JP4174668B2 - DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT - Google Patents

DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT Download PDF

Info

Publication number
JP4174668B2
JP4174668B2 JP2003142148A JP2003142148A JP4174668B2 JP 4174668 B2 JP4174668 B2 JP 4174668B2 JP 2003142148 A JP2003142148 A JP 2003142148A JP 2003142148 A JP2003142148 A JP 2003142148A JP 4174668 B2 JP4174668 B2 JP 4174668B2
Authority
JP
Japan
Prior art keywords
tio
dielectric
weight
dielectric ceramic
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003142148A
Other languages
Japanese (ja)
Other versions
JP2004345877A (en
Inventor
孝史 河野
晃一 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2003142148A priority Critical patent/JP4174668B2/en
Priority to EP04733921.3A priority patent/EP1645551B9/en
Priority to CNB2004800138425A priority patent/CN100378030C/en
Priority to PCT/JP2004/006735 priority patent/WO2004103929A1/en
Priority to US10/556,374 priority patent/US7276461B2/en
Priority to KR1020057022055A priority patent/KR101137272B1/en
Publication of JP2004345877A publication Critical patent/JP2004345877A/en
Application granted granted Critical
Publication of JP4174668B2 publication Critical patent/JP4174668B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、比誘電率が15〜25程度で、共振周波数の温度係数τfの絶対値が小さく、低抵抗導体であるAu、AgやCu等と同時焼成が可能で、積層セラミック部品に好適な低い誘電損失(高いQ値)を有する誘電体磁器及び該誘電体磁器を得るための組成物、その製造方法、ならびにそれを用いた積層セラミックコンデンサやLCフィルタ等の積層セラミック部品に関するものである。特に、本発明は、Zn2TiO4及びZnTiO3更には必要に応じTiO2を含む主成分、並びに特定のガラス成分からなる誘電体磁器組成物、及びその製造方法、ならびにそれを用いた誘電体磁器及び積層セラミック部品に関する。
【0002】
【従来の技術】
近年、マイクロ波回路の集積化に伴い、小型でかつ誘電損失(tanδ)が小さく誘電特性が安定した誘電体共振器が求められている。そのため誘電体共振器部品としては内部に層状に電極導体を構成した積層チップ部品の市場が拡大している。これら積層チップ部品の内部導体としてはAu、Pt、Pd等の貴金属が用いられてきたが、コストダウンの観点よりこれら導体材料より比較的安価なAgもしくはCu、またはAgもしくはCuを主成分とする合金にかわりつつある。特にAgまたはAgを主成分とする合金はその直流抵抗が低いことから、誘電体共振器のQ特性を向上させることができる等の利点がありその要求が高まっている。しかしAgまたはAgを主成分とする合金は融点が960℃程度と低く、これより低い温度で安定に焼結できる誘電体材料が必要となる。
【0003】
また、誘電体共振器を用いて誘電体フィルタを形成する場合、誘電体材料に要求される特性は、(1)温度変化に対する特性の変動を極力小さくするため誘電体の共振周波数の温度係数τfの絶対値が小さいこと、(2)誘電体フィルタに要求される挿入損失を極力小さくするため誘電体のQ値が高いこと、である。さらに携帯電話等で使用されるマイクロ波付近では誘電体の比誘電率εrにより共振器の長さが制約を受けるために、素子の小型化には比誘電率εrが高いことが要求される。ここで、誘電体共振器の長さは使用電磁波の波長が基準となる。比誘電率εrの誘電体中を伝播する電磁波の波長λは、真空中の電磁波の伝播波長をλ0とするとλ=λ0/(εr1/2となる。
【0004】
したがって素子は使用される誘電体材料の誘電率が大きいほど小型化できる。しかし素子が小さくなりすぎると要求される加工精度が厳しくなり現実の加工精度が低下し、かつ電極の印刷精度の影響を受けやすくなるため、用途等によって素子が小さくなりすぎないように、比誘電率εrは適切な範囲(例えば15から25程度)のものが要求される。
【0005】
そこで、これらの要求を満足するために、1000℃以下で焼成可能な誘電体磁器としては、樹脂中に無機誘電体粒子を分散したもの(特許文献1)や、BaO−TiO2−Nd23系セラミックスとガラスの複合材料からなるガラスセラミックス(特許文献2)が知られている。また、TiO2とZnOを含みさらに、B23系ガラスを含有する誘電体磁器も知られている(特許文献3)。
【0006】
【特許文献1】
特開平6−132621号公報
【特許文献2】
特開平10−330161号公報
【特許文献3】
特許第3103296号公報
【0007】
【発明が解決しようとする課題】
しかしながら、特許文献1に示された素子では、焼成温度が400℃程度でありAg等を配線導体として用いての同時焼成による多層化、微細な配線化ができないという問題があった。
【0008】
また特許文献2に示されたガラスセラミックス材料は比誘電率εrが40より大きいために素子が小さくなりすぎて要求される加工精度が厳しくなり現実の加工精度が低下し、かつ電極の印刷精度の影響を受けやすくなる問題点があった。
【0009】
さらに、特許文献3に記載されている組成では、実施例から分かるように、比誘電率εrが25〜70程度と高く、誘電特性の温度係数も組成により大きく変動し絶対値が700ppm/℃を超えるものもある。高周波の誘電体部品を提供するには、適度な比誘電率で、誘電特性の温度依存性が小さく、かつ、高いQ値を有する材料が求められている。
【0010】
本発明の目的は、積層セラミック部品等を適度な大きさに形成できるように比誘電率εrが15から25程度で、Cu、Agといった低抵抗導体の同時焼成による内装化、多層化ができる800〜1000℃以下の温度での焼成が可能で、かつ、低い誘電損失tanδ(高いQ値)を有し、共振周波数の温度係数τfの絶対値が50ppm/℃以下である誘電体磁器、それを得るための誘電体磁器組成物、及びその製造方法を提供することにある。また、本発明の目的は、このような誘電体磁器からなる誘電体層とCuまたはAgを主成分とする内部電極とを有する積層セラミックコンデンサやLCフィルタ等の積層セラミック部品を提供することである。
【0011】
【課題を解決するための手段】
本発明者等は、上記課題を解決するために鋭意検討した結果、ZnTiO3と、Zn2TiO4及び更に必要に応じてTiO2を含む混合物に対して、少なくともZnO、B23、SiO2、Al23及びBaOを含むガラスを添加することにより、800から1000℃の焼成を行った後においてもZnTiO3、Zn2TiO4及びTiO2の生成相比を変動させることなく、15〜25の範囲のεrと低い誘電損失tanδ(高いQ値)を得ることができること、また、ZnOを含むガラスを用いることでZnTiO3とZn2TiO4からのZnO成分のガラス中への溶解を極力抑制することができるために組成変化による誘電特性の変動を抑制でき、配線導体としてCu及びAg等を用いた多層化、微細配線化が可能であることを知見し、本発明に至った。
【0012】
即ち、本発明は、一般式xZn2TiO4−(1−x−y)ZnTiO3−yTiO2で表され、xが0.15<x<0.8、yが0≦y≦0.2の範囲内である主成分100重量部に対して、ZnOが50〜75重量%、B23が5〜30重量%、SiO2が6〜15重量%、Al23が0.5〜5重量%、BaOが3〜10重量%である無鉛低融点ガラスを3重量部以上30重量部以下含有せしめてなる誘電体磁器組成物に関する。
【0013】
また、本発明は、前記誘電体磁器組成物を焼成してなる、Zn2TiO4、ZnTiO3、及びTiO2の結晶相(但し、TiO2の結晶相は無くともよい。以下同様。)とガラス相とからなる誘電体磁器に関する。
【0014】
さらに、本発明は、ZnO原料粉末とTiO2原料粉末とを混合し、仮焼することにより、Zn2TiO4、ZnTiO3及びTiO2からなるセラミック粉末(但し、TiO2の含有量は零であってもよい。以下同様。)を得、該セラミック粉末にZnOが50〜75重量%、B23が5〜30重量%、SiO2が6〜15重量%、Al23が0.5〜5重量%、BaOが3〜10重量%である無鉛低融点ガラスを混合することを特徴とする前記誘電体磁器組成物の製造方法に関する。
【0015】
さらに、本発明は、複数の誘電体層と、該誘電体層間に形成された内部電極と、該内部電極に電気的に接続された外部電極とを備える積層セラミック部品において、前記誘電体層が前記誘電体磁器組成物を焼成して得られる誘電体磁器にて構成され、前記内部電極がCu単体若しくはAg単体、又はCu若しくはAgを主成分とする合金材料にて形成されていることを特徴とする積層セラミック部品に関する。
【0016】
Zn2TiO4、ZnTiO3及び任意成分としてのTiO2からなる結晶成分と特定のガラス成分とからなる組成とすることにより、1000℃以下の焼成温度で焼成可能であり、焼成後の誘電体磁器の比誘電率εrが15〜25程度で、誘電損失が小さく、共振周波数の温度係数の絶対値が50ppm/℃以下とすることができる。これにより、CuもしくはAg単体、又はCuもしくはAgを主成分とする合金材料からなる内部電極を有する積層セラミック部品を提供することができる。
【0017】
【発明の実施の形態】
以下、本発明の誘電体磁器組成物について具体的に説明する。本発明の誘電体磁器組成物は、Zn2TiO4、ZnTiO3、及び任意成分としてのTiO2からなる主成分とガラス成分を含有してなる誘電体磁器組成物であり、主成分は、一般式xZn2TiO4−(1−x−y)ZnTiO3−yTiO2で表され、xが0.15<x<0.8、yが0≦y≦0.2の範囲内であり、ガラス成分は、ZnOが50〜75重量%、B23が5〜30重量%、SiO2が6〜15重量%、Al23が0.5〜5重量%、BaOが3〜10重量%である無鉛低融点ガラスである。本発明の誘電体磁器組成物は、前記主成分100重量部に対して、ガラス成分を3重量部以上30重量部以下含有せしめてなる。
【0018】
前記組成においてxは0.15を超え0.8より小さいことが好ましい。xが0.15以下、あるいはxが0.8以上ではτfの絶対値が50ppm/℃を超え好ましくない。
【0019】
また、前記組成においてyは0〜0.2の範囲であることが好ましい。TiO2を含有することにより誘電率がやや増加する傾向にあるが、yが0.2以下の組成ではいずれも本発明の目的とする効果を得ることができる。yが0.2より大きい場合は、τfが+50ppm/℃を超え好ましくない。
【0020】
また、本発明の誘電体磁器組成物は、セラミックス母材となる前記主成分100重量部に対してガラス成分の添加量が3〜30重量部の範囲であることが好ましい。ガラス成分の添加量が3重量部未満の場合は、焼成温度がAgもしくはCu、またはAgもしくはCuを主成分とする合金の融点以上の温度となり、本発明の目的の一つであるこれらからなる電極の使用ができなくなるため好ましくない。ガラス成分の添加量が30重量部を超える場合は、ガラス溶出により良好な焼結ができなくなる傾向にある。
【0021】
また、本発明に用いるZn2TiO4は酸化亜鉛ZnOと酸化チタンTiO2とをモル比2:1で混合し焼成することにより得ることができる。また、ZnTiO3はZnOとTiO2とをモル比1:1で混合し焼成することにより得ることができる。Zn2TiO4及びZnTiO3の原料として、TiO2とZnOの他に、焼成時に酸化物となるZn及び/又はTiを含有する硝酸塩、炭酸塩、水酸化物、塩化物、及び有機金属化合物等を使用してもよい。
【0022】
本発明の誘電体磁器組成物では、特定のガラスを所定量含有することを特徴とする。ここで、本発明に用いるガラスとしては、ZnOが50〜75重量%、B23が5〜30重量%、SiO2が6〜15重量%、Al23が0.5〜5重量%、BaOが3〜10重量%の割合で含まれるものが使用され、これら酸化物成分を所定割合で配合したものを溶融、冷却し、ガラス化したものが使用される。
【0023】
ここで、本発明で使用するガラスの組成について以下に説明する。ZnOについては、50重量%未満ではガラスの軟化点が高くなることにより良好な焼結ができなくなる傾向にあり、75重量%超では所望温度でのガラス化が困難になる傾向にある。B23については、5重量%未満ではガラスの軟化点が高くなることにより良好な焼結ができなくなる傾向にあり、30重量%超ではガラス溶出により良好な焼結ができなくなる傾向にある。SiO2については、6重量%未満及び15重量%超でガラスの軟化点が高くなることにより良好な焼結ができなくなる傾向にある。Al23については、0.5重量%未満では化学的耐久性が低くなる傾向にあり、5重量%超では所望温度でのガラス化が困難になる傾向にある。BaOについては、3重量%未満及び10重量%超で所望温度でのガラス化が困難になる傾向にある。またガラス中にPb、Biの成分を含むと本発明の誘電体磁器組成物のQ値が低下する傾向にある。
【0024】
本発明によれば、一般式xZn2TiO4−(1−x−y)ZnTiO3−yTiO2で表され、xが0.15<x<0.8、yが0≦y≦0.2の範囲内である主成分100重量部に対して、ZnOが50〜75重量%、B23が5〜30重量%、SiO2が6〜15重量%、Al23が0.5〜5重量%、BaOが3〜10重量%である無鉛低融点ガラスを3重量部以上30重量部以下含有させることにより、800〜1000℃の焼成温度で低温焼結可能である。このような誘電体磁器組成物を焼成して本発明の誘電体磁器を得ることが出来る。本発明の誘電体磁器の比誘電率εrは、15〜25程度で、無負荷Q値が大きく、共振周波数の温度係数τfの絶対値が50ppm/℃以下の特性を有する。誘電体磁器の組成は、焼成前の誘電体磁器組成物の各原料組成とほぼ同じであり、Zn2TiO4、ZnTiO3、及びTiO2の結晶相とガラス相とからなる。本発明の誘電体磁器組成物により、低温焼成が可能で、上記のような特性の誘電体磁器を得ることができる。
【0025】
本発明では、焼成前にZn2TiO4、ZnTiO3、任意成分としてのTiO2の各粒子及びガラス粒子は、個別に粉砕し混合されるか、あるいは、各原料粒子は混合された状態で粉砕されるが、焼成前のこれら原料粒子の平均粒子径は分散性を高め、高い無負荷Q値と安定した比誘電率εrを得るために2.0μm以下、好ましくは1.0μm以下であることが好ましい。なお、平均粒子径を過度に小さくすると取り扱いが困難になる場合があるので、0.05μm以上とするのが好ましい。
【0026】
次に、本発明の誘電体磁器組成物及び誘電体磁器の製造方法について説明する。本発明の誘電体磁器組成物は、ZnO原料粉末とTiO2原料粉末とを混合し、仮焼することにより、Zn2TiO4、ZnTiO3及び任意成分としてのTiO2からなるセラミック粉末を得、該セラミック粉末にZnOが50〜75重量%、B23が5〜30重量%、SiO2が6〜15重量%、Al23が0.5〜5重量%、BaOが3〜10重量%である無鉛低融点ガラスを混合することにより得られる。Zn2TiO4、ZnTiO3及びTiO2からなるセラミック粉末は、それぞれ単独で調製してもよいし、ZnOとTiO2の原料比を調整して直接、Zn2TiO4、ZnTiO3及びTiO2が混合した粉末を得ても良い。
【0027】
Zn2TiO4、ZnTiO3の各粉末を個別に調製し、本発明の誘電体磁器組成物を得る方法についてさらに説明する。まず、酸化亜鉛と酸化チタンを2:1のモル比率に秤量し、水、アルコール等の溶媒と共に湿式混合する。続いて、水、アルコール等を除去した後、粉砕し、酸素含有雰囲気(例えば空気雰囲気)下にて900〜1200℃で約1〜5時間程度仮焼する。このようにして得られた仮焼粉はZn2TiO4からなる。次に酸化チタンと酸化亜鉛を1:1のモル比率に秤量し、Zn2TiO4と同様な作製方法でZnTiO3を作製する。これらZn2TiO4、ZnTiO3、及びTiO2からなる主成分を所定量秤量し、さらに、ZnOが50〜75重量%、B23が5〜30重量%、SiO2が6〜15重量%、Al23が0.5〜5重量%、BaOが3〜10重量%である無鉛低融点ガラスを主成分に対し所定の比率になるように秤量し、水、アルコール等の溶媒と共に湿式混合する。続いて、水、アルコール等を除去した後、粉砕して目的の誘電体磁器組成物となる誘電体磁器原料粉末を作製する。
【0028】
本発明の誘電体磁器組成物は焼成し、誘電体磁器のペレットとして誘電特性を測定する。詳しくは、前記誘電体磁器原料粉末にポリビニルアルコールの如き有機バインダーを混合して均質にし、乾燥、粉砕をおこなった後、ペレット形状に加圧成形(圧力100〜1000Kg/cm2程度)する。得られた成形物を空気の如き酸素含有ガス雰囲気下にて800〜1000℃で焼成することにより、Zn2TiO4相、ZnTiO3相、TiO2相及びガラス相が共存する誘電体磁器を得ることができる。
【0029】
本発明の誘電体磁器組成物は、必要により適当な形状、及びサイズに加工、あるいはドクターブレード法等によるシート成形、及びシートと電極による積層化を行うことにより、各種積層セラミック部品の材料として利用できる。積層セラミック部品としては、積層セラミックコンデンサ、LCフィルタ、誘電体共振器、誘電体基板などが挙げられる。
【0030】
本発明の積層セラミック部品は、複数の誘電体層と、該誘電体層間に形成された内部電極と、該内部電極に電気的に接続された外部電極とを備えており、前記誘電体層が前記誘電体磁器組成物を焼成して得られる誘電体磁器にて構成され、前記内部電極がCu単体若しくはAg単体、又はCu若しくはAgを主成分とする合金材料にて形成されている。本発明の積層セラミック部品は、誘電体磁器からなる誘電体層と、Cu単体若しくはAg単体、又はCu若しくはAgを主成分とする合金材料とを、同時焼成することにより得られる。
【0031】
上記積層セラミック部品の一実施形態として、例えば図1及び図2に示したトリプレートタイプの共振器が挙げられる。図1は本発明に係る一実施形態のトリプレートタイプの共振器を示す模式的斜視図であり、図2はその模式的断面図である。図1及び図2に示すように、トリプレートタイプの共振器は、複数の誘電体層1と、該誘電体層間に形成された内部電極2と、該内部電極に電気的に接続された外部電極3とを備える積層セラミック部品である。トリプレートタイプの共振器は、内部電極2を中央部に配置して複数枚の誘電体層1を積層して得られる。内部電極2は、図に示した第1の面Aからこれに対向する第2の面Bまで貫通するように形成されており、第1の面Aのみ開放面で、第1の面Aを除く共振器の5面には外部電極3が形成されており、第2の面Bにおいて内部電極2と外部電極3が接続されている。内部電極2の材料は、CuまたはAgあるいは、それらを主成分とする合金材料で構成されている。本発明の誘電体磁器組成物は低温で焼成できるため、これらの内部電極の材料が使用できる。
【0032】
【実施例】
実施例1:
酸化チタン(TiO2)0.33モル、酸化亜鉛(ZnO)0.66モルをエタノールと共にボールミルにいれ、12時間湿式混合した。溶液を脱媒後、粉砕し、空気雰囲気下1000℃で仮焼し、Zn2TiO4仮焼粉を得た。次にTiO20.5モル、ZnO0.5モルを同様な方法で湿式混合、仮焼してZnTiO3仮焼粉を得た。これらZn2TiO4仮焼粉、ZnTiO3仮焼粉とTiO2を表1に示した配合量で調製したものを母材(主成分)とした。この母材100重量部に対して、ZnO 63.5重量%、SiO2 8重量%、Al23 1.5重量%、BaO 7重量%、B23 20重量%から構成されるガラス粉末10重量部を添加したものをボールミルにいれ、24時間湿式混合した。溶液を脱媒後、平均粒子径が1μmになるまで粉砕し、この粉砕物に適量のポリビニルアルコール溶液を加えて乾燥後、直径12mm、厚み4mmのペレットに成形し、空気雰囲気下において、900℃で2時間焼成した。図3に作製した焼結体のX線回折図を示した。図3に示したように本発明の誘電体磁器組成物の焼結体においてもZn2TiO4相、ZnTiO3相及び、TiO2相が共存していることがわかる。
【0033】
こうして得られた誘電体磁器を直径7mm、厚み3mmの大きさに加工した後、誘電共振法によって、共振周波数7〜11GHzにおける無負荷Q値、比誘電率εr及び共振周波数の温度係数τfを求めた。その結果を表2に示した。
【0034】
【表1】

Figure 0004174668
【0035】
【表2】
Figure 0004174668
【0036】
また前記母材とガラスの混合物100gに対して、結合剤としてポリビニルブチラール9g、可塑剤としてジブチルフタレート6g及び溶剤としてトルエン60gとイソプロピルアルコール30gを添加しドクターブレード法により厚さ100μmのグリーンシートを作製した。そして、このグリーンシートを、65℃の温度で200kg/cm2の圧力を加える熱圧着により、22層積層した。その際、内部電極としてAgを印刷した層が厚み方向の中央部にくるように配置した。得られた積層体を900℃で2時間焼成した後、外部電極を形成して、トリプレートタイプの共振器を作製した。大きさは、幅4.9mm、高さ1.7mm、長さ8.4mmであった。
【0037】
得られたトリプレートタイプの共振器について共振周波数2GHzで無負荷Q値を評価した。その結果、トリプレートタイプの共振器としての無負荷Qは210であった。このように、本発明に係る誘電体磁器組成物を使用することにより、優れた特性を有するトリプレートタイプの共振器が得られた。
【0038】
実施例2、3:(xの影響)
上記実施例1と同様にZn2TiO4、ZnTiO3とTiO2を表1に示した配合量で混合したものを母材とし、この母材とガラスを表1に示した配合量で混合後、実施例1と同一条件でペレット形状の焼結体を作製して、実施例1と同様な方法で種々の特性を評価した。その結果を表2に示した。
【0039】
実施例4〜6:(yの影響)
上記実施例1と同様にZn2TiO4、ZnTiO3とTiO2を表1に示した配合量で混合したものを母材とし、この母材とガラスを表1に示した配合量で混合後、実施例1と同一条件でペレット形状の焼結体を作製して、実施例1と同様な方法で種々の特性を評価した。その結果を表2に示した。
【0040】
実施例7〜9:(粒径の影響)
上記実施例1と同様にZn2TiO4、ZnTiO3とTiO2を表1に示した配合量で混合したものを母材とし、この母材とガラスを表1に示した配合量で混合後、粒子径が表1記載の平均粒子径になるまで粉砕し、実施例1と同一条件でペレット形状の焼結体を作製して、実施例1と同様な方法で種々の特性を評価した。その結果を表2に示した。
【0041】
実施例10〜12:(ガラス組成の影響)
上記実施例1と同様にZn2TiO4、ZnTiO3とTiO2を表1に示した配合量で混合したものを母材とし、この母材と表1記載の種々の組成のガラスを表1に示した配合量で混合後、実施例1と同一条件でペレット形状の焼結体を作製して、実施例1と同様な方法で種々の特性を評価した。その結果を表2に示した。
【0042】
実施例13、14:(ガラス量の影響)
上記実施例1と同様にZn2TiO4、ZnTiO3とTiO2を表1に示した配合量で混合したものを母材とし、この母材とガラスを表1に示した配合量で混合後、実施例1と同一条件でペレット形状の焼結体を作製して、実施例1と同様な方法で種々の特性を評価した。その結果を表2に示した。
【0043】
比較例1、2:(xの影響)
上記実施例1と同様にZn2TiO4、ZnTiO3とTiO2を表1に示した配合量で混合したものを母材とし、この母材とガラスを表1に示した配合量で混合後、実施例1と同一条件でペレット形状の焼結体を作製した。しかしながらZn2TiO4のモル比xが0.15より小さいときは共振周波数の温度係数τfが+50ppm/℃より大きくなり、またxが0.8より大きいときは共振周波数の温度係数τfが−50ppm/℃より小さくなった。その結果を表2に示した。
【0044】
比較例3、4:(yの影響)
上記実施例1と同様にZn2TiO4、ZnTiO3とTiO2を表1に示した配合量で混合したものを母材とし、この母材とガラスを表1に示した配合量で混合後、実施例1と同一条件でペレット形状の焼結体を作製した。しかしながらTiO2のモル比yが0.2より大きい条件では共振周波数の温度係数τfが+50ppm/℃より大きくなった。その結果を表2に示した。
【0045】
比較例5〜19:(ガラス組成の影響)
上記実施例1と同様にZn2TiO4、ZnTiO3とTiO2を表1に示した配合量で混合したものを母材とし、この母材と表1記載の種々の組成のガラスを表1に示した配合量で混合後、実施例1と同一条件でペレット形状の焼結体を作製した。しかしながら本発明に使用したガラス組成の範囲外のガラス組成物を用いたときには、Q値が低下し共振周波数の温度係数τfが−50ppm/℃より小さくなったり(比較例5,6)、硫酸溶液でガラスが溶解したり(比較例12)、1000℃以下で焼結しなかったり800℃以上でガラスが溶出したり(比較例7〜11,13〜19)した。その結果を表2に示した。
【0046】
比較例20、21:(ガラス量の影響)
上記実施例1と同様にZn2TiO4、ZnTiO3とTiO2を表1に示した配合量で混合したものを母材とし、この母材とガラスを表1に示した配合量で混合後、実施例1と同一条件でペレット形状の焼結体を作製した。しかしながらガラス量が3重量部より少ない場合は1000℃以下で焼結しなかった。またガラス量が30重量部より多い場合はガラスが900℃以上で溶出してセッターと反応した。その結果を表2に示した。
【0047】
【発明の効果】
本発明の誘電体磁器組成物を用いることにより、従来困難であったAgもしくはCu、またはAgもしくはCuを主成分とする合金の融点以下での焼成が可能となり、電子部品を構成する場合これら金属を内装化、多層化するための内部導体として使用することができる。また本発明の誘電体磁器組成物を焼成して得られる誘電体磁器は、積層セラミック部品等を適度な大きさに形成できるように比誘電率εrが15から25程度であり、低い誘電損失tanδ(高いQ値)を有し、共振周波数の温度係数τfの絶対値が50ppm/℃以下である。本発明によれば、このような誘電体磁器を得るための誘電体磁器組成物及びその製造方法が提供される。さらに、本発明によれば、このような誘電体磁器組成物を使用した誘電体層とAgもしくはCu、またはAgもしくはCuを主成分とする合金を用いた内部電極とを有する積層セラミックコンデンサやLCフィルタ等の積層セラミック部品が提供される。
【図面の簡単な説明】
【図1】本発明に係る一実施形態のトリプレートタイプの共振器を示す模式的斜視図である。
【図2】図1の共振器の模式的断面図である。
【図3】実施例1で得られた本発明にかかる誘電体磁器組成物の焼結体のX線回折図である。
【符号の説明】
1 誘電体層
2 内部電極
3 外部電極[0001]
BACKGROUND OF THE INVENTION
The present invention has a relative dielectric constant of about 15 to 25, a small absolute value of the temperature coefficient τ f of the resonance frequency, and can be co-fired with Au, Ag, Cu, etc., which are low resistance conductors, and is suitable for multilayer ceramic parts. The present invention relates to a dielectric ceramic having a low dielectric loss (high Q value), a composition for obtaining the dielectric ceramic, a manufacturing method thereof, and a multilayer ceramic component such as a multilayer ceramic capacitor and an LC filter using the same. . In particular, the present invention relates to a dielectric ceramic composition comprising Zn 2 TiO 4, ZnTiO 3 and, if necessary, a main component containing TiO 2 and a specific glass component, a method for producing the same, and a dielectric using the same. The present invention relates to porcelain and multilayer ceramic parts.
[0002]
[Prior art]
In recent years, with the integration of microwave circuits, a dielectric resonator having a small size, a small dielectric loss (tan δ), and a stable dielectric characteristic has been demanded. Therefore, as a dielectric resonator component, the market for multilayer chip components in which electrode conductors are formed in layers is expanding. Noble metals such as Au, Pt, and Pd have been used as the internal conductors of these multilayer chip components, but Ag or Cu that is relatively cheaper than these conductor materials or Ag or Cu as the main component from the viewpoint of cost reduction. The alloy is being replaced. In particular, Ag or an alloy containing Ag as a main component has a low direct current resistance, so that there is an advantage that the Q characteristic of the dielectric resonator can be improved, and the demand is increasing. However, Ag or an alloy containing Ag as a main component has a melting point as low as about 960 ° C., and a dielectric material that can be stably sintered at a lower temperature is required.
[0003]
When a dielectric filter is formed using a dielectric resonator, the characteristics required for the dielectric material are as follows: (1) the temperature coefficient τ of the resonance frequency of the dielectric in order to minimize fluctuations in the characteristics with respect to temperature changes. The absolute value of f is small, and (2) the Q value of the dielectric is high in order to minimize the insertion loss required for the dielectric filter. Furthermore, since the resonator length is limited by the dielectric constant ε r of the dielectric in the vicinity of microwaves used in mobile phones and the like, a high relative dielectric constant ε r is required to reduce the size of the element. The Here, the length of the dielectric resonator is based on the wavelength of the electromagnetic wave used. The wavelength λ of an electromagnetic wave propagating through a dielectric having a relative dielectric constant ε r is λ = λ 0 / (ε r ) 1/2 where λ 0 is the propagation wavelength of the electromagnetic wave in vacuum.
[0004]
Therefore, the element can be downsized as the dielectric constant of the dielectric material used increases. However, if the device becomes too small, the required processing accuracy will become severe, the actual processing accuracy will decrease, and it will be easily affected by the printing accuracy of the electrode. The rate ε r is required to be in an appropriate range (for example, about 15 to 25).
[0005]
Therefore, in order to satisfy these requirements, dielectric ceramics that can be fired at 1000 ° C. or lower include those in which inorganic dielectric particles are dispersed in a resin (Patent Document 1), BaO—TiO 2 —Nd 2 O. A glass ceramic (Patent Document 2) made of a composite material of a 3 series ceramic and glass is known. A dielectric ceramic containing TiO 2 and ZnO and further containing B 2 O 3 glass is also known (Patent Document 3).
[0006]
[Patent Document 1]
JP-A-6-132621 [Patent Document 2]
Japanese Patent Laid-Open No. 10-330161 [Patent Document 3]
Japanese Patent No. 3103296 [0007]
[Problems to be solved by the invention]
However, the element disclosed in Patent Document 1 has a problem that the firing temperature is about 400 ° C., and multilayering and fine wiring cannot be performed by simultaneous firing using Ag or the like as a wiring conductor.
[0008]
In addition, since the glass ceramic material disclosed in Patent Document 2 has a relative dielectric constant ε r of greater than 40, the element becomes too small and the required processing accuracy becomes severe, and the actual processing accuracy is reduced, and the electrode printing accuracy is reduced. There was a problem that would be easily affected by.
[0009]
Furthermore, in the composition described in Patent Document 3, as can be seen from the examples, the relative dielectric constant ε r is as high as about 25 to 70, the temperature coefficient of the dielectric characteristics varies greatly depending on the composition, and the absolute value is 700 ppm / ° C. There are some that exceed. In order to provide a high-frequency dielectric component, a material having an appropriate relative dielectric constant, a small temperature dependence of dielectric characteristics, and a high Q value is required.
[0010]
The object of the present invention is that the relative dielectric constant ε r is about 15 to 25 so that multilayer ceramic parts and the like can be formed to an appropriate size, and can be internally and multilayered by simultaneous firing of low resistance conductors such as Cu and Ag. A dielectric ceramic that can be fired at a temperature of 800 to 1000 ° C. or lower, has a low dielectric loss tan δ (high Q value), and has an absolute value of a temperature coefficient τ f of a resonance frequency of 50 ppm / ° C. or lower; It is an object of the present invention to provide a dielectric ceramic composition for obtaining the same and a method for producing the same. Another object of the present invention is to provide a multilayer ceramic component such as a multilayer ceramic capacitor or LC filter having a dielectric layer composed of such a dielectric ceramic and an internal electrode mainly composed of Cu or Ag. .
[0011]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found at least ZnO, B 2 O 3 , SiO 2 with respect to a mixture containing ZnTiO 3 and Zn 2 TiO 4 and further TiO 2 as required. 2 , by adding glass containing Al 2 O 3 and BaO, 15% without changing the product phase ratio of ZnTiO 3 , Zn 2 TiO 4, and TiO 2 even after firing at 800 to 1000 ° C. Ε r in the range of ˜25 and low dielectric loss tan δ (high Q value) can be obtained, and dissolution of ZnO components from ZnTiO 3 and Zn 2 TiO 4 into glass by using glass containing ZnO Knowledge that it is possible to suppress variations in dielectric properties due to composition changes, and to use multiple layers and fine wiring using Cu and Ag as wiring conductors. The present invention has been achieved.
[0012]
That is, the present invention is represented by the general formula xZn 2 TiO 4 — (1-xy) ZnTiO 3 —yTiO 2 , where x is 0.15 <x <0.8 and y is 0 ≦ y ≦ 0.2. ZnO is 50 to 75 wt%, B 2 O 3 is 5 to 30 wt%, SiO 2 is 6 to 15 wt%, and Al 2 O 3 is 0.5 wt. The present invention relates to a dielectric ceramic composition comprising 3 parts by weight or more and 30 parts by weight or less of lead-free low-melting glass having -5% by weight and BaO of 3-10% by weight.
[0013]
Further, according to the present invention, a crystal phase of Zn 2 TiO 4 , ZnTiO 3 , and TiO 2 obtained by firing the dielectric ceramic composition (however, the crystal phase of TiO 2 may be omitted; the same shall apply hereinafter). The present invention relates to a dielectric ceramic made of a glass phase.
[0014]
Furthermore, in the present invention, a ceramic powder composed of Zn 2 TiO 4 , ZnTiO 3 and TiO 2 (provided that the content of TiO 2 is zero) is obtained by mixing and calcining a ZnO raw material powder and a TiO 2 raw material powder. it may be. forth.) which the ceramic powder to ZnO is 50 to 75 wt%, B 2 O 3 is 5-30 wt%, SiO 2 is from 6 to 15 wt%, Al 2 O 3 is 0 It is related with the manufacturing method of the said dielectric ceramic composition characterized by mixing the lead-free low melting glass which is 5 to 5 weight% and BaO is 3 to 10 weight%.
[0015]
Furthermore, the present invention provides a multilayer ceramic component comprising a plurality of dielectric layers, internal electrodes formed between the dielectric layers, and external electrodes electrically connected to the internal electrodes. It is composed of a dielectric ceramic obtained by firing the dielectric ceramic composition, and the internal electrode is formed of Cu alone or Ag alone, or an alloy material mainly containing Cu or Ag. The present invention relates to a multilayer ceramic component.
[0016]
Dielectric ceramics that can be fired at a firing temperature of 1000 ° C. or less by being composed of a crystal component composed of Zn 2 TiO 4 , ZnTiO 3 and optional TiO 2 and a specific glass component. The relative dielectric constant ε r is about 15 to 25, the dielectric loss is small, and the absolute value of the temperature coefficient of the resonance frequency can be 50 ppm / ° C. or less. Thereby, it is possible to provide a multilayer ceramic component having an internal electrode made of Cu or Ag alone or an alloy material containing Cu or Ag as a main component.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the dielectric ceramic composition of the present invention will be specifically described. The dielectric ceramic composition of the present invention is a dielectric ceramic composition comprising a main component composed of Zn 2 TiO 4 , ZnTiO 3 , and optional TiO 2 and a glass component. Represented by the formula xZn 2 TiO 4 — (1-xy) ZnTiO 3 —yTiO 2 , x is in the range of 0.15 <x <0.8, y is in the range of 0 ≦ y ≦ 0.2, and glass component, ZnO 50 to 75 wt%, B 2 O 3 is 5-30 wt%, SiO 2 is from 6 to 15 wt%, Al 2 O 3 from 0.5 to 5 wt%, BaO is 3 to 10 parts by weight % Lead-free low-melting glass. The dielectric ceramic composition of the present invention comprises 3 to 30 parts by weight of a glass component with respect to 100 parts by weight of the main component.
[0018]
In the composition, x is preferably more than 0.15 and less than 0.8. If x is 0.15 or less, or x is 0.8 or more, the absolute value of τ f exceeds 50 ppm / ° C., which is not preferable.
[0019]
In the composition, y is preferably in the range of 0 to 0.2. Although the dielectric constant tends to increase slightly by containing TiO 2 , any composition having y of 0.2 or less can achieve the intended effect of the present invention. When y is larger than 0.2, τ f exceeds +50 ppm / ° C., which is not preferable.
[0020]
Moreover, it is preferable that the dielectric ceramic composition of this invention is the range whose addition amount of a glass component is 3-30 weight part with respect to 100 weight part of said main components used as a ceramic base material. When the addition amount of the glass component is less than 3 parts by weight, the firing temperature becomes a temperature equal to or higher than the melting point of Ag or Cu, or an alloy containing Ag or Cu as a main component, which is one of the objects of the present invention. Since it becomes impossible to use an electrode, it is not preferable. When the added amount of the glass component exceeds 30 parts by weight, it tends to be impossible to perform satisfactory sintering due to glass elution.
[0021]
The Zn 2 TiO 4 used in the present invention can be obtained by mixing zinc oxide ZnO and titanium oxide TiO 2 at a molar ratio of 2: 1 and firing. ZnTiO 3 can be obtained by mixing and firing ZnO and TiO 2 at a molar ratio of 1: 1. As raw materials for Zn 2 TiO 4 and ZnTiO 3 , in addition to TiO 2 and ZnO, nitrates, carbonates, hydroxides, chlorides, and organometallic compounds containing Zn and / or Ti that become oxides during firing May be used.
[0022]
The dielectric ceramic composition of the present invention is characterized by containing a predetermined amount of specific glass. Here, as the glass used in the present invention, ZnO is 50 to 75 wt%, B 2 O 3 is 5-30 wt%, SiO 2 is from 6 to 15 wt%, Al 2 O 3 0.5 to 5 weight % And BaO in a proportion of 3 to 10% by weight are used, and those obtained by blending these oxide components in a predetermined proportion are melted, cooled, and vitrified.
[0023]
Here, the composition of the glass used in the present invention will be described below. With respect to ZnO, if it is less than 50% by weight, the glass tends to have a high softening point, so that good sintering cannot be achieved. If it exceeds 75% by weight, vitrification at a desired temperature tends to be difficult. Regarding B 2 O 3, if it is less than 5% by weight, the glass has a high softening point, which tends to prevent good sintering, and if it exceeds 30% by weight, it tends to prevent good sintering due to glass elution. . Regarding SiO 2, if it is less than 6% by weight and more than 15% by weight, the glass has a high softening point, which tends to prevent good sintering. When Al 2 O 3 is less than 0.5% by weight, chemical durability tends to be low, and when it exceeds 5% by weight, vitrification at a desired temperature tends to be difficult. BaO tends to be difficult to vitrify at a desired temperature when it is less than 3% by weight and more than 10% by weight. Moreover, when Pb and Bi components are contained in the glass, the Q value of the dielectric ceramic composition of the present invention tends to decrease.
[0024]
According to the present invention, it is represented by the general formula xZn 2 TiO 4 — (1-xy) ZnTiO 3 —yTiO 2 , where x is 0.15 <x <0.8 and y is 0 ≦ y ≦ 0.2. ZnO is 50 to 75 wt%, B 2 O 3 is 5 to 30 wt%, SiO 2 is 6 to 15 wt%, and Al 2 O 3 is 0.5 wt. By containing 3 parts by weight or more and 30 parts by weight or less of lead-free low-melting glass having ˜5% by weight and BaO of 3 to 10% by weight, low-temperature sintering is possible at a firing temperature of 800 to 1000 ° C. By firing such a dielectric ceramic composition, the dielectric ceramic of the present invention can be obtained. The dielectric constant ε r of the dielectric ceramic of the present invention is about 15 to 25, has a large unloaded Q value, and has an absolute value of the temperature coefficient τ f of the resonance frequency of 50 ppm / ° C. or less. The composition of the dielectric ceramic is substantially the same as each raw material composition of the dielectric ceramic composition before firing, and is composed of a crystal phase and a glass phase of Zn 2 TiO 4 , ZnTiO 3 , and TiO 2 . The dielectric ceramic composition of the present invention can be fired at a low temperature, and a dielectric ceramic having the above characteristics can be obtained.
[0025]
In the present invention, before firing, Zn 2 TiO 4 , ZnTiO 3 , each particle of TiO 2 as an optional component, and glass particles are individually pulverized and mixed, or each raw material particle is pulverized in a mixed state. However, the average particle size of these raw material particles before firing is 2.0 μm or less, preferably 1.0 μm or less in order to increase dispersibility and obtain a high unloaded Q value and a stable relative dielectric constant ε r. It is preferable. In addition, since handling may become difficult when an average particle diameter is too small, it is preferable to set it as 0.05 micrometer or more.
[0026]
Next, the dielectric ceramic composition of the present invention and the method for producing the dielectric ceramic will be described. The dielectric ceramic composition of the present invention is obtained by mixing a ZnO raw material powder and a TiO 2 raw material powder and calcining to obtain a ceramic powder composed of Zn 2 TiO 4 , ZnTiO 3 and TiO 2 as an optional component, the ceramic powder ZnO 50 to 75 wt%, B 2 O 3 is 5-30 wt%, SiO 2 is from 6 to 15 wt%, Al 2 O 3 from 0.5 to 5% by weight, BaO 3 to 10 It is obtained by mixing lead-free low-melting glass that is wt%. The ceramic powder composed of Zn 2 TiO 4 , ZnTiO 3 and TiO 2 may be prepared individually, or the Zn 2 TiO 4 , ZnTiO 3 and TiO 2 may be directly prepared by adjusting the raw material ratio of ZnO and TiO 2. A mixed powder may be obtained.
[0027]
A method for individually preparing each powder of Zn 2 TiO 4 and ZnTiO 3 to obtain the dielectric ceramic composition of the present invention will be further described. First, zinc oxide and titanium oxide are weighed to a molar ratio of 2: 1 and wet mixed with a solvent such as water or alcohol. Subsequently, after removing water, alcohol, and the like, it is pulverized and calcined at 900 to 1200 ° C. for about 1 to 5 hours in an oxygen-containing atmosphere (for example, air atmosphere). The calcined powder thus obtained is made of Zn 2 TiO 4 . Next, titanium oxide and zinc oxide are weighed to a molar ratio of 1: 1, and ZnTiO 3 is produced by the same production method as Zn 2 TiO 4 . A predetermined amount of these main components consisting of Zn 2 TiO 4 , ZnTiO 3 , and TiO 2 is weighed, and ZnO is 50 to 75 wt%, B 2 O 3 is 5 to 30 wt%, and SiO 2 is 6 to 15 wt%. %, Al 2 O 3 0.5-5 wt%, BaO 3-10 wt% lead-free low-melting glass is weighed so as to have a predetermined ratio to the main component, together with a solvent such as water or alcohol Wet mix. Subsequently, after removing water, alcohol, and the like, a dielectric ceramic raw material powder that is pulverized and becomes a target dielectric ceramic composition is produced.
[0028]
The dielectric ceramic composition of the present invention is fired, and the dielectric properties are measured as pellets of the dielectric ceramic. Specifically, the dielectric ceramic raw material powder is mixed with an organic binder such as polyvinyl alcohol, homogenized, dried and pulverized, and then pressed into a pellet shape (pressure of about 100 to 1000 kg / cm 2 ). The obtained molded product is fired at 800 to 1000 ° C. in an oxygen-containing gas atmosphere such as air, thereby obtaining a dielectric ceramic in which a Zn 2 TiO 4 phase, a ZnTiO 3 phase, a TiO 2 phase and a glass phase coexist. be able to.
[0029]
The dielectric ceramic composition of the present invention can be used as a material for various multilayer ceramic parts by processing into an appropriate shape and size if necessary, or forming a sheet by a doctor blade method or the like and laminating with a sheet and an electrode. it can. Examples of the multilayer ceramic component include a multilayer ceramic capacitor, an LC filter, a dielectric resonator, and a dielectric substrate.
[0030]
The multilayer ceramic component of the present invention includes a plurality of dielectric layers, an internal electrode formed between the dielectric layers, and an external electrode electrically connected to the internal electrode, the dielectric layer comprising: The dielectric ceramic composition is made of a dielectric ceramic obtained by firing, and the internal electrode is made of Cu alone or Ag alone, or an alloy material containing Cu or Ag as a main component. The multilayer ceramic component of the present invention can be obtained by co-firing a dielectric layer made of a dielectric ceramic and an alloy material containing Cu alone or Ag alone, or Cu or Ag as a main component.
[0031]
As an embodiment of the multilayer ceramic component, for example, a triplate type resonator shown in FIGS. 1 and 2 can be cited. FIG. 1 is a schematic perspective view showing a triplate type resonator according to an embodiment of the present invention, and FIG. 2 is a schematic sectional view thereof. As shown in FIGS. 1 and 2, the triplate type resonator includes a plurality of dielectric layers 1, internal electrodes 2 formed between the dielectric layers, and externally connected to the internal electrodes. This is a multilayer ceramic component including an electrode 3. The triplate type resonator is obtained by arranging a plurality of dielectric layers 1 with the internal electrode 2 disposed in the center. The internal electrode 2 is formed so as to penetrate from the first surface A shown in the figure to the second surface B opposite to the first surface A, and only the first surface A is an open surface, and the first surface A is External electrodes 3 are formed on the five surfaces of the resonator except the internal electrode 2 and the external electrode 3 on the second surface B. The material of the internal electrode 2 is made of Cu or Ag or an alloy material containing them as a main component. Since the dielectric ceramic composition of the present invention can be fired at a low temperature, these internal electrode materials can be used.
[0032]
【Example】
Example 1:
Titanium oxide (TiO 2 ) 0.33 mol and zinc oxide (ZnO) 0.66 mol were placed in a ball mill together with ethanol and wet mixed for 12 hours. After removing the solution, the solution was pulverized and calcined at 1000 ° C. in an air atmosphere to obtain a Zn 2 TiO 4 calcined powder. Next, 0.5 mol of TiO 2 and 0.5 mol of ZnO were wet-mixed and calcined in the same manner to obtain a ZnTiO 3 calcined powder. Those prepared by mixing these Zn 2 TiO 4 calcined powder, ZnTiO 3 calcined powder and TiO 2 in the amounts shown in Table 1 were used as the base material (main component). Glass composed of 63.5 wt% ZnO, 8 wt% SiO 2 , 1.5 wt% Al 2 O 3 , 7 wt% BaO, and 20 wt% B 2 O 3 with respect to 100 parts by weight of the base material. What added 10 weight part of powder was put into the ball mill, and was wet-mixed for 24 hours. After removing the solution, the solution was pulverized until the average particle diameter became 1 μm, and an appropriate amount of polyvinyl alcohol solution was added to the pulverized product, dried, and then formed into pellets having a diameter of 12 mm and a thickness of 4 mm, and 900 ° C. in an air atmosphere. For 2 hours. FIG. 3 shows an X-ray diffraction pattern of the sintered body produced. As shown in FIG. 3, it can be seen that the Zn 2 TiO 4 phase, ZnTiO 3 phase, and TiO 2 phase coexist in the sintered body of the dielectric ceramic composition of the present invention.
[0033]
After processing the dielectric ceramic thus obtained to a size of 7 mm in diameter and 3 mm in thickness, the dielectric resonance method is used to measure the no-load Q value at the resonance frequency of 7 to 11 GHz, the relative dielectric constant ε r, and the temperature coefficient τ f of the resonance frequency. Asked. The results are shown in Table 2.
[0034]
[Table 1]
Figure 0004174668
[0035]
[Table 2]
Figure 0004174668
[0036]
Further, 9 g of polyvinyl butyral as a binder, 6 g of dibutyl phthalate as a plasticizer, 60 g of toluene and 30 g of isopropyl alcohol as a binder are added to 100 g of the base material and glass mixture, and a green sheet having a thickness of 100 μm is prepared by a doctor blade method. did. Then, 22 layers of this green sheet were laminated by thermocompression applying a pressure of 200 kg / cm 2 at a temperature of 65 ° C. At that time, the layer printed with Ag as the internal electrode was arranged at the center in the thickness direction. The obtained laminate was baked at 900 ° C. for 2 hours, and then external electrodes were formed to produce a triplate type resonator. The size was 4.9 mm in width, 1.7 mm in height, and 8.4 mm in length.
[0037]
With respect to the obtained triplate type resonator, an unloaded Q value was evaluated at a resonance frequency of 2 GHz. As a result, the unloaded Q as a triplate type resonator was 210. As described above, a triplate type resonator having excellent characteristics was obtained by using the dielectric ceramic composition according to the present invention.
[0038]
Examples 2 and 3: (Influence of x)
In the same manner as in Example 1 above, Zn 2 TiO 4 , ZnTiO 3 and TiO 2 mixed at the blending amounts shown in Table 1 were used as the base material, and this base material and glass were mixed at the blending amounts shown in Table 1 A pellet-shaped sintered body was produced under the same conditions as in Example 1, and various characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0039]
Examples 4 to 6: (effect of y)
In the same manner as in Example 1 above, Zn 2 TiO 4 , ZnTiO 3 and TiO 2 mixed at the blending amounts shown in Table 1 were used as the base material, and this base material and glass were mixed at the blending amounts shown in Table 1 A pellet-shaped sintered body was produced under the same conditions as in Example 1, and various characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0040]
Examples 7 to 9: (Effect of particle size)
In the same manner as in Example 1 above, Zn 2 TiO 4 , ZnTiO 3 and TiO 2 mixed at the blending amounts shown in Table 1 were used as the base material, and this base material and glass were mixed at the blending amounts shown in Table 1 The pellets were pulverized until the average particle size shown in Table 1 was reached, pellet-shaped sintered bodies were produced under the same conditions as in Example 1, and various characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0041]
Examples 10 to 12: (Influence of glass composition)
In the same manner as in Example 1, Zn 2 TiO 4 , ZnTiO 3 and TiO 2 mixed at the blending amounts shown in Table 1 were used as the base material. After mixing with the blending amounts shown in the above, pellet-shaped sintered bodies were produced under the same conditions as in Example 1, and various characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0042]
Examples 13 and 14: (Effect of glass amount)
In the same manner as in Example 1 above, Zn 2 TiO 4 , ZnTiO 3 and TiO 2 mixed at the blending amounts shown in Table 1 were used as the base material, and this base material and glass were mixed at the blending amounts shown in Table 1 A pellet-shaped sintered body was produced under the same conditions as in Example 1, and various characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0043]
Comparative Examples 1 and 2: (Influence of x)
In the same manner as in Example 1 above, Zn 2 TiO 4 , ZnTiO 3 and TiO 2 mixed at the blending amounts shown in Table 1 were used as the base material, and this base material and glass were mixed at the blending amounts shown in Table 1 A pellet-shaped sintered body was produced under the same conditions as in Example 1. However, when the molar ratio x of Zn 2 TiO 4 is less than 0.15, the temperature coefficient τ f of the resonance frequency is greater than +50 ppm / ° C., and when x is greater than 0.8, the temperature coefficient τ f of the resonance frequency is It became smaller than −50 ppm / ° C. The results are shown in Table 2.
[0044]
Comparative Examples 3 and 4: (Influence of y)
In the same manner as in Example 1 above, Zn 2 TiO 4 , ZnTiO 3 and TiO 2 mixed at the blending amounts shown in Table 1 were used as the base material, and this base material and glass were mixed at the blending amounts shown in Table 1 A pellet-shaped sintered body was produced under the same conditions as in Example 1. However, when the molar ratio y of TiO 2 is larger than 0.2, the temperature coefficient τ f of the resonance frequency is larger than +50 ppm / ° C. The results are shown in Table 2.
[0045]
Comparative Examples 5 to 19: (Influence of glass composition)
In the same manner as in Example 1, Zn 2 TiO 4 , ZnTiO 3 and TiO 2 mixed at the blending amounts shown in Table 1 were used as the base material. After mixing with the blending amount shown in the above, a pellet-shaped sintered body was produced under the same conditions as in Example 1. However, when a glass composition outside the range of the glass composition used in the present invention is used, the Q value decreases and the temperature coefficient τ f of the resonance frequency becomes lower than −50 ppm / ° C. (Comparative Examples 5 and 6). The glass was dissolved in the solution (Comparative Example 12), not sintered at 1000 ° C. or lower, or the glass was eluted at 800 ° C. or higher (Comparative Examples 7 to 11 and 13 to 19). The results are shown in Table 2.
[0046]
Comparative Examples 20 and 21: (Influence of glass amount)
In the same manner as in Example 1 above, Zn 2 TiO 4 , ZnTiO 3 and TiO 2 mixed at the blending amounts shown in Table 1 were used as the base material, and this base material and glass were mixed at the blending amounts shown in Table 1 A pellet-shaped sintered body was produced under the same conditions as in Example 1. However, when the amount of glass was less than 3 parts by weight, it was not sintered at 1000 ° C. or lower. When the amount of glass was more than 30 parts by weight, the glass eluted at 900 ° C. or more and reacted with the setter. The results are shown in Table 2.
[0047]
【The invention's effect】
By using the dielectric porcelain composition of the present invention, it becomes possible to calcinate below the melting point of Ag or Cu, or an alloy containing Ag or Cu as a main component, which has been difficult in the past. Can be used as an internal conductor for interior and multilayering. In addition, the dielectric ceramic obtained by firing the dielectric ceramic composition of the present invention has a relative dielectric constant ε r of about 15 to 25 and low dielectric loss so that a multilayer ceramic component or the like can be formed to an appropriate size. It has tan δ (high Q value), and the absolute value of the temperature coefficient τ f of the resonance frequency is 50 ppm / ° C. or less. According to the present invention, a dielectric ceramic composition for obtaining such a dielectric ceramic and a method for producing the same are provided. Furthermore, according to the present invention, a multilayer ceramic capacitor or LC having a dielectric layer using such a dielectric ceramic composition and an internal electrode using Ag or Cu, or an alloy mainly composed of Ag or Cu. Multilayer ceramic parts such as filters are provided.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing a triplate type resonator according to an embodiment of the present invention.
2 is a schematic cross-sectional view of the resonator of FIG.
3 is an X-ray diffraction pattern of a sintered body of a dielectric ceramic composition according to the present invention obtained in Example 1. FIG.
[Explanation of symbols]
1 Dielectric layer 2 Internal electrode 3 External electrode

Claims (4)

一般式xZn2TiO4−(1−x−y)ZnTiO3−yTiO2で表され、xが0.15<x<0.8、yが0≦y≦0.2の範囲内である主成分100重量部に対して、ZnOが50〜75重量%、B23が5〜30重量%、SiO2が6〜15重量%、Al23が0.5〜5重量%、BaOが3〜10重量%である無鉛低融点ガラスを3重量部以上30重量部以下含有せしめてなる誘電体磁器組成物。It is represented by the general formula xZn 2 TiO 4 — (1-xy) ZnTiO 3 —yTiO 2 , where x is in the range of 0.15 <x <0.8 and y is in the range of 0 ≦ y ≦ 0.2. ZnO is 50 to 75% by weight, B 2 O 3 is 5 to 30% by weight, SiO 2 is 6 to 15% by weight, Al 2 O 3 is 0.5 to 5% by weight, and BaO is 100 parts by weight of the component. A dielectric ceramic composition comprising 3 parts by weight or more and 30 parts by weight or less of lead-free low-melting glass having a content of 3 to 10% by weight. 請求項1記載の誘電体磁器組成物を焼成してなる、Zn2TiO4、ZnTiO3、及びTiO2の結晶相(但し、TiO2の結晶相は無くともよい)とガラス相とからなることを特徴とする誘電体磁器。A crystal phase of Zn 2 TiO 4 , ZnTiO 3 , and TiO 2 obtained by firing the dielectric ceramic composition according to claim 1 (however, the crystal phase of TiO 2 may be omitted) and a glass phase. A dielectric ceramic. ZnO原料粉末とTiO2原料粉末とを混合し、仮焼することにより、Zn2TiO4、ZnTiO3及びTiO2からなるセラミック粉末(但し、TiO2の含有量は零であってもよい)を得、該セラミック粉末にZnOが50〜75重量%、B23が5〜30重量%、SiO2が6〜15重量%、Al23が0.5〜5重量%、BaOが3〜10重量%である無鉛低融点ガラスを混合することを特徴とする請求項1記載の誘電体磁器組成物の製造方法。A ceramic powder composed of Zn 2 TiO 4 , ZnTiO 3 and TiO 2 (however, the content of TiO 2 may be zero) is obtained by mixing and calcining the ZnO raw material powder and the TiO 2 raw material powder. obtained, the ceramic powder of ZnO is 50 to 75 wt%, B 2 O 3 is 5-30 wt%, SiO 2 is from 6 to 15 wt%, Al 2 O 3 from 0.5 to 5 wt%, BaO is 3 The method for producing a dielectric ceramic composition according to claim 1, wherein lead-free low-melting glass of 10 wt% is mixed. 複数の誘電体層と、該誘電体層間に形成された内部電極と、該内部電極に電気的に接続された外部電極とを備える積層セラミック部品において、前記誘電体層が前記請求項1記載の誘電体磁器組成物を焼成して得られる誘電体磁器にて構成され、前記内部電極がCu単体若しくはAg単体、又はCu若しくはAgを主成分とする合金材料にて形成されていることを特徴とする積層セラミック部品。The multilayer ceramic component comprising a plurality of dielectric layers, an internal electrode formed between the dielectric layers, and an external electrode electrically connected to the internal electrode, wherein the dielectric layer is according to claim 1. It is composed of a dielectric ceramic obtained by firing a dielectric ceramic composition, and the internal electrode is formed of Cu alone or Ag alone, or an alloy material mainly containing Cu or Ag. Laminated ceramic parts.
JP2003142148A 2003-05-20 2003-05-20 DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT Expired - Fee Related JP4174668B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003142148A JP4174668B2 (en) 2003-05-20 2003-05-20 DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT
EP04733921.3A EP1645551B9 (en) 2003-05-20 2004-05-19 Dielectric ceramic composition, process for producing the same, dielectric ceramic employing it and multilayer ceramic component
CNB2004800138425A CN100378030C (en) 2003-05-20 2004-05-19 Dielectric ceramic composition, process for producing the same, dielectric ceramic employing it and multilayer ceramic component
PCT/JP2004/006735 WO2004103929A1 (en) 2003-05-20 2004-05-19 Dielectric ceramic composition, process for producing the same, dielectric ceramic employing it and multilayer ceramic component
US10/556,374 US7276461B2 (en) 2003-05-20 2004-05-19 Dielectric ceramic composition, method of manufacturing the same, and dielectric ceramics and laminated ceramic part using the same
KR1020057022055A KR101137272B1 (en) 2003-05-20 2004-05-19 Dielectric ceramic composition, process for producing the same, dielectric ceramic employing it and multilayer ceramic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003142148A JP4174668B2 (en) 2003-05-20 2003-05-20 DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT

Publications (2)

Publication Number Publication Date
JP2004345877A JP2004345877A (en) 2004-12-09
JP4174668B2 true JP4174668B2 (en) 2008-11-05

Family

ID=33530319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003142148A Expired - Fee Related JP4174668B2 (en) 2003-05-20 2003-05-20 DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT

Country Status (2)

Country Link
JP (1) JP4174668B2 (en)
CN (1) CN100378030C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103708537A (en) * 2013-06-13 2014-04-09 济南大学 Method for finely synthesizing ilmenite structure ZnTiO3 nanometer powder by using water-soluble sol-gel process
CN107176834B (en) * 2016-03-11 2020-02-14 上海卡翱投资管理合伙企业(有限合伙) LTCC (Low temperature Co-fired ceramic) ceramic material with medium and high dielectric constant and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0731065B1 (en) * 1995-03-06 1999-07-28 Matsushita Electric Industrial Co., Ltd Zinc oxide ceramics and method for producing the same
JP3406787B2 (en) * 1996-09-30 2003-05-12 京セラ株式会社 Manufacturing method of dielectric porcelain
US5916834A (en) * 1996-12-27 1999-06-29 Kyocera Corporation Dielectric ceramics

Also Published As

Publication number Publication date
CN100378030C (en) 2008-04-02
JP2004345877A (en) 2004-12-09
CN1791562A (en) 2006-06-21

Similar Documents

Publication Publication Date Title
KR100814674B1 (en) Dielectric porcelain composition and method for production thereof
JP5742373B2 (en) Dielectric porcelain, dielectric porcelain manufacturing method, and dielectric porcelain manufacturing powder manufacturing method
EP0779257A1 (en) Dielectric porcelain, process for production thereof, and electronic parts produced therefrom
JP4775583B2 (en) Dielectric particle aggregate, low-temperature sintered dielectric ceramic composition using the same, and low-temperature sintered dielectric ceramic manufactured using the same
JP4096822B2 (en) Dielectric ceramic composition and multilayer ceramic component using the same
KR101021361B1 (en) Dielectric ceramic composition and method of production thereof
JP4052032B2 (en) Dielectric composition and multilayer ceramic component using the same
JP4174668B2 (en) DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT
KR101137272B1 (en) Dielectric ceramic composition, process for producing the same, dielectric ceramic employing it and multilayer ceramic component
JP2002356371A (en) Dielectric ceramic composition and laminated ceramic capacitor
JP2003119076A (en) Dielectric ceramic composition and ceramic electronic parts using the same
JP3375450B2 (en) Dielectric porcelain composition
JP4235896B2 (en) DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT
JP4281549B2 (en) Dielectric ceramic composition and multilayer ceramic component using the same
JP4052031B2 (en) Dielectric composition and multilayer ceramic component using the same
JP4253652B2 (en) DIELECTRIC CERAMIC COMPOSITION, ELECTRONIC COMPONENT PRODUCED BY USING SAME, AND METHOD FOR PRODUCING MULTILAYER CERAMIC CAPACITOR
KR100916048B1 (en) Dielectric ceramic material, fabrication mehtod of the same and ceramic condencer
KR100763284B1 (en) Microwave dielectric ceramics and the manufacturing method thereof
JP4114503B2 (en) Dielectric ceramic composition and multilayer ceramic component using the same
EP1315231A2 (en) Dielectric ceramic composition and laminated ceramic parts using the same
JP2005001944A (en) Dielectric porcelain composition and multilayered ceramic component using the same
JP2003221274A (en) Dielectric porcelain composition and integrated ceramic parts using it
JP2003160377A (en) Dielectric ceramic composition and laminated ceramic part using the same
JP2003160375A (en) Dielectric ceramic composition and laminated ceramic part using the same
JP2003221273A (en) Dielectric porcelain composition and integrated ceramic parts using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080723

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4174668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees