JPH07330427A - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JPH07330427A
JPH07330427A JP6118415A JP11841594A JPH07330427A JP H07330427 A JPH07330427 A JP H07330427A JP 6118415 A JP6118415 A JP 6118415A JP 11841594 A JP11841594 A JP 11841594A JP H07330427 A JPH07330427 A JP H07330427A
Authority
JP
Japan
Prior art keywords
dielectric
glass
dielectric particles
alumina
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6118415A
Other languages
Japanese (ja)
Other versions
JP3085625B2 (en
Inventor
Akiya Fujisaki
昭哉 藤崎
Shinjiro Shimo
信二郎 下
Hirofumi Toda
浩文 戸田
Akira Imoto
晃 井本
Nobuyoshi Fujikawa
信儀 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP06118415A priority Critical patent/JP3085625B2/en
Publication of JPH07330427A publication Critical patent/JPH07330427A/en
Application granted granted Critical
Publication of JP3085625B2 publication Critical patent/JP3085625B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a dielectric porcelain composition capable of firing a conductive metal such as Ag, Cu at the same time and obtaining high dielectric constant by suppressing the reaction of glass with a dielectric particle. CONSTITUTION:This dielectric porcelain composition is composed of 30-70vol.% dielectric particle composed of an oxide containing at least >=2 kinds of metal elements and having the surface coated with alumina and 70-30vol% A glass and as the dielectric particle, a titanate such as (Mgg0.95Ca0.55)TiO3 and Ba((Mg3/1Ta2/3)O3 are used for a material for high frequency wave and BaTiO3, CaTiO3 and SrTiO3 are used for a material for capacitor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、誘電体粒子とガラスか
らなる誘電体磁器組成物に関するものであり、特に高周
波領域で使用する電子回路基板や電子部品等に適用され
る誘電体磁器組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition composed of dielectric particles and glass, and particularly to a dielectric ceramic composition applied to electronic circuit boards and electronic parts used in a high frequency range. It is about.

【0002】[0002]

【従来の技術】従来より誘電体材料として各種誘電体セ
ラミックスが電子回路基板や電子部品等に広く使用され
ており、近年、携帯電話に代表される移動体通信等の高
周波機器の発展と普及に伴い、高周波領域で使用する電
子回路基板や電子部品として誘電体セラミックスが積極
的に利用されるようになってきた。
2. Description of the Related Art Conventionally, various dielectric ceramics have been widely used as a dielectric material in electronic circuit boards, electronic parts, etc., and in recent years, they have become popular in the development and popularization of high frequency equipment such as mobile communication represented by a mobile phone. Along with this, dielectric ceramics have been actively used as electronic circuit boards and electronic components used in the high frequency region.

【0003】前記誘電体セラミックスからなる電子回路
基板等と導体とを同時焼成するに際しては、基板上に印
刷された導体が誘電体セラミックスの焼成温度で溶融す
ることがないように、該導体には、アルミナ、ステアタ
イト、フォルステライト等の誘電体セラミックスの焼成
温度よりも高い融点を有する、例えば、Pt、Pd、
W、Mo等の金属が用いられていた。
When the conductor and the electronic circuit board made of the dielectric ceramic are simultaneously fired, the conductor is printed on the substrate so that the conductor is not melted at the firing temperature of the dielectric ceramic. , Having a melting point higher than the firing temperature of dielectric ceramics such as alumina, steatite, and forsterite, for example, Pt, Pd,
Metals such as W and Mo have been used.

【0004】しかしながら、前記金属は導通抵抗が大き
いことから、従来の電子回路基板では、共振回路やイン
ダクタンスのQ値が小さくなってしまい、導体線路の伝
送損失が大きくなる等の問題があった。従来、上記のよ
うな問題点を解消するために導通抵抗の小さいAgやC
u等の金属を導体に採用し、低温で同時焼成できる磁器
として、特開昭59−107596号公報に開示される
ものが知られている。
However, since the metal has a large conduction resistance, the conventional electronic circuit board has a problem that the Q value of the resonance circuit and the inductance becomes small and the transmission loss of the conductor line becomes large. Conventionally, in order to solve the above problems, Ag or C having a small conduction resistance is used.
As a porcelain that employs a metal such as u as a conductor and can be co-fired at a low temperature, the one disclosed in Japanese Patent Laid-Open No. 59-107596 is known.

【0005】この公報に開示される磁器は、ガラスと、
セラミックフィラーとしての石英ガラス等からなること
が開示されている。
The porcelain disclosed in this publication is made of glass,
It is disclosed that it is made of quartz glass or the like as a ceramic filler.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、この特
開昭59−107596号公報に開示される磁器組成物
は多層配線回路基板に用いられるもので、電子回路の信
号伝達速度を高速とするため1MHzでの比誘電率εr
が5以下と非常に小さく、また誘電損失も大きいため、
高誘電率で高Q値が要求される電子部品等の誘電体磁器
組成物としては全く適さなかった。
However, the porcelain composition disclosed in Japanese Unexamined Patent Publication No. 59-107596 is used for a multilayer wiring circuit board and has a frequency of 1 MHz in order to increase the signal transmission speed of an electronic circuit. Relative permittivity ε r
Is very small (less than 5) and has a large dielectric loss.
It was completely unsuitable as a dielectric ceramic composition for electronic parts and the like which requires a high dielectric constant and a high Q value.

【0007】また、従来、高い比誘電率を有する誘電体
磁器組成物としてBaTiO3 、CaTiO3 が知られ
ているが、この誘電体磁器組成物をセラミックフィラー
とし、これにガラスを添加した場合には、フィラーとガ
ラスが反応し、高い比誘電率を有する誘電体材料を用い
たとしても、比誘電率が低下するという問題があった。
これは、フィラーとガラスが反応し、誘電体粒子の結晶
構造が崩れ、本来誘電体粒子が有する高誘電率、高Q値
等の特性が得られなくなるからである。このような傾向
は、より低温で焼成するためにガラス成分を多量に添加
する程顕著となるため、従来では、比誘電率等を維持す
るためガラスの添加は僅かであり、焼成温度もこれに伴
い高かった。
Conventionally, BaTiO 3 and CaTiO 3 have been known as a dielectric ceramic composition having a high relative dielectric constant. However, when this dielectric ceramic composition is used as a ceramic filler and glass is added thereto, However, there is a problem that the filler and glass react with each other and the relative dielectric constant is lowered even if a dielectric material having a high relative dielectric constant is used.
This is because the filler and glass react with each other and the crystal structure of the dielectric particles is destroyed, so that the characteristics originally possessed by the dielectric particles, such as high dielectric constant and high Q value, cannot be obtained. Since such a tendency becomes more remarkable as a glass component is added in a large amount for firing at a lower temperature, conventionally, the addition of glass is small to maintain the relative dielectric constant, and the firing temperature is It was expensive.

【0008】本発明は上記課題に鑑みなされたもので、
ガラス成分を比較的多量に含む誘電体磁器組成物であっ
て、850〜950℃の比較的低温でAgやCu等の導
体金属と同時に焼成できるとともに、ガラスとセラミッ
クフィラーとの反応を抑制することができる誘電体磁器
組成物を提供することを目的とする。
The present invention has been made in view of the above problems.
A dielectric ceramic composition containing a relatively large amount of a glass component, capable of firing at the same time as a conductive metal such as Ag or Cu at a relatively low temperature of 850 to 950 ° C, and suppressing the reaction between glass and a ceramic filler. It is an object of the present invention to provide a dielectric ceramic composition capable of

【0009】[0009]

【課題を解決するための手段】本発明者等は、金属元素
を少なくとも2種以上を含有する酸化物で表面をアルミ
ナで被覆した誘電体粒子(セラミックフィラー)とガラ
スからなる誘電体磁器組成物は、ガラスとセラミックフ
ィラーとの反応を抑制することができることを見出し、
本発明に到った。
DISCLOSURE OF THE INVENTION The inventors of the present invention have made a dielectric ceramic composition comprising glass and dielectric particles (ceramic filler) whose surface is coated with an oxide containing an oxide containing at least two metal elements. Found that it is possible to suppress the reaction between the glass and the ceramic filler,
The present invention has been reached.

【0010】即ち、本発明の誘電体磁器組成物は、金属
元素を少なくとも2種以上を含有する酸化物からなり、
その表面がアルミナで被覆されている誘電体粒子30〜
70体積%と、ガラス70〜30体積%とからなるもの
である。
That is, the dielectric ceramic composition of the present invention comprises an oxide containing at least two kinds of metal elements,
Dielectric particles 30 whose surface is coated with alumina 30 to
70% by volume and 70 to 30% by volume of glass.

【0011】誘電体粒子としては、高周波材料として用
いられる(Mg0.95Ca0.05)TiO3 、Ba2 Ti9
20等のチタン酸塩やBa(Mg1/3 Ta2/3 )O3
La(Mg1/3 Ti2/3 )O3 −CaTiO3 、コンデ
ンサ材料として用いられるBaTiO3 、CaTi
3 、SrTiO3 等の金属元素を少なくとも2種以上
を含有したものが使用されるが、上記に限定されること
なく、従来知られている高誘電率材料であっても良い。
As the dielectric particles, (Mg 0.95 Ca 0.05 ) TiO 3 and Ba 2 Ti 9 used as a high frequency material are used.
Titanates such as O 20 and Ba (Mg 1/3 Ta 2/3 ) O 3 ,
La (Mg 1/3 Ti 2/3 ) O 3 -CaTiO 3 , BaTiO 3 used as a capacitor material, CaTi
A material containing at least two kinds of metal elements such as O 3 and SrTiO 3 is used, but the material is not limited to the above and may be a conventionally known high dielectric constant material.

【0012】本発明によれば、この誘電体粒子の表面が
アルミナにより被覆されている。アルミナの被覆は、例
えば、水酸化アルミニウムの溶液を誘電体粒子に吹き付
け、熱処理したり、また、誘電体粒子にスパッタリング
することにより行われるが、アルミナ被覆層は0.01
〜1μm程度形成することが望ましい。このようにアル
ミナで被覆した誘電体粒子を用いることにより、焼結体
中において、誘電体粒子とガラスとの間にアルミナが存
在するため、誘電体粒子がガラスと直接接触することが
なく、分散された組織となる。これにより、誘電体粒子
とガラスとの反応が抑制され、高Q値と高比誘電率をも
った材料が得られる。
According to the present invention, the surfaces of the dielectric particles are coated with alumina. The alumina coating is performed, for example, by spraying a solution of aluminum hydroxide onto the dielectric particles, heat-treating the same, or sputtering the dielectric particles.
It is desirable to form about 1 μm. By using the dielectric particles coated with alumina as described above, since alumina exists between the dielectric particles and the glass in the sintered body, the dielectric particles do not come into direct contact with the glass and are dispersed. It will be an organized organization. Thereby, the reaction between the dielectric particles and the glass is suppressed, and a material having a high Q value and a high relative dielectric constant can be obtained.

