JP3067919B2 - Low frequency sinterable porcelain composition for high frequency - Google Patents

Low frequency sinterable porcelain composition for high frequency

Info

Publication number
JP3067919B2
JP3067919B2 JP4360443A JP36044392A JP3067919B2 JP 3067919 B2 JP3067919 B2 JP 3067919B2 JP 4360443 A JP4360443 A JP 4360443A JP 36044392 A JP36044392 A JP 36044392A JP 3067919 B2 JP3067919 B2 JP 3067919B2
Authority
JP
Japan
Prior art keywords
mol
powder
frequency
firing
porcelain composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4360443A
Other languages
Japanese (ja)
Other versions
JPH06215629A (en
Inventor
洋一 水野
浩一郎 都竹
直人 成田
淳 増田
利一 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP4360443A priority Critical patent/JP3067919B2/en
Publication of JPH06215629A publication Critical patent/JPH06215629A/en
Application granted granted Critical
Publication of JP3067919B2 publication Critical patent/JP3067919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/24Manufacture of porcelain or white ware
    • C04B33/26Manufacture of porcelain or white ware of porcelain for electrical insulation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高周波用の積層磁器コ
ンデンサ、インダクタ、共振器等の磁器部分を構成する
低温焼結性磁器組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-temperature sinterable porcelain composition for constituting a porcelain portion of a high-frequency laminated ceramic capacitor, inductor, resonator or the like.

【0002】[0002]

【従来の技術】高周波用の積層磁器コンデンサ、インダ
クタ、共振器等の磁器材料を構成する磁器組成物として
は、例えばBaO−TiO2 −Re系(但し、Re:希
土類元素)、ZrO2 −SnO2 −TiO2 系、Ba
(Zn1/3 Ta2/3 )O3 複合ペロブスカイト等が知ら
れている。
2. Description of the Related Art As a ceramic composition constituting a ceramic material such as a laminated ceramic capacitor, an inductor, and a resonator for high frequency use, for example, BaO-TiO 2 -Re (where Re is a rare earth element), ZrO 2 -SnO 2- TiO 2 system, Ba
(Zn 1/3 Ta 2/3 ) O 3 composite perovskite is known.

【0003】[0003]

【この発明が解決しようとする課題】これらの組成物は
焼結温度が1100〜1600℃とかなり高いので、例
えば積層磁器コンデンサの誘電体材料として使用する場
合は、内部電極としてタングステン、モリブデン、パラ
ジウム等の高融点金属を使用しなければならない。しか
し、これらの高融点金属は電気伝導度が低いので、この
積層磁器コンデンサを高周波回路で使用した場合は誘電
体損失が大きくなり、Qが低下してしまうという問題が
あった。
Since these compositions have a sintering temperature as high as 1100 to 1600 ° C., when they are used as a dielectric material of a laminated ceramic capacitor, for example, tungsten, molybdenum, palladium is used as an internal electrode. High melting point metal such as must be used. However, since these refractory metals have low electric conductivity, when this laminated ceramic capacitor is used in a high-frequency circuit, there is a problem that the dielectric loss increases and the Q decreases.

【0004】また、上述した組成物は比誘電率が20〜
100と高いので、例えば高周波用の積層磁器コンデン
サの誘電体材料として使用した場合は、自己共振周波数
が比較的低周波側で発生することによって高周波領域で
はコンデンサとして機能しなくなるという問題があっ
た。
The above-mentioned composition has a relative dielectric constant of 20 to
Since it is as high as 100, when it is used as a dielectric material of a laminated ceramic capacitor for high frequency, for example, there is a problem that a self-resonant frequency is generated on a relatively low frequency side, so that the capacitor does not function in a high frequency region.

【0005】本発明は、比誘電率の低い高周波用磁器組
成物を、900℃以下の比較的低い温度の焼成で製造す
ることができる高周波用低温焼結性磁器組成物を提供す
ることを目的とする。
An object of the present invention is to provide a high-frequency low-temperature sinterable ceramic composition which can produce a high-frequency ceramic composition having a low relative dielectric constant by firing at a relatively low temperature of 900 ° C. or less. And

【0006】具体的には、900℃以下の温度の焼成で
緻密に焼結し、比誘電率εr が10以下、Qが500以
上、比誘電率εr の温度係数τεが0±60ppm/℃
の磁器組成物を形成することができる高周波用低温焼結
性磁器組成物を提供することを目的とする。
[0006] Specifically, densely sintered at a temperature calcination of 900 ° C. or less, the dielectric constant epsilon r of 10 or less, Q is 500 or more, the temperature coefficient τε of the dielectric constant epsilon r is 0 ± 60 ppm / ° C
It is an object of the present invention to provide a high-frequency low-temperature sinterable porcelain composition capable of forming the above porcelain composition.

【0007】[0007]

【課題を解決するための手段】 本発明に係る高周波用
低温焼結性磁器組成物は、ZrO粉末とガラス粉末の
混合物を焼結したものからなり、ZrO粉末(X)と
ガラス粉末(Y)のモル比率が、5mol%≦X≦
ol%,91mol%≦Y≦95mol%,X+Y=1
00mol%,の範囲にある。
Means for Solving the Problems The high-frequency low-temperature sinterable porcelain composition according to the present invention is formed by sintering a mixture of a ZrO 2 powder and a glass powder, and comprises a ZrO 2 powder (X) and a glass powder ( The molar ratio of Y) is 5 mol% ≦ X ≦ 9 m
ol%, 91 mol% ≦ Y ≦ 95 mol%, X + Y = 1
00 mol%.

【0008】ここで、ZrO粉末及びガラス粉末の組
成範囲を、5mol%≦X≦mol%、91mol%
≦Y≦95mol%としたのは、ZrO粉末がmo
l%を越え、ガラス粉末が91mol%未満になると、
900℃の焼成で緻密な焼結体が得られなくなるか、比
誘電率εrが悪化し、ZrO粉末が5mol%未満に
なり、ガラス粉末が95mol%を越えると、900℃
の焼成において発泡、反り、変形を生じるようになるか
らである。
Here, the composition ranges of the ZrO 2 powder and the glass powder are set to 5 mol% ≦ X ≦ 9 mol%, 91 mol%
≦ Y ≦ 95 mol% is because the ZrO 2 powder is 9 mo
When the amount exceeds 1% and the glass powder becomes less than 91 mol%,
Luke no longer obtained dense sintered body by firing 900 ° C., the ratio
When the dielectric constant εr deteriorates and the ZrO 2 powder becomes less than 5 mol% and the glass powder exceeds 95 mol%, 900 ° C.
This is because foaming, warping, and deformation are caused in the firing of.

【0009】次に、この高周波用低温焼結性磁器組成物
において、ガラス粉末は、酸化物換算表記に従ったと
き、主成分が、SiO,Al,B,(B
,Ca)O,TiOからなり、SiO
(A),Al(B),B(C),(Ba
,Ca)O(D)及びTiO(E)のモル比率
が、15mol%≦A≦70mol%,0mol%<B
≦15mol%,0mol%<C≦10mol%,5m
ol%≦D≦60mol%,10mol%≦a≦90m
ol%,10mol%≦b≦90mol%,a+b=1
00mol%,4mol%≦E≦6.2mol%,A+
B+C+D+E=100mol%,の範囲にあることが
好ましい。
Next, in this low-frequency sintering ceramic composition for high frequency, the main component of the glass powder is SiO 2 , Al 2 O 3 , B 2 O 3 , (B
a a, Ca b) O, consists TiO 2, SiO
2 (A), Al 2 O 3 (B), B 2 O 3 (C), (Ba
a, Ca b) the molar ratio of O (D) and TiO 2 (E) is, 15mol% ≦ A ≦ 70mol% , 0mol% <B
≦ 15mol%, 0mol% <C ≦ 10mol%, 5m
ol% ≦ D ≦ 60mol%, 10mol% ≦ a ≦ 90m
ol%, 10 mol% ≦ b ≦ 90 mol%, a + b = 1
00 mol%, 4 mol% ≦ E ≦ 6.2 mol%, A +
It is preferable that B + C + D + E = 100 mol%.

【0010】ここで、SiO2 (A)の組成範囲を、1
5mol%≦A≦70mol%としたのは、SiO2
15mol%未満になると、ガラス成分がガラス化しな
くなり、SiO2 が70mol%を越えると、900℃
の焼成で緻密な焼結体が得られなくなるからである。
Here, the composition range of SiO 2 (A) is 1
The reason for setting 5 mol% ≦ A ≦ 70 mol% is that when the SiO 2 content is less than 15 mol%, the glass component does not vitrify, and when the SiO 2 content exceeds 70 mol%, 900 ° C.
This makes it impossible to obtain a dense sintered body by firing.

【0011】また、Al23 (B)の組成範囲を、0
mol%<B≦15mol%としたのは、Al23
0mol%ではガラス成分がガラス化せず、Al23
が15mol%を越えると、900℃の焼成で緻密な焼
結体が得られなくなるからである。
The composition range of Al 2 O 3 (B) is set to 0
mol% <B ≦ 15 mol% is that the glass component does not vitrify when Al 2 O 3 is 0 mol%, and Al 2 O 3
If it exceeds 15 mol%, a dense sintered body cannot be obtained by firing at 900 ° C.

【0012】また、B23 (C)の組成範囲を、0m
ol%<C≦10mol%としたのは、B23 が0m
ol%では900℃の焼成で緻密な焼結体が得られなく
なり、B23 が10mol%を越えると、900℃の
焼成において発泡、反り、変形を生じるようになるから
である。
The composition range of B 2 O 3 (C) is 0 m
ol% <C ≦ 10 mol% is that B 2 O 3 is 0 m
ol% In dense sintered body in the firing of 900 ° C. can not be obtained, when the B 2 O 3 exceeds 10 mol%, is foamed, warping, because so deformed in the sintering of 900 ° C..

【0013】また、(Baa,Cab )O(D)の組成範
囲を、5mol%≦D≦60mol%としたのは、(B
a,Cab )Oが5mol%未満では、900℃の焼成
で緻密な焼結体が得られなくなり、(Baa,Cab )O
が60mol%を越えると、比誘電率εr の温度係数τ
εが悪化するからである。
The reason why the composition range of (Ba a , C ab ) O (D) is 5 mol% ≦ D ≦ 60 mol% is that (B
If a a , C ab ) O is less than 5 mol%, a dense sintered body cannot be obtained by firing at 900 ° C., and (Ba a , C ab ) O
Exceeds 60 mol%, the temperature coefficient τ of the relative permittivity ε r
This is because ε deteriorates.

【0014】また、BaO(a)及びCaO(c)の組
成範囲を、10mol%≦a≦90mol%、10mo
l%≦b≦90mol%としたのは、BaOが10mo
l%未満になり、CaOが90mol%を越えると、9
00℃の焼成で緻密な焼結体が得られなくなり、BaO
が90mol%を越え、CaOが10mol%未満にな
ると、900℃の焼成において発泡、変形、反りを生じ
るようになるからである。
The composition range of BaO (a) and CaO (c) is set to 10 mol% ≦ a ≦ 90 mol%, 10 mol
The reason that 1% ≦ b ≦ 90 mol% is that BaO is 10 mol
1%, and when CaO exceeds 90 mol%, 9
When sintered at 00 ° C., a dense sintered body cannot be obtained.
Is more than 90 mol%, and if CaO is less than 10 mol%, foaming, deformation, and warping occur at 900 ° C. firing.

【0015】また、TiO(E)の組成範囲を、4m
ol%≦E≦6.2mol%としたのは。TiOが4
mol%未満になると、比誘電率εrの温度係数τεが
悪化し、TiO6.2mol%を越えると、900
℃の焼成で緻密な焼結体が得られなくなるか、比誘電率
εrが悪化するからである。
The composition range of TiO 2 (E) is 4 m
ol% ≦ E ≦ 6.2 mol%. TiO 2 is 4
When the TiO 2 content is less than 6.2 mol%, the temperature coefficient τε of the relative permittivity εr deteriorates.
℃ fired at or dense sintered body can not be obtained, the dielectric constant
it is whether we εr is deteriorated.

【0016】なお、上述のガラス粉末の製造方法として
は、ガラス成分を例えば1400〜1500℃の高温で
溶融させ、これを水中に滴下して急冷させるか、鉄板上
に流して急冷させることにより得られるが、これ以外の
急冷方法を用いてもよい。また、上述のガラス成分の各
原料は酸化物に限定されるものではなく、炭酸塩、水酸
化物のように焼成で酸化物になり得るものであれば使用
できることはもちろんである。
The above-mentioned glass powder is produced by melting a glass component at a high temperature of, for example, 1400 to 1500 ° C., and dropping it into water to quench it, or flowing it onto an iron plate to quench it. However, other rapid cooling methods may be used. Further, each raw material of the above-mentioned glass components is not limited to oxides, and it is needless to say that any material such as carbonates and hydroxides that can be converted into oxides by firing can be used.

【0017】[0017]

【実施例】まず、実施例1の場合について説明する。ガ
ラス成分の各原料(SiO2 ,CaCO3 ,BaCO
3 ,Al23 ,TiO2 ,B23 )を表1の実施
例1の欄に示すように各々秤量し、これらをボールミル
で十分に混合してガラス成分のバッチ(batch) を作成し
た。
First, the case of the first embodiment will be described. Each raw material of glass component (SiO 2 , CaCO 3 , BaCO
3 , Al 2 O 3 , TiO 2 , B 2 O 3 ) were weighed as shown in the column of Example 1 in Table 1, and these were thoroughly mixed by a ball mill to prepare a batch of glass components. did.

【0018】次に、このバッチを坩堝に入れ、1600
℃で1時間加熱して溶融し、溶融物を鉄板上に流して急
冷し、フレーク状のガラス片を得た。そして、このガラ
ス片をボールミルで微粉砕し、平均粒径0.4〜1.0
μmのガラス粉末を得た。
Next, the batch was placed in a crucible and 1600
The mixture was heated at a temperature of 1 ° C. for 1 hour to be melted, and the melt was poured on an iron plate and quenched to obtain a glass flake. Then, this glass piece is finely pulverized by a ball mill to have an average particle size of 0.4 to 1.0.
A glass powder of μm was obtained.

【0019】次に、このガラス粉末とZrO2 の粉末と
を表1に示すようなモル比で配合し、これらをボール
ミルに入れて15時間混合し、均質な混合粉末を得た。
Next, this glass powder and ZrO 2 powder were blended in a molar ratio as shown in Table 1, and these were put in a ball mill and mixed for 15 hours to obtain a homogeneous mixed powder.

【0020】次に、この混合粉末に有機バインダー(P
VA)を加えて造粒し、これを成形機の型内に入れ、5
00kg/cm2 の圧力で加圧成形し、直径9.8m
m、厚さ0.6mmの円板状の成形物を得た。
Next, an organic binder (P
VA), and granulate the mixture.
Pressure molding at a pressure of 00 kg / cm 2 , diameter 9.8 m
m, a disk-shaped molded product having a thickness of 0.6 mm was obtained.

【0021】次に、この成形物をジルコニアセッター上
に載せて焼成炉に入れ、大気雰囲気中において350℃
で6時間保持し、成形物中の有機バインダーを燃焼除去
させ、その後、炉内温度を900℃まで上昇させ、この
温度で2時間保持させて成形物を焼結させ、磁器素体を
得た。
Next, the molded product is placed on a zirconia setter and placed in a firing furnace at 350 ° C. in an air atmosphere.
For 6 hours to burn off the organic binder in the molded product. Thereafter, the furnace temperature was increased to 900 ° C., and the molded product was sintered at this temperature for 2 hours to obtain a porcelain body. .

【0022】次に、この磁器素体の両主面にAgペース
トを塗布して焼付け、一対の電極を設けた測定用のコン
デンサを得た。そして、このコンデンサについて、比誘
電率εr 、Q及び比誘電率εr の温度係数τεを測定し
た。比誘電率εr 及びQは、20℃,1MHz,1V
rms の条件で測定し、比誘電率εr の温度係数τεは、
−55〜+125℃(20℃基準)の温度範囲において
測定した。結果は表1の電気的特性の欄に示す通りと
なった。
Next, an Ag paste was applied to both main surfaces of the porcelain body and baked to obtain a measuring capacitor provided with a pair of electrodes. Then, for this capacitor, the relative permittivity ε r , Q and the temperature coefficient τε of the relative permittivity ε r were measured. The relative dielectric constants ε r and Q are 20 ° C., 1 MHz, 1 V
measured under the conditions of the rms, temperature coefficient τε of the dielectric constant epsilon r is
It measured in the temperature range of -55 to + 125 ° C (based on 20 ° C). The results are as shown in the column of electrical characteristics in Table 1.

【0023】表1〜表1には、実施例2〜21及び
比較例1〜14の条件及び結果も記載されている。これ
らの例における各原料成分の割合(mol%)はこれら
の表の左欄に記載されている通りである。実験方法は実
施例1と同様である。結果はこれらの表の右欄に示す通
りとなった。
Tables 1 to 1 also describe conditions and results of Examples 2 to 21 and Comparative Examples 1 to 14. The ratio (mol%) of each raw material component in these examples is as described in the left column of these tables. The experimental method is the same as in Example 1. The results were as shown in the right column of these tables.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表1】[Table 1]

【0026】[0026]

【表1】 [Table 1]

【0027】次に、表1〜表1に示す結果を参照し
ながら、各原料成分の好適な範囲(mol%)について
検討する。なお、以下で述べられている実施例3,4,
10,11及び14は参考例である。
Next, a suitable range (mol%) of each raw material component will be examined with reference to the results shown in Tables 1 to 1. In addition, Examples 3, 4, described below.
Reference numerals 10, 11 and 14 are reference examples.

【0028】まず、実施例1及び2に示すように、Zr
粉末が5〜mol%、ガラス粉末が91〜95m
ol%の場合は、所望の磁器組成物が得られる。しか
し、比較例1に示すように、ZrO粉末が0mol
%、ガラス粉末が100mol%の場合は、900℃の
焼成において発泡、反り、変形を生ずる。また、比較例
2に示すように、ZrO粉末が30mol%、ガラス
粉末が70mol%の場合は、900℃の焼成で緻密な
焼結体が得られない。従って、ZrO粉末(X)は、
5mol%≦X≦9mol%の範囲が好適であり、ガラ
ス粉末(Y)は、91mol%≦Y≦95mol%の範
囲が好適である。
First, as shown in Examples 1 and 2 , Zr
O 2 powder. 5 to 9 mol%, the glass powder is 91 ~95M
In the case of ol%, a desired porcelain composition is obtained. However, as shown in Comparative Example 1, the ZrO 2 powder contained 0 mol
%, The glass powder is 100 mol%, foaming, warping and deformation occur at 900 ° C. Further, as shown in Comparative Example 2, when ZrO 2 powder is 30 mol% and glass powder is 70 mol%, a dense sintered body cannot be obtained by firing at 900 ° C. Therefore, the ZrO 2 powder (X)
The range of 5 mol% ≦ X ≦ 9 mol% is suitable, and the range of the glass powder (Y) is preferably 91 mol% ≦ Y ≦ 95 mol%.

【0029】次に、実施例13に示すように、SiO2
が10mol%の場合は、所望の磁器組成物が得られ
る。しかし、比較例9に示すように、SiO2 が10m
ol%の場合は、ガラス成分がガラス化せず、また、比
較例10に示すように、SiO2 が75mol%の場合
は、900℃の焼成で緻密な焼結体が得られない。従っ
て、SiO2 (A)は、15mol%≦A≦70mol
%の範囲が好適である。
Next, as shown in Example 13, SiO 2
Is 10 mol%, a desired porcelain composition is obtained. However, as shown in Comparative Example 9, the SiO 2
In the case of ol%, the glass component is not vitrified, and as shown in Comparative Example 10, when the SiO 2 content is 75 mol%, a dense sintered body cannot be obtained by firing at 900 ° C. Therefore, SiO 2 (A) contains 15 mol% ≦ A ≦ 70 mol
% Is preferred.

【0030】次に、実施例12に示すように、Al2
3 が15mol%の場合は、所望の磁器組成物が得られ
る。しかし、比較例7に示すように、Al23 が0m
ol%の場合は、ガラス成分がガラス化せず、また、比
較例8に示すように、Al23 が20mol%の場合
は、900℃の焼成で緻密な焼結体が得られない。従っ
て、Al23 (B)は、0mol%<B≦15mol
%の範囲が好適である。
Next, as shown in Example 12, Al 2 O
When 3 is 15 mol%, a desired porcelain composition is obtained. However, as shown in Comparative Example 7, Al 2 O 3
In the case of ol%, the glass component is not vitrified, and as shown in Comparative Example 8, when the Al 2 O 3 is 20 mol%, a dense sintered body cannot be obtained by firing at 900 ° C. Therefore, Al 2 O 3 (B) is 0 mol% <B ≦ 15 mol
% Is preferred.

【0031】次に、実施例11に示すように、B23
が10mol%の場合は、所望の磁器組成物が得られ
る。しかし、比較例5に示すように、B23 が0mo
l%の場合は、900℃の焼成で緻密な焼結体が得られ
ず、また、比較例6に示すように、B23 が15mo
l%の場合は、900℃の焼成において発泡、反り、変
形を生じる。従って、B23 (C)は、0mol%<
C≦10mol%の範囲が好適である。
Next, as shown in Example 11, B 2 O 3
Is 10 mol%, a desired porcelain composition is obtained. However, as shown in Comparative Example 5, B 2 O 3
In the case of 1%, a dense sintered body cannot be obtained by sintering at 900 ° C., and as shown in Comparative Example 6, 15 mol of B 2 O 3
In the case of 1%, foaming, warping, and deformation occur at 900 ° C. Therefore, B 2 O 3 (C) contains 0 mol% <
The range of C ≦ 10 mol% is preferred.

【0032】次に、実施例14,15に示すように、
(Baa,Cab )Oが5mol%,60mol%の場合
は、所望の磁器組成物が得られる。しかし、比較例11
に示すように、(Baa,Cab )Oが0mol%の場合
は、900℃の焼成で緻密な焼結体が得られず、また、
比較例12に示すように、(Baa,Cab )Oが70m
ol%の場合は、比誘電率εr の温度係数τεが+75
ppm/℃と悪くなる。従って、(Baa,Cab )O
(D)は、5mol%≦D≦60mol%の範囲が好適
である。
Next, as shown in Embodiments 14 and 15,
When (Ba a , Ca b ) O is 5 mol% or 60 mol%, a desired porcelain composition can be obtained. However, Comparative Example 11
As shown in ( 1 ), when (Ba a , Ca b ) O is 0 mol%, a dense sintered body cannot be obtained by firing at 900 ° C.
As shown in Comparative Example 12, (Ba a , Ca b ) O was 70 m
For ol%, the temperature coefficient τε of the dielectric constant epsilon r is +75
ppm / ° C. Therefore, (Ba a , Ca b ) O
(D) is preferably in the range of 5 mol% ≦ D ≦ 60 mol%.

【0033】次に、実施例16〜19に示すように、B
aOが略10mol%〜90mol%,CaOが略10
mol%〜90mol%の場合は、所望の磁器組成物が
得られる。しかし、比較例13に示すように、BaOが
略5mol%,CaOが略95mol%の場合は、90
0℃の焼成で緻密な焼結体が得られず、また、比較例1
4に示すように、BaOが略95mol%,CaOが略
5mol%の場合は、900℃の焼成において発泡、反
り、変形を生じる。従って、BaO(a)及びCaO
(b)は、10mol%≦a≦90mol%、10mo
l%≦b≦90mol%の範囲が好適である。
Next, as shown in Examples 16 to 19,
About 10 mol% to 90 mol% of aO, about 10 of CaO
In the case of mol% to 90 mol%, a desired porcelain composition is obtained. However, as shown in Comparative Example 13, when BaO is approximately 5 mol% and CaO is approximately 95 mol%, 90%
A dense sintered body was not obtained by firing at 0 ° C., and Comparative Example 1
As shown in FIG. 4, when BaO is about 95 mol% and CaO is about 5 mol%, foaming, warping, and deformation occur at 900 ° C. Therefore, BaO (a) and CaO
(B) is 10mol% ≦ a ≦ 90mol%, 10mo
The range of 1% ≦ b ≦ 90 mol% is preferable.

【0034】次に、実施例1〜10に示すように、Ti
が4mol%〜6.2mol%の場合は、所望の磁
器組成物が得られる。しかし、比較例3に示すように、
TiOが0mol%の場合は、比誘電率εrの温度係
数τεが+73ppm/℃と悪化し、また、比較例4に
示すように、TiOが20mol%の場合は、900
℃の焼成で緻密な焼結体が得られない。従って、TiO
(E)は、4mol%≦E≦6.2mol%の範囲が
好適である。
Next, as shown in Examples 1 to 10 , Ti
O 2 is the case of 4mol% ~ 6.2 mol%, the desired ceramic composition is obtained. However, as shown in Comparative Example 3,
When TiO 2 is 0 mol%, the temperature coefficient τε of the relative dielectric constant εr deteriorates to +73 ppm / ° C., and as shown in Comparative Example 4, when TiO 2 is 20 mol%, 900
A dense sintered body cannot be obtained by firing at ℃. Therefore, TiO
2 (E) is preferably in the range of 4 mol% ≦ E ≦ 6.2 mol%.

【0035】[0035]

【発明の効果】本発明によれば、高周波用磁器組成物を
900℃以下の比較的低い温度の焼成で得ることができ
るので、内部導体としてAgやCuのような電気伝導度
の良い金属を使用することができ、従って、Qを高める
ことができるという効果がある。
According to the present invention, a high frequency porcelain composition can be obtained by firing at a relatively low temperature of 900 ° C. or less, so that a metal having good electric conductivity such as Ag or Cu can be used as an internal conductor. It can be used, and therefore has the effect that Q can be increased.

【0036】また、本発明によれば、従来よりも低い温
度の焼成で高周波用磁器組成物を得ることができるの
で、焼成のためのエネルギーコストを低減させることが
できるという効果がある。
Further, according to the present invention, a high-frequency porcelain composition can be obtained by firing at a lower temperature than in the prior art, so that the energy cost for firing can be reduced.

【0037】更に、本発明によれば、高周波用磁器組成
物の比誘電率を低下させたので、高周波域における電気
的特性を良好ならしめることができるという効果があ
る。
Further, according to the present invention, since the relative dielectric constant of the high-frequency ceramic composition is lowered, there is an effect that electrical characteristics in a high-frequency range can be improved.

【表1○1】 [Table 1 ○ 1]

【表1○2】 [Table 1 ○ 2]

【表1○3】 [Table 1 ○ 3]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 成田 直人 東京都台東区上野6丁目16番20号 太陽 誘電株式会社内 (72)発明者 増田 淳 東京都台東区上野6丁目16番20号 太陽 誘電株式会社内 (72)発明者 鳥羽 利一 東京都台東区上野6丁目16番20号 太陽 誘電株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Naoto Narita 6-16-20 Ueno, Taito-ku, Tokyo Taiyo Yuden Co., Ltd. (72) Inventor Jun Masuda 6-16-20 Ueno, Taito-ku, Tokyo Taiyo Yuden Incorporated (72) Inventor Toshikazu Toba 6-16-20 Ueno, Taito-ku, Tokyo Taiyo Yuden Co., Ltd.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ZrO粉末とガラス粉末の混合物を焼
結したものからなり、ZrO粉末(X)とガラス粉末
(Y)のモル比率が、 5mol%≦X≦mol%,91 mol%≦Y≦95mol%, X+Y=100mol%, の範囲にあり、 前記ガラス粉末は、酸化物換算表記に従ったとき、主成
分が、SiO,Al,B,(Ba,C
)O,TiOからなり、SiO(A),Al
(B),B(C),(Ba,Ca)O
(D)及びTiO(E)のモル比率が、 15mol%≦A≦70mol%, 0mol%<B≦15mol%, 0mol%<C≦10mol%, 5mol%≦D≦60mol%, 10mol%≦a≦90mol%, 10mol%≦b≦90mol%, a+b=100mol%, 4mol%≦E≦6.2mol%, A+B+C+D+E=100mol%, の範囲にあることを特徴とする比誘電率の低い高周波用
低温焼結性磁器組成物。
1. A mixture of ZrO 2 powder and glass powder, which is sintered, wherein the molar ratio of ZrO 2 powder (X) to glass powder (Y) is 5 mol% ≦ X ≦ 9 mol%, 91 mol% ≦ Y ≦ 95 mol%, X + Y = 100 mol%, and the main component of the glass powder is SiO 2 , Al 2 O 3 , B 2 O 3 , (Ba a , C
a b) O, consists TiO 2, SiO 2 (A) , Al 2
O 3 (B), B 2 O 3 (C), (Ba a , Ca b ) O
The molar ratio of (D) and TiO 2 (E) is 15 mol% ≦ A ≦ 70 mol%, 0 mol% <B ≦ 15 mol%, 0 mol% <C ≦ 10 mol%, 5 mol% ≦ D ≦ 60 mol%, 10 mol% ≦ a ≦ 90mol%, 10mol% ≦ b ≦ 90mol%, a + b = 100mol%, 4mol% ≦ E ≦ 6.2 mol%, a + B + C + D + E = 100mol%, low-temperature low dielectric constant, characterized in that the range of the high frequency Sinterable porcelain composition.
JP4360443A 1992-12-28 1992-12-28 Low frequency sinterable porcelain composition for high frequency Expired - Fee Related JP3067919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4360443A JP3067919B2 (en) 1992-12-28 1992-12-28 Low frequency sinterable porcelain composition for high frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4360443A JP3067919B2 (en) 1992-12-28 1992-12-28 Low frequency sinterable porcelain composition for high frequency

Publications (2)

Publication Number Publication Date
JPH06215629A JPH06215629A (en) 1994-08-05
JP3067919B2 true JP3067919B2 (en) 2000-07-24

Family

ID=18469425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4360443A Expired - Fee Related JP3067919B2 (en) 1992-12-28 1992-12-28 Low frequency sinterable porcelain composition for high frequency

Country Status (1)

Country Link
JP (1) JP3067919B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093992A (en) * 2012-11-12 2014-05-22 Makoto Suzuki Packaging sheet and packaged rice ball

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167274A (en) * 2000-11-29 2002-06-11 Kyocera Corp Ceramic composition baked at low temperature and multi- layer wiring board using it

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188477A (en) * 1981-05-13 1982-11-19 Nippon Electric Co Inorganic composition for insulating ceramic paste
JPS59162169A (en) * 1983-03-04 1984-09-13 株式会社日立製作所 Ceramics and multilayer distribution panel
JPS6210940A (en) * 1985-07-08 1987-01-19 Nec Corp Light repeater monitoring system
JPS63295473A (en) * 1987-05-27 1988-12-01 Shoei Kagaku Kogyo Kk Dielectric material for circuit board
JPH04275976A (en) * 1991-03-01 1992-10-01 Ngk Insulators Ltd Dielectric porcelain composition
JPH04367537A (en) * 1991-06-14 1992-12-18 Matsushita Electric Works Ltd Glass composition and substrate for circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188477A (en) * 1981-05-13 1982-11-19 Nippon Electric Co Inorganic composition for insulating ceramic paste
JPS59162169A (en) * 1983-03-04 1984-09-13 株式会社日立製作所 Ceramics and multilayer distribution panel
JPS6210940A (en) * 1985-07-08 1987-01-19 Nec Corp Light repeater monitoring system
JPS63295473A (en) * 1987-05-27 1988-12-01 Shoei Kagaku Kogyo Kk Dielectric material for circuit board
JPH04275976A (en) * 1991-03-01 1992-10-01 Ngk Insulators Ltd Dielectric porcelain composition
JPH04367537A (en) * 1991-06-14 1992-12-18 Matsushita Electric Works Ltd Glass composition and substrate for circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093992A (en) * 2012-11-12 2014-05-22 Makoto Suzuki Packaging sheet and packaged rice ball

Also Published As

Publication number Publication date
JPH06215629A (en) 1994-08-05

Similar Documents

Publication Publication Date Title
KR0161348B1 (en) Non-reduced dielectric ceramic compositions
JP4632534B2 (en) Dielectric porcelain and manufacturing method thereof
JP3737774B2 (en) Dielectric ceramic composition
JP3067919B2 (en) Low frequency sinterable porcelain composition for high frequency
JP3067917B2 (en) Low frequency sinterable porcelain composition for high frequency
JP3067918B2 (en) Low frequency sinterable porcelain composition for high frequency
JP3085625B2 (en) Dielectric porcelain composition
JPH08259319A (en) Low-temperature-baked dielectric porcelain and its production
JP2000211969A (en) Porcelain fired at lower temperature and electronic parts equipped therewith
EP0128956A1 (en) Low firing ceramic dielectric for temperature compensating capacitors.
JP2865925B2 (en) Method for producing dielectric porcelain composition
JPH11240760A (en) Dielectric porcelain composition and ceramic electronic part using the same
JP2865926B2 (en) Method for producing dielectric porcelain composition
JPH03109256A (en) Dielectric porcelain composition
JP2879865B2 (en) Method for producing dielectric porcelain composition
JP3839868B2 (en) Dielectric ceramic composition and electronic component
JP2865927B2 (en) Method for producing dielectric porcelain composition
JP3225828B2 (en) High frequency dielectric composition
JP2879864B2 (en) Method for producing dielectric porcelain composition
JP2879866B2 (en) Method for producing dielectric porcelain composition
JP3303453B2 (en) Dielectric porcelain composition
JPH0828128B2 (en) Dielectric porcelain composition
JPH07182922A (en) Dielectric ceramic composition
JP3085635B2 (en) Dielectric porcelain composition
KR100254799B1 (en) Low firing dielectric ceramic capacitor composition

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980707

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees