JP2003119076A - Dielectric ceramic composition and ceramic electronic parts using the same - Google Patents

Dielectric ceramic composition and ceramic electronic parts using the same

Info

Publication number
JP2003119076A
JP2003119076A JP2001312142A JP2001312142A JP2003119076A JP 2003119076 A JP2003119076 A JP 2003119076A JP 2001312142 A JP2001312142 A JP 2001312142A JP 2001312142 A JP2001312142 A JP 2001312142A JP 2003119076 A JP2003119076 A JP 2003119076A
Authority
JP
Japan
Prior art keywords
weight
composition
dielectric ceramic
dielectric
ceramic composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001312142A
Other languages
Japanese (ja)
Inventor
Hidenori Katsumura
英則 勝村
Tatsuya Inoue
竜也 井上
Hiroshi Kagata
博司 加賀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001312142A priority Critical patent/JP2003119076A/en
Publication of JP2003119076A publication Critical patent/JP2003119076A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a microwave dielectric ceramic composition having high insulation resistance and excellent electric characteristics for microwaves and sintered at low temperature, and to provide ceramic electronic parts which use the composition. SOLUTION: The dielectric ceramic composition contains <=2 wt.% of a glass composition as a sub component to the main component containing bismuth oxide, calcium oxide and niobium oxide in specified proportions and further preferably contains copper oxide by <=0.2 wt.% in terms of CuO.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は特にマイクロ波、ミ
リ波などの高周波帯域で共振器、フィルタ、アンテナ、
コンデンサ、インダクタ、回路基板などとして使用され
るデバイスに有用な誘電体セラミック組成物およびこれ
を用いたセラミック電子部品に関するものである。
TECHNICAL FIELD The present invention relates to a resonator, a filter, an antenna, especially in a high frequency band such as a microwave and a millimeter wave.
The present invention relates to a dielectric ceramic composition useful for devices used as capacitors, inductors, circuit boards and the like, and a ceramic electronic component using the same.

【0002】[0002]

【従来の技術】近年の移動体通信機器の進展にともな
い、誘電体セラミックと内部電極を積層して回路形成し
た積層型誘電体セラミックデバイスが広く用いられるよ
うになった。小型で高性能のデバイスを得るためには、
誘電体セラミックの特性として、マイクロ波領域におけ
る比誘電率(εr)が高いこと、誘電損失(tanδ)
が低い、すなわちその逆数のQ値が高いこと、さらに共
振周波数の温度係数(TCF)の絶対値が小さいことが
求められる。また内部電極の導体には高導電率の金、
銀、銅を主成分とする金属を用いる必要があり、導体と
誘電体セラミックは一体で同時焼成されることから、こ
れらの金属が焼成によって溶融しない温度、すなわち8
50℃から1050℃の比較的低温で緻密に焼成する誘
電体セラミックでなければならない。
2. Description of the Related Art With the recent development of mobile communication equipment, a laminated dielectric ceramic device in which a dielectric ceramic and an internal electrode are laminated to form a circuit has been widely used. To get a small, high-performance device,
The characteristics of dielectric ceramics are high relative permittivity (εr) in the microwave region and dielectric loss (tan δ).
Is low, that is, the reciprocal Q value is high, and the absolute value of the temperature coefficient (TCF) of the resonance frequency is small. In addition, the conductor of the internal electrode has high conductivity of gold,
Since it is necessary to use a metal containing silver and copper as the main components, and the conductor and the dielectric ceramic are co-fired together, the temperature at which these metals do not melt by firing, that is, 8
It should be a dielectric ceramic that is densely fired at relatively low temperatures of 50 ° C to 1050 ° C.

【0003】以上の要求を満足する誘電体セラミック組
成物として特許2798105号公報に、BiO3/2
CaO−NbO5/2系材料が本発明者らによって提案さ
れている。この材料系は50以上の高い比誘電率、3〜
5GHzで300以上の高いQ値、50ppm/℃以下
の小さい共振周波数の温度係数を有している。また10
50℃以下の低温で緻密に焼成するため、金、銀、銅な
どの高導電率の金属を用いた積層型の誘電体セラミック
デバイスが得られ、極めて有用な材料系である。
As a dielectric ceramic composition satisfying the above requirements, Japanese Patent No. 2798105 discloses BiO 3 / 2-.
The CaO—NbO 5/2 based materials have been proposed by the present inventors. This material system has a high relative permittivity of 50 or more, 3 to
It has a high Q value of 300 or more at 5 GHz and a small resonance frequency temperature coefficient of 50 ppm / ° C. or less. Again 10
Since it is densely fired at a low temperature of 50 ° C. or less, a laminated dielectric ceramic device using a metal having a high conductivity such as gold, silver or copper can be obtained, which is an extremely useful material system.

【0004】[0004]

【発明が解決しようとする課題】ところが、このBiO
3/2−CaO−NbO5/2系材料は、高温における絶縁抵
抗値が低いことが本発明者らの検討により判明した。高
周波共振器やフィルタでは直流電圧が誘電体セラミック
に印加されることがないため問題ないが、積層セラミッ
クコンデンサ、もしくはコンデンサを含む高周波回路モ
ジュールを本材料系で作製した場合、直流バイアス電圧
により絶縁破壊する恐れがあり、信頼性上、問題が生じ
る可能性があった。
However, this BiO
The inventors of the present invention have found that the 3 / 2- CaO-NbO5 / 2- based material has a low insulation resistance value at high temperatures. In a high-frequency resonator or filter, no DC voltage is applied to the dielectric ceramic, so there is no problem, but when a high-frequency circuit module that includes a multilayer ceramic capacitor or a capacitor is made of this material system, dielectric breakdown occurs due to a DC bias voltage. There is a possibility that it may occur, and there may be a problem in reliability.

【0005】本発明はかかる事情に鑑みてなされたもの
であって、絶縁抵抗値が高く、マイクロ波電気特性に優
れた低温焼結のマイクロ波誘電体セラミック組成物およ
びこれを用いたセラミック電子部品を提供することを目
的とする。
The present invention has been made in view of the above circumstances, and is a low temperature sintering microwave dielectric ceramic composition having a high insulation resistance value and excellent microwave electric characteristics, and a ceramic electronic component using the same. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は以下の構成を有する。
In order to achieve the above object, the present invention has the following constitution.

【0007】本発明の請求項1に記載の発明は、酸化ビ
スマス、酸化カルシウムおよび酸化ニオブよりなる組成
物を、xBiO3/2−yCaO−zNbO5/2(x、y、
zはモル比、x+y+z=1.0)と表したときの三成
分組成図において、x、yおよびzが下記のA、B、
C、D、Eを頂点とする五角形の領域内にある主成分に
対し、副成分として少なくともSiO2を含むガラス組
成物を2重量%以下含有したものであり、高温における
絶縁抵抗値が高く、マイクロ波電気特性に優れた誘電体
セラミック組成物を得ることができる。
According to a first aspect of the present invention, a composition comprising bismuth oxide, calcium oxide and niobium oxide is added to xBiO 3/2 -yCaO-zNbO 5/2 (x, y,
In the three-component composition diagram, where z is a molar ratio, x + y + z = 1.0), x, y and z are the following A, B,
It contains 2% by weight or less of a glass composition containing at least SiO 2 as a sub-component with respect to the main component in the pentagonal region having C, D and E as vertices, and has a high insulation resistance value at high temperature, A dielectric ceramic composition having excellent microwave electric characteristics can be obtained.

【0008】A:(x,y,z)=(0.55,0.1
6,0.29) B:(x,y,z)=(0.50,0.21,0.2
9) C:(x,y,z)=(0.44,0.24,0.3
2) D:(x,y,z)=(0.44,0.20,0.3
6) E:(x,y,z)=(0.50,0.175,0.3
25) 本発明の請求項2に記載の発明は、副成分のガラス組成
物を、35〜60重量%のSiO2、0〜30重量%の
23、0〜20重量%のAl23、0〜50重量%の
MO(ただしMはCa、Sr、Baから選ばれる少なく
とも一種の元素)と限定したものであり、高温における
絶縁抵抗値が高く、かつマイクロ波電気特性が極めて優
れた誘電体セラミック組成物を得ることができる。
A: (x, y, z) = (0.55, 0.1
6, 0.29) B: (x, y, z) = (0.50, 0.21, 0.2)
9) C: (x, y, z) = (0.44, 0.24, 0.3
2) D: (x, y, z) = (0.44, 0.20, 0.3
6) E: (x, y, z) = (0.50, 0.175, 0.3
25) In the invention according to claim 2 of the present invention, the glass composition as an accessory component is prepared by adding 35 to 60% by weight of SiO 2 , 0 to 30% by weight of B 2 O 3 , and 0 to 20% by weight of Al 2. O 3 is limited to 0 to 50% by weight of MO (where M is at least one element selected from Ca, Sr, and Ba), has a high insulation resistance value at high temperature, and has extremely excellent microwave electric characteristics. A dielectric ceramic composition can be obtained.

【0009】本発明の請求項3に記載の発明は、第二の
副成分として酸化銅を主成分100重量%に対しCuO
に換算して0.2重量%以下含有したものであり、95
0℃以下の低温で焼成が可能な誘電体セラミック組成物
を得ることができる。
According to a third aspect of the present invention, copper oxide is used as the second subcomponent, and CuO is added to 100% by weight of the main component.
It is contained at 0.2% by weight or less in terms of
A dielectric ceramic composition that can be fired at a low temperature of 0 ° C. or less can be obtained.

【0010】本発明の請求項4に記載の発明は、請求項
1〜3のいずれか一つに記載の誘電体セラミック組成物
からなる誘電体層と、少なくとも銀または銅を含む導体
層とを積層したものであり、絶縁抵抗値が高く、かつマ
イクロ波電気特性が極めて優れたセラミック電子部品を
得ることができる。
The invention according to claim 4 of the present invention comprises a dielectric layer comprising the dielectric ceramic composition according to any one of claims 1 to 3 and a conductor layer containing at least silver or copper. Since they are laminated, a ceramic electronic component having a high insulation resistance value and extremely excellent microwave electric characteristics can be obtained.

【0011】[0011]

【発明の実施の形態】(実施の形態1)以下、本発明の
具体的な実施の形態について説明する。実施の形態1で
は誘電体セラミック組成物の作製方法および評価方法に
ついて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION (Embodiment 1) Specific embodiments of the present invention will be described below. In the first embodiment, a method for producing a dielectric ceramic composition and an evaluation method will be described.

【0012】本発明の誘電体セラミック組成物を製造す
るための出発原料としては、各構成元素の酸化物、炭酸
塩、硝酸塩、有機金属塩などを用いる。純度は99%以
上が望ましいが特に限定されない。
As a starting material for producing the dielectric ceramic composition of the present invention, oxides, carbonates, nitrates, organic metal salts and the like of each constituent element are used. The purity is preferably 99% or more, but is not particularly limited.

【0013】まず副成分であるガラス組成物の作製方法
について説明する。(表1)は、本発明の実施の形態1
において使用したガラス組成物の構成元素重量比率であ
る。(表1)の重量比率となるよう各出発原料を秤量
し、エチルアルコールを溶媒としてボールミル法により
24時間混合した。混合したスラリーを乾燥し、白金る
つぼに入れ1400℃〜1600℃で1時間熱処理する
ことにより溶融し、溶融物を金属板に滴下させて急冷す
る。得られた熱処理物を上記混合と同様の方法によって
粉砕することにより、副成分であるガラス組成物粉体を
得る。
First, a method for producing a glass composition as an accessory component will be described. Table 1 shows the first embodiment of the present invention.
It is the weight ratio of the constituent elements of the glass composition used in. The respective starting materials were weighed so that the weight ratio shown in Table 1 was obtained, and they were mixed for 24 hours by a ball mill method using ethyl alcohol as a solvent. The mixed slurry is dried, put in a platinum crucible and melted by heat treatment at 1400 ° C. to 1600 ° C. for 1 hour, and the melt is dropped on a metal plate and rapidly cooled. The obtained heat-treated product is pulverized by the same method as in the above mixing to obtain a glass composition powder as an accessory component.

【0014】[0014]

【表1】 [Table 1]

【0015】主成分の組成は特許2798105号公報
より電気特性に優れたモル比で0.46BiO3/2
0.215CaO−0.325NbO5/2を選択した。
各出発原料を、このモル比となるよう秤量し、水を溶媒
としてボールミル法により24時間混合した。混合した
スラリーを乾燥し、アルミナ製るつぼに入れ、800℃
で2時間仮焼した。この仮焼粉を解砕した後、先に作製
したガラス組成物粉体を任意量添加し、これらを上記と
同様の方法によって混合粉砕し乾燥させたものが目的と
する原料粉体となる。
The composition of the main component is 0.46 BiO 3/2 − in terms of molar ratio which is superior to the electrical characteristics in Japanese Patent No. 2798105.
0.215CaO-0.325NbO 5/2 was selected.
The respective starting materials were weighed so as to have this molar ratio, and mixed with water as a solvent by a ball mill method for 24 hours. The mixed slurry is dried and put in an alumina crucible at 800 ° C.
It was calcined for 2 hours. After crushing the calcined powder, an arbitrary amount of the glass composition powder prepared above is added, and these are mixed and pulverized by the same method as described above and dried to obtain the target raw material powder.

【0016】次に、本組成物の焼結体特性の評価方法に
ついて説明する。原料粉体にバインダとしてポリビニル
アルコールの5%水溶液を10重量%加えて混合後、3
2メッシュのふるいを通して造粒し、100MPaで直
径13mm、厚み約8mmの円柱体、直径13mm、厚
み約1mmの円板体にプレス成形した。成形体を600
℃で2時間加熱してバインダを焼却後、マグネシアの容
器に入れ蓋をし、大気中において850〜1100℃で
2時間保持して焼成した。
Next, a method for evaluating the characteristics of the sintered body of the present composition will be described. After adding 10% by weight of a 5% aqueous solution of polyvinyl alcohol as a binder to the raw material powder and mixing, 3
The mixture was granulated through a 2-mesh sieve and press-molded at 100 MPa into a cylindrical body having a diameter of 13 mm and a thickness of about 8 mm, and a disk body having a diameter of 13 mm and a thickness of about 1 mm. Molded body 600
After the binder was incinerated by heating at 0 ° C for 2 hours, it was put in a magnesia container, covered with a lid, and held at 850 to 1100 ° C in the atmosphere for 2 hours for firing.

【0017】各特性は、密度が最高になる温度で焼成し
た焼結体で測定した。焼結した円板体の表裏面に市販の
銀導体ペーストを塗布し、ベルト炉を用いて850℃で
10分間焼き付けることにより電極を形成し、印加電圧
500V、時間60秒、測定温度120℃の条件で高温
下における絶縁抵抗値を測定した。また焼結した円柱体
を用い、誘電体共振器法によりマイクロ波における共振
周波数と無負荷Q値を求めた。また焼結体の寸法と共振
周波数より比誘電率を算出した。なお共振周波数は3〜
5GHzであった。無負荷Q値と共振周波数fを掛け合
わせ、Qf積を算出し、これを誘電体セラミック組成物
の損失を表す指標とした。この方法は当業者にとって一
般的に行われている方法である。さらに−25℃、20
℃及び85℃における共振周波数を測定し、最小二乗法
により、その温度係数(TCF)を算出した。
Each characteristic was measured on a sintered body which was fired at a temperature at which the density was maximized. Commercially available silver conductor paste was applied to the front and back surfaces of the sintered disc body, and baked by using a belt furnace at 850 ° C. for 10 minutes to form an electrode. Applied voltage was 500 V, time was 60 seconds, and measurement temperature was 120 ° C. The insulation resistance value under high temperature was measured. In addition, the resonant frequency and the unloaded Q value in the microwave were obtained by the dielectric resonator method using the sintered cylindrical body. The relative permittivity was calculated from the dimensions of the sintered body and the resonance frequency. The resonance frequency is 3 ~
It was 5 GHz. The Qf product was calculated by multiplying the unloaded Q value and the resonance frequency f, and this was used as an index representing the loss of the dielectric ceramic composition. This method is a method commonly used by those skilled in the art. Furthermore, -25 ℃, 20
The resonance frequency at ° C and 85 ° C was measured, and the temperature coefficient (TCF) was calculated by the least square method.

【0018】(実施の形態2)実施の形態2では、Bi
3/2−CaO−NbO5/2系材料なる主成分に対する、
ガラス組成物の添加による効果について検討した。結果
を(表2)に示す。
(Second Embodiment) In the second embodiment, Bi
O 3 / 2- CaO-NbO 5 / 2- based material as the main component,
The effect of adding the glass composition was examined. The results are shown in (Table 2).

【0019】[0019]

【表2】 [Table 2]

【0020】試料番号1のように、ガラスを添加しない
場合、高温における絶縁抵抗値は5×108Ωであっ
た。この値は、誘電体セラミック組成物をコンデンサと
して用いるには低い値であり、信頼性上問題となる可能
性がある。一方、試料番号2〜5のようにガラス組成物
aを2.0重量%以下の範囲で添加した場合、マイクロ
波電気特性がほとんど変化することなく高温における絶
縁抵抗値が1×1010Ω以上と高くなることが確認でき
た。しかし試料番号6のようにガラス組成物aの添加量
が3重量%と多くなるとQf積が急に小さくなり、その
結果誘電体損失が大きくなりマイクロ波用誘電体セラミ
ックとして望ましくない。
When glass was not added as in Sample No. 1, the insulation resistance value at high temperature was 5 × 10 8 Ω. This value is a low value for using the dielectric ceramic composition as a capacitor and may cause a problem in reliability. On the other hand, when the glass composition a is added in the range of 2.0% by weight or less as in Sample Nos. 2 to 5, the microwave resistance has almost no change and the insulation resistance value at high temperature is 1 × 10 10 Ω or more. It was confirmed that it would be high. However, when the addition amount of the glass composition a is as large as 3% by weight as in Sample No. 6, the Qf product suddenly becomes small, resulting in a large dielectric loss, which is not desirable as a microwave dielectric ceramic.

【0021】また試料番号7〜15に示したように、添
加するガラス組成物が請求項2の範囲内でb〜hと変わ
っても、2重量%以下の添加であれば、おおむね傾向は
同じで、マイクロ波電気特性を大きく損なうことなく高
温絶縁抵抗値を改善することが可能であることを確認し
た。
Further, as shown in sample numbers 7 to 15, even if the glass composition to be added is changed from b to h within the scope of claim 2, if the addition amount is 2% by weight or less, the tendency is generally the same. It was confirmed that it is possible to improve the high temperature insulation resistance value without significantly impairing the microwave electric characteristics.

【0022】次に請求項1の範囲内であるが請求項2の
範囲内ではない例について説明する。
Next, an example within the scope of claim 1 but not within the scope of claim 2 will be described.

【0023】試料番号17のように、ガラス組成物中の
SiO2の含有量が35重量%未満と低いガラス組成物
iを添加した場合、および試料番号19のようにガラス
組成物中のB23の含有量が30重量%以上と多いガラ
ス組成物kを添加した場合、高温絶縁抵抗の改善に対す
る効果はあるが、Qf積の低下率が若干大きい。また試
料番号18のように、ガラス組成物中のSiO2の含有
量が60重量%以上と多いガラス組成物jを添加した場
合、および試料番号20のようにガラス組成物中のAl
23の含有量が20重量%以上と多いガラス組成物lを
添加した場合、高温絶縁抵抗の向上率が小さい。これは
ガラス組成物の軟化点が高くなるためと考えられる。ま
た試料番号21のように、ガラス組成物中のMOの含有
量が50重量%以上と多いガラス組成物mを添加した場
合、共振周波数の温度特性(TCF)が正側へシフトす
る傾向が見られる。
When a glass composition i having a low SiO 2 content of less than 35% by weight was added as in Sample No. 17, and B 2 in the glass composition as in Sample No. 19 was added. When the glass composition k having a large O 3 content of 30% by weight or more is added, it has the effect of improving the high-temperature insulation resistance, but the reduction rate of the Qf product is slightly large. In addition, when the glass composition j having a large SiO 2 content of 60% by weight or more is added as in the case of sample number 18, and Al in the glass composition as in the case of sample number 20 is added.
When the glass composition 1 having a large content of 2 O 3 of 20% by weight or more is added, the improvement rate of the high temperature insulation resistance is small. It is considered that this is because the softening point of the glass composition becomes high. Further, as in Sample No. 21, when the glass composition m having a large MO content in the glass composition of 50% by weight or more is added, the temperature characteristic (TCF) of the resonance frequency tends to shift to the positive side. To be

【0024】このように請求項2の組成範囲内に入らな
いガラス組成物を添加した場合、本発明の主たる目的で
ある高温絶縁抵抗の改善の効果は認められるが、量産化
が難しかったり、実用上特性に問題となる可能性がある
ため、請求項2の範囲内にあるガラス組成物を添加する
のがより好ましい。なお、本実施の形態2においては、
主成分BiO3/2−CaO−NbO5/2系組成について一
例のみ示したが本請求項1に示した主成分BiO3/2
CaO−NbO5/2系の組成範囲において、この範囲内
であればマイクロ波電気特性が確保され、さらに、高温
絶縁抵抗値が改善されることを確認した。
As described above, when the glass composition which does not fall within the composition range of claim 2 is added, the effect of improving the high-temperature insulation resistance, which is the main object of the present invention, is recognized, but it is difficult to mass-produce and practical use. It is more preferable to add a glass composition within the scope of claim 2 because there is a possibility that the above characteristics may be a problem. In the second embodiment,
The main component BiO3 / 2- CaO-NbO5 / 2 composition is shown only as an example, but the main component BiO3 / 2- shown in claim 1 is shown.
It was confirmed that in the composition range of the CaO-NbO 5/2 system, microwave electric characteristics were secured within this range, and further, the high temperature insulation resistance value was improved.

【0025】(実施の形態3)実施の形態3では、第2
の副成分酸化銅の添加による効果について検討した。主
成分である0.46BiO3/2−0.215CaO−
0.325NbO5/2を100重量%として酸化銅をC
uOの形で、主成分の原料粉体混合時に0〜3重量%添
加した。実施の形態1と同様の方法で誘電体セラミック
組成物を作製し、電気特性などを評価した結果を(表
3)に示す。
(Third Embodiment) In the third embodiment, the second
The effect of the addition of the sub-component copper oxide was investigated. 0.46BiO 3/2 -0.215CaO- which is the main component
0.325NbO 5/2 as 100% by weight of copper oxide as C
In the form of uO, 0 to 3% by weight was added when the raw material powders of the main component were mixed. A dielectric ceramic composition is prepared by the same method as in the first embodiment, and the results of evaluating the electrical characteristics are shown in (Table 3).

【0026】[0026]

【表3】 [Table 3]

【0027】試料番号23、24、27、30、31の
ように請求項3の範囲に含まれる量の酸化銅を添加物と
して加えた場合、高温絶縁抵抗およびマイクロ波電気特
性をほとんど劣化させることなく焼成温度を25℃以上
低下させることができ、融点の低い銀電極との同時焼成
が安定して可能となる。しかし試料番号25、28のよ
うに添加量が0.2重量%を越えると、高温絶縁抵抗が
低下するので、酸化銅の添加量はCuOに換算して0.
2重量%以下であることが好ましい。
When the amount of copper oxide contained in the range of claim 3 is added as an additive like sample numbers 23, 24, 27, 30 and 31, most of the high temperature insulation resistance and microwave electric characteristics are deteriorated. Without this, the firing temperature can be lowered by 25 ° C. or more, and simultaneous firing with a silver electrode having a low melting point can be stably performed. However, when the addition amount exceeds 0.2% by weight as in Sample Nos. 25 and 28, the high-temperature insulation resistance decreases, so the addition amount of copper oxide is converted to CuO and is 0.
It is preferably 2% by weight or less.

【0028】(実施の形態4)実施の形態4では、本発
明の誘電体セラミックを用いた積層型のセラミック電子
部品の一例を説明する。
(Embodiment 4) In Embodiment 4, an example of a laminated ceramic electronic component using the dielectric ceramic of the present invention will be described.

【0029】積層型のセラミック電子部品として、誘電
体層と電極層を交互に積層した構造としては公知の積層
セラミックコンデンサを作製した。断面図を図1に示
す。ここで、1は誘電体層、2は内部電極、3は端子電
極である。以下にその作製法について述べる。
As a laminated ceramic electronic component, a known laminated ceramic capacitor having a structure in which dielectric layers and electrode layers are alternately laminated was prepared. A sectional view is shown in FIG. Here, 1 is a dielectric layer, 2 is an internal electrode, and 3 is a terminal electrode. The manufacturing method will be described below.

【0030】(表3)の試料番号23のセラミック組成
物に、有機バインダ、溶剤、可塑剤を加え、ボールミル
などで混合して得たスラリーを公知のドクターブレード
法により厚み40μmのグリーンシートを作製する。導
体金属には銀(100%)を選択し、エチルセルロース
と溶剤を混合したビヒクルと混練し導体ペーストを作製
した。
An organic binder, a solvent and a plasticizer were added to the ceramic composition of Sample No. 23 in (Table 3), and the resulting slurry was mixed by a ball mill or the like to prepare a green sheet having a thickness of 40 μm by a known doctor blade method. To do. Silver (100%) was selected as the conductor metal and kneaded with a vehicle prepared by mixing ethyl cellulose and a solvent to prepare a conductor paste.

【0031】図1の構成となるようグリーンシートと導
体層を積層する。導体層はスクリーン法により導体ペー
ストを矩形パターン(幅0.2mm)に印刷する。図1
のように導体層は2層、導体層の間には40μm厚のグ
リーンシートを1枚積層した。なお全体の積層枚数は1
5枚である。積層体は40℃、500kg/cm2の条
件でプレスすることにより完全に圧着される。カッター
を用いて個々の素子(長さ1.2mm×幅0.6mm)
に切断した後、500℃、10時間保持の条件で有機成
分を飛散させ、925℃、2時間保持の条件で焼成し
た。端子電極3として、市販の銀ペーストを図のように
塗布し、800℃で10分間保持する条件で焼き付け、
積層セラミックコンデンサを得た。
A green sheet and a conductor layer are laminated so that the structure shown in FIG. 1 is obtained. The conductor layer is printed by a screen method with a conductor paste in a rectangular pattern (width: 0.2 mm). Figure 1
As described above, two conductor layers were laminated, and one green sheet having a thickness of 40 μm was laminated between the conductor layers. The total number of layers is 1
There are five. The laminate is pressed completely under pressure at 40 ° C. and 500 kg / cm 2 . Individual element using a cutter (length 1.2 mm x width 0.6 mm)
After cutting into pieces, the organic components were scattered under the conditions of holding at 500 ° C. for 10 hours, and baked under the conditions of holding at 925 ° C. for 2 hours. As the terminal electrode 3, apply a commercially available silver paste as shown in the figure and bake under the condition of holding at 800 ° C. for 10 minutes,
A multilayer ceramic capacitor was obtained.

【0032】焼成後のコンデンサの大きさは、長さ1.
0mm、幅0.5mm、厚み0.5mmであった。また
内部電極2間の誘電体層1の厚みは25μm、内部電極
2の厚みは約6μmであった。
The size of the capacitor after firing is 1.
The thickness was 0 mm, the width was 0.5 mm, and the thickness was 0.5 mm. The thickness of the dielectric layer 1 between the internal electrodes 2 was 25 μm, and the thickness of the internal electrodes 2 was about 6 μm.

【0033】1GHzにおけるコンデンサ容量値、Q値
をマテリアルアナライザを用いて測定した結果、容量値
は2.0pF、Q値は約800であった。比較例として
ほぼ同じ容量値、形状の市販されている積層セラミック
コンデンサのQ値を測定すると約300であった。この
ことから、本発明による積層セラミックコンデンサは極
めて優れた電気特性を示す。
As a result of measuring the capacitance value and Q value of the capacitor at 1 GHz using a material analyzer, the capacitance value was 2.0 pF and the Q value was about 800. As a comparative example, a commercially available monolithic ceramic capacitor having substantially the same capacitance value and shape has a Q value of about 300. From this, the laminated ceramic capacitor according to the present invention exhibits extremely excellent electric characteristics.

【0034】また作製した積層セラミックコンデンサの
絶縁抵抗値を印加電圧50V、測定時間1分間の条件で
測定した結果、室温下では3×1013Ω、120℃の高
温下でも2×1011Ωと十分高く、積層セラミックコン
デンサとしての信頼性も優れていることを確認した。
The insulation resistance value of the manufactured monolithic ceramic capacitor was measured under the conditions of an applied voltage of 50 V and a measuring time of 1 minute. As a result, it was 3 × 10 13 Ω at room temperature and 2 × 10 11 Ω even at a high temperature of 120 ° C. It was confirmed that it was sufficiently high and the reliability as a monolithic ceramic capacitor was also excellent.

【0035】なお、内部電極2の導体として銀(100
%)以外に銀−白金合金、銀−パラジウム合金、銅など
を用いた場合でも、同様の効果が得られる。ただし銅を
導体とする場合は、脱バインダ、焼成を還元雰囲気で行
う必要がある。
As a conductor of the internal electrode 2, silver (100
%), The same effect can be obtained by using a silver-platinum alloy, a silver-palladium alloy, copper, or the like. However, when copper is used as the conductor, it is necessary to perform binder removal and firing in a reducing atmosphere.

【0036】[0036]

【発明の効果】以上説明したように本発明によると、高
温における絶縁抵抗値が高く、マイクロ波電気特性に優
れ、1050℃以下の低温で焼成する誘電体セラミック
組成物を得ることができる。この誘電体セラミック組成
物を用いると、マイクロ波電気特性に優れ、かつコンデ
ンサ部分の絶縁信頼性に優れたマイクロ波用モジュール
部品等の提供が可能となり、工業的価値が大きいもので
ある。
As described above, according to the present invention, it is possible to obtain a dielectric ceramic composition which has a high insulation resistance value at a high temperature and is excellent in microwave electric characteristics and which is fired at a low temperature of 1050 ° C. or lower. By using this dielectric ceramic composition, it becomes possible to provide a microwave module component having excellent microwave electric characteristics and excellent insulation reliability of the capacitor portion, which is of great industrial value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態4におけるセラミック電子
部品の断面図
FIG. 1 is a sectional view of a ceramic electronic component according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 誘電体層 2 内部電極 3 端子電極 1 Dielectric layer 2 internal electrodes 3 terminal electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加賀田 博司 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4G030 AA08 AA09 AA10 AA20 AA31 AA35 AA36 AA37 AA43 BA09 5E001 AB03 AC09 AE00 AE04 5G303 AA01 AA02 AA05 AB10 AB15 BA12 CA03 CB01 CB02 CB03 CB05 CB06 CB11 CB21 CB30 CB32 5J006 HC07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroshi Kagada             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 4G030 AA08 AA09 AA10 AA20 AA31                       AA35 AA36 AA37 AA43 BA09                 5E001 AB03 AC09 AE00 AE04                 5G303 AA01 AA02 AA05 AB10 AB15                       BA12 CA03 CB01 CB02 CB03                       CB05 CB06 CB11 CB21 CB30                       CB32                 5J006 HC07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸化ビスマス、酸化カルシウムおよび酸
化ニオブよりなる組成物をxBiO3/2−yCaO−z
NbO5/2(x、y、zはモル比、x+y+z=1.
0)と表したときの三成分組成図において、x、yおよ
びzが下記のA、B、C、D、Eを頂点とする五角形の
領域内にある主成分に対し、副成分としてガラス組成物
を2重量%以下含有する誘電体セラミック組成物。 A:(x,y,z)=(0.55,0.16,0.2
9) B:(x,y,z)=(0.50,0.21,0.2
9) C:(x,y,z)=(0.44,0.24,0.3
2) D:(x,y,z)=(0.44,0.20,0.3
6) E:(x,y,z)=(0.50,0.175,0.3
25)
1. A composition comprising bismuth oxide, calcium oxide and niobium oxide is xBiO 3/2 -yCaO-z.
NbO 5/2 (x, y, z are molar ratios, x + y + z = 1.
In the three-component composition diagram represented by 0), x, y and z are glass compositions as sub-components with respect to the main component in the pentagonal region having the following A, B, C, D and E as vertices. A dielectric ceramic composition containing 2% by weight or less of a substance. A: (x, y, z) = (0.55, 0.16, 0.2
9) B: (x, y, z) = (0.50, 0.21, 0.2)
9) C: (x, y, z) = (0.44, 0.24, 0.3
2) D: (x, y, z) = (0.44, 0.20, 0.3
6) E: (x, y, z) = (0.50, 0.175, 0.3
25)
【請求項2】 副成分のガラス組成物が、35〜60重
量%のSiO2、0〜30重量%のB23、0〜20重
量%のAl23、0〜50重量%のMO(ただしMはC
a、Sr、Baから少なくとも一種以上)により構成さ
れる請求項1に記載の誘電体セラミック組成物。
2. The glass composition as an accessory component comprises 35 to 60% by weight of SiO 2 , 0 to 30% by weight of B 2 O 3 , 0 to 20% by weight of Al 2 O 3 , and 0 to 50% by weight. MO (where M is C
The dielectric ceramic composition according to claim 1, which is composed of at least one of a, Sr, and Ba).
【請求項3】 第二の副成分として酸化銅を主成分10
0重量%に対しCuOに換算して0.2重量%以下含有
する請求項1または2に記載の誘電体セラミック組成
物。
3. Copper oxide as a main component 10 as a second accessory component.
The dielectric ceramic composition according to claim 1, which is contained in an amount of 0.2% by weight or less in terms of CuO with respect to 0% by weight.
【請求項4】 請求項1〜3のいずれか一つに記載の誘
電体セラミック組成物からなる誘電体層と、少なくとも
銀または銅を含む導体層とを積層して形成した積層体か
らなるセラミック電子部品。
4. A ceramic comprising a laminate formed by laminating a dielectric layer comprising the dielectric ceramic composition according to claim 1 and a conductor layer containing at least silver or copper. Electronic components.
JP2001312142A 2001-10-10 2001-10-10 Dielectric ceramic composition and ceramic electronic parts using the same Withdrawn JP2003119076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001312142A JP2003119076A (en) 2001-10-10 2001-10-10 Dielectric ceramic composition and ceramic electronic parts using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001312142A JP2003119076A (en) 2001-10-10 2001-10-10 Dielectric ceramic composition and ceramic electronic parts using the same

Publications (1)

Publication Number Publication Date
JP2003119076A true JP2003119076A (en) 2003-04-23

Family

ID=19130848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001312142A Withdrawn JP2003119076A (en) 2001-10-10 2001-10-10 Dielectric ceramic composition and ceramic electronic parts using the same

Country Status (1)

Country Link
JP (1) JP2003119076A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1505043A2 (en) * 2003-08-07 2005-02-09 Matsushita Electric Industrial Co., Ltd. Dielectric ceramic composition and ceramic electronic component employing the same
JP2006173270A (en) * 2004-12-14 2006-06-29 Tdk Corp Chip type electronic component
WO2007039971A1 (en) * 2005-09-30 2007-04-12 Murata Manufacturing Co., Ltd. Piezoelectric ceramic composition and piezoelectric component
US7351674B2 (en) 2004-03-01 2008-04-01 Murata Manufacturing Co., Ltd. Insulating ceramic composition, insulating ceramic sintered body, and mulitlayer ceramic electronic component
US7368408B2 (en) 2004-03-01 2008-05-06 Murata Manufacturing Co., Ltd. Glass-ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
US7417001B2 (en) 2004-03-01 2008-08-26 Murata Manufacturing Co., Ltd Glass ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
US7439202B2 (en) 2004-03-01 2008-10-21 Murata Manufacturing Co., Ltd. Glass ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
JP2012248326A (en) * 2011-05-25 2012-12-13 Tdk Corp Electrostatic protection component

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1505043A2 (en) * 2003-08-07 2005-02-09 Matsushita Electric Industrial Co., Ltd. Dielectric ceramic composition and ceramic electronic component employing the same
EP1505043A3 (en) * 2003-08-07 2009-05-06 Panasonic Corporation Dielectric ceramic composition and ceramic electronic component employing the same
US7351674B2 (en) 2004-03-01 2008-04-01 Murata Manufacturing Co., Ltd. Insulating ceramic composition, insulating ceramic sintered body, and mulitlayer ceramic electronic component
US7368408B2 (en) 2004-03-01 2008-05-06 Murata Manufacturing Co., Ltd. Glass-ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
US7417001B2 (en) 2004-03-01 2008-08-26 Murata Manufacturing Co., Ltd Glass ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
US7439202B2 (en) 2004-03-01 2008-10-21 Murata Manufacturing Co., Ltd. Glass ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
JP2006173270A (en) * 2004-12-14 2006-06-29 Tdk Corp Chip type electronic component
WO2007039971A1 (en) * 2005-09-30 2007-04-12 Murata Manufacturing Co., Ltd. Piezoelectric ceramic composition and piezoelectric component
US7510669B2 (en) 2005-09-30 2009-03-31 Murata Manufacturing Co., Ltd. Piezoelectric ceramic composition and piezoelectric component
JP2012248326A (en) * 2011-05-25 2012-12-13 Tdk Corp Electrostatic protection component

Similar Documents

Publication Publication Date Title
KR100814674B1 (en) Dielectric porcelain composition and method for production thereof
JP3305626B2 (en) Dielectric porcelain composition and ceramic electronic component using this dielectric porcelain composition
WO1997002221A1 (en) Dielectric porcelain, process for production thereof, and electronic parts produced therefrom
JP4482939B2 (en) Dielectric ceramic composition, dielectric ceramic, and multilayer ceramic component using the same
JP2003119076A (en) Dielectric ceramic composition and ceramic electronic parts using the same
KR100337651B1 (en) Dielectric Ceramic Composition, Electric Device and Production Method thereof
JP3846464B2 (en) Dielectric ceramic composition and ceramic electronic component using the same
US5629252A (en) Method for manufacturing a dielectric ceramic composition dielectric ceramic and multilayer high frequency device
JP3317246B2 (en) Composite ceramic and composite ceramic element
JP3940419B2 (en) Dielectric ceramic composition and manufacturing method thereof
JP3605260B2 (en) Non-reducing dielectric ceramic composition
JPH0676627A (en) Dielectric ceramic composition
JP3375450B2 (en) Dielectric porcelain composition
JP2004026543A (en) Dielectric porcelain composition and laminated ceramic component using the same
JPH11340075A (en) Dielectric cermic composition
KR100823217B1 (en) Dielectric porcelain composition and method for production thereof
JP4174668B2 (en) DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT
EP0869514B1 (en) A method for manufacturing a dielectric ceramic composition, dielectric ceramic and multilayer high frequency device
JPH11209172A (en) Dielectric porcelain composition and composite dielectric porcelain composition
JP2002326865A (en) Dielectric porcelain composition and dielectric device
JP3215012B2 (en) Dielectric porcelain composition
JP3597244B2 (en) Dielectric porcelain composition
JP2000251537A (en) Dielectric ceramic composition
JPH0959062A (en) Conductor ceramic composition, its production and laminate-type high-frequency device
JP2003002740A (en) Dielectric ceramic composition for high frequency and electronic parts using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041005

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050701

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061101