【0013】本発明において、磁器組成物中の誘電体粒
子量を30〜70体積%と、ガラス量を30〜70体積
%に限定したのは、誘電体粒子が30体積%よりも少な
い場合(ガラスが70体積%よりも多い場合)には、焼
成温度が低下し、Q値および比誘電率が低下するからで
ある。誘電体粒子が70体積%よりも多い場合(ガラス
が30体積%よりも少ない場合)には、焼成温度が95
0℃以上に上昇し、反応によるボイドが多数発生し、比
誘電率およびQ値が低下するからである。誘電体粒子は
40〜70体積%、ガラスは60〜30体積%が望まし
い。
In the present invention, the amount of dielectric particles in the porcelain composition is limited to 30 to 70% by volume and the amount of glass is limited to 30 to 70% by volume when the amount of dielectric particles is less than 30% by volume ( This is because when the glass content is more than 70% by volume), the firing temperature is lowered and the Q value and the relative dielectric constant are lowered. When the dielectric particles are more than 70% by volume (the glass is less than 30% by volume), the firing temperature is 95%.
This is because the temperature rises to 0 ° C. or higher, a large number of voids are generated due to the reaction, and the relative dielectric constant and the Q value decrease. The dielectric particles are preferably 40 to 70% by volume, and the glass is preferably 60 to 30% by volume.

【0014】本発明において用いられるガラスは、その
軟化温度Tsが1000℃以下であることが望ましい
が、これは、軟化温度Tsが1000℃よりも高い場合
には、850〜950℃の焼成温度では緻密化しなくな
るからである。具体的なガラスの組成としては、例え
ば、SiO2 を30〜80重量%、B2 3 を3〜20
重量%、BaOを5〜30重量%、Al2 3 を3〜1
0重量%、CaOを3〜15重量%からなるものがあ
る。
The glass used in the present invention preferably has a softening temperature Ts of 1000 ° C. or lower, which means that when the softening temperature Ts is higher than 1000 ° C., the firing temperature is 850 to 950 ° C. Because it will not be densified. As a specific composition of glass, for example, SiO 2 is 30 to 80% by weight and B 2 O 3 is 3 to 20.
% By weight, 5 to 30% by weight of BaO and 3 to 1 of Al 2 O 3
Some are 0 wt% and 3 to 15 wt% CaO.

【0015】本発明の誘電体磁器組成物は、例えば、そ
れ自体がコンデンサとなる電子部品や周知のガラスセラ
ミック基板内に内蔵される誘電体層として用いられる。
その場合ガラスセラミック基板と同時焼成も可能であ
る。
The dielectric ceramic composition of the present invention is used, for example, as an electronic component which itself serves as a capacitor or as a dielectric layer incorporated in a well-known glass ceramic substrate.
In that case, co-firing with the glass ceramic substrate is also possible.

【0016】本発明の誘電体磁器組成物は、先ず、アル
ミナで被覆した誘電体粒子を作製する。例えば、BaT
iO3 からなる誘電体粒子をアルミナで被覆する場合に
は、BaTiO3 の原料となるBaCO3 およびTiO
2 をボールミルを用いて湿式混合し、この混合物を乾燥
した後、1100〜1400℃で1〜4時間仮焼し、こ
れを粉砕してBaTiO3 からなる誘電体粒子を得る。
このようなBaTiO3 は原料として市販されているも
のを最初から使用しても良い。この後、水酸化アルミニ
ウムの溶液を誘電体粒子に吹き付け、水酸化アルミニウ
ムの被覆層を形成した後、1000〜1200℃で熱処
理することにより、誘電体粒子にアルミナを被覆する。
In the dielectric ceramic composition of the present invention, first, dielectric particles coated with alumina are prepared. For example, BaT
When the dielectric particles made of iO 3 are coated with alumina, BaCO 3 and TiO which are raw materials of BaTiO 3 are used.
2 is wet-mixed using a ball mill, the mixture is dried, then calcined at 1100 to 1400 ° C. for 1 to 4 hours, and pulverized to obtain dielectric particles made of BaTiO 3 .
As such BaTiO 3 , a commercially available material may be used from the beginning. After that, a solution of aluminum hydroxide is sprayed on the dielectric particles to form a coating layer of aluminum hydroxide, and then heat treatment is performed at 1000 to 1200 ° C. to coat the dielectric particles with alumina.

【0017】そして、このようなアルミナで被覆された
誘電体粒子と、例えば、SiO2 ,B2 3 ,Al2
3 等を含有するガラスを上記した組成で添加混合し、こ
の混合物にバインダーを添加して整粒し、得られた粉末
を、例えば、ドクターブレード法やプレス成形により所
定形状に成形し、300〜500℃で2〜12時間脱バ
インダー処理し、さらに850〜950℃の温度で0.
1〜2時間、大気中或いは窒素雰囲気中で焼成する。
Then, such a dielectric particle coated with alumina and, for example, SiO 2 , B 2 O 3 , Al 2 O
Glass containing 3 etc. is added and mixed in the above composition, and a binder is added to this mixture for sizing, and the obtained powder is molded into a predetermined shape, for example, by a doctor blade method or press molding, and 300 to The binder is removed at 500 ° C. for 2 to 12 hours, and then at a temperature of 850 to 950 ° C.
Bake for 1-2 hours in air or nitrogen atmosphere.

【0018】また、導体と同時に焼成する場合には上記
成形体表面にAgやCuの導体ペーストをスクリーン印
刷して所望により積層圧着した後、上記と同様な条件で
焼成すれば良い。Cuの導体を同時焼成する場合には、
酸化を防止するため窒素雰囲気中で焼成する。
In the case of firing at the same time as the conductor, the conductor paste of Ag or Cu may be screen-printed on the surface of the molded body, laminated and pressure-bonded if desired, and then fired under the same conditions as above. When co-firing Cu conductor,
Baking in a nitrogen atmosphere to prevent oxidation.

【0019】本発明は、アルミナで被覆した誘電体粒子
とガラスからなるものであるが、誘電体粒子やガラスか
ら混入する不純物が混入しても良いし、さらに、製造過
程においては、粉砕用のボールから混入する元素等を含
有しても良い。
Although the present invention is composed of alumina-coated dielectric particles and glass, impurities mixed from the dielectric particles or glass may be mixed, and further, in the manufacturing process, particles for pulverization may be used. You may contain the element etc. mixed from a ball.

【0020】[0020]

【作用】本発明の誘電体磁器組成物では、比較的ガラス
を多量に含有する場合であっても、ガラスと誘電体粒子
との反応を抑制することができるとともに、850〜9
50℃の比較的低温でAgやCu等の導体金属と同時に
焼成でき、さらに、高い比誘電率を得ることができる。
In the dielectric ceramic composition of the present invention, the reaction between glass and dielectric particles can be suppressed and 850-9 even when a relatively large amount of glass is contained.
At a relatively low temperature of 50 ° C., it can be fired at the same time as a conductor metal such as Ag or Cu, and a high relative dielectric constant can be obtained.

【0021】[0021]

【実施例】以下、本発明の誘電体磁器組成物を実施例に
基づいて詳細に説明する。先ず、(Mg0.95Ca0.05
TiO3 からなる誘電体粒子を作製するために、出発原
料としてMgCO3 ,CaCO3 ,TiO2 を準備し、
組成が上記組成となるように秤量後、純水を加え、めの
う玉石を用いて24時間湿式混合を行った。この混合物
を乾燥後、1200℃で1時間仮焼した。さらに、純水
とめのう玉石を用いて平均結晶粒径が0.5〜5μmの
適度な粒径に調製し、これを誘電体粒子とした。
EXAMPLES Hereinafter, the dielectric ceramic composition of the present invention will be described in detail based on examples. First, (Mg 0.95 Ca 0.05 )
To make the dielectric particles made of TiO 3, prepare the MgCO 3, CaCO 3, TiO 2 as a starting material,
After weighing so that the composition would be the above composition, pure water was added and wet mixing was carried out for 24 hours using agate boulders. After this mixture was dried, it was calcined at 1200 ° C. for 1 hour. Further, pure water and agate boulders were used to adjust the average crystal grain size to an appropriate grain size of 0.5 to 5 μm, which were used as dielectric particles.

【0022】そして、この誘電体粒子を水酸化アルミニ
ウムの溶液を吹き付け、1000℃で熱処理することに
より、誘電体粒子をアルミナで被覆した。
Then, the dielectric particles were sprayed with a solution of aluminum hydroxide and heat-treated at 1000 ° C. to coat the dielectric particles with alumina.

【0023】また、SiO2 を50重量%、B2 3
10重量%、BaOを25重量%、Al2 3 を5重量
%、CaOを12重量%を含有する硼珪酸ガラス(軟化
温度Ts800℃)を準備し、前述した誘電体粒子と硼
珪酸ガラスを、その比が表1になるように秤量後、純水
を添加し、めのう玉石を用いて24時間湿式混合を行っ
た。この混合物に約1重量%のバインダーとしてポリビ
ニルアルコールを添加して整粒し、得られた粉末を1t
on/cm2 の圧力でプレス成形し、直径20mm、高
さ10mmの歪みのない円柱状の成形体を作製した。こ
の後、この成形体を400℃で4時間脱バインダー処理
し、さらに表1に示す温度で30分間大気中で焼成し
た。
Borosilicate glass containing 50% by weight of SiO 2 , 10% by weight of B 2 O 3 , 25% by weight of BaO, 5% by weight of Al 2 O 3 and 12% by weight of CaO (softening temperature) (Ts 800 ° C.) was prepared, the above-mentioned dielectric particles and borosilicate glass were weighed so that the ratio was as shown in Table 1, pure water was added, and wet mixing was performed for 24 hours using agate boulders. To this mixture, polyvinyl alcohol was added as a binder in an amount of about 1% by weight, and the obtained powder was sized.
It was press-molded at a pressure of on / cm 2 to prepare a distortion-free cylindrical molded body having a diameter of 20 mm and a height of 10 mm. After that, the molded body was subjected to binder removal treatment at 400 ° C. for 4 hours, and was further baked in the atmosphere at the temperature shown in Table 1 for 30 minutes.

【0024】得られた磁器を平面研磨および円筒研削し
試料を得た。この試料を用いて誘電体円柱共振器法によ
り共振周波数6GHzにて比誘電率,Q値を測定し、ま
た、−40〜+85℃までの温度範囲における共振周波
数の温度変化を測定し共振周波数の温度係数(τf)を
計算した。これらの結果を表1に示した。
The obtained porcelain was surface-polished and cylindrically ground to obtain a sample. Using this sample, the dielectric constant and Q value were measured at a resonance frequency of 6 GHz by the dielectric cylinder resonator method, and the temperature change of the resonance frequency in the temperature range from -40 to + 85 ° C was measured to measure the resonance frequency. The temperature coefficient (τf) was calculated. The results are shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】この表1の結果から、本発明の誘電体磁器
組成物では、850〜950℃で焼成することができる
とともに、比誘電率が9.5以上、Q値が580以上、
温度係数(τf)が0〜5ppm/℃以内であり、焼結
体自体のボイド状態も良好であった。
From the results shown in Table 1, the dielectric ceramic composition of the present invention can be fired at 850 to 950 ° C., the relative dielectric constant is 9.5 or more, and the Q value is 580 or more.
The temperature coefficient (τf) was within 0 to 5 ppm / ° C, and the void state of the sintered body itself was good.

【0027】尚、本発明者等は、得られた試料No.2〜
6をX線回折装置により誘電体粒子を調べたところ、誘
電体粒子の相が殆ど残存していることを確認でき、ガラ
スと誘電体粒子が反応していないことを確認した。
The inventors of the present invention obtained the sample Nos. 2 to 2 thus obtained.
When the dielectric particles of No. 6 were examined with an X-ray diffractometer, it was confirmed that most of the phases of the dielectric particles remained, and it was confirmed that the glass and the dielectric particles did not react.

【0028】また、比較例としてアルミナをコーティン
グしなかった試料(試料No.8)を作製したところ、比
誘電率が低く、また、Q値が低くて測定不能であった。
As a comparative example, a sample not coated with alumina (Sample No. 8) was prepared, and the relative permittivity was low and the Q value was low, and measurement was impossible.

【0029】実施例2 本発明者等は、上記実施例1において、誘電体粒子をB
a(Mg1/3 Ta2/3)O3 、Ba2 Ti9 20に置き
換えた以外は上記実施例と同様にして実験を行った。こ
の結果を表1に示した。
Example 2 The present inventors used the dielectric particles in Example 1 as B.
An experiment was conducted in the same manner as in the above-mentioned example except that a (Mg 1/3 Ta 2/3 ) O 3 and Ba 2 Ti 9 O 20 were used instead. The results are shown in Table 1.

【0030】また、誘電体粒子を、BaTiO3 、Ca
TiO3 、SrTiO3 に置き換えた以外は上記実施例
と同様にして実験を行った。この結果を表2に示した。
Further, the dielectric particles are made of BaTiO 3 , Ca.
An experiment was conducted in the same manner as in the above-mentioned example except that TiO 3 and SrTiO 3 were replaced. The results are shown in Table 2.

【0031】[0031]

【表2】 [Table 2]

【0032】尚、BaTiO3 、CaTiO3 、SrT
iO3 はコンデンサ材料として使用されるため、温度係
数(τf)は測定しなかった。
BaTiO 3 , CaTiO 3 , SrT
Since iO 3 is used as a capacitor material, the temperature coefficient (τf) was not measured.

【0033】これらの表1,2より、本発明の誘電体磁
器組成物では、850〜950℃で焼成することができ
るとともに、高い比誘電率を得ることができ、焼結体自
体のボイド状態も良好であった。
From these Tables 1 and 2, the dielectric ceramic composition of the present invention can be fired at 850 to 950 ° C., a high relative dielectric constant can be obtained, and the sintered body itself has a void state. Was also good.

【0034】[0034]

【発明の効果】本発明の誘電体磁器組成物は、850〜
950℃の比較的低温でAgやCu等の導体金属と同時
に焼成でき、さらに、ガラスと誘電体粒子との反応を抑
制して高い比誘電率を得ることができ、高周波電子回路
基板の小型化と高性能化を実現できる。また、コンデン
サ材料としても優れた特性を有する。
Industrial Applicability The dielectric ceramic composition of the present invention is 850-
Minimization of high-frequency electronic circuit board, because it can be fired at the same time as a conductor metal such as Ag or Cu at a relatively low temperature of 950 ° C., and further, the reaction between glass and dielectric particles can be suppressed to obtain a high dielectric constant And high performance can be realized. It also has excellent characteristics as a capacitor material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井本 晃 鹿児島県国分市山下町1番1号 京セラ株 式会社鹿児島国分工場内 (72)発明者 藤川 信儀 鹿児島県国分市山下町1番4号 京セラ株 式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Akira Imoto 1-1 Yamashita-cho, Kokubun-shi, Kagoshima Kyocera Co., Ltd. Kagoshima Kokubun Plant (72) Nobuyoshi Fujikawa 1-4-4 Yamashita-cho, Kokubun-shi, Kagoshima Kyocera Incorporated Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属元素を少なくとも2種以上を含有する
酸化物からなり、その表面がアルミナで被覆されている
誘電体粒子30〜70体積%と、ガラス70〜30体積
%とからなることを特徴とする誘電体磁器組成物。
1. A dielectric particle comprising an oxide containing at least two kinds of metal elements, the surface of which is coated with alumina, in an amount of 30 to 70% by volume, and a glass in an amount of 70 to 30% by volume. A characteristic dielectric ceramic composition.
JP06118415A 1994-05-31 1994-05-31 Dielectric porcelain composition Expired - Fee Related JP3085625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06118415A JP3085625B2 (en) 1994-05-31 1994-05-31 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06118415A JP3085625B2 (en) 1994-05-31 1994-05-31 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH07330427A true JPH07330427A (en) 1995-12-19
JP3085625B2 JP3085625B2 (en) 2000-09-11

Family

ID=14736090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06118415A Expired - Fee Related JP3085625B2 (en) 1994-05-31 1994-05-31 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP3085625B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046361A1 (en) * 2004-10-26 2006-05-04 Murata Manufacturing Co., Ltd. Ceramic material composition, ceramic substrate and irreversible circuit element
JP2007508458A (en) * 2003-10-13 2007-04-05 サントル、ナショナール、ド、ラ、ルシェルシュ、シアンティフィク、(セーエヌエルエス) Method for obtaining composite ferroelectrics
US7439203B2 (en) * 2005-04-04 2008-10-21 Tdk Corporation Electronic device, dielectric ceramic composition and the production method
JP2017154900A (en) * 2016-02-29 2017-09-07 株式会社豊田中央研究所 Dielectric body composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508458A (en) * 2003-10-13 2007-04-05 サントル、ナショナール、ド、ラ、ルシェルシュ、シアンティフィク、(セーエヌエルエス) Method for obtaining composite ferroelectrics
JP4932487B2 (en) * 2003-10-13 2012-05-16 サントル、ナショナール、ド、ラ、ルシェルシュ、シアンティフィク、(セーエヌエルエス) Method for obtaining composite ferroelectrics
WO2006046361A1 (en) * 2004-10-26 2006-05-04 Murata Manufacturing Co., Ltd. Ceramic material composition, ceramic substrate and irreversible circuit element
US8455381B2 (en) 2004-10-26 2013-06-04 Murata Manufacturing Co., Ltd. Ceramic material composition, ceramic substrate, and nonreciprocal circuit device
US7439203B2 (en) * 2005-04-04 2008-10-21 Tdk Corporation Electronic device, dielectric ceramic composition and the production method
JP2017154900A (en) * 2016-02-29 2017-09-07 株式会社豊田中央研究所 Dielectric body composition

Also Published As

Publication number Publication date
JP3085625B2 (en) 2000-09-11

Similar Documents

Publication Publication Date Title
JP3305626B2 (en) Dielectric porcelain composition and ceramic electronic component using this dielectric porcelain composition
JP3085625B2 (en) Dielectric porcelain composition
JP2003119076A (en) Dielectric ceramic composition and ceramic electronic parts using the same
JP3287303B2 (en) Dielectric ceramic composition and ceramic electronic component using the same
JP3179830B2 (en) Dielectric porcelain composition
KR100632393B1 (en) High-permittivity dielectric ceramic compositions for low-fire ceramic multilayer packages
JP3373436B2 (en) Ceramic laminated electronic components
JP3067919B2 (en) Low frequency sinterable porcelain composition for high frequency
JP4174668B2 (en) DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT
JP3215004B2 (en) Dielectric porcelain composition
JP3085635B2 (en) Dielectric porcelain composition
JP3746398B2 (en) Dielectric porcelain composition and ceramic electronic component
JP4618856B2 (en) Low temperature fired porcelain
JP3085618B2 (en) Dielectric porcelain composition
JP3631607B2 (en) High frequency dielectric ceramics and laminates
JP3411190B2 (en) Dielectric porcelain composition
JPH07182922A (en) Dielectric ceramic composition
KR100488769B1 (en) Microwave Dielectric Ceramic Compositions
JP2579352B2 (en) Dielectric porcelain composition
JP4006655B2 (en) Dielectric porcelain composition for microwave
KR100406350B1 (en) Dielectric ceramic composition, ceramic capacitor using the composition and a process of producing same
KR100406351B1 (en) Dielectric ceramic composition, ceramic capacitor using the composition and process of producing same
JP2628888B2 (en) Dielectric porcelain composition
JPH0815012B2 (en) High permittivity dielectric ceramic composition for microwave
JP2000215733A (en) Dielectric porcelain material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees