JPH068189B2 - Oxide dielectric material - Google Patents

Oxide dielectric material

Info

Publication number
JPH068189B2
JPH068189B2 JP60059455A JP5945585A JPH068189B2 JP H068189 B2 JPH068189 B2 JP H068189B2 JP 60059455 A JP60059455 A JP 60059455A JP 5945585 A JP5945585 A JP 5945585A JP H068189 B2 JPH068189 B2 JP H068189B2
Authority
JP
Japan
Prior art keywords
weight
sio
oxide
dielectric material
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60059455A
Other languages
Japanese (ja)
Other versions
JPS61219741A (en
Inventor
恭章 安本
春利 江上
暢男 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP60059455A priority Critical patent/JPH068189B2/en
Publication of JPS61219741A publication Critical patent/JPS61219741A/en
Publication of JPH068189B2 publication Critical patent/JPH068189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は酸化物誘電体材料に関し、さらに詳しくは、電
気特性及び機械的特性が優れると共に、低温での焼成が
可能な特に回路基板用として優れた酸化物誘電体材料に
関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to an oxide dielectric material, and more specifically, it is excellent in electrical properties and mechanical properties, and particularly excellent for circuit boards capable of firing at low temperature. Oxide dielectric material.

[発明の技術的背景とその問題点] マイクロエレクトロニクス(ME)の発達により、オフィス
オートメーション用機器やホームエレクトロニクス機器
の小型化が急速に押し進められ、小型化されたマイクロ
エレクトロニクス機器が身近な存在となりつつある。マ
イクロエレクトロニクス機器には比較的高密度の多層配
線基板が広く利用されているが、その材料としては、電
気的特性、機械的特性及び量産性の観点から主としてア
ルミナセラミックが使用されてきた。このような多層配
線基板は、通常層間絶縁の役割を有する誘電体層と導体
層とを交互に積層した後、一体的に焼成して得ることが
できる。
[Technical Background of the Invention and its Problems] With the development of microelectronics (ME), miniaturization of office automation equipment and home electronics equipment has been rapidly promoted, and miniaturized microelectronic equipment has become a familiar existence. is there. A relatively high-density multilayer wiring board is widely used in microelectronic devices, and alumina ceramics have been mainly used as the material from the viewpoint of electrical characteristics, mechanical characteristics, and mass productivity. Such a multilayer wiring board can be obtained by alternately laminating dielectric layers and conductor layers, which normally have a role of interlayer insulation, and then firing them integrally.

アルミナ(Al2O3)は絶縁特性が優れていはいるものの
焼成温度が1500〜1600℃と高いため、使用しうる導体層
はこの焼成温度に耐え得るモリブデン(Mo),タングステ
ン(W)等の高融点金属からなるものに限定される。このM
o,W等は、比抵抗が大きいため、配線幅の減少に限界が
あり、高密度配線による装置の小型化の要求に逆行する
のみならず、その焼成には、還元雰囲気下の高温を使用
するため焼成装置の維持及び管理が困難となり、工数低
減を阻害していた。
Alumina (Al 2 O 3 ) has excellent insulation characteristics, but the firing temperature is as high as 1500 to 1600 ℃, so the conductor layers that can be used are molybdenum (Mo), tungsten (W), etc. that can withstand this firing temperature. Limited to those made of refractory metals. This M
Since o, W, etc. have a large specific resistance, there is a limit to the reduction of the wiring width, which not only goes against the demand for downsizing of the device by high-density wiring, but also uses a high temperature in a reducing atmosphere for firing. Therefore, it becomes difficult to maintain and manage the firing apparatus, which hinders the reduction of man-hours.

一方、W,Mo等に比べ比抵抗の小さい白金一銀(Pt-Ag),
銀−金(Ag-Au),銅(Cu)等のペーストを用いることを考
えると、誘電体材料の焼成温度は1000℃以下程度である
ことが望まれる。このような要求に応じて主成分として
酸化鉛を含むガラス系セラミックスを誘電体として用い
るものがある(特開昭58-78496号)。この材料はAl2O3
に比べれば焼成温度は低いものの、まだ十分ではない。
さらに酸化鉛を含む系では、低分圧酸素雰囲気(Cuペー
スト焼結用)下の焼成時に酸化鉛が一部還元され、金属
鉛として析出してしまう。これは誘電体材料からなる絶
縁体層の体積抵抗率を大幅に低下し、配線間に信号のリ
ークが起る。
On the other hand, platinum-silver (Pt-Ag), which has a smaller specific resistance than W, Mo, etc.
Considering the use of a paste of silver-gold (Ag-Au), copper (Cu), etc., it is desired that the firing temperature of the dielectric material is about 1000 ° C or lower. In response to such demands, there is one that uses a glass-based ceramic containing lead oxide as a main component as a dielectric (Japanese Patent Laid-Open No. 58-78496). This material is Al 2 O 3
Although the firing temperature is lower than that of, it is not yet sufficient.
Further, in a system containing lead oxide, the lead oxide is partially reduced during firing in a low partial pressure oxygen atmosphere (for Cu paste sintering), and is precipitated as metallic lead. This significantly lowers the volume resistivity of the insulating layer made of a dielectric material, causing a signal leak between the wirings.

さらに装置の小型化による高密度配線、高速化が進展す
ると信号電播に係る誘導体層の影響が無視できなくなっ
てきている。例えば誘電率(ε)は信号伝播遅延時間に
大きく影響し(一般式 τ:1cm当りの遅延時間)、εは小さいほうが好まし
い。又、誘電損失(tanδ)は信号の損失に大きく影響
し、tanδが大きいと信号電流により配線周辺の誘電体
層に電磁界が形成され、熱エネルギーに変換され、信号
損失につながるのである。この熱エネルギーは基板の温
度上昇につながり、ICチップの破壊、ハンダ溶融等のト
ラブルの原因となる。従ってtanδが小さいことが望ま
れる。
Furthermore, as high-density wiring and higher speed have progressed due to the miniaturization of the device, the influence of the dielectric layer relating to signal seeding cannot be ignored. For example, the permittivity (ε) greatly affects the signal propagation delay time (general formula τ: delay time per 1 cm) and ε are preferably small. Further, the dielectric loss (tan δ) greatly affects the signal loss, and when tan δ is large, an electromagnetic field is formed in the dielectric layer around the wiring by the signal current and converted into heat energy, which leads to signal loss. This thermal energy leads to a rise in the temperature of the substrate, which causes troubles such as IC chip destruction and solder melting. Therefore, it is desired that tan δ be small.

このような基板に用いられる誘電体材料の誘電率、誘電
損失は小さい方が望ましく、従来のAl2O3,ガラス系セ
ラミックス(ε:7〜20、tanδ:2×10-3〜4×10-3
(at 1MHz))では十分ではなかった。
It is desirable that the dielectric constant and the dielectric loss of the dielectric material used for such a substrate be small, and conventional Al 2 O 3 and glass-based ceramics (ε: 7 to 20, tan δ: 2 × 10 −3 to 4 × 10 6). -3
(At 1MHz)) was not enough.

[発明の目的] 本発明の目的は、上記した問題点の解消にあり、電気的
特性及び機械的特性が優れると共に、低温での焼成が可
能な酸化物誘電体材料を提供することである。
[Object of the Invention] An object of the present invention is to solve the above-mentioned problems, and to provide an oxide dielectric material which has excellent electrical properties and mechanical properties and can be fired at a low temperature.

[発明の概要] 本発明は、Mg,Si,B及びBaが夫々酸化物に換算して、M
gO20〜40重量%、SiO2 34〜40重量%、BaO 9〜28重量
%及びB2O3 4〜12重量%を含有しMg2SiO4フォルステラ
イトと硼珪酸バリウムガラスとのガラスセラミックを構
成することを特徴とする酸化物誘電体材料である。
[Outline of the Invention] In the present invention, Mg, Si, B and Ba are converted into oxides, respectively, and M
Constituting 20-40% by weight of gO, 34-40% by weight of SiO 2, 9-28% by weight of BaO and 4-12% by weight of B 2 O 3 and constituting a glass ceramic of Mg 2 SiO 4 forsterite and barium borosilicate glass. And an oxide dielectric material.

本発明の誘電体材料における二酸化珪素(SiO2)は、焼成
時に酸化マグネシウムと固溶し、Mg SiO2フォルステラ
イトを形成し、又、酸化硼素、酸化バリウムと融液を形
成する役割を果たす。SiO2に換算した割合が34重量%未
満では、酸化マグネシウムと残部の成分が分離して焼成
不可能となり、40重量%を超える場合には、導体ペース
トの移行性(マイグレーション)による体積抵抗の劣化
が生じる。好ましくは36〜38重量%である。
Silicon dioxide (SiO 2 ) in the dielectric material of the present invention plays a role of forming a solid solution with magnesium oxide during firing, forming Mg SiO 2 forsterite, and forming a melt with boron oxide and barium oxide. If the ratio converted to SiO 2 is less than 34% by weight, the magnesium oxide and the rest of the components will be separated and firing will not be possible, and if it exceeds 40% by weight, the volume resistance will deteriorate due to migration of the conductor paste. Occurs. It is preferably 36 to 38% by weight.

酸化マグネシウム(MgO)は二酸化珪素と一部固溶して化
合物を形成し、本発明の誘電体材料に機械的強度を付与
する役割を果たす。MgO換算で20重量%未満の場合に
は、一般に要求される15Kg/mm2を下まわる6Kg/mm2
十分な抗析強度が得られず、MgO換算で40重量%を超え
る場合には、1000℃以下での焼結が不可能となり低温焼
結が達成できない。好ましくは27〜32重量%である。
Magnesium oxide (MgO) plays a role of imparting mechanical strength to the dielectric material of the present invention by forming a compound by partially forming a solid solution with silicon dioxide. If it is less than 20 wt% in terms of MgO is generally falls below the 15 Kg / mm 2 required 6 Kg / mm 2 with a sufficient flexural resistance degree can not be obtained, when it exceeds 40 wt% in terms of MgO is Sintering below 1000 ° C becomes impossible and low temperature sintering cannot be achieved. It is preferably 27 to 32% by weight.

酸化バリウムは、二酸化ケイ素,酸化硼素等の単独でガ
ラスを形成する網目形成酸化物に網目修飾酸化物として
作用し、安定なガラス相を形成し、焼結温度低下の役割
を果たす。BaO換算で9重量%未満の場合には、焼結温
度が上昇し、1000℃以下の低温焼結が困難となり、BaO
換算で28重量%を超える場合には、焼結時に発泡現象を
招き、機械的強度が15Kg/mm2以下に低下する。好まし
くは16〜20重量%である。
Barium oxide acts as a network-modifying oxide on a network-forming oxide such as silicon dioxide or boron oxide, which forms glass by itself, forms a stable glass phase, and plays a role of lowering the sintering temperature. If it is less than 9% by weight in terms of BaO, the sintering temperature rises, making it difficult to perform low-temperature sintering at 1000 ° C or lower.
If it exceeds 28% by weight in conversion, foaming phenomenon occurs during sintering, and the mechanical strength decreases to 15 kg / mm 2 or less. It is preferably 16 to 20% by weight.

酸化硼素は網目形成酸化物となり、二酸化珪素,酸化バ
リウムとガラス相を形成する。また酸化マグネシウムと
二酸化珪素から成る化合物とガラスとの焼結を促進し両
者のガラス−セラミックスを得る役割を果たす。4重量
%未満の場合には、1000℃以下の低温焼結は困難とな
り、12重量%を超える場合には、流動成分が多く、成形
形状が維持できなくなると共に、表面に泡が残留してペ
ーストの印刷性、精度等に大きく影響する。好ましくは
7〜9重量%である。
Boron oxide becomes a network-forming oxide and forms a glass phase with silicon dioxide and barium oxide. It also plays a role in promoting the sintering of the compound of magnesium oxide and silicon dioxide and the glass to obtain both glass-ceramics. If it is less than 4% by weight, low temperature sintering at 1000 ° C or less becomes difficult, and if it exceeds 12% by weight, there are many fluid components and it becomes impossible to maintain the molded shape, and bubbles remain on the surface and paste Printability, accuracy, etc. It is preferably 7 to 9% by weight.

なお本発明材料は各構成元素を各々酸化物若しくは焼成
により酸化物にかわる塩等を原料として混合し、焼の
後、焼結しても良いし、Mg2SiO4及びB2O3−SiO2−BaOガ
ラスを原料として粉砕、混合し焼結しても良い。この場
合、Mg2SiO4単独での焼結は困難であり、一般にAl2O3
の焼結助剤を含有する。通常Mg2SiO4中に1〜3重量%
程度含有される。あまり多いと本発明材料の焼成温度を
1000℃以上程度と高くしてしまうが、焼結助剤程度の量
であれば本発明材料に特に悪影響をおよぼすことはな
い。又、ガラス成分中にも製造上不可避の成分が含有さ
れるが、不純物程度の量であれば何等問題は生じない。
例えばCaO,SrO,K2O,TiO,Fe2O3,Na2O,ZrO2
が挙げられる。通常5重量%以下、好ましくは2重量%
以下であれば問題はない。又、PbOも含有される場合が
あるが、前述のごとく電気的特性に悪影響を与えるため
0.1重量%程度が限界である。
The material of the present invention may be obtained by mixing each constituent element with an oxide or a salt that changes to an oxide by firing as a raw material, and firing and then sintering, or Mg 2 SiO 4 and B 2 O 3 —SiO 2. 2- BaO glass may be used as a raw material, crushed, mixed and sintered. In this case, it is difficult to sinter Mg 2 SiO 4 alone, and a sintering aid such as Al 2 O 3 is generally contained. Usually 1 to 3 wt% in Mg 2 SiO 4
Included to some extent. If too much, the firing temperature of the material of the present invention
Although it is as high as about 1000 ° C. or higher, it does not have a bad influence on the material of the present invention as long as the amount is about the amount of the sintering aid. Further, the glass component also contains an unavoidable component in the production, but no problem occurs if it is in the amount of impurities.
For example, CaO, SrO, K 2 O, TiO 2 , Fe 2 O 3 , Na 2 O, ZrO 2 and the like can be mentioned. Usually 5% by weight or less, preferably 2% by weight
There is no problem if it is below. It may also contain PbO, but as mentioned above, it adversely affects the electrical characteristics.
The limit is about 0.1% by weight.

本発明材料はMg2SiO4とB2O3−SiO2−BaOガラスとのガラ
スセラミックスを構成する。ほぼMgO量によりMg2SiO4
量は決定されるが、Mg2SiO4が40〜80重量%のとき機械
的強度等各特性に優れたものを得ることができる。60重
量%近傍がもっとも優れているため、55〜65重量%のと
きがより好ましい範囲となる。ガラス量が多いと機械的
強度に劣り、又、少ないと焼結温度が高くなってしま
う。
The material of the present invention constitutes a glass ceramic of Mg 2 SiO 4 and B 2 O 3 —SiO 2 —BaO glass. Although the amount of Mg 2 SiO 4 is determined almost by the amount of MgO, when Mg 2 SiO 4 is in the range of 40 to 80% by weight, it is possible to obtain those having excellent properties such as mechanical strength. Since it is most excellent in the vicinity of 60% by weight, the range of 55 to 65% by weight is the more preferable range. If the amount of glass is large, the mechanical strength will be poor, and if it is small, the sintering temperature will be high.

つぎに、本発明の酸化物誘導体材料の一製造方法を説明
する。
Next, a method for producing the oxide derivative material of the present invention will be described.

Mg2SiO4フォルステライト及び硼珪酸バリウムガラスを
所定量秤量し、湿式振動ミル等で平均粒径1.0〜1.
9μm程度となるように混合・粉砕し、原料粉末とす
る。次いでこの粉末に対し、バインダー、溶剤等を加え
スラリーを作る。バインダー、溶剤は適宜選定できる
が、例えば原料粉末100重量%に対しバインダーとして
のPVB(ポリビニルブチラール)5〜20重量%、溶剤と
して1,1,1-トリクロルエタン25〜35重量%、n-ブタノー
ル10〜22重量%、テトラクロルエチレン8〜19重量%、
トリブチルホスフェート4〜13重量%のものを用いる。
混合時には原料の均一分散等のため、粘度を500cps程度
とする。その後このスラリーを脱泡し、スラリー中に溶
存する空気を脱気し、後工程で形成するグリーンシート
表面の平坦化、強度等調整のため、20000cps程度の粘度
とする。
A predetermined amount of Mg 2 SiO 4 forsterite and barium borosilicate glass was weighed, and an average particle size of 1.0 to 1.
Mix and pulverize to about 9 μm to obtain raw material powder. Next, a binder, a solvent and the like are added to this powder to make a slurry. The binder and solvent can be appropriately selected, for example, PVB (polyvinyl butyral) as a binder 5 to 20% by weight, solvent 1,1,1-trichloroethane 25 to 35% by weight, n-butanol to 100% by weight of raw material powder. 10-22% by weight, tetrachloroethylene 8-19% by weight,
Tributyl phosphate of 4 to 13% by weight is used.
At the time of mixing, the viscosity should be about 500 cps because of uniform dispersion of the raw materials. Thereafter, this slurry is degassed, air dissolved in the slurry is degassed, and the viscosity is set to about 20000 cps in order to flatten the surface of the green sheet formed in a later step and to adjust the strength and the like.

そのスラリーを用いて、一般的な方法により、グリーン
シートを作成し、焼成を大気中および窒素雰囲気中でお
こなって、本発明の酸化物誘導体材料を得る。
Using the slurry, a green sheet is prepared by a general method, and firing is performed in the air and a nitrogen atmosphere to obtain the oxide derivative material of the present invention.

なお上述の方法ではフォルステライトとガラスを原料と
して用いたが、各構成原料(MgO,SiO2,BaO,B2O3若し
くは焼等により酸化物にかわる各種塩)を混合し、
焼等によりフォルステライトを形成させても良い。多少
の化学量論比からのずれは本発明に影響を与えない。
又、この場合Mg2SiO4の焼結助剤としAl2O3を1〜3重量
%含有せしめることは有効である。
In the above-mentioned method, forsterite and glass were used as raw materials, but the constituent raw materials (MgO, SiO 2 , BaO, B 2 O 3 or various salts replacing oxides by firing) are mixed,
Forsterite may be formed by baking or the like. A slight deviation from the stoichiometric ratio does not affect the present invention.
Further, in this case, it is effective to contain 1 to 3% by weight of Al 2 O 3 as a sintering aid of Mg 2 SiO 4 .

特にSiO 36〜33重量%、MgO27〜32重量%、BaO16〜20
重量%、B2O37〜9重量%を含有するものはε:6.8
〜7.0、tanδ:4×10-4以下、体積抵抗:7×1014
以上の特性を有すると共に、960℃以下の低温での焼成
が可能であるため、特に好ましい。
Especially SiO 36-33 wt%, MgO 27-32 wt%, BaO 16-20
%, B 2 O 3 containing 7 to 9% by weight is ε: 6.8
~ 7.0, tan δ: 4 × 10 −4 or less, volume resistance: 7 × 10 14
It is particularly preferable because it has the above characteristics and can be fired at a low temperature of 960 ° C. or lower.

本発明の誘電体材料は酸化鉛を含まないため、金属鉛の
析出の恐れがなく、焼成雰囲気を選ばなくてもすること
である。従って各種の導体ペーストを用いることがで
き、回路基板製造上の利点は大なるものである。
Since the dielectric material of the present invention does not contain lead oxide, there is no fear of precipitation of metallic lead, and the firing atmosphere is not selected. Therefore, various conductor pastes can be used, and the advantage of manufacturing a circuit board is great.

以下において、実施例及び比較例を掲げ、本発明を更に
詳しく説明する。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

[発明の実施例] 実施例1〜9 フォルステライト(Mg2SiO4)及び硼珪酸バリウムガラ
スを所定の割合で坪量し、非水系湿式混合ミル等で平均
粒径1.0〜2.0μm程度となるように混合粉砕し、
原料粉末とした。次いでこの原料粉末にバインダーとし
てPVB(ポリビニルブチラル)、溶剤として1,1,1-トリ
クロルエタン、n-ブタノール、テトラクロルエチレン、
トリブチルホスフェート等を加えスラリーを調整した。
均一分散等のため粘度は500cps程度とした。その後この
スラリーを脱泡し、スラリー中に溶存する空気を脱気
し、後工程で形成するグリーンシート表面の平坦化,強
度等の調整のため、20000cps程度の粘度とした。
[Examples of the Invention] Examples 1 to 9 Forsterite (Mg 2 SiO 4 ) and barium borosilicate glass were weighed in a predetermined ratio, and an average particle size of 1.0 to 2.0 μm was obtained using a nonaqueous wet mixing mill or the like. Mix and pulverize to a degree,
The raw material powder was used. Next, PVB (polyvinyl butyral) as a binder, 1,1,1-trichloroethane, n-butanol, and tetrachloroethylene as a solvent are added to this raw material powder.
Tributyl phosphate and the like were added to adjust the slurry.
The viscosity was set to about 500 cps for uniform dispersion. Thereafter, this slurry was degassed, air dissolved in the slurry was degassed, and the viscosity was set to about 20000 cps in order to flatten the surface of the green sheet formed in a later step and adjust the strength.

同様に本発明の範囲外のものも(比較例1〜5)製造し
た。
Similarly, those outside the scope of the present invention (Comparative Examples 1 to 5) were also produced.

このスラリーを用いて、一般的な方法により、グリーン
シートを作成した。表に各特性を示した。なお、焼成は
大気中および窒素雰囲気中でおこない、本発明の酸化物
誘導体材料を得た。
Using this slurry, a green sheet was prepared by a general method. The characteristics are shown in the table. The firing was performed in the air and a nitrogen atmosphere to obtain the oxide derivative material of the present invention.

ε,tanδびρは円板状試料の両面にAgペーストを325メ
ッシュのスクリーン印刷により同心円状に印刷し、乾燥
後、大気中にて750℃×20分間の焼付処理行ない、17.5m
mφ×15μmの円形電極を作成して測定した。ε,tanδ
は1MHzでの値であり、ρは25℃,50%の湿度の下で、10
00V印加、1分後の最低値である。
ε, tanδ and ρ are printed concentrically with 325 mesh screen printing of Ag paste on both sides of a disc-shaped sample, dried and then baked at 750 ° C for 20 minutes in the air, 17.5m
The measurement was performed by forming a circular electrode of mφ × 15 μm. ε, tanδ
Is the value at 1MHz, and ρ is 10 ° C at 25 ° C and 50% humidity.
It is the minimum value after 00 V application for 1 minute.

なお表中には焼結後の組成化もあわせて示した。Al2O3
はフォルステライト中の焼結助剤であり、不純物はアル
カリ金属,ZnO等である。
In the table, composition after sintering is also shown. Al 2 O 3
Is a sintering aid in forsterite, and impurities are alkali metals, ZnO, and the like.

いずれもPbOは0.07重量%以下であった。In all cases, PbO was 0.07% by weight or less.

表から明らかな通り、本発明の誘電体材料は、1000℃以
下の低温での焼結が可能であり、かつ抵抗強度:15Kg/
mm2以上と機械的特性も優れ、誘電率(ε):7〜8.
0、誘電正接(tanδ):3×10-4〜6×10-4及び体積
抵抗(Rv):9×1013〜1.3×1015と電気的特性も満足
すべきものである。したがって、このような良好な特性
を有するものを、低温で焼成することができるために、
例えば、導体ペーストとして従来のタングステン(W)、
モリブデン(Mo)に代えて銅(Cu)、銀(Ag)−パラジウム(P
d)、銀(Ag)−金(Au)等の低抵抗の物質及びRuO等の抵抗
ペーストを使用することができ、装置小型化を目標とす
る高密度配線化、製造工程数の低減が図れる。
As is clear from the table, the dielectric material of the present invention can be sintered at a low temperature of 1000 ° C. or lower, and has a resistance strength of 15 kg /
mm 2 or more, excellent mechanical properties, dielectric constant (ε): 7-8.
0, dielectric loss tangent (tan δ): 3 × 10 −4 to 6 × 10 −4, and volume resistance (Rv): 9 × 10 13 to 1.3 × 10 15 , electrical characteristics should be satisfied. Therefore, in order to be able to fire those having such good characteristics at a low temperature,
For example, conventional tungsten (W) as a conductor paste,
Instead of molybdenum (Mo), copper (Cu), silver (Ag) -palladium (P
d), low resistance material such as silver (Ag) -gold (Au) and resistance paste such as RuO can be used, and high density wiring aiming at downsizing of the device and reduction of the number of manufacturing steps can be achieved. .

これに対し、比較例5は要求される機械的特性を満足す
るものの焼成温度は1000℃以上となり、比較例3は1000
℃以下で焼成可能であるが要求される機械的特性を満足
しない。比較例1は要求される焼成温度及び機械的特性
を比較例2及び4は要求される焼成温度、機械的特性及
び電気的特性を満足できず実用上使用が困難である。
In contrast, Comparative Example 5 satisfies the required mechanical properties, but the firing temperature is 1000 ° C. or higher, and Comparative Example 3 is 1000 ° C.
It can be fired below ℃, but it does not satisfy the required mechanical properties. Comparative Example 1 cannot satisfy the required firing temperature and mechanical characteristics, and Comparative Examples 2 and 4 cannot satisfy the required firing temperature, mechanical characteristics and electrical characteristics, and are difficult to use in practice.

[発明の効果] 以上に詳述した通り、本発明の酸化物誘電体材料は優れ
た電気的特性及び機械的特性を有すると共に、低温で焼
成可能なものであるため、例えば、一体焼結が必要な多
層配線基板用、あるいはε、tanδが小さいため、LSIを
搭載する高密度ハイブリッド用基板用としての用途が期
待でき、その実用的価値は極めて大である。
[Effects of the Invention] As described in detail above, since the oxide dielectric material of the present invention has excellent electrical properties and mechanical properties and can be fired at a low temperature, for example, integral sintering is not possible. Since it is required for a multilayer wiring board or has a small ε and tanδ, it can be expected to be used as a board for a high-density hybrid on which LSI is mounted, and its practical value is extremely large.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Mg,Si,B及びBaが夫々酸化物に換算し
て、MgO20〜40重量%、SiO2 34〜40重量%、BaO 9〜2
8重量%及びB2O3 4〜12重量%を含有しMg2SiO4フォル
ステライトと硼珪酸バリウムガラスとのガラスセラミッ
クを構成することを特徴とする酸化物誘電体材料。
1. Mg, Si, B, and Ba are converted into oxides, respectively, and are converted into oxides of 20 to 40% by weight of MgO, 34 to 40% by weight of SiO 2, and 9 to 2 of BaO.
An oxide dielectric material comprising 8% by weight and 4 to 12% by weight of B 2 O 3 to form a glass ceramic of Mg 2 SiO 4 forsterite and barium borosilicate glass.
【請求項2】Mg2SiO4フォルステライトを40〜80重量%
含有する特許請求の範囲第1項記載の酸化物誘電体材
料。
2. 40-80% by weight of Mg 2 SiO 4 forsterite
The oxide dielectric material according to claim 1, which contains.
【請求項3】Mg2SiO4フォルステライトを55〜65重量%
含有する特許請求の範囲第1項記載の酸化物誘電体材
料。
3. 55 to 65% by weight of Mg 2 SiO 4 forsterite
The oxide dielectric material according to claim 1, which contains.
JP60059455A 1985-03-26 1985-03-26 Oxide dielectric material Expired - Lifetime JPH068189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60059455A JPH068189B2 (en) 1985-03-26 1985-03-26 Oxide dielectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60059455A JPH068189B2 (en) 1985-03-26 1985-03-26 Oxide dielectric material

Publications (2)

Publication Number Publication Date
JPS61219741A JPS61219741A (en) 1986-09-30
JPH068189B2 true JPH068189B2 (en) 1994-02-02

Family

ID=13113792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60059455A Expired - Lifetime JPH068189B2 (en) 1985-03-26 1985-03-26 Oxide dielectric material

Country Status (1)

Country Link
JP (1) JPH068189B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3030558B2 (en) * 1987-11-28 2000-04-10 ティーディーケイ株式会社 Dielectric porcelain material
NO310348B1 (en) * 1997-04-14 2001-06-25 Norsk Hydro As Glass ceramic material and its use as a means for joining different types of material and as support
EP0998036B1 (en) * 1998-03-17 2003-11-05 Matsushita Electric Industrial Co., Ltd. Multiplexer/branching filter
CN1172872C (en) * 1999-06-16 2004-10-27 松下电器产业株式会社 Glass ceramics composition and electronic parts and multilayered LC multiple component using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151345A (en) * 1982-02-26 1983-09-08 Asahi Glass Co Ltd Glass composition with low dielectric constant
JPS58156552A (en) * 1982-03-11 1983-09-17 Nec Corp Inorganic composition for insulating ceramic paste

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151345A (en) * 1982-02-26 1983-09-08 Asahi Glass Co Ltd Glass composition with low dielectric constant
JPS58156552A (en) * 1982-03-11 1983-09-17 Nec Corp Inorganic composition for insulating ceramic paste

Also Published As

Publication number Publication date
JPS61219741A (en) 1986-09-30

Similar Documents

Publication Publication Date Title
US4812422A (en) Dielectric paste and method of manufacturing the paste
EP0163155B1 (en) Low temperature fired ceramics
US7611645B2 (en) Thick film conductor compositions and the use thereof in LTCC circuits and devices
JP2711618B2 (en) Dielectric composition, multilayer wiring board and multilayer ceramic capacitor
US4861646A (en) Co-fired metal-ceramic package
JPH0343786B2 (en)
JPS6244879B2 (en)
JP3528037B2 (en) Manufacturing method of glass ceramic substrate
JPH04231363A (en) Conductive composition containing iolite and glass
JPH05211005A (en) Dielectric composition
JPH06305770A (en) Multilayered glass-ceramic substrate and its production
JP3943341B2 (en) Glass ceramic composition
JP4748904B2 (en) Glass ceramic sintered body and wiring board using the same
JPH0676227B2 (en) Glass ceramic sintered body
JP3678260B2 (en) Glass ceramic composition
JPH068189B2 (en) Oxide dielectric material
JP3890779B2 (en) Glass ceramic composition
JPH10194828A (en) Ceramic multilayered substrate fired at low temperature and its production
JPH0758454A (en) Glass ceramic multilayered substrate
JP3337819B2 (en) Dielectric composition, multilayer wiring board and multilayer ceramic capacitor
JPH0617250B2 (en) Glass ceramic sintered body
EP1509479B1 (en) Ltcc tape composition
JPH01166599A (en) Manufacture of laminated ceramic substrate
JPS6374957A (en) Low temperature sinterable low dielectric constant inorganic composition
JPS5946703A (en) Inorganic composition for insulating ceramic paste