating layer A molded body has This is because when the overall volume shrinkage rate is less than 100 %, the shrinkage in the main surface (xy) direction increases, and the dimensional accuracy of the wiring conductor deteriorates. Here, the fact that the insulating layer on the high temperature side shrinks by 0.1% by volume may be shrinkage only in the Z direction .
[0042]
Moreover, the shrinkage start temperature difference of the insulating layers 1a to 1g is preferably 10 ° C. or more, and particularly preferably 20 ° C. or more. This is because the effect of restraining shrinkage increases as the temperature range in which the ceramics are fired and shrunk together decreases. Here, the shrinkage start temperature is the temperature at which the insulating layers 1a to 1g are fired and shrunk by 0.1%, and the firing shrinkage end temperature is the time when the firing shrinkage has progressed 99% of the final fired volume shrinkage rate. It means temperature.
[0043]
In the manufacturing method of the ceramic circuit board 10 of the present invention, a plurality of insulating layers 1a to 1g formed of materials having different firing shrinkage behavior or firing shrinkage start temperature and firing shrinkage end temperature are laminated, and their dielectric constants are Although it may be equal, it may be different depending on the purpose, and two kinds of ceramics having different firing behaviors are different in, for example, not only differences in firing shrinkage behavior but also relative dielectric constants depending on purposes. Other characteristics such as different dielectric losses may be different.
[0044]
Moreover, as a laminated form of two kinds of ceramics AB having different firing shrinkage behaviors, in FIG. 1, ABBBBBA, AABABAA, AABBAAA, ABAAAAA may be used, and A and B may be interchanged.
[0045]
【Example】
As shown in Table 1 and Table 2, the insulating layer A and the ceramic A forming the insulating layer B having different firing shrinkage start temperatures and the material forming the ceramic B are respectively composed of ethyl cellulose as the organic binder and 2.2 as the organic solvent. A slurry formed by adding 4 trimethyl 3-3 pentadiol monoisobutyrate was prepared, and this was thinned by a doctor blade method to prepare a ceramic green sheet for a substrate.
[0046]
Next, a through-hole is formed by punching or the like at a predetermined position of the ceramic green sheet containing the ceramic B serving as the insulating layer B, and the conductive paste containing Ag is filled in the through-hole. A predetermined conductor layer pattern was formed by screen printing.
[0047]
On the other hand, a conductor layer pattern having a predetermined shape was printed on a ceramic green sheet containing ceramics A to be the uppermost layer and the lowermost insulating layer A by using a conductive paste made of Ag to be a surface layer conductor.
[0048]
A plurality of ceramic green sheets containing ceramic B, which is an insulating layer B filled with a conductive paste and formed with a conductor layer pattern of a predetermined shape, were laminated, and conductor films serving as surface layer conductors were formed on the uppermost layer and the lowermost layer. The green sheet used as the insulating layer A was laminated | stacked and the laminated molded object was produced.
[0049]
Thereafter, the binder removal treatment was performed at 400 ° C. in the atmosphere, followed by firing at 910 ° C., thereby producing a ceramic circuit board 10 as shown in FIG. The insulating layers 1a to 1g had a thickness of 0.15 mm, and the ceramic circuit board 10 had a length of 10 mm, a width of 10 mm, and a thickness of 1.2 mm.
[0050]
In addition, the shrinkage | contraction rate of the ceramic circuit board 10 of a main surface (xy) direction was measured by measuring the length between predetermined points with respect to the laminated molded object and the ceramic circuit board 10 after baking. Ten samples were prepared for each sample, the respective shrinkage rates were measured, and the difference between the maximum shrinkage rate and the minimum shrinkage rate of the 10 samples was evaluated as shrinkage variation. Moreover, the presence or absence of cracks and delamination in the substrate was evaluated by polishing the substrate and polishing the cross section using a metal microscope.
[0051]
In addition, a green compact is formed by adding wax to the materials forming the ceramics A and B and pressing at a pressure of 1 t / cm 2 , and thermal mechanical analysis (TMA) is performed on the green compacts in air. The firing shrinkage start temperatures S A and S B , firing shrink end temperatures E A and E B thermal expansion coefficients of each ceramic were evaluated in the temperature range from room temperature to 1000 ° C.).
[0052]
[Table 1]
Figure 0004508488
[0053]
[Table 2]
Figure 0004508488
[0054]
[Table 3]
Figure 0004508488
[0055]
From this Table 3, and 0 ℃ the difference between shrinkage starting temperature S B of the insulating layer B and contraction end temperature E A crystallized glass composition for you containing insulation layer A of the present invention shown in Tables 1 and 2 In sample A, the (xy) shrinkage rate was 0%, and a non-shrinkable substrate could be produced. Further, in the sample in which the difference in thermal expansion between the insulating layer A and the insulating layer B was 1.6 × 10 −6 / ° C. or less, there were no cracks or delamination during firing.
[0056]
【The invention's effect】
According to the present invention , the insulating layer A and the insulating layer B are stacked as the insulating layers, and the plurality of insulating layers are integrally fired to obtain a ceramic circuit board having a xy shrinkage of 0%. it is possible. Further, by reducing the difference in thermal expansion coefficient between the insulating layer and the dissimilar material insulating layer, a substrate free from cracks and delamination can be obtained.
[Brief description of the drawings]
1 shows a schematic cross-sectional view of a ceramic circuit board.
[Figure 2] Firing shrinkage behavior indicates sintering shrinkage curve of different ceramic A and ceramic B.
[Explanation of symbols]
1 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Substrate 1a, 1g ・ ・ ・ ・ ・ ・ ・ ・ Insulating layer A
1b, 1c, 1d, 1e, 1f,... Insulating layer B
3 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Conductor layer 10 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Ceramic circuit board

Claims (2)

SiO18質量%、MgO:45質量%、B18質量%と、CaO:0.4質量%、Al :0.6質量%、BaO:15質量%、SnO :1.9質量%、 :1.0質量%、ZrO :0.1質量%とを含有する結晶化ガラス粉末を含み低温側から焼成収縮を開始する絶縁層A成形体を形成するとともに、SiO44質量%、MgO:18質量%と、CaO:33質量%、Al :4.5質量%、ZnO:0.1質量%、Na:0.1質量%、 :0.1質量%、ZrO :0.1質量%およびLi:0.1質量%とを含有する結晶化ガラス粉末を含み前記絶縁層A成形体よりも高温側から焼成収縮を開始する絶縁層B成形体を形成する工程と、
前記絶縁層A成形体および前記絶縁層B成形体の表面および/または内部に所定の導体層パターンを形成する工程と、
該導体層パターンが形成された前記絶縁層A成形体および前記絶縁層B成形体を複数積層して積層成形体を形成する工程と、
該積層成形体を、前記絶縁層B成形体の焼成収縮率が0.1%のとき、前記絶縁層A成形体の焼成収縮が、該絶縁層A成形体が有する最終収縮率の100%に達するように
焼成して、前記積層成形体の主面方向の焼成収縮率を0%にする工程と
を具備することを特徴とするセラミック回路基板の製法。
SiO 2 : 18 % by mass, MgO: 45 % by mass, B 2 O 3 : 18 % by mass, CaO : 0.4% by mass , Al 2 O 3 : 0.6% by mass, BaO : 15% by mass, SnO 2 Insulating layer A molded body containing crystallized glass powder containing 1.9% by mass, P 2 O 3 : 1.0% by mass , ZrO 2 : 0.1% by mass and starting firing shrinkage from the low temperature side and forming, SiO 2: 44 wt%, MgO: 18 wt% and, C aO: 33 wt%, Al 2 O 3: 4.5 wt%, ZnO: 0.1 wt%, Na 2 O: 0. 1 mass%, P 2 O 3: 0.1 wt%, ZrO 2: from the insulating layer comprises a crystallized glass powder containing 0.1 wt% a molded body: 0.1 wt% and Li 2 O Forming an insulating layer B molded body that starts firing shrinkage from the high temperature side,
Forming a predetermined conductor layer pattern on the surface and / or inside of the insulating layer A molded body and the insulating layer B molded body;
A step of forming a laminated molded body by laminating a plurality of the insulating layer A molded body and the insulating layer B molded body on which the conductor layer pattern is formed;
When the firing shrinkage of the insulating layer B compact is 0.1%, the firing shrinkage of the insulating layer A compact is 100% of the final shrinkage of the insulating layer A compact. A method of producing a ceramic circuit board, comprising: firing so as to reach a firing shrinkage ratio of 0% in the principal surface direction of the laminated molded body.
前記絶縁層A成形体と前記絶縁層B成形体との間の焼成収縮開始温度差が10℃以上であることを特徴とする請求項に記載のセラミック回路基板の製法。Preparation of the ceramic circuit board according to claim 1, wherein the firing shrinkage initiation temperature difference between the insulating layer A formed body and said insulating layer B formed body is 10 ° C. or higher.
JP2001260271A 2001-08-29 2001-08-29 Manufacturing method of ceramic circuit board Expired - Fee Related JP4508488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001260271A JP4508488B2 (en) 2001-08-29 2001-08-29 Manufacturing method of ceramic circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001260271A JP4508488B2 (en) 2001-08-29 2001-08-29 Manufacturing method of ceramic circuit board

Publications (2)

Publication Number Publication Date
JP2003069236A JP2003069236A (en) 2003-03-07
JP4508488B2 true JP4508488B2 (en) 2010-07-21

Family

ID=19087498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001260271A Expired - Fee Related JP4508488B2 (en) 2001-08-29 2001-08-29 Manufacturing method of ceramic circuit board

Country Status (1)

Country Link
JP (1) JP4508488B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4508625B2 (en) * 2003-12-16 2010-07-21 京セラ株式会社 Multilayer substrate and manufacturing method thereof
WO2005108327A1 (en) * 2004-05-06 2005-11-17 Asahi Glass Company, Limited Method for producing multilayer dielectric body
JP4594021B2 (en) * 2004-09-28 2010-12-08 京セラ株式会社 Dielectric ceramic composition, method for producing the same, and wiring board
JP4606115B2 (en) * 2004-10-20 2011-01-05 京セラ株式会社 Multilayer substrate and manufacturing method thereof
WO2006068121A1 (en) * 2004-12-20 2006-06-29 Matsushita Electric Industrial Co., Ltd. Strain sensor and method for manufacture thereof
US7687137B2 (en) 2005-02-28 2010-03-30 Kyocera Corporation Insulating substrate and manufacturing method therefor, and multilayer wiring board and manufacturing method therefor
JP5070723B2 (en) * 2005-11-04 2012-11-14 旭硝子株式会社 Multilayer dielectric and layered dielectric manufacturing method
JP4994052B2 (en) * 2006-03-28 2012-08-08 京セラ株式会社 Board and circuit board using the same
JP2008085034A (en) * 2006-09-27 2008-04-10 Kyocera Corp Wiring substrate
JP4869005B2 (en) * 2006-09-27 2012-02-01 京セラ株式会社 Multilayer substrate manufacturing method
JP2008109018A (en) * 2006-10-27 2008-05-08 Kyocera Corp Wiring board
JP2008159940A (en) * 2006-12-25 2008-07-10 Kyocera Corp Multi-layer wiring substrate and manufacturing method therefor
KR20100014344A (en) 2007-04-25 2010-02-10 아사히 가라스 가부시키가이샤 Method for production of laminated dielectric material
JP4784689B2 (en) * 2008-03-07 2011-10-05 株式会社村田製作所 Electronic component and manufacturing method thereof
JP6374417B2 (en) * 2016-01-27 2018-08-15 日本特殊陶業株式会社 Aluminum nitride substrate, semiconductor manufacturing component, CVD heater, and aluminum nitride substrate manufacturing method
DE102018131605A1 (en) * 2018-12-10 2020-06-10 Tdk Electronics Ag Substrate and method of making the substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582963A (en) * 1985-05-30 1993-04-02 Narumi China Corp Manufacture of ceramic substrate baked at low temperature
JPH07249869A (en) * 1994-03-08 1995-09-26 Sumitomo Metal Mining Co Ltd Glass ceramic multilayer circuit board and its manufacture
JPH08236936A (en) * 1995-02-27 1996-09-13 Kyocera Corp Laminated glass-ceramic circuit board
JP2001189555A (en) * 1999-12-27 2001-07-10 Kyocera Corp Multilayer substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582963A (en) * 1985-05-30 1993-04-02 Narumi China Corp Manufacture of ceramic substrate baked at low temperature
JPH07249869A (en) * 1994-03-08 1995-09-26 Sumitomo Metal Mining Co Ltd Glass ceramic multilayer circuit board and its manufacture
JPH08236936A (en) * 1995-02-27 1996-09-13 Kyocera Corp Laminated glass-ceramic circuit board
JP2001189555A (en) * 1999-12-27 2001-07-10 Kyocera Corp Multilayer substrate

Also Published As

Publication number Publication date
JP2003069236A (en) 2003-03-07

Similar Documents

Publication Publication Date Title
JP4508488B2 (en) Manufacturing method of ceramic circuit board
JP2711618B2 (en) Dielectric composition, multilayer wiring board and multilayer ceramic capacitor
US7722732B2 (en) Thick film paste via fill composition for use in LTCC applications
JPH0649594B2 (en) Crystallizable low dielectric constant low dielectric loss composition
KR100756813B1 (en) Multi-component ltcc substrate with a core of high dielectric constant ceramic material and processes for the development thereof
JP7494908B2 (en) Glass ceramics and multilayer ceramic electronic components
JPWO2020129945A1 (en) Laminates and electronic components
JP4606115B2 (en) Multilayer substrate and manufacturing method thereof
JP2006237493A (en) Wiring board
JP4610114B2 (en) Manufacturing method of ceramic wiring board
JP2002261443A (en) Method of manufacturing circuit board
WO2007004414A1 (en) Multilayer ceramic substrate, process for producing the same and composite green sheet for production of multilayer ceramic substrate
JP2004319706A (en) Conductive paste, and multilayer substrate and its manufacturing method
JP4508625B2 (en) Multilayer substrate and manufacturing method thereof
JP3337819B2 (en) Dielectric composition, multilayer wiring board and multilayer ceramic capacitor
JP2008109063A (en) Ceramic multilayer substrate
JP4301503B2 (en) Composite multilayer ceramic component and manufacturing method thereof
JP3934841B2 (en) Multilayer board
JP2008186909A (en) Ceramic multilayer plate board
JP2008030995A (en) Multilayered ceramic substrate and its manufacturing method as well as composite green sheet for manufacturing multilayered ceramic substrate
JP3764605B2 (en) Circuit board manufacturing method
WO2022191020A1 (en) Glass ceramic material, laminate, and electronic component
JP4423025B2 (en) Multilayer substrate and manufacturing method thereof
JP2007173857A (en) Multilayer substrate and method for manufacturing same
JP4416342B2 (en) Circuit board and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees