JP3363299B2 - Low temperature firing porcelain composition - Google Patents

Low temperature firing porcelain composition

Info

Publication number
JP3363299B2
JP3363299B2 JP34012195A JP34012195A JP3363299B2 JP 3363299 B2 JP3363299 B2 JP 3363299B2 JP 34012195 A JP34012195 A JP 34012195A JP 34012195 A JP34012195 A JP 34012195A JP 3363299 B2 JP3363299 B2 JP 3363299B2
Authority
JP
Japan
Prior art keywords
crystal phase
weight
glass
low
porcelain composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34012195A
Other languages
Japanese (ja)
Other versions
JPH09175855A (en
Inventor
吉健 寺師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP34012195A priority Critical patent/JP3363299B2/en
Publication of JPH09175855A publication Critical patent/JPH09175855A/en
Application granted granted Critical
Publication of JP3363299B2 publication Critical patent/JP3363299B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、多層回路基板用の
低温焼成磁器組成物に関するものであり、とりわけ半導
体素子や各種電子部品を搭載した多層に積層して成る複
合回路基板等に適用される銅配線可能な高周波用の低温
焼成磁器組成物に関するものである。 【0002】 【従来の技術】近年、高度情報化時代を迎え、情報伝達
はより高速化、高周波化が進み、搭載される半導体素子
もより高速化、高集積化され、更に実装のより高密度化
が要求されるようになり、従来より多用されてきたアル
ミナ製の各種回路基板では、比誘電率が3GHzで9〜
9.5とかなり誘電率が大きいことから、昨今の高周波
用の回路基板等には不適当であると言われている。 【0003】即ち、信号を高速で伝搬させるためには基
板材料には、より低い誘電率が要求されており、更に、
多層回路基板に種々の電子部品や入出力端子等を接続す
る工程で該基板に加わる応力から基板自体が破壊した
り、欠けを生じたりすることを防止するために、機械的
強度がより高いことも要求されている。 【0004】そこで前記要求を満足させるために、例え
ば、SiO2 、Al2 3 、MgOを主成分とするガラ
ス組成物から成るガラス焼結体が提案されているが、か
かる提案のガラス焼結体では誘電率が低いという特性を
奏するというものの、機械的強度が低いという問題が残
り、完全に前記要求を満足するものではなく、そのため
に係る問題を解消せんとして種々の研究開発が進められ
ている。 【0005】その結果、低誘電率でかつ高強度を有する
組成物として、例えば、熱処理によりムライトとコーデ
ィエライトを主たる結晶相として析出するガラス組成物
が提案されている(特開平05−298919号公報参
照)。 【0006】 【発明が解決しようとする課題】しかしながら、前記提
案のガラス組成物から成る多層回路基板は、とりわけ高
周波用の回路基板として要求される誘電率や誘電正接、
及び機械的強度等の諸特性全てを必ずしも満足するもの
ではないという課題があった。 【0007】 【発明の目的】本発明は、前記課題を解消せんとして成
されたもので、その目的は、多層回路基板として十分な
機械的強度を有し、かつ高周波領域における比誘電率が
低く、誘電正接も低く安定であるという特性を併せ持
ち、金(Au)や銀(Ag)、銅(Cu)を配線導体と
した多層化が可能となる800〜1000℃という低温
での焼成が実現できる高周波用の低温焼成磁器組成物を
提供することにある。 【0008】 【課題を解決するための手段】本発明者は、上記問題点
を鋭意検討した結果、ガラスの軟化流動を利用して80
0〜1000℃で焼成することにより、配線導体として
Au、Ag及びCuを用いて多層化、及び微細配線化が
可能であること、またフォルステライトと特定のガラス
を組み合わせることによって、結晶相としてコーディエ
ライト結晶相を析出させることにより比誘電率を低く、
誘電正接も低くすることが可能となり、フォルステライ
ト結晶相とエンスタタイト結晶相を析出させることで誘
電正接はより小さくなり、更にスピネル型結晶相である
ガーナイト結晶相を析出させることにより、より高強度
化できることを知見し、本発明に至った。 【0009】即ち、本発明の低温焼成磁器組成物は、シ
リカ(SiO2)を40〜50重量%、アルミナ(Al2
3)を25〜30重量%、マグネシア(MgO)を8
〜12重量%、酸化亜鉛(ZnO)を6〜9重量%、及
び酸化硼素(B23)を8〜11重量%の割合からなる
ガラスを55〜99.9重量%と、フォルステライト
(Mg2SiO4)を0.1〜45重量%の割合で含む混
合粉末から成る成形体を、窒素(N2)、アルゴン(A
r)等の非酸化性雰囲気中、800〜1000℃の温度
で焼成して得られた焼結体であって、ガーナイト結晶相
を主結晶とし、コーディエライト結晶相と、フォルステ
ライト結晶相と、エンスタタイト結晶相とを含むことを
特徴とするものである。 【0010】 【作用】本発明の低温焼成磁器組成物によれば、フィラ
ー成分としてフォルステライトを含むことから、ガラス
相との反応により低い誘電率と低い誘電正接を示すコー
ディエライト結晶相とエンスタタイト結晶相を析出させ
るとともに、ガラス相よりスピネル型結晶相のガーナイ
ト結晶相を析出させることにより、焼結体の強度を高め
ることができる。 【0011】つまり、本発明の磁器組成物によれば、8
00〜1000℃の低温での焼成で組成物中のガラス成
分を減少させると共に、フィラー成分と合わせて種々の
結晶相を析出させることにより、低誘電率化及び高強度
化を複合的作用により達成することができ、しかも前記
特性以外の抵抗値、誘電正接等においても問題のない優
れた特性を発揮できるものである。 【0012】更に、本発明の低温焼成磁器組成物は、8
00〜1000℃の低温度でAu、AgあるいはCuの
内部配線層と同時に焼成することができることから、こ
れらの配線導体を具備する多層回路基板や半導体素子収
納用パッケージの微細配線化が容易に達成できる。 【0013】 【発明の実施の形態】本発明の低温焼成磁器組成物につ
いて以下詳細に述べる。 【0014】本発明の低温焼成磁器組成物によれば、少
なくともSiO2 、Al2 3 、MgO、ZnO及びB
2 3 を含むガラス量が55重量%より少ないか、言い
換えればフォルステライトの量が45重量%より多い
と、800〜1000℃の温度では磁器は十分に緻密化
することができず、前記ガラス量が99.9重量%より
多いか、言い換えればフォルステライトの量が0.1重
量%より少ないと機械的強度が200MPaより小さく
なる。 【0015】従って、前記ガラスの含有量は55〜9
9.9重量%に特定され、より望ましくは60〜95重
量%の範囲となる。 【0016】次に、本発明の低温焼成磁器組成物の焼結
体の組織の概略図を図1に示す。 【0017】図1に示すように、本発明の低温焼成磁器
組成物は、ガーナイト結晶相1と、コーディエライト結
晶相2と、フォルステライト結晶相3と、エンスタタイ
ト結晶相4と、ガラス相5とから構成されており、ガー
ナイト結晶相1は焼結体中における主結晶として存在す
る。 【0018】また、ガラスはほとんど結晶化し、前記ガ
ラス相5は3重点の位置のみに存在する。 【0019】このように本発明によれば、焼結体中にコ
ーディエライト結晶相を存在させることにより低い誘電
率と低い誘電正接を得ることができ、また、フォルステ
ライト結晶相とエンスタタイト結晶相を存在させること
により、より低い誘電正接を得ることができる。 【0020】更に、焼成温度を調製することにより、焼
結体中にスピネル型結晶相のガーナイト結晶相を析出さ
せると、該結晶相は各結晶相のネットワークを補強する
形態で存在するため、機械的強度の高い焼結体を得るこ
とができる。 【0021】次に、本発明の低温焼成磁器組成物を製造
する具体的な方法としては、出発原料として、SiO2
−Al2 3 −MgO−ZnO−B2 3 系ガラスを5
5〜99.9重量%、特に望ましくは60〜95重量%
と、フィラー成分としてフォルステライトを0.1〜4
5重量%、特にフォルステライトを全量中5〜40重量
%の割合になるように混合する。 【0022】このフィラー成分であるフォルステライト
が核となり、ガラス成分のコーディエライト結晶相への
結晶化を促進するが、ガラスを結晶化しコーディエライ
ト結晶相を均一に析出させることが肝要であり、係る観
点からは前記フォルステライトの粉末は、1.5μm以
下、特に1.0μm以下の微粉末であることが望まし
い。 【0023】更に、出発原料として、SiO2 −Al2
3 −MgO−ZnO−B2 3 系ガラスを用いるの
は、この系のガラスを用いることによりスピネル型結晶
相が析出し、この結晶相はガラスのネットワークを補強
する形態で存在し、高強度の焼結体を得ることができる
からである。 【0024】また、このような系のガラスを55〜9
9.9重量%の範囲で添加したのは、ガラス量が55重
量%より少ない場合には、焼結体の緻密化温度が100
0℃より高くなり金、銀、銅の導体を用いることができ
ず、ガラス量が99.9重量%より多いと磁器自体の抗
折強度が低下するためである。 【0025】一方、前記ガラスのより具体的な組成とし
てはSiO2 が40〜45重量%、Al2 3 が25〜
30重量%、MgOが8〜12重量%、ZnOが6〜9
重量%、B2 3 が8〜11重量%が望ましい。 【0026】上記のような割合で添加混合した混合粉末
に適宜バインダ−を添加した後、所定形状に成形し、N
2 、Ar等の非酸化性雰囲気中において800〜100
0℃の温度で0.1〜5時間焼成する。この時の焼成温
度が800℃より低いと、磁器が十分に緻密化せず、1
000℃を越えると金、銀、銅の導体を用いることがで
きなくなる。 【0027】また、かかる低温焼成磁器組成物を用いて
配線基板を作製する場合には、例えば、上記のようにし
て調合した混合粉末を公知のテープ成形法、例えばドク
ターブレード法、圧延法等に従い、絶縁層形成用のグリ
ーンシートを成形した後、そのシートの表面に配線層用
のメタライズとして、Au、AgやCuの粉末、特にC
u粉末を含む金属ペーストを用いて、シート表面に配線
パターンをスクリーン印刷、グラビア印刷、オフセット
印刷等の手段により形成し、場合によってはシートにス
ルーホールを形成してホール内に上記ペーストを充填す
る。その後、複数のシートを積層圧着した後、上述した
条件で焼成することにより、配線層と絶縁層とを同時に
焼成することができる。 【0028】 【実施例】以下、本発明の低温焼成磁器組成物について
具体的に詳述する。先ず、SiO2 −Al2 3 −Mg
O−ZnO−B2 3 系結晶性ガラスとして、 結晶性ガラスA:SiO2 44重量%−Al2 3 29重量% −MgO11重量% −ZnO7重量% −B2 3 9重量% 結晶性ガラスB:SiO2 50重量%−Al2 3 25重量% −MgO9重量% −ZnO8重量% −B2 3 8重量% の2種のガラスと、平均粒径が1μm以下のフォルステ
ライトを表1の組成に従って混合した。 【0029】そして、この混合物に有機バインダー、可
塑剤、トルエンを添加し、ドクターブレード法により厚
さ300μmのグリーンシートを作製した。その後、こ
のグリーンシートを5枚積層し、50℃の温度で100
kg/cm2 の圧力を加えて熱圧着した。得られた積層
体を水蒸気含有した窒素雰囲気中で、700℃の温度に
て脱バインダーした後、乾燥窒素中で表1の条件にて焼
成して低温焼成磁器組成物の焼結体を得た。 【0030】得られた焼結体について誘電率、誘電正
接、抗折強度をそれぞれ以下の方法で評価した。 【0031】誘電率及び誘電正接は、前記焼結体から直
径50mm、厚さ1mmの試料を切り出し、3.0GH
zにてネットワークアナライザー、シンセサイズドスイ
ーパーを用いて空洞共振器法により測定した。測定で
は、サファイヤを充填した円筒空洞共振器の間に試料の
誘電体基板を挟んで測定した。共振器のTE011 モード
の共振特性より、誘電率、誘電正接を算出した。 【0032】抗折強度は、前記焼結体から長さ70m
m、厚さ3mm、幅4mmの測定試料を作製し、JIS
−C−2141の規定に準じて3点曲げ試験を行った。 【0033】また、比較例として、フィラー成分をフォ
ルステライトに代えて、SiO2 を用いて前記同様に焼
結体を作製し評価した。 【0034】更に、前記結晶性ガラスに代わり、 結晶性ガラスC:SiO2 55.2重量%−Al2 3 12重量% −B2 3 4.4重量% −BaO20重量% −ZnO6.7重量% −Na2 O1.6重量% −ZrO2 0.1重量% 結晶性ガラスD:SiO2 60.7重量%−Al2 3 9.3重量% −B2 3 5重量% −SrO15.4重量% −ZnO8.6重量% −K2 O1重量% の2種のガラスを用いて、フィラーとして平均粒径が
1.0μmのフォルステライトを用いて同様に評価し
た。 【0035】 【表1】 【0036】表1の結果から明らかなように、結晶相と
してガーナイト結晶相と、コーディエライト結晶相と、
フォルステライト結晶相と、エンスタタイト結晶相が析
出した本発明は、いずれも誘電率が6未満、誘電正接が
11×10-4以下、強度が260MPa以上と高い値を
示し、特に誘電特性に優れていることが分かる。 【0037】これに対して、ガラス量が55重量%未満
である試料番号1では、焼成温度を1400℃まで高め
ないと緻密化することができず、誘電正接も30×10
-4と高く、試料番号8及び9の如くフィラーの量が0.
1重量%未満になると、ガラスが十分に結晶化せず、強
度も150MPaまで下がり、誘電正接も17×10-4
以上とかなり高くなっている。 【0038】また、比較例として、SiO2 をフィラー
に用いた試料番号20は、誘電率は低いものの、誘電正
接が35×10-4とかなり高くなった。 【0039】また、結晶化ガラスCおよびDを用いた比
較例の試料番号14〜19では、BaAl2 Si2 8
やSrAl2 Si2 8 が生成し、これらはそれ自体の
誘電率が7〜8と高いため、磁器全体の誘電率が7.2
以上と高くなり、誘電正接も20×10-4以上と極めて
大きくなっている。 【0040】 【発明の効果】以上詳述した通り、本発明の低温焼成磁
器組成物は、誘電率が低く誘電正接が小さいので、マイ
クロ波用回路素子等において最適で小型化も可能であ
り、更に、基板材料の高強度化により入出力端子部に施
すリードの接合や、実装における基板の信頼性を向上で
きる上、800〜1000℃の低温度で焼成可能なた
め、Au、Ag、Cu等による配線を同時焼成により形
成することができ、各種高周波用の多層配線基板や半導
体素子収納用パッケージ用の基板として適用することが
できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-temperature fired porcelain composition for a multi-layer circuit board, and more particularly to a low-temperature porcelain composition for mounting a semiconductor element and various electronic components. The present invention relates to a high-frequency low-temperature fired porcelain composition which can be used for copper wiring and is applied to a composite circuit board or the like comprising the same. 2. Description of the Related Art In recent years, with the era of advanced information, the speed of information transmission has been further increased and the frequency has been increased, and the mounted semiconductor elements have been further increased in speed and integration, and the packaging density has been further increased. Various types of alumina circuit boards, which have been widely used, have a relative dielectric constant of 9 to 9 at 3 GHz.
It is said to be unsuitable for recent high-frequency circuit boards and the like because of its considerably high dielectric constant of 9.5. In other words, in order to propagate a signal at a high speed, a lower dielectric constant is required for a substrate material.
Higher mechanical strength in order to prevent the board itself from being broken or chipped by stress applied to the board in the process of connecting various electronic components and input / output terminals to the multilayer circuit board. Is also required. [0004] In order to satisfy the above-mentioned requirements, for example, a glass sintered body composed of a glass composition containing SiO 2 , Al 2 O 3 , and MgO as main components has been proposed. Although the body has the property of having a low dielectric constant, the problem of low mechanical strength remains, and it does not completely satisfy the above requirements, and various research and development have been promoted in order to solve the problems related thereto. I have. As a result, as a composition having a low dielectric constant and high strength, for example, a glass composition which precipitates mullite and cordierite as main crystal phases by heat treatment has been proposed (Japanese Patent Laid-Open No. 05-298919). Gazette). [0006] However, the multilayer circuit board made of the glass composition proposed above has a problem that the dielectric constant and the dielectric loss tangent required as a circuit board for high frequency are particularly high.
And not all properties such as mechanical strength are necessarily satisfied. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a multilayer circuit board having a sufficient mechanical strength and a low relative dielectric constant in a high frequency region. , Low dielectric loss tangent and stability, and firing at a low temperature of 800 to 1000 ° C., which enables multilayering using gold (Au), silver (Ag), and copper (Cu) as wiring conductors, can be realized. An object of the present invention is to provide a low-temperature fired porcelain composition for high frequency. The present inventor has made intensive studies on the above problems, and as a result, made use of the softening flow of glass.
By firing at 0 to 1000 ° C., multilayering and fine wiring can be performed using Au, Ag and Cu as wiring conductors, and by combining forsterite and a specific glass, a code phase as a crystal phase is obtained. Lowering the relative permittivity by precipitating the elite crystal phase,
The dielectric loss tangent can be reduced, and the dielectric loss tangent becomes smaller by precipitating the forsterite crystal phase and enstatite crystal phase. The present inventor has found that the present invention can be used, and has led to the present invention. That is, the low-temperature fired porcelain composition of the present invention contains 40 to 50% by weight of silica (SiO 2 ) and alumina (Al 2
O 3 ) at 25 to 30% by weight, and magnesia (MgO) at 8
12%, 6-9 wt% of zinc oxide (ZnO), and boron oxide (B 2 O 3) and 55 to 99.9 wt% of glass consisting of a rate of 8 to 11% by weight, forsterite ( (Mg 2 SiO 4 ) at a ratio of 0.1 to 45% by weight was formed from a mixed powder containing nitrogen (N 2 ) and argon (A
a sintered body obtained by firing at a temperature of 800 to 1000 ° C. in a non-oxidizing atmosphere such as r)
And a cordierite crystal phase, a forsterite crystal phase, and an enstatite crystal phase. According to the low-temperature fired porcelain composition of the present invention, since a forsterite is contained as a filler component, the cordierite crystal phase exhibiting a low dielectric constant and a low dielectric loss tangent due to the reaction with the glass phase and the enstar. The strength of the sintered body can be increased by precipitating a tight crystal phase and precipitating a spinel-type garnet crystal phase from a glass phase. That is, according to the porcelain composition of the present invention, 8
By reducing the glass component in the composition by firing at a low temperature of 00 to 1000 ° C., and by precipitating various crystal phases in combination with the filler component, a low dielectric constant and high strength are achieved by a combined action. In addition, excellent characteristics can be exhibited without problems even in resistance values, dielectric loss tangents, etc. other than the above characteristics. Further, the low-temperature fired porcelain composition of the present invention comprises 8
Since it can be fired simultaneously with the internal wiring layer of Au, Ag or Cu at a low temperature of 00 to 1000 ° C., fine wiring of a multilayer circuit board or a semiconductor device housing package having these wiring conductors can be easily achieved. it can. The low-temperature fired porcelain composition of the present invention will be described in detail below. According to the low-temperature fired porcelain composition of the present invention, at least SiO 2 , Al 2 O 3 , MgO, ZnO and B
If the amount of glass containing 2 O 3 is less than 55% by weight, or in other words, the amount of forsterite is more than 45% by weight, the porcelain cannot be sufficiently densified at a temperature of 800 to 1000 ° C. If the amount is greater than 99.9% by weight, in other words, if the amount of forsterite is less than 0.1% by weight, the mechanical strength will be less than 200 MPa. Therefore, the content of the glass is 55 to 9
It is specified to be 9.9% by weight, more preferably in the range of 60 to 95% by weight. FIG. 1 is a schematic view showing the structure of a sintered body of the low-temperature fired porcelain composition of the present invention. As shown in FIG. 1, the low-temperature fired porcelain composition of the present invention comprises a garnitite crystal phase 1, a cordierite crystal phase 2, a forsterite crystal phase 3, an enstatite crystal phase 4, and a glass phase. 5, and the garnite crystal phase 1 exists as a main crystal in the sintered body. The glass is almost crystallized, and the glass phase 5 exists only at the triple point. As described above, according to the present invention, a low dielectric constant and a low dielectric loss tangent can be obtained by the presence of a cordierite crystal phase in a sintered body, and a forsterite crystal phase and an enstatite crystal can be obtained. The presence of the phase allows a lower dielectric loss tangent to be obtained. Further, when the sintering temperature is adjusted to precipitate a garnitite crystal phase of a spinel-type crystal phase in the sintered body, the crystal phase exists in a form that reinforces the network of each crystal phase. A sintered body having high mechanical strength can be obtained. Next, as a specific method for producing the low-temperature fired porcelain composition of the present invention, SiO 2 is used as a starting material.
-Al 2 O 3 -MgO-ZnO-B 2 O 3 glass
5 to 99.9% by weight, particularly preferably 60 to 95% by weight
And 0.1 to 4 forsterite as a filler component
5% by weight, in particular forsterite, is mixed in a proportion of 5 to 40% by weight of the total amount. The forsterite, which is a filler component, serves as a nucleus to promote the crystallization of the glass component into a cordierite crystal phase. However, it is important to crystallize the glass and precipitate the cordierite crystal phase uniformly. From this point of view, it is desirable that the forsterite powder is a fine powder having a size of 1.5 μm or less, particularly 1.0 μm or less. Further, as a starting material, SiO 2 --Al 2
O 3 to use -MgO-ZnO-B 2 O 3 based glass, spinel-type crystal phase is deposited by the use of glass of this system, the crystal phase present in the form of reinforcing the network of the glass, high This is because a strong sintered body can be obtained. Further, 55 to 9 of such a glass is used.
The reason for adding 9.9% by weight is that when the amount of glass is less than 55% by weight, the densification temperature of the sintered body is 100%.
This is because the temperature is higher than 0 ° C., and gold, silver and copper conductors cannot be used. If the glass content is more than 99.9% by weight, the bending strength of the porcelain itself decreases. On the other hand, as a more specific composition of the glass, SiO 2 is 40 to 45% by weight and Al 2 O 3 is 25 to 45% by weight.
30% by weight, 8 to 12% by weight of MgO, 6 to 9 of ZnO
Wt%, B 2 O 3 is desirably 8-11% by weight. After appropriately adding a binder to the mixed powder added and mixed at the above ratio, the mixture is molded into a predetermined shape, and N 2
2. 800 to 100 in a non-oxidizing atmosphere such as Ar
Bake at 0 ° C for 0.1-5 hours. If the firing temperature at this time is lower than 800 ° C., the porcelain will not be sufficiently densified and
If the temperature exceeds 000 ° C., gold, silver and copper conductors cannot be used. When a wiring board is produced using such a low-temperature fired porcelain composition, for example, the mixed powder prepared as described above is mixed with a known tape molding method, for example, a doctor blade method, a rolling method or the like. After forming a green sheet for forming an insulating layer, a powder of Au, Ag or Cu, particularly C
Using a metal paste containing u powder, a wiring pattern is formed on the sheet surface by means of screen printing, gravure printing, offset printing, or the like, and in some cases, a through hole is formed in the sheet to fill the hole with the paste. . Then, after laminating and pressing a plurality of sheets, the wiring layer and the insulating layer can be simultaneously fired by firing under the above-described conditions. EXAMPLES Hereinafter, the low-temperature fired porcelain composition of the present invention will be described in detail. First, SiO 2 —Al 2 O 3 —Mg
As O-ZnO-B 2 O 3 based crystalline glass, crystalline glass A: SiO 2 44 wt% -Al 2 O 3 29 wt% -MgO11 wt% -ZnO7 wt% -B 2 O 3 9 wt% crystalline glass B: and two glass SiO 2 50 wt% -Al 2 O 3 25 wt% -MgO9 wt% -ZnO8 wt% -B 2 O 3 8% by weight, average particle size below forsterite 1μm Table 1 according to the composition. Then, an organic binder, a plasticizer, and toluene were added to the mixture, and a green sheet having a thickness of 300 μm was prepared by a doctor blade method. After that, five green sheets are laminated, and 100
Thermocompression bonding was performed by applying a pressure of kg / cm 2 . After debinding the obtained laminate in a nitrogen atmosphere containing water vapor at a temperature of 700 ° C., it was fired in dry nitrogen under the conditions shown in Table 1 to obtain a sintered body of a low-temperature fired porcelain composition. . The obtained sintered body was evaluated for dielectric constant, dielectric loss tangent, and bending strength by the following methods. The dielectric constant and the dielectric loss tangent were determined by cutting a sample having a diameter of 50 mm and a thickness of 1 mm from the sintered body and measuring 3.0 GH.
At z, the measurement was performed by a cavity resonator method using a network analyzer and a synthesized sweeper. The measurement was performed with a dielectric substrate of a sample interposed between cylindrical cavities filled with sapphire. The dielectric constant and the dielectric loss tangent were calculated from the resonance characteristics of the TE011 mode of the resonator. The bending strength is 70 m in length from the sintered body.
m, a thickness of 3 mm, and a width of 4 mm were prepared and measured according to JIS.
A three-point bending test was performed according to the provisions of -C-2141. Further, as a comparative example, a sintered body was prepared and evaluated in the same manner as described above using SiO 2 instead of forsterite as the filler component. Further, instead of the crystalline glass, crystalline glass C: 55.2% by weight of SiO 2 -12% by weight of Al 2 O 3 -4.4% by weight of B 2 O 3 -20% by weight of BaO-ZnO 6.7 wt% -Na 2 O1.6 wt% -ZrO 2 0.1 wt% crystalline glass D: SiO 2 60.7 wt% -Al 2 O 3 9.3 wt% -B 2 O 3 5 wt% -SrO15 with .4 wt% -ZnO8.6 wt% -K 2 O1 wt% of the two glass, the average particle diameter as a filler was evaluated in the same manner by using a 1.0μm forsterite. [Table 1] As is clear from the results in Table 1, the garnitite crystal phase, the cordierite crystal phase,
The present invention, in which a forsterite crystal phase and an enstatite crystal phase are precipitated, each has a dielectric constant of less than 6, a dielectric loss tangent of 11 × 10 −4 or less, and a strength of 260 MPa or more. You can see that it is. On the other hand, in sample No. 1 in which the amount of glass is less than 55% by weight, densification cannot be achieved unless the firing temperature is increased to 1400 ° C., and the dielectric loss tangent is also 30 × 10 5
-4, and the amount of filler was 0.1% as in sample numbers 8 and 9.
When the content is less than 1% by weight, the glass is not sufficiently crystallized, the strength is reduced to 150 MPa, and the dielectric loss tangent is 17 × 10 −4.
Above is quite high. As a comparative example, sample No. 20 using SiO 2 as a filler had a low dielectric constant but a considerably high dielectric loss tangent of 35 × 10 −4 . In Comparative Examples 14 to 19 using the crystallized glasses C and D, BaAl 2 Si 2 O 8
And SrAl 2 Si 2 O 8 is produced, because they are themselves dielectric constant as high as 7 to 8, the entire porcelain dielectric constant of 7.2
As described above, the dielectric loss tangent is extremely large at 20 × 10 −4 or more. As described in detail above, the low-temperature fired porcelain composition of the present invention has a low dielectric constant and a small dielectric loss tangent, so that it can be optimized and miniaturized in microwave circuit elements and the like. Furthermore, since the strength of the substrate material is increased, the bonding of the leads to be applied to the input / output terminals and the reliability of the substrate during mounting can be improved, and since firing at a low temperature of 800 to 1000 ° C. is possible, Au, Ag, Cu Can be formed by simultaneous firing, and can be applied as a multilayer wiring board for various high frequencies or a board for a package for housing semiconductor elements.

【図面の簡単な説明】 【図1】本発明の低温焼成磁器組成物の組織の概略図で
ある。 【符号の説明】 1 ガーナイト結晶相 2 コーディエライト結晶相 3 フォルステライト結晶相 4 エンスタタイト結晶相 5 ガラス相
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of the structure of the low-temperature fired porcelain composition of the present invention. [Description of Signs] 1 Garnite crystal phase 2 Cordierite crystal phase 3 Forsterite crystal phase 4 Enstatite crystal phase 5 Glass phase

Claims (1)

(57)【特許請求の範囲】 【請求項1】シリカ(SiO2)を40〜50重量%、
アルミナ(Al23)を25〜30重量%、マグネシア
(MgO)を8〜12重量%、酸化亜鉛(ZnO)を6
〜9重量%、及び酸化硼素(B23)を8〜11重量%
の割合からなるガラスを55〜99.9重量%と、フォ
ルステライト(Mg2SiO4)を0.1〜45重量%の
割合で含む混合粉末から成る成形体を、窒素(N2)、
アルゴン(Ar)等の非酸化性雰囲気中、800〜10
00℃の温度で焼成して得られた焼結体であって、ガー
ナイト結晶相を主結晶とし、コーディエライト結晶相
と、フォルステライト結晶相と、エンスタタイト結晶相
とを含むことを特徴とする低温焼成磁器組成物。
(57) [Claim 1] 40 to 50% by weight of silica (SiO 2 );
Alumina (Al 2 O 3 ) 25 to 30% by weight, magnesia (MgO) 8 to 12% by weight, zinc oxide (ZnO) 6
To 9% by weight, and boron oxide and (B 2 O 3) 8~11 wt%
And 55 to 99.9 wt% of glass consisting of a rate of a molded article made of mixed powder containing forsterite a (Mg 2 SiO 4) in a proportion of 0.1 to 45 wt.%, Nitrogen (N 2),
800 to 10 in a non-oxidizing atmosphere such as argon (Ar)
A sintered body obtained by sintering at a temperature of 00 ° C., comprising a garnet crystal phase as a main crystal, a cordierite crystal phase, a forsterite crystal phase, and an enstatite crystal phase. Low temperature firing porcelain composition.
JP34012195A 1995-12-27 1995-12-27 Low temperature firing porcelain composition Expired - Fee Related JP3363299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34012195A JP3363299B2 (en) 1995-12-27 1995-12-27 Low temperature firing porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34012195A JP3363299B2 (en) 1995-12-27 1995-12-27 Low temperature firing porcelain composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002167046A Division JP2002362974A (en) 2002-06-07 2002-06-07 Sintered compact sintered at low temperature

Publications (2)

Publication Number Publication Date
JPH09175855A JPH09175855A (en) 1997-07-08
JP3363299B2 true JP3363299B2 (en) 2003-01-08

Family

ID=18333929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34012195A Expired - Fee Related JP3363299B2 (en) 1995-12-27 1995-12-27 Low temperature firing porcelain composition

Country Status (1)

Country Link
JP (1) JP3363299B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000276947A (en) * 1999-01-19 2000-10-06 Taiyo Yuden Co Ltd Ceramic composition and ceramic sintered body for electronic part and electronic part
EP2177490B1 (en) * 2007-07-23 2018-03-14 TDK Corporation Ceramic substrate, process for producing the same, and dielectric-porcelain composition
CN110904507B (en) * 2019-12-11 2021-05-25 罗首其 Magnalite single crystal and preparation method thereof
CN113024249B (en) * 2021-03-29 2022-04-22 三峡大学 Microwave dielectric ceramic composite material and preparation method thereof

Also Published As

Publication number Publication date
JPH09175855A (en) 1997-07-08

Similar Documents

Publication Publication Date Title
JP3297569B2 (en) Low temperature firing porcelain composition
JP3793560B2 (en) Low-temperature fired porcelain and manufacturing method thereof
JP3377898B2 (en) Low temperature firing porcelain composition
JP3363299B2 (en) Low temperature firing porcelain composition
JP3550270B2 (en) Low temperature fired porcelain composition and method for producing low temperature fired porcelain
JP2003238249A (en) Glass ceramics and wiring board
JP3793559B2 (en) High frequency porcelain composition and high frequency porcelain
JP3314130B2 (en) Low temperature firing porcelain composition
JP3363297B2 (en) Low temperature firing porcelain composition
JP4202117B2 (en) Low-frequency fired porcelain composition for high frequency and manufacturing method thereof
JP3523590B2 (en) Low temperature fired porcelain composition, low temperature fired porcelain, and wiring board using the same
JP3466561B2 (en) Low temperature fired porcelain composition, low temperature fired porcelain, and wiring board using the same
JP3527818B2 (en) Low-temperature firing porcelain and method of manufacturing the same
JP3441924B2 (en) Wiring board and its mounting structure
JP3441941B2 (en) Wiring board and its mounting structure
JP2003073162A (en) Glass ceramic and wiring board
JP4540297B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board
JP2005015284A (en) Low temperature-fired porcelain, its production method, and wiring board
JP2002362974A (en) Sintered compact sintered at low temperature
JP3441950B2 (en) Wiring board and its mounting structure
JP3628146B2 (en) Low temperature fired ceramic composition and low temperature fired ceramic
JP3793558B2 (en) High frequency porcelain
JP4395320B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board
JP2003137657A (en) Glass ceramics and method of manufacturing the same and wiring board
JP3314131B2 (en) Wiring board

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071025

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121025

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131025

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees