JPS61219741A - Oxide dielectric material - Google Patents

Oxide dielectric material

Info

Publication number
JPS61219741A
JPS61219741A JP5945585A JP5945585A JPS61219741A JP S61219741 A JPS61219741 A JP S61219741A JP 5945585 A JP5945585 A JP 5945585A JP 5945585 A JP5945585 A JP 5945585A JP S61219741 A JPS61219741 A JP S61219741A
Authority
JP
Japan
Prior art keywords
weight
oxide
dielectric material
forsterite
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5945585A
Other languages
Japanese (ja)
Other versions
JPH068189B2 (en
Inventor
Yasuaki Yasumoto
恭章 安本
Harutoshi Egami
江上 春利
Nobuo Iwase
岩瀬 暢男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60059455A priority Critical patent/JPH068189B2/en
Publication of JPS61219741A publication Critical patent/JPS61219741A/en
Publication of JPH068189B2 publication Critical patent/JPH068189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass

Abstract

PURPOSE:To obtain the titled material which is excellent in the electrical characteristics and the strength, capable of the low-temp. calcination and suitable for a multilayered wiring substrate by constituting the material of glass ceramic contg. Mg2SiO4 forsterite and barium borosilicate glass in the specified weight ratio. CONSTITUTION:The powder of a raw material wherein Mg, Si, Ba and B are contained in 20-40wt% MgO, 34-40wt% SiO2, 9-28wt% BaO and 4-12wt% B2O3 expressed in terms of oxide is produced by mixing 40-80wt% Mg2SiO4 forsterite and 60-20wt% barium borosilicate glass and crushing the mixture. The slurry is produced by adding a binder (e.g. polyvinyl butyral) and a solvent (e.g. 1,1,1-trichloroethane). Successively the aimed oxide dielectric material is obtained by defoaming the slurry, deaerating he residual air, forming a green sheet with a general method and calcining it.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は酸化物誘電体材料に関し、さらに詳しくは、電
気特性及び機械的特性が優れると共に。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to oxide dielectric materials, and more particularly, to oxide dielectric materials having excellent electrical and mechanical properties.

低温での焼成が可能な特に回路基板用として優れた酸化
物誘電体材料に関する。
The present invention relates to an oxide dielectric material that can be fired at low temperatures and is excellent particularly for use in circuit boards.

[発明の技術的背景とその問題点] マイクロエレクトロニクス(ME)の発達により、オフ
ィスオートメーション用機器やホームエレクトロニクス
機器の小型化が急速に押し進められ。
[Technical background of the invention and its problems] The development of microelectronics (ME) has rapidly pushed down the size of office automation equipment and home electronics equipment.

小型化されたマイクロエレクトロニクス機器が身近な存
在となりつつある。マイクロエレクトロニクス機器には
比較的高密度の多層配線基板が広く利用されているが、
その材料としては、電気的特性、機械的特性及び量産性
の観点から主としてアルミナセラミックが使用されてき
た。このような多層配線基板は、通常層間絶縁の役割を
有する誘電体層と導体層とを交互に積層した後、一体的
に焼成して得ることができる。
Miniaturized microelectronic devices are becoming commonplace. Relatively high-density multilayer wiring boards are widely used in microelectronic devices, but
As the material, alumina ceramic has been mainly used from the viewpoints of electrical properties, mechanical properties, and mass productivity. Such a multilayer wiring board can usually be obtained by alternately laminating dielectric layers and conductor layers, which serve as interlayer insulation, and then integrally firing them.

アルミナ(A 12o3)は絶縁特性が優れていはいる
ものの焼成温度が1500〜1800℃と高いため、使
用しうる導体層はこの焼成温度に耐え得るモリブデン(
’No)、タングステン(Ill)等の高融点金属から
なるものに限定される。このNo、 W等は、比抵抗が
大きいため、配線幅の減少に限界があり、高密度配線に
よる装置の小型化の要求に逆行するのみならず、その焼
成には、還元雰囲気下の高温を使用するため焼成装置の
維持及び管理が困難となり、工数低減を阻害していた。
Although alumina (A 12o3) has excellent insulating properties, its firing temperature is as high as 1,500 to 1,800°C, so the conductor layer that can be used is molybdenum (A 12o3), which can withstand this firing temperature.
'No), and is limited to those made of high melting point metals such as tungsten (Ill). These materials, such as No. and W, have a high resistivity, so there is a limit to how much the wiring width can be reduced, which not only goes against the demand for miniaturization of devices due to high-density wiring, but also requires firing at high temperatures in a reducing atmosphere. Because of this, it was difficult to maintain and manage the firing equipment, which hindered efforts to reduce the number of man-hours.

一方、 W、 No等に比べ比抵抗の小さい白金−銀(
Pt−Ag) 、  銀−金(Ag−Au) 、  銅
(Cu)等のペーストを用いることを考えると、誘電体
材料の焼成温度は1000℃以下程度であることが望ま
れる。このような要求に応じて主成分として酸化鉛を含
むガラス系セラミックスを誘電体として用いるものがあ
る (特開昭58−78418号)、この材料はA !
L203に比べれば焼成温度は低いものの、まだ十分で
はない、さらに酸化鉛を含む系では、低分圧酸素雰囲気
(Cuペースト焼結用)下の焼成時に酸化鉛が一部還元
され、金属鉛として析出してしまう。
On the other hand, platinum-silver (platinum-silver) has a lower resistivity than W, No.
Considering the use of pastes such as Pt-Ag), silver-gold (Ag-Au), and copper (Cu), it is desirable that the firing temperature of the dielectric material be about 1000°C or lower. In response to these demands, there is a method that uses glass-based ceramics containing lead oxide as a main component as a dielectric material (Japanese Patent Application Laid-open No. 78418/1983), and this material is A!
Although the firing temperature is lower than L203, it is still not sufficient.Furthermore, in systems containing lead oxide, some of the lead oxide is reduced during firing in a low partial pressure oxygen atmosphere (for Cu paste sintering), and the temperature is reduced as metallic lead. It precipitates out.

これは誘電体材料からなる絶縁体層の体積抵抗率を大幅
に低下し、配線間に信号のリークが起る。
This significantly lowers the volume resistivity of the insulator layer made of dielectric material and causes signal leakage between wirings.

さらに装置の小型化による高密度配線、高速化が進展す
ると信号電播に係る誘導体層の影響が無視できなくなっ
てきている0例えば誘電率(()は信号伝播遅延時間に
大きく影響し (一般式で=33.38 E (PS/
am)、  τ: l am当りの遅延時間)、εは小
さいほうが好ましい、又、誘電損失(tanδ)は信号
の損失に大きく影響し、 tanδが大きいと信号電流
により配線周辺の誘電体層に電磁界が形成され、熱エネ
ルギーに変換され、信号損失につながるのである。この
熱エネルギーは基板の温度上昇につながり、ICチップ
等の破壊、ハンダ溶融等のトラブルの原因となる。従っ
てtanδが小さいことが望まれる。
Furthermore, as devices become more compact and have higher-density wiring and faster speeds, the influence of the dielectric layer on signal propagation can no longer be ignored. So = 33.38 E (PS/
am), τ: delay time per l am), ε is preferably small. Also, dielectric loss (tan δ) has a large effect on signal loss, and if tan δ is large, the signal current causes electromagnetic damage to the dielectric layer around the wiring. fields are formed and converted into thermal energy, leading to signal loss. This thermal energy leads to an increase in the temperature of the board, causing troubles such as destruction of IC chips and melting of solder. Therefore, it is desired that tan δ be small.

このように基板に用いられる誘電体材料の誘電率、誘電
損失は小さい方が望ましく、従来のA1203.ガラス
系セラミックス (εニア−20、tanδ:2X10
−3〜4X10°” (at l MHz))では十分
ではなかった。
As described above, it is desirable that the dielectric constant and dielectric loss of the dielectric material used for the substrate be small, and the conventional A1203. Glass ceramics (ε near-20, tan δ: 2X10
−3 to 4×10°” (at l MHz)) was not sufficient.

[発明の目的] 本発明の目的は、上記した問題点の解消にあり、電気的
特性及び機械的特性が優れると共に。
[Object of the Invention] An object of the present invention is to solve the above-mentioned problems, and to provide a device with excellent electrical and mechanical properties.

低温での焼成が可能な酸化物誘電体材料を提供すること
である。
An object of the present invention is to provide an oxide dielectric material that can be fired at low temperatures.

[発明の概要] 本発明は、Mg、 Si、 B及びBaが夫々酸化物に
換算して、Mg020〜40重量%、S+02 34〜
40重量%。
[Summary of the Invention] The present invention is characterized in that Mg, Si, B, and Ba are respectively converted into oxides, Mg020 to 40% by weight, S+02 34 to
40% by weight.

Ba0 9〜28重量%及びB2O34〜12重量%を
含有しMg2SiO4フォルステライトと硼珪酸バリウ
ムガラスとのガラスセラミックを構成することを特徴と
する酸化物誘電体材料である。
This is an oxide dielectric material characterized by containing 9 to 28% by weight of Ba0 and 34 to 12% by weight of B2O and constituting a glass ceramic of Mg2SiO4 forsterite and barium borosilicate glass.

本発明の誘電体材料における二酸化珪素(Si02)は
、焼成時に酸化マグネシウムと固溶し、 Ng SiO
2フオルステライトを形成し、又、酸化硼素、酸化バリ
ウムと融液を形成する役割を果たす、 SiO2に換算
した割合が34重量%未満では、酸化マグネシウムと残
部の成分が分離して焼成不可能となり。
Silicon dioxide (Si02) in the dielectric material of the present invention dissolves in solid solution with magnesium oxide during firing, and forms a solid solution with NgSiO2.
If the ratio calculated as SiO2, which plays the role of forming 2-forsterite and forming a melt with boron oxide and barium oxide, is less than 34% by weight, magnesium oxide and the remaining components will separate and become impossible to sinter. .

40重量%を超える場合には、導体ペーストの移行性(
マイグレーシ璽ン)による体積抵抗の劣化が生じる。好
ましくは3B〜38重量%である。
If it exceeds 40% by weight, the transferability of the conductor paste (
Deterioration of volume resistance occurs due to migration (migration). Preferably it is 3B to 38% by weight.

酸化マグネシウム(NgO)は二酸化珪素と一部固溶し
て化合物を形成し、本発明の誘電体材料に機械的強度を
付与する役割を果たす、 MgO換算で20重量%未満
の場合には、一般に要求される15kg/層鳳2を下ま
わる6 kg/膳膳2と十分な抗折強度が得られず、 
MgO換算で40重量%を超える場合には、1000℃
以下での焼結が不可能となり低温焼結が達成できない、
好ましくは27〜32重量%である。
Magnesium oxide (NgO) partially forms a solid solution with silicon dioxide to form a compound, and plays a role in imparting mechanical strength to the dielectric material of the present invention. Sufficient bending strength could not be obtained at 6 kg/Zenzen 2, which was lower than the required 15 kg/Layer 2,
If it exceeds 40% by weight in MgO terms, 1000℃
It becomes impossible to sinter at a lower temperature, and low temperature sintering cannot be achieved.
Preferably it is 27 to 32% by weight.

酸化バリウムは、二酸化ケイ素、酸化硼素等の単独でガ
ラスを形成する網目形成酸化物に網目修飾酸化物として
作用し、安定なガラス相を形成し、焼結温度低下の役割
を果たす、 BaO換算で9重量%未満の場合には、焼
結温度が上昇し、1000℃以下の低温焼結が困難とな
り、BaO換算で28重量%を超える場合には、焼結時
に発泡現象を招き、機械的強度が15kg/■■2以下
に低下する。好ましくは16〜20重量%である。
Barium oxide acts as a network-modifying oxide on network-forming oxides that form glass alone, such as silicon dioxide and boron oxide, forming a stable glass phase and playing a role in lowering the sintering temperature. If it is less than 9% by weight, the sintering temperature will rise, making it difficult to perform low-temperature sintering below 1000°C, and if it exceeds 28% by weight (calculated as BaO), foaming will occur during sintering and the mechanical strength will deteriorate. decreases to 15 kg/■■2 or less. Preferably it is 16 to 20% by weight.

酸化硼素は網目形成酸化物となり、二酸化珪素、酸化バ
リウムとガラス相を形成する。また酸化マグネシウムと
二酸化珪素から成る化合物とガラスとの焼結を促進し両
者のガラス−セラミックスを得る役割を果たす。4重量
%未満の場合に−は、1000℃以下の低温焼結は困難
となり、12重量%を超える場合には、流動成分が多く
、成形形状が維持できなくなると共に1表面に泡が残留
してペーストの印刷性、精度等に大きく影響する。好ま
しくは7〜9重量%である。
Boron oxide becomes a network-forming oxide and forms a glass phase with silicon dioxide and barium oxide. It also plays a role in promoting sintering of a compound consisting of magnesium oxide and silicon dioxide and glass to obtain glass-ceramics of both. If it is less than 4% by weight, low-temperature sintering at 1000°C or less will be difficult, and if it exceeds 12% by weight, there will be too much fluid component, making it impossible to maintain the molded shape and leaving bubbles on the surface. This greatly affects paste printability, accuracy, etc. Preferably it is 7 to 9% by weight.

なお本発明材料は各構成元素を各々酸化物若しくは焼成
により酸化物にかわる塩等を原料として混合し、■焼の
後、焼結しても良いし、Mg2SiO4及びB2O3−
SiO2−BaOガラスを原料として粉砕、混合し焼結
しても良い、この場合、 Mg2SiO4単独での焼結
は困難であり、一般にA fL203等の焼結助剤を含
有する0通常Ng2Si04中に1〜3重量%程度含有
される。あまり多いと本発明材料の焼成温度を1000
℃以上程度と高くしてしまうが、焼結助剤程度の量であ
れば本発明材料に特に悪影響をおよぼすことはない、又
、ガラス成分中にも製造上不可避の成分が含有されるが
、不純物程度の量であれば同等問題は生じない0例えば
Cab、 SrO。
The material of the present invention may be prepared by mixing each of the constituent elements using oxides or salts that are converted into oxides by firing, and then sintering after firing, or by mixing Mg2SiO4 and B2O3-
SiO2-BaO glass may be used as a raw material to be crushed, mixed and sintered. In this case, it is difficult to sinter with Mg2SiO4 alone, and generally 1 in Ng2Si04 containing a sintering aid such as A fL203 is used. It is contained in an amount of about 3% by weight. If the amount is too high, the firing temperature of the material of the present invention may be increased to 1000℃.
℃ or more, but if the amount is about the same as a sintering aid, it will not have a particularly bad effect on the material of the present invention.Also, although the glass components also contain components that are unavoidable during manufacturing, If the amount is equivalent to that of an impurity, the same problem will not occur. For example, Cab, SrO.

K2O,TiO2,Fe2O3,Na2O,ZrO2等
が挙げられる。
Examples include K2O, TiO2, Fe2O3, Na2O, ZrO2 and the like.

通常5重量%以下、好ましくは2重量%以下であれば問
題はない、又、PbOも含有される場合゛があるが、前
述のごとく電気的特性に悪影響を与えるため0.1重量
%程度が限界である。
Generally, there is no problem if it is 5% by weight or less, preferably 2% by weight or less, and PbO may also be contained, but as mentioned above, it has an adverse effect on the electrical characteristics, so if it is about 0.1% by weight. This is the limit.

本発明材料はMg2SiO4トB2O3−Si02−B
aOガラスとのガラスセラミックスを構成する。はぼM
gO量によりMg2SiO4の量は決定されるが、 M
g2SiO4が40〜80重量%のとき機械的強度等容
特性に優れたものを得ることができる。 80重量%近
傍がもっとも優れているため、55〜65重量%のとき
がより好ましい範囲となる。ガラス量が多いと機械的強
度に劣り、又、少ないと焼結温度が高くなってしまう。
The material of the present invention is Mg2SiO4 and B2O3-Si02-B.
Constructs glass ceramics with aO glass. Habo M
The amount of Mg2SiO4 is determined by the amount of gO, but M
When g2SiO4 is 40 to 80% by weight, a material with excellent mechanical strength and isovolume properties can be obtained. Since the best value is around 80% by weight, a more preferable range is 55 to 65% by weight. If the amount of glass is large, the mechanical strength will be poor, and if the amount is small, the sintering temperature will be high.

つぎに、本発明の酸化物誘導体材料の一製造方法を説明
する。
Next, one method for producing the oxide derivative material of the present invention will be explained.

Mg25f04フオルステライト及び硼珪酸バリウムガ
ラスを所定量秤量し、湿式振動ミル等で平均粒径!、0
〜1.13−程度となるように混合・粉砕し。
Weigh a predetermined amount of Mg25f04 forsterite and barium borosilicate glass, and measure the average particle size using a wet vibrating mill. ,0
Mix and grind to about 1.13-.

原料粉末とする0次いでこの粉末に対し、バインダー、
溶剤等を加えスラリーを作る。バインダー、溶剤は適宜
選定できるが、例えば原料粉末100重量%に対しバイ
ンダーとしてのPV、B(ポリビニルブチラール)5〜
20重量%、溶剤として1.1.! )リクロルエタン
25〜35重量%、n−ブタノール10〜22重量%、
テトラクロルエチレン8〜18重量%、トリブチルホス
フェート4〜13重量%のものを用いる。混合時には原
料の均−分散等のため、粘度を500CP!+程度とす
る。その後このスラリーを脱泡し、スラリー中に溶存す
る空気を脱気し、後工程で形成するグリーンシート表面
の平坦化、強度等調整のため、20000cpa程度の
粘度とする。
A binder,
Add solvent etc. to make slurry. The binder and solvent can be selected as appropriate, but for example, PV, B (polyvinyl butyral) 5 to 5% as a binder to 100% by weight of the raw material powder.
20% by weight as solvent 1.1. ! ) Lichloroethane 25-35% by weight, n-butanol 10-22% by weight,
One containing 8 to 18% by weight of tetrachlorethylene and 4 to 13% by weight of tributyl phosphate is used. During mixing, the viscosity is reduced to 500CP to ensure uniform dispersion of raw materials! + degree. Thereafter, this slurry is defoamed to remove air dissolved in the slurry, and the slurry is made to have a viscosity of about 20,000 cpa in order to flatten the surface of the green sheet to be formed in the subsequent process and adjust its strength.

このスラリーを用いて、一般的な方法により、グリーン
シートを作成し、焼成を大気中および窒素雰囲気中でお
こなって、本発明の酸化物誘導体材料を得る。
Using this slurry, a green sheet is prepared by a common method and fired in the air and nitrogen atmosphere to obtain the oxide derivative material of the present invention.

なお上述の方法ではフォルステライトとガラスを原料と
して用いたが、各構成原料(MgO,SiO2゜Bad
、 B2O3若しくは■焼等により酸化物にかわる各種
塩)を混合し、壊焼等によりフォルステライトを形成さ
せても良い、多少の化学量論比からのずれは本発明に影
響を与えない、又、この場合Ng2S i04の焼結助
剤としてai2o3を1〜3重量%含有せしめることは
有効である。
In the above method, forsterite and glass were used as raw materials, but each constituent raw material (MgO, SiO2゜Bad
, B2O3 or various salts in place of oxides by calcination, etc.) may be mixed, and forsterite may be formed by pyrolysis, etc. A slight deviation from the stoichiometric ratio does not affect the present invention, or In this case, it is effective to contain 1 to 3% by weight of ai2o3 as a sintering aid for Ng2S i04.

特にSi0 38〜38重量%、IIIgo 27〜3
2重量%、Ba01B 〜20重暮X1B2O37〜9
重量%を含有するものはε:8.8〜?、0 、 ta
nδ:4X104以下、体積抵抗ニアX1G’以上の特
性を有すると共に。
Especially Si0 38-38% by weight, IIIgo 27-3
2% by weight, Ba01B ~20 heavy weight X1B2O37~9
Those containing weight% are ε: 8.8~? ,0,ta
It has the characteristics of nδ: 4X104 or less and volume resistivity near X1G' or more.

980℃以下の低温での焼成が可能であるため、特に好
ましい。
It is particularly preferred because it allows firing at a low temperature of 980° C. or lower.

本発明の誘電体材料は酸化鉛を含まないため。This is because the dielectric material of the present invention does not contain lead oxide.

金属鉛の析出の恐れがなく、焼成雰囲気を選ばなくても
することである。従って各種の導体ペーストを用いるこ
とができ、回路基板製造上の利点は大なるものである。
There is no fear of precipitation of metallic lead, and the firing can be carried out regardless of the firing atmosphere. Therefore, various conductor pastes can be used, which is a great advantage in manufacturing circuit boards.

以下において、実施例及び比較例を掲げ、本発明を更に
詳しく説明する。
EXAMPLES Below, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

[発明の実施例] 111二」 フォルステライト(Mg2Si04)及び硼珪酸バリウ
ムガラスを所定の割合で秤量し、非水系湿式混合ミル等
で平均粒径1.0〜2.0戸程度となるように混合粉砕
し、原料粉末とした0次いでこの原料粉末にバインダー
としてPVB (ポリビニルブチラル)、溶剤として1
,1.l−)リクロルエタン、n−ブタノール、テトラ
クロルエチレン、トリブチルホスフェート等を加えスラ
リーを調整した。均−分散等のため粘度は500cps
程度とした。その後このスラリーを脱泡し、スラリー中
に溶存する空気を脱気し、後工程で形成するグリーンシ
ート表面の平坦化9強度等の調整のため、 20000
cps程度の粘度とした。
[Embodiment of the Invention] 1112 Forsterite (Mg2Si04) and barium borosilicate glass were weighed at a predetermined ratio and mixed in a non-aqueous wet mixing mill etc. so that the average particle size was about 1.0 to 2.0 mm. Mixed and pulverized to obtain a raw material powder, PVB (polyvinyl butyral) as a binder and 1 as a solvent were added to this raw powder as a binder.
,1. l-) Lichloroethane, n-butanol, tetrachlorethylene, tributyl phosphate, etc. were added to prepare a slurry. Viscosity is 500 cps due to uniform dispersion, etc.
It was set as the degree. After that, this slurry is degassed, the air dissolved in the slurry is degassed, and the surface of the green sheet to be formed in the subsequent process is flattened. 9 In order to adjust the strength, etc.,
The viscosity was approximately cps.

同様に本発明の範囲外のものも (比較例1〜5)製造
した。
Similarly, products outside the scope of the present invention (Comparative Examples 1 to 5) were also produced.

このスラリーを用いて、一般的な方法により、グリーン
シートを作成した0表に各特性を示した。なお、焼成は
大気中および窒素雰囲気中でおこない、本発明の酸化物
誘導体材料を得た。
A green sheet was prepared using this slurry according to a general method, and its properties are shown in Table 0. Incidentally, the calcination was performed in the air and in a nitrogen atmosphere to obtain the oxide derivative material of the present invention.

ε、’tanδびρは円板状試料の両面にAgペースト
を325メツシユのスクリーン印刷により同心円状に印
刷し、乾燥後、大気中にて750℃X20分間の焼付処
理性ない、17.5■肩φX15−の円形電極を作成し
て測定した。@、tanδはI MHzでの値であり、
ρは25℃、50%の湿度の下で、 tooov印加、
1分後の最低値である。
ε, 'tan δ, and ρ were printed concentrically with Ag paste on both sides of a disk-shaped sample by screen printing with 325 meshes, and after drying, were baked at 750°C for 20 minutes in the air.17.5■ A circular electrode with a shoulder diameter of φX15- was prepared and measured. @, tan δ is the value at I MHz,
ρ is applied at 25℃ and 50% humidity,
This is the lowest value after 1 minute.

なお表中には焼結後の組成化もあわせて示した。  A
J1203はフォルステライト中の焼結助剤であり、不
純物はアルカリ金属、 ZnO等である。
The table also shows the composition after sintering. A
J1203 is a sintering aid in forsterite, and impurities include alkali metals, ZnO, etc.

いずれもPbOは0.07重量%以下であった。In all cases, PbO was 0.07% by weight or less.

表から明らかな通り、本発明の誘電体材料は、1000
℃以下の低温での焼結が可能であり、かつ抵抗強度: 
15kg/1層2以上と機械的特性も優れ、誘電率 (
ε)ニア〜8.0、誘電正接(tanδ):3×104
〜6×104及び体積抵抗(Rマ):9X1G13〜1
.3 X to”と電気的特性も満足すべきものである
。したがって、このような良好な特性を有するものを、
低温で焼成することができるために、例えば、導体ペー
ストとして従来のタングステン(W) 、モリブデン(
NO)に代えて銅(Cu) 、銀(Ag) −パラジウ
ム(Pd)、銀(Ag)−金(Au)等の低抵抗の物質
及びRuO等の抵抗ペーストを使用することができ、装
置小型化を目標とする高密度配線化、製造工程数の低減
が図れる。
As is clear from the table, the dielectric material of the present invention has a
Possible to sinter at low temperatures below ℃, and resistance strength:
The mechanical properties are excellent at 15 kg/layer 2 or more, and the dielectric constant (
ε) Near ~ 8.0, dielectric loss tangent (tan δ): 3 x 104
~6×104 and volume resistance (Rma): 9X1G13~1
.. 3 X to'' electrical characteristics should also be satisfactory. Therefore, a material with such good characteristics should be
Because it can be fired at low temperatures, for example, conventional tungsten (W) and molybdenum (
Instead of NO), low-resistance materials such as copper (Cu), silver (Ag)-palladium (Pd), silver (Ag)-gold (Au), and resistance pastes such as RuO can be used, making the device compact. The goal is to achieve high-density wiring and reduce the number of manufacturing steps.

これに対し、比較例5は要求される機械的特性を満足す
るものの焼成温度は1000℃以上となり。
On the other hand, although Comparative Example 5 satisfied the required mechanical properties, the firing temperature was 1000°C or higher.

比較例3は1000℃以下で焼成可能であるが要求され
る機械的特性を満足しない、比較例1は要求される焼成
温度及び機械的特性を比較例2及び4は要求される焼成
温度、機械的特性及び電気的特性を満足できず実用上使
用が困難である。
Comparative Example 3 can be fired at temperatures below 1000°C but does not satisfy the required mechanical properties.Comparative Example 1 has the required firing temperature and mechanical properties, and Comparative Examples 2 and 4 have the required firing temperature and It is difficult to use it practically because it cannot satisfy the physical and electrical characteristics.

[発明の効果] 以上に詳述した通り、本発明の酸化物誘電体材料は優れ
た電気的特性及び機械的特性を有すると共に、低温で焼
成可能なものであるため1例えば、一体焼結が必要な多
層配線基板用、あるいはε、 tanδが小さいため、
LSIを搭載する高密度ハイブリッド用基板用としての
用途が期待でき、その実用的価値は極めて大である。
[Effects of the Invention] As detailed above, the oxide dielectric material of the present invention has excellent electrical and mechanical properties and can be fired at low temperatures. For the required multilayer wiring board, or because ε and tan δ are small,
It can be expected to be used as a substrate for high-density hybrids equipped with LSIs, and its practical value is extremely large.

Claims (1)

【特許請求の範囲】 (I)Mg、Si、B及びBaが夫々酸化物に換算して
、MgO20〜40重量%、SiO_234〜40重量
%、BaO9〜28重量%及びB_2O_34〜12重
量%を含有しMg_2SiO_4フォルステライトと硼
珪酸バリウムガラスとのガラスセラミックを構成するこ
とを特徴とする酸化物誘電体材料。 (2)Mg_2SiO_4フォルステライトを40〜8
0重量%含有する特許請求の範囲第1項記載の酸化物誘
電体材料。 (3)Mg_2SiO_4フォルステライトを55〜6
5重量%含有する特許請求の範囲第1項記載の酸化物誘
電体材料。
[Scope of Claims] (I) Mg, Si, B, and Ba each contain 20 to 40% by weight of MgO, 234 to 40% by weight of SiO, 9 to 28% by weight of BaO, and 34 to 12% by weight of B_2O_ in terms of oxides. An oxide dielectric material comprising a glass ceramic of Mg_2SiO_4 forsterite and barium borosilicate glass. (2) Mg_2SiO_4 forsterite 40-8
The oxide dielectric material according to claim 1, containing 0% by weight. (3) Mg_2SiO_4 forsterite 55-6
The oxide dielectric material according to claim 1, containing 5% by weight.
JP60059455A 1985-03-26 1985-03-26 Oxide dielectric material Expired - Lifetime JPH068189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60059455A JPH068189B2 (en) 1985-03-26 1985-03-26 Oxide dielectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60059455A JPH068189B2 (en) 1985-03-26 1985-03-26 Oxide dielectric material

Publications (2)

Publication Number Publication Date
JPS61219741A true JPS61219741A (en) 1986-09-30
JPH068189B2 JPH068189B2 (en) 1994-02-02

Family

ID=13113792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60059455A Expired - Lifetime JPH068189B2 (en) 1985-03-26 1985-03-26 Oxide dielectric material

Country Status (1)

Country Link
JP (1) JPH068189B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01236515A (en) * 1987-11-28 1989-09-21 Tdk Corp Dielectric porcelain material
WO1999048199A1 (en) * 1998-03-17 1999-09-23 Matsushita Electric Industrial Co., Ltd. Multiplexer/branching filter
US6475938B1 (en) * 1997-04-14 2002-11-05 Norsk Hydro Asa Method of forming a glass ceramic material
EP1130003A4 (en) * 1999-06-16 2004-04-21 Matsushita Electric Ind Co Ltd Glass ceramics composition and electronic parts and multilayered lc multiple component using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151345A (en) * 1982-02-26 1983-09-08 Asahi Glass Co Ltd Glass composition with low dielectric constant
JPS58156552A (en) * 1982-03-11 1983-09-17 Nec Corp Inorganic composition for insulating ceramic paste

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151345A (en) * 1982-02-26 1983-09-08 Asahi Glass Co Ltd Glass composition with low dielectric constant
JPS58156552A (en) * 1982-03-11 1983-09-17 Nec Corp Inorganic composition for insulating ceramic paste

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01236515A (en) * 1987-11-28 1989-09-21 Tdk Corp Dielectric porcelain material
US6475938B1 (en) * 1997-04-14 2002-11-05 Norsk Hydro Asa Method of forming a glass ceramic material
WO1999048199A1 (en) * 1998-03-17 1999-09-23 Matsushita Electric Industrial Co., Ltd. Multiplexer/branching filter
EP1130003A4 (en) * 1999-06-16 2004-04-21 Matsushita Electric Ind Co Ltd Glass ceramics composition and electronic parts and multilayered lc multiple component using the same

Also Published As

Publication number Publication date
JPH068189B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
US4812422A (en) Dielectric paste and method of manufacturing the paste
US4749665A (en) Low temperature fired ceramics
US5378662A (en) Glass, dielectric composition, multilayer wiring substrate, and multilayer ceramic capacitor
US4861646A (en) Co-fired metal-ceramic package
JP3240271B2 (en) Ceramic substrate
US7087293B2 (en) Thick film dielectric compositions for use on aluminum nitride substrates
EP0163155A1 (en) Low temperature fired ceramics
JPH0343786B2 (en)
JPH04243962A (en) Inorganic composition with low dielectric constant for multi-layered ceramic package and method for preparation thereof
EP0480468A1 (en) Glassy low dielectric inorganic composition
US3785837A (en) Partially crystallizable glasses for producing low-k crossover dielectrics
JP3426926B2 (en) Wiring board and its mounting structure
JPH0649594B2 (en) Crystallizable low dielectric constant low dielectric loss composition
JP3528037B2 (en) Manufacturing method of glass ceramic substrate
JPH04231363A (en) Conductive composition containing iolite and glass
JPH05211005A (en) Dielectric composition
US6270880B1 (en) Crystalline glass composition for use in circuit board, sintered crystalline glass, insulator composition insulating paste and thick film circuit board
JP2001287984A (en) Glass ceramic composition
JPS61219741A (en) Oxide dielectric material
JPH10194828A (en) Ceramic multilayered substrate fired at low temperature and its production
JPH01141837A (en) Material for dielectric body for circuit substrate
JP2000128628A (en) Glass ceramics composition
JPH01166599A (en) Manufacture of laminated ceramic substrate
US5312784A (en) Devitrification inhibitor in low dielectric borosilicate glass
JPH07277791A (en) Ceramic composition for insulating base and ceramic multilayer wiring circuit board